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Abstract—With the recent introduction of CT scanners with

large cone angles, wide coverage detectors now provide a de-

sirable scanning platform for cardiac CT that allows whole

heart imaging in a single rotation. On these scanners, while

half-scan data is strictly sufficient to produce images with the

best temporal resolution, acquiring a full 360 degree rotation

worth of data is beneficial for wide-cone image reconstruction

at negligible additional radiation dose. Applying Model-Based

Iterative Reconstruction (MBIR) algorithm to the heart has

already been shown to yield significant enhancement in image

quality for cardiac CT. But imaging the heart in large cone

angle geometry leads to apparently conflicting data usage con-

siderations. On the one hand, in addition to using the fastest

available scanner rotation speed, a minimal complete data set of

180 degrees plus the fan angle is typically used to minimize

both cardiac and respiratory motion. On the other hand, a

full 360 degree acquisition helps better handle the challenges of

missing frequencies and incomplete projections associated with

wide-cone half-scan data acquisition. In this paper, we develop a

Spatially Adaptive sinogram Weights MBIR algorithm, deemed

SAW-MBIR, that is designed to achieve the benefits of both

half-scan and full-scan reconstructions in order to maximize

temporal resolution performance over the heart region while

providing stable results over the whole volume covered with the

wide-area detector. Spatially-adaptive sinogram weights applied

to each projection measurement in SAW-MBIR are designed to

selectively perform back projection from the full-scan and half-

scan portion of the sinogram based on both projection angle and

reconstructed voxel location. We demonstrate with experimental

results of SAW-MBIR applied to whole-heart cardiac CT clinical

data that overall temporal resolution performance matches half-

scan results while full volume image quality compares positively

to the standard MBIR reconstruction of full-scan data.

Index Terms—MBIR, Selective Back Projection, Cardiac CT,

Temporal Resolution, Spatially-Adaptive

I. INTRODUCTION

C
ARDIAC CT reconstruction requires high temporal res-
olution to capture the moving heart. To achieve high

temporal resolution in the reconstructed image, it is desirable
to reconstruct from limited-view angle projections, i.e. a
minimal complete dataset (180 + the fan angle), also referred
to as half-scan, instead of a full-scan acquisition with 360
degrees of data [1], [2]. Although half-scan is sufficient for
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image reconstruction in the mid-plane, it results in incomplete
projections and missing spatial frequencies for image planes
under larger cone angles. Without explicit corrections, ana-
lytical algorithms such as filtered back projection (FBP) may
lead to artifacts when performing reconstruction from half-
scan data at high cone angles [3], [4].

On the other hand, wide detector apertures and large cone
angles are advantageous in cardiac CT as they allow the
acquisition of the whole heart in a single rotation, with reduced
overall scan time over the target volume and higher X-ray tube
efficiency [5]. While most conventional clinical CT platforms
with smaller detectors rely only on half-scan data for heart
imaging, wide-area detectors allow full-scan acquisitions with
360 degree projections with negligible additional radiation
dose. In this geometry, spatially-dependent sinogram weight-
ing can help conserve temporal resolution performance over
the heart region. In analytical methods such as FBP, this is
relatively straightforward because the reconstruction at each
spatial location can be carried out in a closed form equation,
independent of other spatial locations, as long as the weights
are calculated to sum to a constant over redundant projection
data contributing to the same location. However, large cone
angles result in missing data and inconsistent projections
which can lead to image distortions without explicit compen-
sation [5].

Model Based Iterative Reconstruction (MBIR) affords ad-
ditional flexibility in data handling and has been shown to
perform better than analytical methods in terms of noise,
artifact reduction, and spatial resolution performance [6]–
[8], thus allowing significant reduction in patient radiation
dose [1], [8], [9]. But specifically for cardiac imaging, MBIR
needs to balance temporal resolution performance with image
spatial resolution, noise, and uniformity. Spatially-dependent
sinogram weighting can be employed to control the contribu-
tions from full-scan and half-scan data sets depending on voxel
location in MBIR as well, as long as the algorithm provides for
consistent problem formulation that allows stable convergence
to the minimum of the cost function.

