
Simultaneous Heuristic Search for Conjunctive Subgoals

Lin Zhu and Robert Givan
Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907 USA

{lzhu, givan}@purdue.edu

Abstract

We study the problem of building effective heuristics for
achieving conjunctive goals from heuristics for individual
goals. We consider a straightforward method for building
conjunctive heuristics that smoothly trades off between pre-
vious common methods. In addition to first explicitly formu-
lating the problem of designing conjunctive heuristics, our
major contribution is the discovery that this straightforward
method substantially outperforms previously used methods
across a wide range of domains. Based on a single positive
real parameterk, our heuristic measure sums the individual
heuristic values for the subgoal conjuncts, each raised to the
k’th power. Varyingk allows loose approximation and com-
bination of the previous min, max, and sum approaches, while
mitigating some of the weaknesses in those approaches. Our
empirical work shows that for many benchmark planning do-
mains there exist fixed parameter values that perform well—
we give evidence that these values can be found automati-
cally by training. Our method, applied to top-level conjunc-
tive goals, shows dramatic improvements over the heuristic
used in the FF planner across a wide range of planning com-
petition benchmarks. Also, our heuristic, without computing
landmarks, consistently improves upon the success ratio of a
recently published landmark-based plannerFF-L.

Introduction
Good heuristic functions have been an important factor for
success in many modern planners (Bonet & Geffner 2001;
Hoffmann & Nebel 2001; Gerevini, Saetti, & Serina 2003;
Helmert 2004). Here, we consider the problem of building
a conjunctive heuristic: a heuristic function for conjunctive
goals, given heuristics for the conjuncts (subgoals).

The need to seek a conjunction of subgoals occurs in
many contexts in planning. Typically, planning goals are
directly represented as a conjunctive set of literals. Further-
more, in partial-order planning, a given partial plan implic-
itly represents the conjunction of the subgoals of resolving
all threatsand supporting allopen conditions(McAllester
& Rosenblitt 1991). Other regression approaches, such as
the backward phase of GRAPHPLAN (Blum & Furst 1997),
maintain at any time a conjunctive set of open subgoals.

For a further example of conjunctive goals, we consider
pattern databases(Culberson & Schaeffer 1996), a proven

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

successful source of heuristics in recent years from the
search community. A pattern database is a pre-computed
lookup table of solution lengths for a relaxation of the prob-
lem domain. Multiple pattern databases, i.e., multiple dif-
ferent relaxations, are typically combined to form a single
heuristic that seeks to drive each database heuristic to zero,
often by computing the maximum or sum over the available
pattern databases (Korf 2000). We view the resulting heuris-
tic as seeking a conjunction of subgoals, each stating that a
pattern database heuristic is zero. Edelkamp (2002) used au-
tomatically constructed pattern databases in planning.

A final example arises with planninglandmarks. Hoff-
mann et al. (2004) introduced landmarks: these are propo-
sitions that every correct solution achieves (makes true) at
some point during execution. Planning goals can be ex-
tended usefully by adding a conjunct for each landmark as-
serting that that landmark has been achieved, leading again
to conjunctive goals.

Most planners in the literature can be viewed as con-
structing a conjunctive heuristic, either implicitly or explic-
itly. In previous work, a conjunctive heuristic is often com-
puted as either the sum (Korf 2000; Bonet & Geffner 2001;
Hoffmann & Nebel 2001; Nguyen & Kambhampati 2001),
the minimum (Hoffmann, Porteous, & Sebastia 2004), or the
maximum (Haslum & Geffner 2000; Korf 2000; Edelkamp
2002) of the subgoal heuristics1. These methods do not gen-
erally accurately reflect interactions between subgoals. In
consequence, the resulting conjunctive heuristic may be mis-
leading even if true distance is provided directly as the sub-
goal heuristic. For instance, the sum of the subgoal heuris-
tics gives a large plateau in many transportation domains,
where approaching one subgoal (e.g., city) requires simulta-
neously moving away from another. Here, negative subgoal
interaction is being ignored in the summation. Even so, each
of these simple conjunctive heuristics performs well in some
subset of the standard planning benchmark domains.

