
Obvious Properties of Computer Programs�Robert GivanDepartment of Computer ScienceBrown University, Box 1910, Providence, RI 02912rlg@cs.brown.edu, http://www.cs.brown.edu/people/rlg/AbstractWe explore the question of what properties of LISPprograms can be made \obvious" to a computer sys-tem. We present a polynomial-time algorithm for in-ferring interesting properties of pure LISP programs.Building on previous work in knowledge representa-tion for rapid inference, we present a language for rep-resenting properties of programs. We treat propertiesas generalized types, i.e., sets of program values. Theproperty language is expressive enough to representany RE set of LISP values as a property, and can nat-urally represent a wide variety of useful properties.We then use a general technique to construct apolynomial-time property inference relation and usetype-inference style program analysis to integrate thisrelation into an algorithm for inferring properties ofprograms. This algorithm is intended to work in thecontext of a library of background information, mostof which is typically derived from previous runs of thealgorithm. Due to the expressive representation sys-tem, no algorithm can infer every valid property|so instead of proving completeness we show our al-gorithm's usefulness by giving examples of propertiesinferred. These examples include that insertion sortreturns a sorted permutation of its input, and that aclique �nding program correctly returns a clique.IntroductionProgrammers quickly and easily see many propertiesof their programs that are invisible to program anal-ysis systems. We �nd it obvious, for example, thatconcatenating two lists produces a list at least as longas either, or that mapping a function across a list pro-duces a list of the same length. But these propertiestypically cannot even be represented by compilers.Theorem provers can represent such properties, butprovide little counterpart for the quick reasoning of hu-mans. In this paper, we explore the question \Howstrong1 can we make a fast inference procedure?",where we formalize \fast" as \polynomial-time", and�Copyright c
 1997, American Association for Arti�cialIntelligence (www.aaai.org). All Rights Reserved.1We are using \stronger" here to refer to the partialorder that relates two inference procedures when one alwaysinfers a strict superset of the theorems the other infers.

we are especially interested in inferring properties thatrequire expressive representation to state.The answer to this question proves very sensitiveto the representation system used in inference. Wedraw on our previous work with McAllester(1993;1992) to select a representation for program proper-ties amenable to rapid inference. This representationderives from viewing properties as sets of programvalues|a program has a property if the program re-turns a value in the corresponding set of values. Tak-ing this view, program properties are essentially justtypes in a rich type system, and we exploit this factby drawing on traditional type inference techniques inconstructing our inference algorithm.Related previous work on polynomial-time inferencehas frequently achieved the polynomial-time boundlargely by limiting the expressiveness of the lan-guage of inferrable properties(Brachman & Schmolze1985)(Nebel 1990). This approach is attractive be-cause the resulting system is typically amenable toproofs of completeness theorems asserting that everyvalid representable property will be inferred. How-ever, this approach limits the strength of the resultingprocedure. Expressive language constructs not onlyfacilitate the asking of hard questions (causing incom-pleteness), but also facilitate reasoning. There are inaddition many questions that can be easily answeredbut can only be asked in an expressive language. Inthis paper we consider the e�ects of allowing a richlyexpressive language (any RE set can be represented asa property), but insisting that our inference principlesremain within polynomial-time.Work on fast decision procedures in theorem prov-ing is also closely related to this paper.(Nelson & Op-pen 1980) Congruence closure, which decides the lit-eral set satis�ability problem for the �rst-order theoryof equality, is a polynomial-time procedure that hasproven very useful in theorem proving(Owre, Rushby,& Shankar 1992). Congruence closure can be easilyand naturally integrated with the inference techniquesin this paper, and this work can be viewed as an ex-tension of congruence closure (the extension addressesan undecidable problem, unlike congruence closure).Since the problem we are addressing is undecidable,we cannot hope to demonstrate the adequacy of our