Individual voxel locations or sub-regions of the cardiac vol-
ume may be properly reconstructed with spatially-dependent
sinogram weighting in MBIR when back projecting a single
full-scan wide-cone dataset which treats differently locations
within the heart area vs. outside the heart. Parker weights [10]
can for instance be used for back projection of half-scan data
over the heart region, whereas regions outside the heart are
back projected using the corresponding full-scan sinogram
weights. In this case, the algorithm needs to deal with an
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unmatched forward/backward projection pair (or dual sys-
tem matrix) [11]. Such approaches have previously been
investigated to reduce artifacts [12] as well as to accelerate
the convergence of IR algorithms [11], [13], [14]. However,
in these past works, the back projection operator does not
contain any specific information about the locations of both
the measurements and the reconstructed voxels.

In this paper, we propose the SAW-MBIR algorithm that
uses spatially-adaptive sinogram weights to perform selective
back projection from different sub-regions or voxels in the re-
constructed image, and apply it to wide-cone angle cardiac CT.
In a single iteration, SAW-MBIR selectively performs half-
scan back projection over the heart region and full-scan back
projection over the rest of the volume in order to address the
challenges normally associated with incomplete and missing
data from the half scan geometry in regions with high cone
angles. Experimental results demonstrate that the SAW-MBIR
algorithm achieves consistent temporal resolution with half
scan MBIR reconstruction over the heart region, and good
image quality consistent with full-scan MBIR reconstruction
in the rest of the reconstructed volume, all in a consistent
algorithm framework operating with a single reconstruction.

II. SAW-MBIR
A. Theoretical Formulation

The objective of this work is to develop an MBIR formula-
tion with spatially-adaptive sinogram weighting (SAW-MBIR)
for selective back projection of cardiac full-scan CT data. In
this approach, separate back projections are performed from
the sinogram residual corresponding to different sub-regions in
the reconstructed image volume. Subsequently, the back pro-
jection results are weighted using a mask applied to the spatial
location of each sub-regions. When used over half-scan and
full-scan projection regions, this supports the reconstruction
of an image volume with good temporal resolution over the
central region while using full sampling to reconstruct the rest
of the volume.

To explain the idea, we use gradient descent to find the
solution to the problem:

y = Ax (1)

where A 2 <M⇥N is the system matrix, x 2 <N is the
unknown vector of the image, and y 2 <M is the vector
of sinogram measurements. The corresponding maximum a

posteriori (MAP) cost function is:

f(x) =
1

2
||y �Ax||2W + �(x) (2)

The norm in the first term is the data fidelity term, where
W is a diagonal statistical weighting matrix that models the
noise [8] and �(x) is the regularization function. We can then
write the gradient descent update equation as follows:

g(x) = rf(x) = ATW (Ax� y) +r�(x) (3)

x(k+1) = xk � ↵g(x), (4)

where k denotes the iteration number and ↵ is the step size.
Here, AT is the matched back projection operator to the
forward projection system matrix A.

For a cardiac CT scan that includes projections from the
full 360 degree rotation scan, we denote y the complete
set of projections (full-scan), and consider the limited view
angle measurements yh (half-scan) as a subset of the full-
scan measurements. We note yh0 the complement of yh, which
includes all the rest of the projections from outside the limited-
view angles. We define:

y ⌘
"
yh

yh0

#
(5)

We also partition the image x into two regions of xm, which
corresponds to the target region (here, the heart region) and
should be back projected from half-scan measurement data,
and xm0 , which corresponds to the background region.

x ⌘
"
xm

xm0

#
(6)

Consistently, we partition the A matrix into four sub-
matrices:

A ⌘
"
Ahm Ahm0

Ah0m Ah0m0

#
(7)

Ahm and Ahm0 are the sub-matrices that project xm and x0m
into the half-scan measured sinogram yh, respectively. On the
other hand, Ah0m and Ah0m0 project xm and x0m into the region
outside the half-scan measured sinogram y0h.

We can rewrite equation (1) as follows:
"
yh

yh0

#
=

"
Ahm Ahm0

Ah0m Ah0m0

#"
xm

xm0

#
(8)

Using half-scan projections is advantageous in improving
the temporal resolution relative to the full-scan data. The
corresponding back projection matrix can be written as:

AT
half ⌘

"
AT

hm 0

AT
hm0 0

#
(9)

It is challenging to reconstruct image slices at high cone
angles from only half-scan data because of incomplete and
missing projections in the half-scan dataset. Instead, one may
benefit from using full-scan projections outside the central
primary region of interest, in conjunction with half-scan data
only for the center region, in order to both improve temporal
resolution at the center and maintain high image quality
throughout.