We consider a straightforward method for building con-
junctive heuristics that smoothly trades off between the pre-
vious methods. In addition to first explicitly formulating
the problem of designing conjunctive heuristics, our major

1The use of the minimum subgoal heuristic requires combina-
tion with the number of unachieved subgoals as discussed in the
next section.

contribution here is the discovery that this straightforward
method substantially outperforms previously used methods
across a wide range of domains. Based on a single, positive
real parameterk, our heuristic measure sums the individual
subgoal heuristics, each raised to thek’th power. Different
values ofk allow the loose approximation of each previous
method (sum, min, or max) discussed above, and interme-
diate values ofk select a tradeoff between these methods:
for example, focusing on the closest subgoal, but not with-
out regard for the effect on the further subgoals. We will
demonstrate empirically that intermediate values ofk can be
very important to performance, and that the “loose approx-
imations” of sum, min, or max typically outperform sum,
min, or max, respectively for subtle reasons discussed be-
low. We expect this discovery to be relevant to performance
improvement for a wide range of planners.

Our experimental results show that, while the ideal value
of k varies from domain to domain, for typical benchmark
planning domains there exist fixed parameter values that per-
form well—we give evidence below that these values can
then be found automatically by training on the domain.

Our method significantly improves FF’s performance on
a set of hard domains (Hoffmann 2002) for FF, as well as
on a representative search domain, the 24-puzzle, while re-
taining FF’s performance in other domains. We also show,
strikingly, that the use of our heuristic, without computing or
using landmarks, consistently improves upon the success ra-
tio of a recently published planner FF-L that computes and
exploits landmarks (Hoffmann, Porteous, & Sebastia 2004),
on the domains that FF-L was demonstrated on.

In the following sections, we will introduce our method,
compare it qualitatively to previous methods, and show a
broad range of empirical results.

Heuristics for conjunctive goals
A heuristic function is a function mapping state-goal pairs to
a totally ordered set with minimal and maximal elements⊥
and>. This totally ordered set is typically the non-negative
real numbers together with∞. We assume throughout that
a heuristich(s, g) is ⊥ if and only if the goalg is achieved
in states, and> only if g is unreachable froms. We will
sometimes omit the goal argumentg to a heuristic function
when it is assumed known implicitly.

The problem we consider is to build an effective conjunc-
tive heuristicH(s,G) for a conjunctive goalG, given a vec-
tor of heuristicsh(s, gi) for each subgoalgi ∈ G.

Here, we focus on the total quasi-order on states2 in-
duced by heuristic functions of interest. Recent previous
work (Bonet & Geffner 2001; Hoffmann & Nebel 2001) has
also primarily exploited the ordering information in heuris-
tic functions. This limited focus on ordering derives from
a best-first or greedy goal-seeking approach characteristic
of sub-optimal planning—for optimal planning, an A*-like
quantitative use of the exact heuristic values is suggested.
Given an implicit, fixed goalg, we use�h to represent the

2We use the termtotal quasi-orderfor a total, reflexive, transi-
tive relation—such a relation totally orders equivalence classes of
its domain elements.

quasi-orderinginducedby h:

s1 �h s2 iff h(s1) ≤ h(s2).

Several commonly considered conjunctive heuristics are
sum, max, count, and min:

Hsum(s,G) =
∑

i

h(s, gi)

Hmax(s,G) = max
i

h(s, gi)

Hcount(s,G) and Hmin(s,G) are best defined in words.
Hcount(s,G) is simply the number of unachieved subgoals
in G, as long as they are all reachable, and∞ otherwise. In-
formally,Hmin then returns this count, breaking ties with the
distance to the closest subgoal3.

We argue below that these methods are often unsuitable
even if true distance is provided directly for each subgoal
heuristic. Here, we mix these methods by applying a param-
eterized nonlinear transformation on the subgoal heuristic
values before the summation. The transformation we ex-
plore here is simply to raise the subgoal heuristic values to
thek’th power, for a positive real parameterk. So, we define

Hk(s,G) =
∑

i

h(s, gi)
k

By varyingk, the heuristicHk can loosely resemble each of
the basic heuristicsHsum, Hmax, andHmin. For large values
of k, Hk(G) is most sensitive to the heuristic value of the
furthest goalgi, like Hmax. Whenk is one,Hk(G) equals
Hsum. Finally, ask approaches zero,Hk(G) is most sen-
sitive to the reversal of achieved subgoals, and then to the
heuristic value of the closest unachieved subgoal4, just as is
Hmin. Intermediate values ofk give behaviors combining
the properties of the above heuristics. We will discuss the
approximation of sum, min, and max byHk further below.