inference algorithm with a completeness theorem. In-stead, we give examples of the kind of properties wecan hope to infer with this algorithm. Unfortunately,but intrinsically, we do not have a clean characteri-zation of the set of inferrable properties|the demandfor such a characterization is one of the fetters we arethrowing aside in search of stronger fast inference.Nevertheless, it is important to have some means ofevaluating our procedures. The examples containedherein are just a start|we envision and desire the de-velopment of a large corpus of such examples of pro-grams and associated inferrable properties. Of course,for any such corpus there is a constant time algorithmthat infers all the listed properties|what we really de-sire is a large corpus that can be handled by a singlerelatively simple polynomial-time algorithm. The al-gorithm we present below is intended only as a startin this direction|we believe more inference principleswill need to be added to it to achieve the desired gen-erality. Still, this algorithm gives interesting resultson the examples exhibited, and was not designed withthem speci�cally in mind. Our primary intent is toconvince the reader that an algorithm of this sort canmake interesting progress in the undecidable domain ofgeneral purpose property inference, and do so withinpolynomial-time.Languages for Programs and PropertiesWe introduce the programming language and our rep-resentation for properties. We give as examples theprogram de�nitions of insertion sort and of a clique�nding algorithm, and the property de�nitions of apermutation of a list, a sorted list, and a clique. Inthe next section we describe a polynomial-time algo-rithm that infers relationships between these programsand properties (e.g. that sort permutes its input).Program Expressions The programming languagewe analyze is a typed, �rst-order, pure subset of LISP.It is \�rst-order" because, to ease the presentation, itdoes not include �rst class functions|user functionsare introduced through de�nitions and used only bybeing applied|however, this work generalizes natu-rally to �rst class functions. The language is \typed"because it requires each variable to be given a user pro-vided type at its introduction; these types are given inan expressive property language and can capture muchabout the programmer's intended use for the variable.Program expressions are de�ned inductively as follows:e ::= x j (let x :e e1) j (f e1 � � �en)j (if e : p� e1 e2) j 0symwhere x can be any variable, f can be cons, car, cdr,or any n-ary program function-symbol, sym can be anysymbol and p� must be a testable property (see below).The intended meanings for the above program expres-sions should be clear from LISP, except that the iftests are new: e:p is true if the value e satis�es the

property p (see below). Example program expressionsappear in the de�nitions in �gure 1.(define (insert x:(a-number) l:(a-sorted-list))(if l:'nil(cons x l)(if x:(>= (car l))(cons x l)(cons (car l) (insert x (cdr l))))))(define (sort l:(a-numlist))(if l:'nill(insert (car l) (sort (cdr l)))))(define (intersect l1:(a-list) l2:(a-list))(if l1:'nil'nil(if (car l1):(a-member-of l2)(cons (car l1)(intersect (cdr l1) l2))(intersect (cdr l1) l2))))(define (largest-clique-in s:(a-list))(if s:'nil'nil(let n:(car s)c:(cons n (largest-clique-in(intersect (neighbors n)(cdr s))))c':(largest-clique-in (cdr s)))(if (length c):(>= (length c'))cc'))))(define (delete x:(a-thing)l:(a-list))(if l:'nil 'nil(if x:(car l)(cdr l)(cons (car l) (delete x (cdr l))))))Figure 1: Example program de�nitions. We omitsimple de�nitions which have no e�ect on the exampleinferences claimed later (length, neighbors)Property Expressions Our property language isderived from our previous work with McAllester(1992)on natural language syntax and its relationship totractable inference. The representational features in-troduced in that work have never before been ex-ploited in an automated reasoning system. Our prop-erty language is essentially the programming languageextended by some new constructs that allow and facil-itate the quanti�er-free construction of sets of values.The most important of these constructs is nondeter-minism. We use nondeterminism for its declarativevalue only|property expressions are not programs tobe run. A property expression has in general manypossible values via nondeterminism|the set of thesevalues is the type (property) represented by the expres-sion. Using recursion, property expressions can denote

