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Abstract—Model-Based Iterative Reconstruction (MBIR) algo-
rithms have gained increasing attentions in clinical studies as they
allow significant dose reduction during CT scans while maintain-
ing the diagnostic image quality. Generally, MBIR algorithms
take the filtered-back projection (FBP) image as an initial condi-
tion for their optimization. The FBP image then has artifacts with
truncated projection data, causing slow convergence of MBIR.
To reduce the truncation artifacts in the FBP image, we extend
the reconstruction region by extrapolating projection data. In
addition, we develop an efficient image processing method which
reduces the artifacts associated with projection extrapolation.
Our experimental results on one phantom and one real abdominal
CT scan with truncated projection data show that our processed
initial condition significantly improves the convergence speed of
MBIR than the conventional FBP image.

I. INTRODUCTION

Model-Based Iterative Reconstruction (MBIR) algorithms
have gained attentions for CT reconstruction due to supe-
rior signal to noise ratio and image resolution compared
with filtered-back projection (FBP) algorithms [1], [2]. MBIR
algorithms typically optimize the objective function which
incorporates an accurate system model, statistical noise model,
and image prior model [3]. Selecting a good initial condition
can save time in reconstruction as the initial condition close
to the image that the optimization is heading to can reduce the
required number of iterations [4]. This is particularly important
for MBIR algorithms as high computational time is a major
obstacle for their application to clinical practice.

Since it is difficult to obtain a good initial condition without
doing any reconstruction, we normally choose a FBP image
to start the optimization of MBIR. However, FBP algorithms
require that the scanned object is inside the scanning field-
of-view (SFOV) during the entire scanning process. Under
many scanning conditions, portions of the scanned object can
extend beyond the volume measurable by CT detector. For
example, when the patient is either very large or is improperly
positioned, portions of the patient are often outside the SFOV
defined by the CT scanner. If this happens, truncation artifact
occurs at the site of truncation in FBP images [5]. In addition,
no information can be observed for regions outside the SFOV.
The truncation artifact and missing information outside SFOV
can significantly slow down the convergence speed of MBIR
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when FBP images are used as the initial condition. The slow-
down could be worse in gradient-based MBIR algorithms for
x-ray CT [6], [7]. In these type of algorithms, low-frequency
features (such as flat regions) typically tend to converge faster
than high-frequency features (such as object-air boundaries).

Although it is possible to redesign a CT system so that
the SFOV is increased for FBP algorithms, significant de-
velopment time and cost are required. Therefore, we use an
efficient projection-extrapolation based method to deal with
truncated projection data. Among several algorithms proposed
in the past [8], [9], we choose a wideview (WV) algorithm [10]
which not only reduces truncation artifacts, but also expands
the reconstruction region beyond the SFOV defined by the
scanner. The WV algorithm assumes that the truncated portion
is a partial cylindrical water object. Then, it extrapolates
projections by fitting the cylinder to the projection data outside
SFOV based on the magnitude and the slope of truncated
projection boundary samples.

Even though the WV algorithm can recover the smooth
contour of the truncated portion, it is susceptible to back-
ground noise associated with projection extrapolation. In ad-
dition, the intensity in the truncated region can be incorrect
as the truncated portion is assumed to be water. Therefore,
we propose an efficient image processing method which can
reduce the background noise and correct the intensity in
the truncated region in the WV image. We do so by first
identifying truncated regions via Otsu’s thresholding [11] and
then estimating the intensity in the truncated region using non-
local mean (NLM) based inpainting [12].

We investigated our algorithm on two datasets. One is an
improperly positioned Torso phantom and the other is a real
abdominal CT scan with truncated projection data. Results
show that the proposed initial condition is very effective in
speeding up the convergence speed of MBIR compared with
the conventional FBP image.

II. METHOD

In this section, we describe our image processing method
that reduces the artifacts associated projection extrapolation in
the WV image. We call our algorithm WV+ as it improves the
WV image in terms of initial condition for MBIR. Given a WV
image, we first extract a foreground mask via automatic thresh-
olding to remove background noise. In addition, we identify
the truncated region from the foreground mask and correct
intensities in truncated regions through image inpainting. In
following, we explain the procedures in detail.
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A. Removing Background Noise

Let x ∈ RN be the input WV image which is contaminated
by background noise associated with projection extrapolation.
In order to remove background noise, we extract the fore-
ground mask via thresholding. Here, the threshold level plays
an important role in removing background noise correctly.
If the threshold level is too high, parts of anatomy can be
recognized as background noise. If the threshold level is
too low, background noise will still be present in the initial
condition. So, we find the optimal threshold level T which best
separates intensity distribution between background noise and
interested anatomy.