Algorithm 1 SAW-MBIR
y  measured sinogram
x0  FBP
↵ step size
For k iterations {
gs(x

k) = AT
maskedW (Axk � y) +r�(xk)

x(k+1) = xk � ↵gs(x
k) }

Here, we introduce the SAW-MBIR algorithm that uses
spatially-adaptive sinogram weights to perform selective back
projection while retaining a consistent framework for iterative
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optimization. We first define the masked back projection
operator AT

masked:

AT
masked ⌘

"
AT

hm 0

AT
hm0 AT

h0m0

#
(10)

Compared to AT , by setting Ah0m = 0, AT
masked decouples

yh0 from xm when back projecting the sinogram residual to
the image. The back projector is masked (i.e. set to zero)
depending on the spatial location of the regions that are outside
the half-scan projection data. Putting AT

masked in equation (3),
we get the following pseudo-gradient:

g(x) = gs(x) ⌘
"
[gs(x)]m

[gs(x)]m0

#
+r�(x)

= AT
maskedW (Ax� y) +r�(x),

(11)

where:

[gs(x)]m ⌘
"
Ahm

0

#T

W (Ax� y) (12)

[gs(x)]m0 ⌘
"
Ahm0

Ah0m0

#T

W (Ax� y) (13)

And the update equation becomes:

x(k+1) = xk � ↵gs(x
k) (14)

Eqs. (12) and (13) above show how the proposed SAW-
MBIR algorithm selectively performs half-scan back projec-
tion of locations within the mask (Eq. (12)) and full-scan back
projection of locations outside the mask (Eq. (13)). A summary
of the proposed method is shown in algorithm 1.
B. Application to Wide-Cone Cardiac CT

SAW-MBIR can be applied in whole-heart wide-cone car-
diac CT to produce better results than standard MBIR. An
illustration of the transverse view of the cardiac CT data
acquisition is shown in Fig. 1a. Cone-beam projections are
drawn for two opposite view angles. Standard MBIR with
full-scan projection data can produce good image quality in
the full volume by reducing noise and artifacts compared
to analytical methods, but does not inherently produce the
temporal resolution of the half-scan acquisition over the heart
area typically covered in the fully-sampled (i.e. light purple)
region. The SAW-MBIR algorithm introduced in section II.A.
can be used to improve the temporal resolution in the heart
region relative to full-scan.

We define a mask to distinguish between the area where
complete projection data is available from the half-scan data
and the rest of the volume. We intend to reconstruct the light
purple region of Fig. 1a primarily from the half-scan data, and
the dark purple region primarily from the full-scan data. Cross
sections of the mask taken at the center, between the center
and the edge, and at the edge, are shown in Fig. 1b, c, and d,
respectively.

The mask is set to one based on the spatial location of
the voxels with respect to the light and dark purple regions
of Fig. 1a. Since the half-scan and full-scan back projection
operators only differ in the angular range of integration, the

Fig. 1. a. A schematic of the transverse view of the cardiac CT data
acquisition. Projections from two opposite view angles are drawn in red and
blue. The desired reconstruction volume is indicated by the rectangular box at
the center. A mask is defined to differentiate between half-scan and full-scan
back projected regions. Our intention is to reconstruct the light purple region
primarily based on the half-scan data, and the dark purple region primarily
based on the full-scan data. Slices of the reconstruction mask are shown: (b)
at the center, (c) between center and edge, and (d) at the edge.

mask is used to implement AT
masked of Eq. (10). The masked

back projector selectively performs back projection from the
half-scan and full-scan measurements at each iteration of
MBIR. Basically, the masked back projector works as if only
measurements inside the region corresponding to the half-scan
data are back projected by half-scan back projector of Eq. (12),
and the rest of the measurements are back projected using the
full-scan back projector of Eq. (13).

III. RESULTS AND DISCUSSIONS

Here we use the SAW-MBIR algorithm to improve upon the
standard MBIR implementation in [15], [16] applied to cardiac
CT. This approach uses a preconditioned gradient-based IR
algorithm to simultaneously update all the voxels. Further, the
ordered subset (OS) method [17] is used to calculate the sub-
gradient for each subset at each iteration, then a preconditioner
operator is used to accelerate the high frequency convergence,
and the Nesterov’s method [18] further reduces the number
of iterations to achieve convergence. The method included a
line-search step that ensures the monotonic decrease of the
cost function relative to the previous estimate.