in�nite sets.Nondeterminism is introduced by the one-of comb-inator2. The expression (one-of s t) where s and tare property expressions denotes the nondeterministicchoice between s and t. Alternatively, one-of can beviewed as the union operator on sets|(one-of s t) de-notes the union of the types (properties) represented bys and t. As an example, consider the property a-listin �gure 2, which denotes the set of all �nite LISP lists.Nondeterminism further enhances the representa-tional power of our property language when consideredin conjunction with function application. Consider theexpression (2* (a-number)). This expression denotesthe set of even numbers. This meaning can be derivedby evaluating the expression nondeterministically3|�rst, the argument to 2* returns an arbitrary naturalnumber, then 2* deterministically doubles this num-ber; the result can be any even number. A similarnondeterministic evaluation applies if we replace 2*with a nondeterministic \property function" such asgreater-than (see �gures 2 and 3 for examples).(define (a-list)(one-of 'nil (cons (a-thing) (a-list))))(define (a-member-of l:(a-list))(if l:'nil?(one-of (car l) (a-member-of (cdr l)))));; natural numbers (in unary)(define (a-number)(one-of 'nil (cons 'a (a-number))));; any list of numbers(define (a-numlist)(one-of 'nil (cons (a-number) (a-numlist))));; the numbers >= x(define (>= x:(a-number))(one-of x (cons 'a (>= x))))Figure 2: Example Property De�nitionsA �nal representational feature of our property lan-guage allows the quanti�er-free construction of proper-ties that would traditionally require quanti�ers. Givena (deterministic or nondeterministic) function f of oneargument, and a property expression p, the expres-sion (f (every p)) is analogous to the ordinary ap-plication (f p) except that only output values thatcan be produced for every value p might return arekept. In other words, (f (every p)) denotes the setof values that are f-related to every value of p. As a2one-of is closely related to amb introduced by Mc-Carthy in (McCarthy 1967)3If you have trouble understanding the intended mean-ing of any of our property de�nitions, we recommend tryingthis evaluation strategy.

(define (a-permutation-of l:(a-list))(if l:'nill(let x:(a-member-of l))(cons x (a-permutation-of(delete x l))))))(define (a-sorted-list)(one-of 'nil(let l:(a-sorted-list)(cons (all-of (>= (every (a-member-of l)))(a-number))l))))(define (neighbor-of n:(a-thing))(a-member-of (neighbors n)))(define (a-clique)(one-of 'nil(let c:(a-clique))(cons (a-neighbor-of(every (a-member-of c)))c))))Figure 3: More Example Propertiesmore concrete example, the notion of a common fac-tor of the numbers in a set s could be represented bythe property (factor-of (every (member-of s))).This construction was introduced in (McAllester & Gi-van 1992), and is inspired by the English noun phraseconstruction \loves every man". Its use in programanalysis is new and essential|it allows the quanti�er-free de�nition of useful properties like \sorted list" andfacilitates the reasoning about these properties (otherrepresentations of these properties are more unwieldy,making the resulting inference task more di�cult).Formally, property expressions are de�ned as:p ::= x j (let x :p p1) j (if p1 :p2 p3 p4)j (f p1 � � �pn) j (f (every p))j (one-of s) j (all-of s)j (not p) j 0sym j ? j (a-thing)where f can be cons, car, cdr, or any de�ned programor property function symbol, sym any symbol, and sis a �nite set of property expressions. Note that ev-ery program expression is also a property expression|when used as a property expression a program expres-sion denotes the singleton set containing the value ofthe program. This BNF includes some expressions notyet mentioned: (all-of s) denotes those values thatare possible values of every expression in s, (not p)denotes those values that are not possible values of p,? denotes the empty set of values, and (a-thing) de-notes the set of all possible values (quoted symbols or�nite cons expressions built up from them).Programs We consider a sequence of function-sym-bol de�nitions to be a program. A function-symbolde�nition assigns to a new function-symbol either of