One may heuristically find T for one scan and use this
T for all other CT scans. However, intensity distribution in
background noise and interested anatomy can be different
across CT scans. Therefore, we should adaptively determine T
for different CT scans. Toward this, we use an efficient Otsu’s
method [11]. Assuming bi-modal intensity distribution, Otsu’s
method separates the image into two classes (i.e. background
and foreground) with the arbitrary threshold level t. We now
denote nB(t) and nF (t) as the number of pixels in background
and foreground, respectively. Then, we calculate the inter-class
variance σ2(t) between two classes as following:

σ2(t) = nB(t) · nF (t) · (µB(t)− µF (t))2, (1)

where µB(t) and µF (t) represent the mean for background
and foreground given t, respectively.

Otsu’s method then finds the optimal threshold level T that
maximizes inter-class variance:

T = arg max
t
σ2(t). (2)

It is worth noting that we can efficiently solve this optimization
with exhaustive search for the full range of t as the computa-
tion of σ2(t) is recursive over t.

The foreground mask m ∈ {0, 1}N is then extracted through
thresholding the image x by T :

mi =

{
1 if xi > T ,

0 if xi ≤ T ,
(3)

where subscript i represents the pixel location.
We use the foreground mask m to reduce background

noise in x. Since background noise associated projection
extrapolation is mostly present outside SFOV, we mask out
the background region outside SFOV. Let ΩSFOV be the set
of pixel locations inside SFOV. Then, the denoised image
x̂ ∈ RN is computed as following:

x̂i =

{
0 if mi = 0 and i 6∈ ΩSFOV ,

xi if mi = 1 or i ∈ ΩSFOV .
(4)

B. Inpainting Truncated Region

Even though we reduce background noise in the WV image,
there still be artifacts in the truncated region because projec-
tion extrapolation assumes the material of truncated portion
to be water. Therefore, if the material density in the truncated

anatomy is higher than the water density (i.e. soft tissue), the
image will be darker in the truncated region.

Let ΩTRUN be the set of pixel locations in the truncated
region. We find ΩTRUN by excluding ΩSFOV from m:

ΩTRUN = {i : mi = 1 and i 6∈ ΩSFOV }. (5)

We then inpaint the pixels in ΩTRUN from the pixels in
ΩSFOV through non-local means (NLM) framework [12]. The
NLM is a weighted average filter based on similar patches in
the search region. The weight wij between i and j pixels is
computed as the following form:

wij =

e−
||Pi−Pj ||

2
2

h2 if j ∈ ΩSFOV ,

0 if j 6∈ ΩSFOV ,
(6)

where || · ||22 is the Euclidean distance and h is a decay
coefficient. Pi and Pj represent vectors of intensity values
taken from the p × p patches around i and j, respectively. It
is worth noting that we compute the weight only for pixels in
SFOV to prevent error propagation from outside SFOV.

We use the weight wij to correct the pixel values in ΩTRUN .
Since the computation wij for all pixels in the image is time-
consuming, we only compute the weight in the small search
window. Then, the inpainted image x̃ ∈ RN is calculated from
the denoised image x̂ as following:

x̃i =


∑

j∈Si
wij x̂j∑

j∈Si
wij

if i ∈ ΩTRUN ,

x̂i if i 6∈ ΩTRUN ,
(7)

where Si represents S × S square search window around i.

III. EXPERIMENTAL RESULTS

We compare our WV+ image with the conventional FBP and
WV image in terms of initial condition for MBIR. The data
are acquired from a GE CT750HD scanner with 50cm SFOV.
All axial images are reconstructed with size of 512× 512 and
thickness of 0.625mm. We use two data sets: a Torso phantom
scan of 65 slices and a patient scan of 153 slices. Both datasets
are truncated due to improper position and large anatomy. We
performed MBIR on a standard 2.0GHz clock rate 8 core Intel
processor workstation. The MBIR is parallelized so that each
core is responsible for updating a sequence of slices along
the z-axis. For our WV+ algorithm, we heuristically set the
decay coefficient h = 10, the patch size p = 7, and the search
window size S = 25.