It is worth noting that normally making the statistical
weighting dependent on location in the image volume would
result in an inconsistent problem formulation for iterative con-
vergence. Using a line search, however, mitigates the concern
of inconsistent weights, and in turn guarantees convergence
and stability. The convergence path would be influenced by
both the gradient of the original cost function 3 and the
pseudo-gradient 11. Intuitively, a fixed point of the iteration
is reached when the two gradient vectors become orthogonal
or have a negative inner product. We leave further theoretical
analysis of the properties of the convergence point to future
studies, so that this paper would focus on achieving the
intended image quality benefits for wide-cone cardiac CT.

Clinical datasets from GE Healthcare Revolution CT scan-
ner with 160 mm detector aperture at the isocenter are used
here, with a single axial rotation covering the whole heart.
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Comparisons between full-scan and half-scan MBIR as well
as the proposed SAW-MBIR algorithm are shown in Figs. 2
and 3.

Fig. 2 compares the performance of SAW-MBIR against
full-scan and half-scan MBIR for wide-cone cardiac CT recon-
struction in the chest (Figs. 2a-c), and in the liver (Figs. 2d-f)
regions. Figs. 2a-c correspond to a slice between cross sections
c and d (closer to d at the edge) in Fig. 1, and Figs. 2d-f belong
to a same region on the opposite side of the reconstruction
volume.

The full-scan and half-scan MBIR results are shown in
Figs. 2a, and d, and Figs. 2b, and e, respectively. Figs. 2c,
and f belong to SAW-MBIR results. SAW-MBIR perform
consistently as good as full-scan MBIR outside the heart
region. Half-scan MBIR, on the other hand, shows some
distortions in the regions outside the heart due to incomplete
and missing projection data.

Fig. 2. Comparison between reconstructed cardiac CT images in the chest
and liver regions. a, and d. Full-scan MBIR. b, and e. Half-scan MBIR. c,
and f. SAW-MBIR. Window settings show the [-200 200] HU range. SAW-
MBIR shows consistent image quality with full-scan outside the heart where
half-scan MBIR is distorted. Panels a-c correspond to a slice between cross
sections c and d (closer to d at the edge) in Fig. 1, and panels d-f are from
a slice on the opposite side in the reconstructed volume.

Fig. 3. Impact on temporal resolution. An expanded view of the heart region
in the reconstructed center slice of the wide-cone acquisition is shown in
(a) half-scan MBIR, and (b) SAW-MBIR. Window settings show the [-200
500] HU range.

We also compared reconstruction results specifically in the
heart region (center slices) between half-scan, and SAW-
MBIR in Figs. 3a, and b. Qualitative comparisons show close
agreement between SAW-MBIR and half-scan results.

Further, the root mean squared error (RMSE) between full-
scan MBIR and half-scan MBIR, as well as between full-scan
MBIR and SAW-MBIR at each slice location is computed.
The results are shown in Fig. 4. It is clear that in the non-heart
regions (the edge slices) SAW-MBIR matches better with full-
scan MBIR without the distortions of half-scan MBIR. The

Fig. 4. RMSE at each slice. The RMSE of half-scan MBIR (blue) and SAW-
MBIR (red) with respect to full-scan MBIR is illustrated. Background pixels
with zero intensity were excluded.

results also suggest very good agreement between the half-
scan and SAW-MBIR results in the heart region, which further
verify that the SAW-MBIR maintains comparable temporal
resolution as the half-scan MBIR.

It is worth noting that, to reduce half-scan artifacts while
maintaining temporal resolution, Cho in [19] proposed akin
approach where they use extra measurements (such as full-scan
data) to modify the statistical weighting using an extrapolation
scheme. However, the experimental results on numerical phan-
toms proved challenging to tune parameters of their model to
obtain optimum solution with temporal resolution of half-scan
and reduced artifacts as good as full-scan results.

IV. CONCLUSION

In this work, we developed the SAW-MBIR algorithm
that uses spatially-adaptive weights to perform selective back
projection of sinogram residuals to different sub-regions or
voxels in the reconstructed image. Back projection weights
may be determined based on both the measurement position
and the location of the reconstructed voxel in the field of
view. We examined the performance of the SAW-MBIR using
whole-heart cardiac CT clinical data sets with temporal heart
motion. The experimental results obtained using the SAW-
MBIR demonstrate marked performance in achieving high
temporal resolution in the heart region with similar image
quality to standard full-scan MBIR outside the heart region.
While cardiac CT is shown as an example, the method can
be extended to other scan geometries or imaging modalities
wherein image artifacts or image degradations may be spa-
tially localized, for instance with scatter, low signal, or metal
artifacts.
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