(lambda x1 :p1; � � � ; xn :pn p) or (fix f x1 :p1; � � � ; xn :pn p) where the body p must be deterministic (i.e.a program expression) if the symbol being de�ned isa program function-symbol4. The properties pj canreference and depend on the variables x1; : : : ; xj�1.Note that we di�erentiate between program function-symbols and property function-symbols.Semantics and Other Issues We have a completeand detailed semantics for the above languages thatwill be presented in the full version of this paper.We note that the expression (f (every e)) forprogram expression e has the same meaning as the ex-pression (f e). We will treat these two expressions asidentical, even in the pattern matching used in apply-ing the inference rules given later: so the expression(f e) will match the pattern (R (every s)) with finstantiating R and e instantiating s.Also, we have left unresolved above the issue of howto execute a program containing an if expression thattests a nondeterministic property. This peripheral is-sue is handled in detail in the full version of the paper;here we only comment that we require the user to pro-vide a veri�ed implementation of any nondeterminis-tic property function used in an if test in a programfunction de�nition|this task is straightforward for theexamples given in this paper. We refer to a propertyso implemented as testable.An Inference AlgorithmOur inference algorithm accepts as input a new de�ni-tion (of a program function or a property function) anda background library of type theorems, and produces asoutput some new type theorems about the newly de-�ned symbol that are then added to the background li-brary. By \type theorem" we mean a universally quan-ti�ed formula of the form forall x1:p1 � � �xn:pn . p :p0 where p will typically involve the new symbol and p0is viewed as a type or property being asserted about p.Figure 4 shows example type theorems produced in an-alyzing the example programs shown earlier. Through-out this section we assume we are analyzing a de�nitionassigning the lambda or fix expression e to the newfunction symbol g, with respect to background libraryL (in particular, e will appear as a subscript on ourinference relation symbols `e and �̀e to indicate theirdependence on e).De�nition Analysis An initial inference stage gen-erates very useful type theorems from a super�cial4Wemust restrict recursive de�nitions to ensure that ev-ery fix expression accepted has a well-de�ned least �xed-point. This can be done for example with a simple syn-tactic restriction discussed in the longer version of this pa-per. In addition to this restriction, we require de�nitions offunction symbols to be used in program expressions to besyntactically terminating. Checking termination is a deepproblem itself, and can be addressed by methods similar tothose in this paper(McAllester & Arkoudas 1996).

forall l:(a-numlist)(sort l):(a-permutation-of l)forall l:(a-numlist)(sort l):(a-sorted-list)forall l:(a-list)(find-largest-clique l):(a-clique)Figure 4: Sample Output. Some theorems generatedautomatically using the library in �gure 9.analysis of the new de�nition. These theorems roughlycorrespond to the beta-reduction and beta-abstractionproperties of the de�nition, processed in a form thatmakes them most accessible to the remainder of thealgorithm|the processing breaks down the cases of toplevel if and one-of expressions, and handles rudimen-tary let instantiation. De�nition analysis is formallythe forward chaining inferential closure of the inferencerules for DÀshown in �gure 5 along with an exampletheorem.Recursive Descent Rules The main stage of infer-ence proceeds by recursive descent into the new de�ni-tion's body, accumulating type (property) informationalong the way. This recursive descent is primarily re-sponsible for analyzing the let, if, lambda, and fixconstructs in the de�nition. At each level of the de-scent, a basic inference engine (denoted `e describedin the next subsection) is used to generate relevanttype theorems. The recursive descent phase can beviewed as an abstract interpretation(Abramsky & Han-kin 1987)(Milner 1978) program analysis.The inference rules for �̀e in �gure 6 formally de-scribe the recursive descent analysis. These rules usesome new notation. We use the notation �(p) to signifya pattern that matches p, (not p), or any monadicfunction applied to p, (f p). We call any expres-sion that matches �(p) a monadic variant of p. Wesay that a formula p0 : t is about p if p0 is a monadicvariant of p. Monadic function applications have spe-cial status here because many monadic functions actto destructure their input and return some part of it(e.g. car, member-of, etc.). Finding properties ofthe part returned is generally useful in �nding prop-erties of the original whole. Lastly, we use the nota-tion THMS�;e (s) (which we read \theorems about sprovable from �") to abbreviate the set of all formulasabout s provable from � using �̀e. We require thatwhen a pattern �(p) occurs more than once in a singlerule, it must match p in the same way each time: usingthe same monadic function, if any in each match.The Analyze-If inference rule performs a simple caseanalysis, the Analyze-Lambda and Analyze-Let rulesperform simple universal generalization, and the Basic-Analyze rule applies the basic inference relation `. It