Before presenting experimental results for the use ofHk,
we first discuss the qualitative strengths and weaknesses of
each basic conjunctive heuristic, suggesting reasons why a
tradeoff heuristic likeHk may outperform each basic heuris-
tic. We also mention key planning systems that employ vari-
ants of each basic heuristic.

Combination via SUM
Perhaps the most popular conjunctive heuristic isHsum, as
used, for example, in REPOP (Nguyen & Kambhampati
2001) and in HSP (Bonet & Geffner 2001) when selecting
one frequently successful setting.

The heuristic used in the very successful planner
FF (Hoffmann & Nebel 2001) counts the steps in a plan

3More formally,Hmin(G) returns values in< × <, which are
then totally ordered lexicographically.Hmin(G) returns the pair of
Hcount(G) and the smallest non-zero subgoal distance. This lex-
icographic ordering approach is necessary to reward actions that
achieve subgoals even though they also force the heuristic to start
focusing on a further subgoal.

4We provide a minimal example to clarify the behavior ofHk

ask approaches zero. Let(i, j) represent a state with an ordered
pair of subgoal distancesi andj. BothHmin andH0.5 would order
the following states in the same sequence:(0, 5), (1, 4), (2, 3).

that achieves the conjunctive goal, ignoring delete lists of
all actions. Because steps may be shared in plans for differ-
ent subgoals, the FF heuristic is thus generally smaller than
Hsum, while still resemblingHsum.

The heuristicHsum is a summary of all the subgoal heuris-
tics, resulting in a trade off on progress between all sub-
goals. However, there are domains on which subgoals are
best solved sequentially or concurrently.Hsum’s neutral po-
sition between these two approaches can be a critical weak-
ness, as we will discuss in the following two subsections.

OftenHsum is uninformative when there is negative inter-
action between subgoals, so that advances on one subgoal
lead to matching degradations on another. This problem can
be caused, for instance, by competition for non-consumable
resources. For one example, on domains where a truck needs
to travel to multiple locations, the truck is a resource in the
sense that it cannot be present simultaneously at several lo-
cations. As the truck moves closer to one subgoal location, it
may be moving further from another, resulting in no net ef-
fect onHsum. This transportation theme appears in many
benchmark domains (Helmert 2003). For another exam-
ple, on benchmark domains such asFreecell, Airport and
Sokoban, free space is another form of resource which can-
not be occupied simultaneously by multiple objects. In such
cases,Hsumcan be misleading because it fails to take into ac-
count the interaction between competing subgoals—in par-
ticular,Hsum can fail to encourage seeking the subgoals one
at a time to minimize resource competition.

Combination via MIN

Hcount addresses these issues partially. However, this heuris-
tic alone does not order enough state pairs, as many useful
actions do not achieve subgoals immediately. For this rea-
son, tie-breaking by measuring the distance to the nearest
subgoal, as inHmin is necessary for an effective heuristic
focusing on subgoal count.Hmin-style approaches to con-
junctive goals avoid a central problem ofHsum by concen-
trating on a single subgoal at a time. This idea underlies the
approach generally used in planners in the early 1970s, as
discussed by Sacerdoti (1975).

The recent planner FF-L (Hoffmann, Porteous, & Sebas-
tia 2004) applies anHmin-style approach to a set of subgoals
found by automatically extracted planning landmarks for the
problem—these landmarks include the top-level goal con-
juncts. Landmarks are propositions which must be made
true at some point by any successful plan. Hoffmann et
al. (2004) have developed methods for automatically finding
planning landmarks. Unlike the top-level subgoals, a land-
mark need not be maintained once it is achieved. However,
landmarks can be treated like conjunctive subgoals with a
small problem modification as we discussed in the introduc-
tion. Consequently, our techniques can be directly applied
to leveraging automatically discovered planning landmarks.

