Obvious Properties of Computer Programs

*

Robert Givan

Department of Computer Science
Brown University, Box 1910, Providence, RI 02912
rlg@cs.brown.edu, http://www.cs.brown.edu/people/rlg/

Abstract

We explore the question of what properties of LISP
programs can be made “obvious” to a computer sys-
tem. We present a polynomial-time algorithm for in-
ferring interesting properties of pure LISP programs.
Building on previous work in knowledge representa-
tion for rapid inference, we present a language for rep-
resenting properties of programs. We treat properties
as generalized types, i.e., sets of program values. The
property language is expressive enough to represent
any RE set of LISP values as a property, and can nat-
urally represent a wide variety of useful properties.
We then use a general technique to construct a
polynomial-time property inference relation and use
type-inference style program analysis to integrate this
relation into an algorithm for inferring properties of
programs. This algorithm is intended to work in the
context of a library of background information, most
of which is typically derived from previous runs of the
algorithm. Due to the expressive representation sys-
tem, no algorithm can infer every valid property—
so instead of proving completeness we show our al-
gorithm’s usefulness by giving examples of properties
inferred. These examples include that insertion sort
returns a sorted permutation of its input, and that a
clique finding program correctly returns a clique.

Introduction

Programmers quickly and easily see many properties
of their programs that are invisible to program anal-
ysis systems. We find it obvious, for example, that
concatenating two lists produces a list at least as long
as either, or that mapping a function across a list pro-
duces a list of the same length. But these properties
typically cannot even be represented by compilers.
Theorem provers can represent such properties, but
provide little counterpart for the quick reasoning of hu-
mans. In this paper, we explore the question “How
strong! can we make a fuast inference procedure?”,
where we formalize “fast” as “polynomial-time”, and

*Copyright © 1997, American Association for Artificial
Intelligence (www.aaai.org). All Rights Reserved.

'We are using “stronger” here to refer to the partial
order that relates two inference procedures when one always
infers a strict superset of the theorems the other infers.

we are especially interested in inferring properties that
require expressive representation to state.

The answer to this question proves very sensitive
to the representation system used in inference. We
draw on our previous work with McAllester(1993;
1992) to select a representation for program proper-
ties amenable to rapid inference. This representation
derives from viewing properties as sets of program
values—a program has a property if the program re-
turns a value in the corresponding set of values. Tak-
ing this view, program properties are essentially just
types in a rich type system, and we exploit this fact
by drawing on traditional type inference techniques in
constructing our inference algorithm.

Related previous work on polynomial-time inference
has frequently achieved the polynomial-time bound
largely by limiting the expressiveness of the lan-
guage of inferrable properties(Brachman & Schmolze
1985)(Nebel 1990). This approach is attractive be-
cause the resulting system is typically amenable to
proofs of completeness theorems asserting that every
valid representable property will be inferred. How-
ever, this approach limits the strength of the resulting
procedure. Expressive language constructs not only
facilitate the asking of hard questions (causing incom-
pleteness), but also facilitate reasoning. There are in
addition many questions that can be easily answered
but can only be asked in an expressive language. In
this paper we consider the effects of allowing a richly
expressive language (any RE set can be represented as
a property), but insisting that our inference principles
remain within polynomial-time.

Work on fast decision procedures in theorem prov-
ing is also closely related to this paper.(Nelson & Op-
pen 1980) Congruence closure, which decides the lit-
eral set satisfiability problem for the first-order theory
of equality, is a polynomial-time procedure that has
proven very useful in theorem proving(Owre, Rushby,
& Shankar 1992). Congruence closure can be easily
and naturally integrated with the inference techniques
in this paper, and this work can be viewed as an ex-
tension of congruence closure (the extension addresses
an undecidable problem, unlike congruence closure).

Since the problem we are addressing is undecidable,
we cannot hope to demonstrate the adequacy of our

inference algorithm with a completeness theorem. In-
stead, we give examples of the kind of properties we
can hope to infer with this algorithm. Unfortunately,
but intrinsically, we do not have a clean characteri-
zation of the set of inferrable properties—the demand
for such a characterization is one of the fetters we are
throwing aside in search of stronger fast inference.