Start-DAe is (lambda x1 :p1 � � �xn :pn B)or (�x g (lambda x1 :p1 � � �xn :pn B))DÀe Forall x1 :p1 � � �xn :pn B:(e x1: : : xn)DÀe Forall x1 :p1 � � �xn :pn (e x1: : : xn):B If-DADÀe Forall x1 :p1 � � �xn :pn (if yi : s B1 B2) * ty1 :t1 � � � yn :tn is a suitable reordering of x1 :p1 � � �xn :pnDÀe Forall y1 :t1 � � � yi : (all-of ti s) � � � yn :tnB1 * tDÀe Forall y1 :t1 � � � yi : (all-of ti (not s)) � � � yn :tnB2 * tLet-DADÀe Forall x1 :p1 � � �xn :pn (let x :s B):tDÀe Forall x1 :p1 � � �xn :pn x :s B:t One-of-DADÀe Forall x1 :p1 � � �xn :pn (one-of B1: : : Bm):tDÀe Forall x1 :p1 � � �xn :pn Bi:t, i = 1 : : :mSample theorem: Forall l:(all-of (a-list) (not 'nil)) .(a-member-of (cdr l)):(a-member-of l)Figure 5: Rules for De�nition Analysis. In the rule If-DA, a reordering is suitable if it gives consequenttheorems with no free variables|the rule does not �re for every suitable reordering but picks just one arbitrarily.The pattern r * s matches either r:s or s:r, but must match the same way throughout the rule.Analyze-If� = � [THMS�;e (r)[THMS�;e (s)�; r:s �̀e �(u1):t�; Neg(r:s) �̀e �(u2):t� �̀e �((if r:s u1 u2)):t Analyze-Let� = � [THMS�;e (r)�, x:r �̀e �(s):tx not in � or t� �̀e �((let x:r s)):tAnalyze-Lambda� = � [THMS�;e (r)�; x :r �̀e �(B) :tx; x1 not in �, x1 not in Be is (lambda x :r B)� �̀e Forall x1 :r�((e x1)):[x1=x] t Basic-Analyze� `e s :t� �̀e s :tAnalyze-Fix� = � [THMS�;e (r)�, Forall x1 :r�(f x1) : [x1=x] I , x :r �̀e �(B) : Ix and x1 not in �, x1 not in Be is (fix f x :r B)� �̀e Forall x1:r�((e x1)): [x1=x] IFigure 6: SequentRules for �̀e. � is discussed in thetext. r, s, t, u, I, and B are any property expressions.The fix and lambda rules are shown for one argumentfunctions for readability. The notation [x1=x]s standsfor the expression s with every free occurrence of xreplaces by x1. Neg(r:s) is the formula r:(not s) if ris a program expression, and r:(a-thing) otherwise.

remains to specify how induction hypotheses for therule Analyze-Fix are selected. Space allows only thefollowing concise description: for each expression rwhich matches �(B), we compute a sequence of hy-potheses �r0;�r1 � � � where each �ri is a set of proper-ties that is a subset of �ri�1. This sequence eventu-ally reaches the desired �xed-point hypothesis to usein applying the rule Analyze-Fix with �(B) = r. Thesequence is de�ned as follows5:Tr(�) =�t ����L [�Forall x1 :p1 : : :xn :pn�r(g x1 : : : xn) : Int(�)� �̀e r : t��r0 = Tr(f?g)�ri+1 = Tr(�ri) \�riwhere Int(�) is the all-of expression representing theintersection of the members of �, and �r(g x1 : : :xn)is the result of replacing B by (g x1 : : :xn) in r. Thedesign of the `e relation given below ensures that theinitial set �0 is polynomial in size, thus ensuring thatthis process terminates in polynomially many itera-tions. The recursive descent structure of �̀e ensuresthat each iteration invokes `e polynomially often (inthe size of e).Basic Inference The basic inference relation `e isthe heart of our inference system. This relation is de-signed by the following general methodology. We start5Alternatively, and more practically, the hypotheses fordi�erent values of r can be computed and used together,giving a somewhat stronger inference relation. We presentthe simpler form here for ease in presentation.