As discussed in more detail below in the empirical re-
sults section, FF-L employs a heuristic approach similar to
Hmin to seek a conjunction of landmarks, showing a substan-
tial empirical gain over state-of-the-art planners that do not
leverage landmarks across a wide range of benchmarks.

A major weakness ofHmin is thatHmin is insensitive to
positive and negative effects on subgoals that are not cur-
rently closest.

Another form of this weakness lies in the heuristic fo-
cusing too absolutely on retaining previously achieved sub-
goals5. This is a critical problem in domains where nega-
tive interaction between subgoals is strong, and a sequence
of irreversibly achieved subgoals is hard or impossible to
find (Korf 1987).

Our simple method of minimizingHk addresses these
weaknesses, while retaining approximately the strength de-
scribed just above. With values ofk less than1, Hk trades
off both behaviors ofHmin and Hsum. When k is small
enough,Hk approximates a natural extension toHmin:

s1 �minsort s2 iff sort(~h(s1)) �lex sort(~h(s2)),

where the function sort(~v) sorts a vector~v in non-decreasing
order,~h(s) represents the vector〈h1(s), . . . , h|G|(s)〉, and
�lex represents the lexicographic order.

�minsort can be approximated by�Hk
with k near zero:

∀ s1 �minsort s2,∃ δ,∀ 0 < k < δ, s1 �Hk
s2

Combination via MAX
On domains such asBlocksworldor 24-puzzlethere are neg-
ative interactions between subgoals, but unlike the trans-
portation domains, a subgoal far from completion suggests
the need to destroy many already achieved subgoals. Work
to complete nearby subgoals when such distant subgoals re-
main distant is often wasted effort. TheHsum conjunctive
heuristic may wrongly reward progress toward a subgoal
that must be later destroyed. The above-mentioned subgoal
count measure does not handle this well, either, because it
becomes very important which subgoal is achieved next, not
just that one is achieved. Work to order the subgoals to avoid
this problem (i.e., so that achieved subgoals need not gener-
ally be reversed) has met only limited success (Koehler &
Hoffmann 2000; Korf 1987).

In such domains,Hmax may reflect the true distance more
accurately. Note, for instance, that greedily reducing the dif-
ficulty of the hardest problem optimally solves the famous
Sussman anomalyin theBlocksworld(as described, e.g., by
Korf (1987)).

Hmax represents a strategy to concurrently solve the sub-
goals, switching focus from a subgoal once enough progress
is made that it is not the furthest. The critical need for con-
currency occurs on some domains, typically with consum-
able, non-exclusive resources such as fuel or time. For ex-
ample, on problems of scheduling interdependent jobs with
a deadline and limited facility resources, following theHmax
heuristic is equivalent to focusing on thecritical path.

PreviouslyHmax has not been explicitly noted for the
above advantages, but has been favored mainly due to its
admissibility, finding application in optimal planning. For
an example use ofHmax, one setting of the heuristic plan-
ner HSP usesHmax (Bonet & Geffner 2001)—this setting

5TheHmin-style approach inFF-L avoids this weakness, as dis-
cussed below.

was found less successful thanHsum on most domains. This
is also the type of combination heuristic used implicitly
in GRAPHPLAN’s backward phase (Blum & Furst 1997;
Haslum & Geffner 2000). A third example is the typical
use of multiple pattern databases in search (Korf 2000) and
planning (Edelkamp 2002), as discussed above.

A significant weakness ofHmax is, similarly to �min
again, they generally ignore positive or negative interactions
with subgoals that are not as distant as the furthest subgoal.

Our simple methodHk, with values ofk > 1, ad-
dresses these weaknesses, while retaining approximately the
strength described just above, by mixing the behaviors of
Hmax andHsum. Hk with large values ofk approximates a
natural extension ofHmax:

s1 �maxsorts2 iff rsort(~h(s1)) �lex rsort(~h(s2)),

where the function rsort(~v) sorts a vector~v in non-increasing
order,~h(s) represents the vector〈h1(s), . . . , h|G|(s)〉, and
�lex represents the lexicographic order.