Figure 1 shows three different initial conditions for a Torso
phantom (top row) and a patient scan (bottom row). Figure 1
(a), (b), (c) represent the initial conditions from FBP, WV, and
proposed WV+, respectively. We notice that the FBP initial
condition has bright artifacts around truncation site and misses
anatomy outside SFOV as illustrated in Figure 1 (a). Compared
with FBP, WV removes the bright truncation artifact and
recovers the lost anatomy outside SFOV. However, the WV ini-
tial condition has the darker region outside SFOV than nearby
soft tissue in SFOV as shown in Figure 1 (b). Moreover, WV
is susceptible to background noise associated with projection
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(a) FBP (b) WV (c) WV+ (d) Truncated Region

Fig. 1. Initial conditions for a Torso phantom data (top row) and a patient scan (bottom row): (a) FBP, (b) WV, (c) WV+, (d) Truncated region detected
by WV+. The display window of the intensity map is [700, 1300]HU for the Torso phantom (top row) and [0, 2000]HU for the patient scan (bottom row),
respectively. Note that WV+ accurately identifies the truncated region and reduces the artifacts in FBP and WV.

(a) FBP (b) WV (c) WV+ (d) Reference

Fig. 2. Intermediate MBIR results for a Torso phantom data (top row) and a patient scan (bottom row) after 5 iterations: (a) FBP, (b) WV, (c) WV+,
(d) Fully-converged reference image after 20 iterations. The display window of the intensity map is [700, 1300]HU for the Torso phantom (top row) and
[0, 2000]HU for the patient scan (bottom row), respectively. Note that WV+ produces closer image to the reference image compared with FBP and WV,
reflecting the faster convergence using WV+ as initial condition.
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(a) Torso phantom (b) Patient scan

Fig. 3. Root mean square difference (RMSD) between intermediate MBIR
results and the fully-converged reference image for 10 iterations: (a) Torso
phantom, (b) Patient scan. Red, blue, and green line represent the RMSD plot
using FBP, WV, and WV+ initial conditions, respectively. For both cases,
WV+ achieves the improvement in convergence speed compared with FBP
and WV.

extrapolation. In Figure 1 (c), WV+ corrects the low intensity
values in the truncated region and reduces background noise
in the WV image. This reflects that automatic thresholding in
our WV+ algorithm accurately identifies the truncated region
(see Figure 1 (d)) and corrects the dark pixels in the truncated
region through NLM based image inpainting.

Figure 2 shows the intermediate MBIR results after 5
iterations for a Torso phantom (top row) and a patient scan
(bottom row). Figure 2 (a), (b), (c) represent the intermediate
MBIR results using FBP, WV, and proposed WV+ for initial
condition, respectively. For reference, we also display the
fully-converged MBIR reconstruction after 20 iterations in
Figure 2 (d). Using the FBP initial condition, the MBIR
results show peripheral ring and bright artifacts in SFOV.
In addition, truncated regions are not fully reconstructed as
shown in Figure 2 (a). This indicates that the image is under-
converged after 5 iterations. Using the WV initial condition,
reconstruction result is closer to the fully converged reference
image than using FBP as illustrated in Figure 2 (b). But,
there exist shading artifacts around lung boundary for a Torso
phantom and background noise in a patient scan, reflecting
that the reconstruction is not converged yet. With our WV+
initial condition, MBIR generates very close image (see Figure
2 (c)) to the fully converged reference image (see Figure 2
(d)) after 5 iterations. This shows that our WV+ improves the
convergence speed of MBIR compared with FBP and WV.

For quantitative comparisons, Figure 3 plots the root mean
square difference (RMSD) between intermediate MBIR results
and the fully-converged reference image over 10 iterations. We
show RMSD trends for the Torso phantom in Figure 3 (a) and
for the patient scan in Figure 3 (b). Red, blue, and green curves
represent RMSD for FBP, WV, and WV+ initial conditions,
respectively. Notice that the FBP initial condition has very
slow convergence as 10 iterations are not enough for MRIR to
be converged. This is because truncation artifacts and missing
anatomy in the FBP image make the initial condition far from
the image that the optimization is heading to. By using the WV
initial condition, we can achieve much faster convergence than
using the FBP initial condition since WV reduces truncation
artifacts and recovers missing anatomy in the FBP image.

WV+ further improves the convergence speed, showing the
benefit of our image processing on the WV image. It is worth
noting that the speedup by WV+ compared with WV is larger
for the Torso phantom than for the patient scan. This is because
the patient scan has less level of truncation and therefore
the WV artifacts associated with projection extrapolation are
reduced.

IV. CONCLUSIONS

In this paper, we present an image processing method to
generate the initial condition for MBIR that can improve
the convergence speed. Our method is based on projection-
extrapolation WV algorithm which reduces truncation artifacts
and recovers the lost anatomy in the FBP image with truncated
projection data. We further improve the WV by reducing
background noise via automatic thresholding and correcting
the truncated region via NLM inpainting. Results on both
phantom and real datasets show that the proposed algorithm is
very effective in improving the convergence speed of MBIR
compared with using FBP and WV as initial condition.
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