Nevertheless, it is important to have some means of
evaluating our procedures. The examples contained
herein are just a start—we envision and desire the de-
velopment of a large corpus of such examples of pro-
grams and associated inferrable properties. Of course,
for any such corpus there is a constant time algorithm
that infers all the listed properties—what we really de-
sire is a large corpus that can be handled by a single
relatively simple polynomial-time algorithm. The al-
gorithm we present below is intended only as a start
in this direction—we believe more inference principles
will need to be added to it to achieve the desired gen-
erality. Still, this algorithm gives interesting results
on the examples exhibited, and was not designed with
them specifically in mind. Qur primary intent is to
convince the reader that an algorithm of this sort can
make interesting progress in the undecidable domain of
general purpose property inference, and do so within
polynomial-time.

Languages for Programs and Properties

We introduce the programming language and our rep-
resentation for properties. We give as examples the
program definitions of insertion sort and of a clique
finding algorithm, and the property definitions of a
permutation of a list, a sorted list, and a clique. In
the next section we describe a polynomial-time algo-
rithm that infers relationships between these programs
and properties (e.g. that sort permutes its input).

Program Expressions The programming language
we analyze is a typed, first-order, pure subset of LISP.
It is “first-order” because, to ease the presentation, it
does not include first class functions—user functions
are introduced through definitions and used only by
being applied—however, this work generalizes natu-
rally to first class functions. The language is “typed”
because it requires each variable to be given a user pro-
vided type at its introduction; these types are given in
an expressive property language and can capture much
about the programmer’s intended use for the variable.
Program expressions are defined inductively as follows:

en=a | (let xz:e e1) | (fer---en)
| (if e:p* ey e3) | 'sym

where z can be any variable, f can be cons, car, cdr,
or any n-ary program function-symbol, sym can be any
symbol and p* must be a testable property (see below).
The intended meanings for the above program expres-
sions should be clear from LISP, except that the if
tests are new: e:p is true if the value e satisfies the

property p (see below). Example program expressions
appear in the definitions in figure 1.

(define (insert x:(a-number) 1:(a-sorted-list))
(if 1:°nil
(cons x 1)
(if x: (>= (car 1))
(cons x 1)
(cons (car 1) (imsert x (cdr 1))))))

(define (sort 1:(a-numlist))
(if 1:°nil
1
(insert (car 1) (sort (cdr 1)))))

(define (intersect 1l1:(a-list) 12:(a-list))
(if 11:°nil
‘nil
(if (car 11):(a-member-of 12)
(cons (car 11)
(intersect (cdr 11) 12))
(intersect (cdr 11) 12))))

(define (largest-clique-in s:(a-list))
(if s:’nil
’nil
(let n:(car s)
c:(cons n (largest-clique-in
(intersect (neighbors n)
(cdr s))))
c’:(largest-clique-in (cdr s)))
(if (length c):(>= (length c’))
c

¢’

(define (delete x:(a-thing)
1:(a-list))
(if 1:’nil ’nil
(if x:(car 1)
(cdr 1)
(cons (car 1) (delete x (cdr 1))))))

Figure 1: Example program definitions. We omit
simple definitions which have no effect on the example
inferences claimed later (length, neighbors)

Property Expressions Our property language is
derived from our previous work with McAllester(1992)
on natural language syntax and its relationship to
tractable inference. The representational features in-
troduced in that work have never before been ex-
ploited in an automated reasoning system. Our prop-
erty language is essentially the programming language
extended by some new constructs that allow and facil-
itate the quantifier-free construction of sets of values.
The most important of these constructs is nondeter-
minism. We use nondeterminism for its declarative
value only—property expressions are not programs to
be run. A property expression has in general many
possible values via nondeterminism—the set of these
values is the type (property) represented by the expres-
sion. Using recursion, property expressions can denote

infinite sets.

Nondeterminism is introduced by the one-of comb-
inator?. The expression (one-of s t) where s and ¢
are property expressions denotes the nondeterministic
choice between s and ¢. Alternatively, one-of can be
viewed as the union operator on sets—(one-of s) de-
notes the union of the types (properties) represented by
s and t. As an example, consider the property a-list
in figure 2, which denotes the set of all finite LISP lists.