�maxsortmakes more distinctions than�max does. Our re-
sults suggest that this difference can be critical.�maxsortcan
be approximated by�Hk

with large values ofk:

∀ s1 �maxsorts2,∃ δ,∀ k > δ, s1 �Hk
s2

Empirical Results
Planners We evaluate the performance of our conjunc-
tive heuristics and previous methods on the same search
algorithm that is implemented in FF (Hoffmann & Nebel
2001). The core of FF’s search algorithm isenforced hill-
climbing, which is incomplete but often very fast6. Unlike
pure hill-climbing which repeatedly selects single actions
with the best one-step-look-ahead heuristic value (which
may be worse than the heuristic value of the current state)
and often has difficulty with local minima and plateaus, en-
forced hill-climbing repeatedly uses breadth-first search to
find action sequencesthat lead to states with heuristic val-
ues that are strictly better than the current state.

We replace the heuristic function of FF in turn withHmin,
Hmax, or Hk, and call the resulting planners MIN, MAX,
and K, respectively. We compare the performance of these
planners with FF, as well as the recent landmark-based plan-
ner FF-L (Hoffmann, Porteous, & Sebastia 2004).

FF-L computes and utilizes landmarks, as introduced in
the section “Combination via MIN” on page 3. FF-L also
computes a partial order≺L on landmarks. FF-L maintains
a setL of landmarks that have not been achieved at least
once, and directs a base planner to achieve the landmarks
in L, as follows. FF-L constructs a disjunction of all the
unachieved landmarks that are minimal in the ordering≺L,
i.e., the disjunction over{l | ∀m ∈ L,m 6≺L l}. After the
base planner achieves this disjunction, the achieved land-
marks are removed fromL, and the process is repeated until
L is empty. In the final stage, FF-L uses the base planner to
simultaneously achieve all the original goal conjuncts again,
as some may have been reversed since they were achieved.

6In case the enforced hill-climbing fails, which does not happen
often, FF resorts to an expensive but complete search.

The last step is necessary because FF-L does not force the
base planner to retain achieved landmarks.

When the base planner is FF, the heuristic to the disjunc-
tion of unachieved landmarks is the minimum of the heuris-
tics for each landmark. FF-L’s behaviors is thus similar to
MIN, with five distinctions. First, FF-L considers all the
landmarks, which is a superset of the subgoals MIN consid-
ers. Second, FF-L does not have the strong bias of MIN on
retaining achieved subgoals. Third, unlike MIN, FF-L fails
to realize that a problem is unsolvable unless every land-
mark is unreachable (according to the heuristic) from the
current state. Thus, FF-L exhibits a stronger form of MIN’s
critical weakness of insensitivity to effects on subgoals that
are not currently closest—FF-L will happily select actions
to achieve nearby subgoals while rendering further subgoals
unreachable. Fourth, FF-L’s heuristic computation is gen-
erally quicker than MIN’s, because MIN does a separate
heuristic computation for every subgoal, each of which takes
at least the time for the heuristic computation of the disjunc-
tion. Fifth, in FF-L the branching factor for search is typ-
ically greatly reduced because FF’s heuristic computation
has a side effect of recognizinghelpful actions(Hoffmann
& Nebel 2001), so that only a small fraction of all actions
are considered during search. In FF-L only the actions use-
ful for the closest subgoal will be considered helpful actions.

FF-L computes and orders a set of landmarks—none of
the other planners we evaluate here use such a computation,
relying instead on direct heuristic measures of distance to
the top-level goal conjuncts. Yet, surprisingly, our planner K
consistently improves upon FF-L in success ratio. This sug-
gests that landmarks are not the critical element in achieving
the reported performance for FF-L.

Domains We test the mentioned planners on a wide range
of benchmark planning domains encoded inPDDL. Ourtest
suite covers all the domains that FF-L was demonstrated
on (Hoffmann, Porteous, & Sebastia 2004):Blocksworld,
Blocksworld-no-arm, Depots, Freecell, Grid, Logistics,
Rovers, Tireworld. Please find detailed descriptions of those
domains in the referred paper. We also include a representa-
tive domain from the search community:24-puzzle.