Starts 2 eDom (�(s)) SubexpDom (r)s 2 rDom (s) Univ-Domforall x:s �Dom (s) Univ-Instforall x:s �d:s, d 2 e[d/x]�Dom ([d/x] �)Figure 7: Domain Construction Inference Rulesfor `e. dmust be a program expression, r and s can beany property expressions. The notation [d=x] s denotess with each free occurrence of x replaced by d. Wewrote s 2 r to mean s is a subexpression of r. The rule\Start" adds every monadic variant of an expression ine to the domain.by introducing a new formula Dom (p) that is used onlyas a
ag for the inference process (these formulas haveno semantic content). The intended meaning for this
ag is that the property p is of interest to the reasoningprocess if and only if Dom (p) has been asserted. Wethen write a set of domain construction inference rulesthat ensure that this
ag is asserted about an appro-priately broad class of properties (usually beginningwith those properties appearing directly in the prob-lem), taking care to limit this class to polynomial size.The domain construction rules for `e are exhibited in�gure 7. We denote the class of property expressionsp for which Dom (p) is asserted by the symbol A. Therules in �gure 7 construct an A which is polynomialin the size of the de�nition being analyzed plus thesize of the background library6, given an assumed up-per bound on the depth of quanti�cation in the library(i.e. the number of variables in a forall construct isbounded).After designing the domain construction rules, wewrite a separate set of inference rules aimed at captur-ing the semantics of the language constructs. We writethese rules with little or no concern for the computa-tional complexity of computing their closure. Finally,we restrict these rules by adding Dom () antecedents sothat every property that appears in any conclusion isa monadic variant of a member of A. This restrictionensures that the resulting `e relation can be computedin a forward-chaining manner in polynomial time inthe size of the de�nition being analyzed plus the back-ground library. We show the domain-restricted ver-sions of the semantics capturing rules for `e in �gure 8.Inference Algorithm Summary For each de�ni-tion encountered, the inference algorithm adds to thebackground library of type theorems those theorems6The type structure provided by properties makes itpossible to design the algorithm to avoid using parts of thelibrary involving types that do not hold of the expressionbeing analyzed. For this reason we expect the complexityin practice to be polynomial in the logarithm of the librarysize.

Symc:dd:c Transr:ss:tr:t Not-SymDom (d)d:(not e)e:(not d)One-Of1r:(one-of s t)r:(not s)r:t One-Of2s:r, t:rDom ((one-of s t))(one-of s t):r Under-All-OfDom ((all-of s t))r:s, r:tr:(all-of s t)Basic-One-OfDom ((one-of s t))s:(one-of s t)t:(one-of s t) Basic-All-OfDom ((all-of s t))(all-of s t):s(all-of s t):t Selectors1Dom ((cons c d))c:(car (cons c d))d:(cdr (cons c d))Selectors2Dom (r)r:(cons s t)(car r):s(cdr r):t Always'Dom (s)s:s, ?:ss:(a-thing) StrictnessDom ((f s))s :?(f s) :? Monotone1s:tr:(f s)Dom ((f t))r:(f t)Monotone2s:tr:(f (every t))Dom (f (every s))r:(f (every s)) Every-One-Ofr:(f (every s))r:(f (every t))u:(one-of s t)Dom (f (every u))r:(f (every u)) Not-One-Ofr:(not(one-of s t))r:(not s)r:(not t)Figure 8: Basic Inference Rules for `e. c and dmust be program expressions. r, s, t, and u can be anyproperty expressions. f can be any function symbol,constructor or selector. We show rules for one-of andall-of for the two argument case and applications forone argument for readability.forall l:(a-list) .l:(a-permutation-of l)forall l:(a-list) .(a-permutation-of (a-permutation-of l)):(a-permutation-of l)forall n:(a-thing) .n:(a-neighbor-of (every (neighbor-of n)))forall x:(a-number) y:(all-of (a-number)(not (>= x))) .x:(>= y)forall l:(all-of (a-sorted-list)(not 'nil))x:(>= (car l)) .x:(>= (every (a-member-of l)))Figure 9: Library Theorems. The theorems neededfrom the user or the property library.