Nondeterminism further enhances the representa-
tional power of our property language when considered
in conjunction with function application. Consider the
expression (2* (a-number)). This expression denotes
the set of even numbers. This meaning can be derived
by evaluating the expression nondeterministically®—
first, the argument to 2% returns an arbitrary natural
number, then 2* deterministically doubles this num-
ber; the result can be any even number. A similar
nondeterministic evaluation applies if we replace 2*
with a nondeterministic “property function” such as
greater-than (see figures 2 and 3 for examples).

(define (a-list)
(one-of ’nil (cons (a-thing) (a-list))))

(define (a-member-of 1:(a-list))
(if 1:°nil
1
(one-of (car 1) (a-member-of (cdr 1)))))

;; natural numbers (in unary)
(define (a—-number)
(one-of ’nil (cons ’a (a—number))))

;; any list of numbers
(define (a-numlist)
(one-of ’nil (cons (a-number) (a-numlist))))

;; the numbers >= x
(define (>= x:(a-number))
(one-of x (cons ’a (>= x))))

Figure 2: Example Property Definitions

A final representational feature of our property lan-
guage allows the quantifier-free construction of proper-
ties that would traditionally require quantifiers. Given
a (deterministic or nondeterministic) function f of one
argument, and a property expression p, the expres-
sion (f (every p)) is analogous to the ordinary ap-
plication (f p) except that only output values that
can be produced for every value p might return are
kept. In other words, (f (every p)) denotes the set
of values that are f-related to every value of p. As a

Zone-of is closely related to amb introduced by Me-

Carthy in (McCarthy 1967)

31f you have trouble understanding the intended mean-
ing of any of our property definitions, we recommend trying
this evaluation strategy.

(define (a-permutation-of 1:(a-list))
(if 1:°nil
1
(let x:(a-member-of 1))
(cons x (a-permutation-of
(delete x 1))))))

(define (a-sorted-list)
(one-of ’nil
(let 1:(a-sorted-list)
(cons (all-of (>= (every (a—member-of 1)))
(a-number))

N

(define (neighbor-of n:(a-thing))
(a-member-of (neighbors n)))
(define (a-clique)
(one-of ’mnil
(let c:(a-clique))
(cons (a-neighbor-of
(every (a-member-of c¢)))

c))))

Figure 3: More Example Properties

more concrete example, the notion of a common fac-
tor of the numbers in a set s could be represented by
the property (factor—of (every (member-of s))).
This construction was introduced in (McAllester & Gi-
van 1992), and is inspired by the English noun phrase
construction “loves every man”. Its use in program
analysis is new and essential—it allows the quantifier-
free definition of useful properties like “sorted list” and
facilitates the reasoning about these properties (other
representations of these properties are more unwieldy,
making the resulting inference task more difficult).
Formally, property expressions are defined as:

pu=x | (letx:pp1) | (if p1:p2 P3 pa)
(fpi---pn) | (f (everyp))

|
| (one of 5) | (all—of 5)
| (motp) | 'sym | L | (a-thing)

where f can be cons, car, cdr, or any defined program
or property function symbol, sym any symbol, and s
is a finite set of property expressions. Note that ev-
ery program expression is also a property expression—
when used as a property expression a program expres-
sion denotes the singleton set containing the value of
the program. This BNF includes some expressions not
yet mentioned: (all-of s) denotes those values that
are possible values of every expression in s, (not p)
denotes those values that are not possible values of p,
1 denotes the empty set of values, and (a-thing) de-
notes the set of all possible values (quoted symbols or
finite cons expressions built up from them).

Programs We consider a sequence of function-sym-
bol definitions to be a program. A function-symbol
definition assigns to a new function-symbol either of

(lambda #1:p1,- -, &Py p) OF (fix fayipy, -, 20
pn p) where the body p must be deterministic (i.e.
a program expression) if the symbol being defined is
a program function-symbol®. The properties p; can
reference and depend on the variables zi,...,%;_1.
Note that we differentiate between program function-
symbols and property function-symbols.