For each of the domains, we generate a random set of
problem instances, and present success ratio, average run-
time, and average plan length for each of the planners. We
set the runtime bound long enough on each domain for the
success ratio to level-off for most planners. The number of
random instances and runtime limit for each domain can be
found in Table 1.

We use the same parameters as (Hoffmann, Porteous, &
Sebastia 2004) to generate random instances for the domains
demonstrated there. For the other domain,24-puzzle, we
generate initial states uniformly at random, and assume that
half of the generated instances are solvable. If a domain can
scale on size, we have space only to present the results on
the largest size tested in (Hoffmann, Porteous, & Sebastia
2004). The results of planners are typically less distinguish-
able on smaller-sized instances.

Heuristic-search planners are generally fast enough when
they succeed, and otherwise often either fail quickly or run

 0

 20

 40

 60

 80

 100

-100 -50 0 50 100

su
cc

es
s

ra
tio

 (
%

)

log1.05k

K
FF-L

FF

 0

 20

 40

 60

 80

 100

-100 -50 0 50 100

su
cc

es
s

ra
tio

 (
%

)

log1.05k

K
FF

FF-L

 0

 20

 40

 60

 80

 100

-100 -50 0 50 100

su
cc

es
s

ra
tio

 (
%

)

log1.05k

K
MIN

FF
MAX
FF-L

 0

 20

 40

 60

 80

 100

-100 -50 0 50 100

su
cc

es
s

ra
tio

 (
%

)

log1.05k

K
MIN
FF-L

FF

Figure 1:Success Ratio for Blocksworld, 24-puzzle, Freecell, and Grid.

Blocksworld 24-Puzzle Freecell Grid

Sample Size 50 100 200 50

Time Limit 1000 1000 2000 2000

Planner Runtime (Plan Length)

FF-L 1 (94) 115 (384) 6 (126) 94 (241)

MIN - - - - 611 (151) 237 (198)

k=1.05−100 - - - - 362 (162) 393 (266)

k=1.05−50 - - - - 353 (163) 506 (265)

k=1.05−30 - - - - 311 (164) 679 (268)

k=1.05−10 218 (189) 489 (389) 380 (163) 807 (278)

k=1 93 (156) 302 (361) 357 (156) 812 (276)

FF 235 (129) 139 (281) 453 (133) 1025 (235)

k=1.0510 26 (182) 162 (409) 449 (176) 1079 (305)

k=1.0530 5 (122) 100 (406) 392 (172) 1480 (235)

k=1.0550 7 (139) 91 (426) 521 (180) 1369 (248)

k=1.05100 13 (164) 291 (285) 582 (171) - -

MAX - - - - 1053 (151) - -

Table 1: Number of random instances tested on, runtime
limit (in seconds), average runtime (in seconds), and aver-
age plan length (enclosed in parentheses). An entry of “-”
represents that no instance is solved. The success ratio cor-
responding to any entry can be found in Figure 1.

out of memory slowly. We therefore are focused here on in-
creasing the success ratio in difficult domains. The results
on success ratio are presented in Figure 1, in which the x
axis, representing the value ofk used by K, is shown in log-
arithmic scale. The results on runtime and plan length can
be found in Table 1. Runtimes and plan lengths should be
interpreted carefully. A planner that appears slower may be
solving far more problems, including some that are harder.
Only solved problems are included in the planner’s average
runtime and plan length, giving an advantage to planners that
fail on hard problems. We consider plan quality the least
important of the three measures; but nonetheless neither FF
nor FF-L consistently dominates K in plan length across the
choices ofk that yield superior success ratio.

Blocksworld, Blocksworld-no-arm, and Depots In the
famousBlocksworld domain, a robot arm must rearrange
towers of blocks. TheBlocksworld-no-armdomain is an en-
coding variant ofBlocksworld. Without explicit reference to
a robot arm, FF’s heuristic presents a differentlocal search
topology (Hoffmann 2002). TheDepotsdomain enriches
Blocksworldwith transportation, so that blocks can be de-
livered between any pair of locations by trucks. We present
results only onBlocksworld, as the results on the other do-
mains are very similar.