implied by either DÀe or �̀e, each of which is polyno-mial time computable in the size of the new de�nitionbody e plus the size of the background library. Eachoccurrence of the e in each theorem is replaced by thenew symbol being de�ned before adding to the library.Background Library Needed For ExamplesThe insertion sort and clique �nding examples givenabove rely on the presence in the background libraryof a few theorems that this algorithm does not �nd onits own. These theorems are shown in �gure 9. Theseare not theorems about insertion sort or clique �nd-ing, but rather theorems about the properties involved.The need for these theorems re
ects that this algo-rithm needs a deeper understanding of properties suchas a-permutation-of than that it attains by read-ing the de�nition in order to infer that property forsome programs. Most theorems needed are automati-cally inferred|one such theorem was shown in �gure 5.Also, the library theorems in our examples concernonly the de�nitions in the type library, not the pro-grams being analyzed|all the theorems needed aboutthe target programs are automatically inferred. Never-theless, the library theorems needed point up opportu-nities to strengthen the algorithm we have described|by analyzing the proofs of these theorems to determinewhich aspects fail to be discovered automatically wemay discover new inference principles which can use-fully be added to a polynomial time inference proce-dure. ConclusionsWe have presented a novel language for de�ning ar-bitrary properties of computer programs. The repre-sentational features of this property language were se-lected to enlarge the set of polynomial-time checkableproperty-program relationships. We have presented,in as much detail as space allows, an inference pro-cedure which can infer interesting properties of sim-ple computer programs in the context of a library ofbackground knowledge, and guarantees completion inpolynomial time in the size of its input.We do not claim that the algorithm we have pre-sented is distinguished among similar algorithms. Weintend this algorithmas an example of what may be ac-complished in this area. We desire the construction ofstronger similar algorithms, together with a large cor-pus of example program-property theorems on whichto test such algorithms. These algorithms can be seenas roughly analogous to the human notion of \obvi-ous consequence"|what consequences can be inferredquickly? The human \obviousness engine" works witha very expressive language, is naturally incomplete, re-turns its answers quickly, and has no apparent cleancharacterization of the set of conclusions it �nds. Wepropose the study of the machine counterpart to thishuman notion wherein we require rapid terminationand refuse to limit expressiveness simply to get a clean

characterization of the inferrable properties.ReferencesAbramsky, S., and Hankin, C., eds. 1987. AbstractInterpretation of Declarative Languages. Ellis Hor-wood.Brachman, R., and Schmolze, J. 1985. An overviewof the kl-one knowledge representation system. Com-putational Intelligence 9(2):171{216.McAllester, D., and Arkoudas, K. 1996. Waltherrecursion. In 13th International Conference on Auto-mated Deduction.McAllester, D., and Givan, R. 1992. Natural languagesyntax and �rst order inference. Arti�cial Intelligence56:1{20. ftp.ai.mit.edu:/pub/users/dam/aij1.ps.McAllester, D., and Givan, R. 1993. Taxonomic syn-tax for �rst order inference. JACM 40(2):246{283.ftp.ai.mit.edu:/pub/users/dam/jacm1.ps.McCarthy, J. 1967. A basis for a mathematical the-ory of computation. In Bra�ort, P., and Hirschberg,D., eds., Computer Programing and Formal Systems.North-Holland.Milner, R. 1978. A theory of type polymorphism inprogramming. JCSS 17:348{375.Nebel, B. 1990. Terminological reasoning is inherentlyintractable. Arti�cial Intelligence 43:235{249.Nelson, G., and Oppen, D. 1980. Fast decision proce-dures based on congruence closure. JACM 27(2):356.Owre, S.; Rushby, J.; and Shankar, N. 1992. Pvs: Aprototype veri�cation system. In 11th InternationalConference on Automated Deduction, 748{752.