Semantics and Other Issues We have a complete
and detailed semantics for the above languages that
will be presented in the full version of this paper.

We note that the expression (f (every e)) for
program expression e has the same meaning as the ex-
pression (f e). We will treat these two expressions as
identical, even in the pattern matching used in apply-
ing the inference rules given later: so the expression
(f e) will match the pattern (R (every s)) with f
instantiating R and e instantiating s.

Also, we have left unresolved above the issue of how
to execute a program containing an if expression that
tests a nondeterministic property. This peripheral is-
sue is handled in detail in the full version of the paper;
here we only comment that we require the user to pro-
vide a verified implementation of any nondeterminis-
tic property function used in an if test in a program
function definition—this task is straightforward for the
examples given in this paper. We refer to a property
so implemented as testable.

An Inference Algorithm

Our inference algorithm accepts as input a new defini-
tion (of a program function or a property function) and
a background library of type theorems, and produces as
output some new type theorems about the newly de-
fined symbol that are then added to the background li-
brary. By “type theorem” we mean a universally quan-
tified formula of the form forall xqi:py---Znips - p'
p where p will typically involve the new symbol and p/
is viewed as a type or property being asserted about p.
Figure 4 shows example type theorems produced in an-
alyzing the example programs shown earlier. Through-
out this section we assume we are analyzing a definition
assigning the lambda or fix expression e to the new
function symbol g, with respect to background library
L (in particular, e will appear as a subscript on our
inference relation symbols . and ke, to indicate their
dependence on e).

Definition Analysis An initial inference stage gen-
erates very useful type theorems from a superficial

*We must restrict recursive definitions to ensure that ev-
ery fix expression accepted has a well-defined least fixed-
point. This can be done for example with a simple syn-
tactic restriction discussed in the longer version of this pa-
per. In addition to this restriction, we require definitions of
function symbols to be used in program expressions to be
syntactically terminating. Checking termination is a deep
problem itself, and can be addressed by methods similar to

those in this paper(McAllester & Arkoudas 1996).

forall 1:(a—numlist)
(sort 1): (a-permutation-of 1)

forall 1:(a-numlist)
(sort 1):(a-sorted-list)

forall 1:(a-list)
(find-largest-clique 1): (a-clique)

Figure 4: Sample Output. Some theorems generated
automatically using the library in figure 9.

analysis of the new definition. These theorems roughly
correspond to the beta-reduction and beta-abstraction
properties of the definition, processed in a form that
makes them most accessible to the remainder of the
algorithm—the processing breaks down the cases of top
level if and one—of expressions, and handles rudimen-
tary let instantiation. Definition analysis is formally

the forward chaining inferential closure of the inference
DA

rules for Fshown in figure 5 along with an example
theorem.

Recursive Descent Rules The main stage of infer-
ence proceeds by recursive descent into the new defini-
tion’s body, accumulating type (property) information
along the way. This recursive descent is primarily re-
sponsible for analyzing the let, if, lambda, and fix
constructs in the definition. At each level of the de-
scent, a basic inference engine (denoted F. described
in the next subsection) is used to generate relevant
type theorems. The recursive descent phase can be
viewed as an abstract interpretation(Abramsky & Han-
kin 1987)(Milner 1978) program analysis.

The inference rules for ke, in figure 6 formally de-
scribe the recursive descent analysis. These rules use
some new notation. We use the notation o (p) to signify
a pattern that matches p, (not p), or any monadic
function applied to p, (f p). We call any expres-
sion that matches o(p) a monadic variant of p. We
say that a formula p’ :¢ is about p if p’ is a monadic
variant of p. Monadic function applications have spe-
cial status here because many monadic functions act
to destructure their input and return some part of it
(e.g. car, member-of, etc.). Finding properties of
the part returned is generally useful in finding prop-
erties of the original whole. Lastly, we use the nota-
tion THMSs . (s) (which we read “theorems about s
provable from £”) to abbreviate the set of all formulas
about s provable from ¥ using °.. We require that
when a pattern o(p) occurs more than once in a single
rule, it must match p in the same way each time: using
the same monadic function, if any in each match.