Each random problem instance consists of30 blocks. As
shown in the left part of Figure 1,Hmax-style heuristics

work much better thanHsumandHmin-style heuristics on the
Blocksworlddomain. FF only solves6% of the problems.
Whenk equals one, K performs slightly better than FF. As
k increases from one, the success ratio jumps up to100%.
With the help of landmarks, FF-L gets a significant higher
success ratio (72%) than FF, but is still significantly less re-
liable thanHk with k > 1, even though no landmarks are
leveraged by the latter. Neither MAX nor MIN solves any
instance. This suggestsHmax itself does not order enough
pairs to be useful.

Twenty-four Puzzle The SLIDING-TILE puzzles have
long been testbeds for domain-specific search. The24-
puzzle, which contains almost1025 states, was first opti-
mally solved by Korf (1996) with human-designed domain-
specific heuristics. Here we will show that K with suit-
able values ofk > 1, employing FF’s domain-independent
heuristic on the goal conjuncts, can solve most randomly
generated instances sub-optimally.

We generate200 random instances and assume half of
them are solvable. The success ratio results shown in the
second part of Figure 1 indicate that a suitable trade-off be-
tweenHmax andHsum best solves24-puzzle. This is reason-
able since often correctly positioned tiles must be temporar-
ily moved out of place to achieve other subgoals.92% of
the solvable instances were solved by K withk = 1.0530

(likewise for k = 1.0540). The performance of K drops
sharply for larger or smallerk. FF, at46% success, out-
performsHsum (K with k = 1) at 26%, suggesting that FF
is benefiting from considering positive interactions. FF-L
does not find useful landmarks other than the top-level sub-
goals, achieving success ratio24%. Neither MIN nor MAX
solves any instance. The performance difference between
FF-L and MIN is likely due to FF-L’s tolerance for de-
stroying achieved subgoals, as discussed above.

Freecell The Freecell domain is an adaptation of the
SOLITAIRE card game. Stacks of cards need to be rear-
ranged, much like inBlocksworld. But certain rules must
be respected when moving the cards, one of which intro-
duces a non-consumable resource: Only a limited set offree
cells can be temporarily occupied by single cards, unlike
Blocksworld, where any number of blocks can be put on the
table. In this sense, this domain does not yield to either se-
quentially solving subgoals or to solving them entirely con-
currently (due to congestion).

In each of our test instances, there are four suits and each
suit has16 cards. They initially form up to ten stacks, and
need to be rearranged into four goal stacks, with help of five
free cells. As shown in the third part in Figure 1, the success

ratio is 32% for MIN, 28% for FF, 17.5% for MAX, and
4.5% for FF-L. Neither a sequential (MIN) nor a concur-
rent (MAX) strategy works particularly well on theFreecell
domain. The trade-off method K does not find significant
improvement either. The success ratio of K is slightly higher
than that of MIN withk ≤ 1, and is around that of MIN
with k > 1.

Grid In the Grid domain a robot needs to transport keys
on a two-dimensional grid. Additionally, some grid posi-
tions must be opened by matching keys to allow the robot to
go through. Each test instance is randomly generated with
6 keys on a10 × 10 grid. The right part in Figure 1 shows
that both MIN and K with small values ofk solve all prob-
lem instances. FF-L appears less reliable, solving94%. For
largerk, the success ratio of K drops dramatically. The suc-
cess ratio of FF (62%) is slightly worse than K’s74% when
k = 0. These results clearly demonstrate that theGrid do-
main is best solved by sequentially attacking the subgoals.

Logistics, Rovers, and Tireworld Unlike the domains
presented above, theLogistics, Roversand Tireworld do-
mains are solved with100% success ratio by FF, K or FF-L
given enough time. Since our focus is the success ratio, we
will only summarize our findings on these domains.

On LogisticsandRovers, K with small values ofk have
minor improvements over FF upon speed. The performance
of K drops dramatically ask goes up from one. OnTire-
world, K is slightly slower than FF withk = 0, and gets
worse whenk is greater or smaller. On all three domains,
FF-L is much quicker than FF or K.