The Analyze-If inference rule performs a simple case
analysis, the Analyze-Lambda and Analyze-Let rules
perform simple universal generalization, and the Basic-
Analyze rule applies the basic inference relation F. It

Start-DA

e is (lambda 1 :p; - - &n:pn B)
or (fix g (lambda 1 :py - 2n:pn B))

If-DA

DA
F. Forall zy:p1 - xnipn (ifys s By Ba) * ¢
y1:t1 - - Yn:tn 1s a suitable reordering of z1:p1 -+ &y pp

DA

Fe Forall z1:p; -+ zn:pn Bile zy...2p)

DA

Fe Forall @y :p -+ @n:pn (€ z1...25):B
Let-DA

DA
Fe Forall x1:p; -+ zn:pn (let :s B):t

DA

Forall gy : &y -+ -y :(all-of &; s) -+ yn:tn

Fe T g
Il’_A Forall y; : ¢ - - -y : (all-of &; (not s))--yn:txn
¢ By * ¢

One-of-DA

DA
F. Forall z1:p; -z, :pn (one-of Bi...Bp):t

DA
Fe Forall 21 :p1 - @n:pnx:s Bt

DA
F. Forall 1 :p1 - @n:ipn Bist,t=1...m

Sample theorem: Forall I:(all-of (a-list) (not 'nil)) .
(a-member-of (cdr 1)):(a-member-of 1)

Figure 5: Rules for Definition Analysis. In the rule If-DA, a reordering is suitable if it gives consequent
theorems with no free variables—the rule does not fire for every suitable reordering but picks just one arbitrarily.
The pattern » * s matches either r:s or s:r, but must match the same way throughout the rule.

Analyze-If

' =3 U THMSs,. (r

U THMSs . (
T, rs Foo o(u
I', Neg(r:s)to. o(u

Analyze-Let
) I'=%XU THMSs . (r)
)). L, zor bo. o(s):t
)

rznotin I’ or ¢

Yo, o((if ris ul u2)):t X Foe o((let :r s)):t

Analyze-Lambda Basic-Analyze

I'=%X U THMSs . (r)
I, z:r ke, o(B):t
z,z1 not in I', #; not in B

els (lambda z:r B) Y ke s:t

Forall z;:r

Y bo, s
o((e #1))lin /2] t

Y bo,
Analyze-Fix
I'=%X U THMSs . (r)

Forall ;1 :r

o(f o):[m /2] 100" Fee o

z and £1 not in I', #; not in B
eis (fix f z:r B)

T, (B): I

Forall zi:r

S (e w)): [fa] 1

Figure 6: Sequent Rules for .. ¢ is discussed in the
text. r, s, t, u, I, and B are any property expressions.
The fix and lambda rules are shown for one argument
functions for readability. The notation [#1/z]s stands
for the expression s with every free occurrence of x
replaces by z1. Neg(r:s) is the formula r:(not s) if r
is a program expression, and r:(a-thing) otherwise.

remains to specify how induction hypotheses for the
rule Analyze-Fix are selected. Space allows only the
following concise description: for each expression r
which matches o(B), we compute a sequence of hy-
potheses T{, T --- where each T7 is a set of proper-
ties that is a subset of Y}_;. This sequence eventu-
ally reaches the desired fixed-point hypothesis to use
in applying the rule Analyze-Fix with o(B) = r. The
sequence is defined as follows®:

T.(Y) =
Forallzi:p1...Zn:Pn .
{t ‘EU{ or(g x1...2) 3Int(T)} Fer.t}
To T ({L})

T-(T3) N5

where Int(Y) is the all-of expression representing the
intersection of the members of Y, and o,(g 1 ...2,)
is the result of replacing B by (¢ #1...%,) in r. The
design of the I, relation given below ensures that the
initial set Tq is polynomial in size, thus ensuring that
this process terminates in polynomially many itera-
tions. The recursive descent structure of e, ensures
that each iteration invokes . polynomially often (in
the size of e).

r —
i+1

Basic Inference The basic inference relation +. is
the heart of our inference system. This relation is de-
signed by the following general methodology. We start

5 Alternatively, and more practically, the hypotheses for
different values of r can be computed and used together,
giving a somewhat stronger inference relation. We present
the simpler form here for ease in presentation.

Start Subexp Univ-Dom Univ-Inst

Dom (r) forall z:s ®
sEe SET forall z:6 ® d:s,d€e
Dom (o(s)) Dom (s) Dom (s) [d/z]®

Dom ([d/z])

Figure 7: Domain Construction Inference Rules
for .. d must be a program expression, r and s can be
any property expressions. The notation [d/z] s denotes
s with each free occurrence of z replaced by d. We
wrote s € r to mean s is a subexpression of r. The rule
“Start” adds every monadic variant of an expression in
e to the domain.

by introducing a new formula Dom (p) that is used only
as a flag for the inference process (these formulas have
no semantic content). The intended meaning for this
flag is that the property pis of interest to the reasoning
process if and only if Dom (p) has been asserted. We
then write a set of domain construction inference rules
that ensure that this flag is asserted about an appro-
priately broad class of properties (usually beginning
with those properties appearing directly in the prob-
lem), taking care to limit this class to polynomial size.
The domain construction rules for k. are exhibited in
figure 7. We denote the class of property expressions
p for which Dom (p) is asserted by the symbol A. The
rules in figure 7 construct an A which is polynomial
in the size of the definition being analyzed plus the
size of the background library®, given an assumed up-
per bound on the depth of quantification in the library
(i.e. the number of variables in a forall construct is
bounded).

After designing the domain construction rules, we
write a separate set of inference rules aimed at captur-
ing the semantics of the language constructs. We write
these rules with little or no concern for the computa-
tional complexity of computing their closure. Finally,
we restrict these rules by adding Dom () antecedents so
that every property that appears in any conclusion is
a monadic variant of a member of 4. This restriction
ensures that the resulting k. relation can be computed
in a forward-chaining manner in polynomial time in
the size of the definition being analyzed plus the back-
ground library. We show the domain-restricted ver-
sions of the semantics capturing rules for - in figure 8.

Inference Algorithm Summary For each defini-
tion encountered, the inference algorithm adds to the
background library of type theorems those theorems

6The type structure provided by properties makes it
possible to design the algorithm to avoid using parts of the
library involving types that do not hold of the expression
being analyzed. For this reason we expect the complexity
in practice to be polynomial in the logarithm of the library
size.

Sym Trans Not-Sym
r.s Dom (d)
c:d st d:(not €)
d:c rit e:(not d)
One-0Of1 One-01f2 Under-All-Of

r:(one-of s t) s, tor Dom ((all-of s t))
r:(not s) Dom ((one-of s t)) r:s, r:t

rit (one-of s t):r r:(all-of s t)

Basic-One-Of Basic-All-Of
Dom ((one-of s t)) Dom ((all-of s t)) Dom ((cons ¢ d))

Selectorsl

(all-of s t):s
(all-of s ¢):t

¢:(car (cons ¢ d))

d:(cdr (cons ¢ d))

s:(one-of s t)
t:(one-of s t)

Selectors2 Always’ Strictness Monotonel
Dom (r) Dom ((f s)) st
r:(cons s t) Dom (s) s: L r:(f s)
Dom ((f ¢
(car r):s s:s, L:s (fs):L 7(()
(cdr r):t s:(a-thing) ri(f¢)
Monotone2 Every-One-Of Not-One-Of

r:(f (every s))
s:t r:(f (every t)) r:(not
r:(f (every t)) u:(one-of s t) (one-of s t))

Dom (f (every s)) Dom (f (every u))

r:(f (every s)) r:(f (every u))

r
r

:(not s
:(not ¢

N

Figure 8: Basic Inference Rules for .. ¢ and d
must be program expressions. r, s, t, and u can be any
property expressions. f can be any function symbol,
constructor or selector. We show rules for one-of and
all-of for the two argument case and applications for
one argument for readability.

forall 1:(a-list) .
1: (a-permutation-of 1)

forall 1:(a-1list) .
(a-permutation-of (a-permutation-of 1)):
(a-permutation-of 1)

forall n:(a-thing) .
n: (a-neighbor-of (every (neighbor-of n)))

forall x:(a-number) y:(all-of (a-number)
(not (>=x))) .
x:(>=7y)
forall 1:(all-of (a-sorted-list)
(not ’nil))
x:(>= (car 1)) .
x: (>= (every (a-member-of 1)))

Figure 9: Library Theorems. The theorems needed
from the user or the property library.