Both the domainsLogisticsandRoversshare the trans-
portation theme withGrid. But unlike onGrid, where two
locations can be arbitrarily far away, in these domains each
subgoal can be achieved in a small number of steps. This
also holds forTireworld7. In consequence, enforced hill-
climbing solves a problem on these domains by a sequence
of searches, each bound by a small constant in depth. The
factors limiting scaling performance are then the heuris-
tic computation for each state and the branching factor in
search. As discussed in the previous subsection, “Planners”,
FF-L has an advantage on these two factors.

Conclusion
Subgoal interactions have been widely studied in plan-
ning, e.g. in (Korf 1987; Cheng & Irani 1989; Kamb-
hampati, Ihrig, & Srivastava 1996; Blum & Furst 1997;
Koehler & Hoffmann 2000). Here, we first explicitly formu-
late this difficult problem as building conjunctive heuristics.
We showed that a straightforward trade-off method adapts
to a wide range of domains with different characteristics
of subgoal interactions. Applied to top-level subgoals, our
method significantly outperforms two state-of-the-art plan-
ners, one of which employs much more complex techniques
than ours.

It is apparent from Figure 1 that a simple search over val-
ues of the parameterk will easily identify, for each domain

7On Tireworld a number of flat tires must be replaced, each
requiring a fixed procedure consisting of several steps.

considered here, a value that leads to state-of-the-art plan-
ning performance.

Our method can be potentially applied beyond the scope
of classical planning, as heuristics can measure not only the
number of plan steps, but also other forms of cost such as
time or resources (as explored by, e.g., (Hoffmann 2003)),
as well asexpected cost(Bonet & Geffner 2003) in proba-
bilistic planning.

References
Blum, A., and Furst, M. L. 1997. Fast planning through planning
graph analysis.Artificial Intelligence90(1-2):281–300.
Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
Artificial Intelligence129(1-2):5–33.
Bonet, B., and Geffner, H. 2003. Faster heuristic search algo-
rithms for planning with uncertainty and full feedback. InIJCAI,
1233–1238.
Cheng, J., and Irani, K. B. 1989. Ordering problem subgoals. In
IJCAI, 931–936.
Culberson, J. C., and Schaeffer, J. 1996. Searching with pattern
databases. InCanadian Conference on AI, 402–416.
Edelkamp, S. 2002. Symbolic pattern databases in heuristic
search planning. InAIPS, 274–283.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning through
stochastic local search and temporal action graphs in LPG.JAIR
20:239–290.
Haslum, P., and Geffner, H. 2000. Admissible heuristics for opti-
mal planning. InAIPS, 140–149.
Helmert, M. 2003. Complexity results for standard benchmark
domains in planning.Artificial Intelligence143(2):219–262.
Helmert, M. 2004. A planning heuristic based on causal graph
analysis. InICAPS, 161–170.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search.JAIR14:253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered land-
marks in planning.JAIR22:215–278.
Hoffmann, J. 2002. Local search topology in planning bench-
marks: A theoretical analysis. InAIPS, 92–100.
Hoffmann, J. 2003. The metric-FF planning system: Translating
”ignoring delete lists” to numeric state variables.JAIR 20:291–
341.
Kambhampati, S.; Ihrig, L. H.; and Srivastava, B. 1996. A candi-
date set based analysis of subgoal interactions in conjunctive goal
planning. InAIPS, 125–133.
Koehler, J., and Hoffmann, J. 2000. On reasonable and forced
goal orderings and their use in an agenda-driven planning algo-
rithm. JAIR12:338–386.
Korf, R. E., and Taylor, L. A. 1996. Finding optimal solutions to
the twenty-four puzzle. InAAAI, 1202–1207.
Korf, R. E. 1987. Planning as search: A quantitative approach.
Artificial Intelligence33(1):65–88.
Korf, R. E. 2000. Recent progress in the design and analysis of
admissible heuristic functions. InAAAI, 1165–1170.
McAllester, D. A., and Rosenblitt, D. 1991. Systematic nonlinear
planning. InAAAI, 634–639.
Nguyen, X., and Kambhampati, S. 2001. Reviving partial order
planning. InIJCAI, 459–466.
Sacerdoti, E. D. 1975. The nonlinear nature of plans. InIJCAI,
206–214.