DA
implied by either F. or Fe., each of which is polyno-
mial time computable in the size of the new definition
body e plus the size of the background library. Each
occurrence of the e in each theorem is replaced by the
new symbol being defined before adding to the library.

Background Library Needed For Examples
The insertion sort and clique finding examples given
above rely on the presence in the background library
of a few theorems that this algorithm does not find on
its own. These theorems are shown in figure 9. These
are not theorems about insertion sort or clique find-
ing, but rather theorems about the properties involved.
The need for these theorems reflects that this algo-
rithm needs a deeper understanding of properties such
as a-permutation-of than that it attains by read-
ing the definition in order to infer that property for
some programs. Most theorems needed are automati-
cally inferred—one such theorem was shown in figure 5.
Also, the library theorems in our examples concern
only the definitions in the type library, not the pro-
grams being analyzed—all the theorems needed about
the target programs are automatically inferred. Never-
theless, the library theorems needed point up opportu-
nities to strengthen the algorithm we have described—
by analyzing the proofs of these theorems to determine
which aspects fail to be discovered automatically we
may discover new inference principles which can use-
fully be added to a polynomial time inference proce-
dure.

Conclusions

We have presented a novel language for defining ar-
bitrary properties of computer programs. The repre-
sentational features of this property language were se-
lected to enlarge the set of polynomial-time checkable
property-program relationships. We have presented,
in as much detail as space allows, an inference pro-
cedure which can infer interesting properties of sim-
ple computer programs in the context of a library of
background knowledge, and guarantees completion in
polynomial time in the size of its input.

We do not claim that the algorithm we have pre-
sented is distinguished among similar algorithms. We
intend this algorithm as an example of what may be ac-
complished in this area. We desire the construction of
stronger similar algorithms, together with a large cor-
pus of example program-property theorems on which
to test such algorithms. These algorithms can be seen
as roughly analogous to the human notion of “obvi-
ous consequence”—what consequences can be inferred
quickly? The human “obviousness engine” works with
a very expressive language, is naturally incomplete, re-
turns its answers quickly, and has no apparent clean
characterization of the set of conclusions it finds. We
propose the study of the machine counterpart to this
human notion wherein we require rapid termination
and refuse to limit expressiveness simply to get a clean

characterization of the inferrable properties.

References

Abramsky, S., and Hankin, C., eds. 1987. Abstract
Interpretation of Declarative Languages. Ellis Hor-
wood.

Brachman, R., and Schmolze, J. 1985. An overview
of the kl-one knowledge representation system. Com-
putational Intelligence 9(2):171-216.

McAllester, D., and Arkoudas, K. 1996. Walther
recursion. In 13th International Conference on Auto-
mated Deduction.

McAllester, D., and Givan, R. 1992. Natural language
syntax and first order inference. Artificial Intelligence
56:1-20. ftp.ai.mit.edu:/pub/users/dam/aijl.ps.
McAllester, D., and Givan, R. 1993. Taxonomic syn-
tax for first order inference. JACM 40(2):246-283.
ftp.ai.mit.edu:/pub/users/dam/jacm1.ps.

McCarthy, J. 1967. A basis for a mathematical the-
ory of computation. In Braffort, P.; and Hirschberg,
D., eds., Computer Programing and Formal Systems.
North-Holland.

Milner, R. 1978. A theory of type polymorphism in
programming. JCSS 17:348-375.

Nebel, B. 1990. Terminological reasoning is inherently
intractable. Artificial Intelligence 43:235-249.

Nelson, G., and Oppen, D. 1980. Fast decision proce-
dures based on congruence closure. JACM 27(2):356.

Owre, S.; Rushby, J.; and Shankar, N. 1992. Pvs: A
prototype verification system. In 11th International
Conference on Automated Deduction, 748-752.

