
Model Minimization in Markov Decision Processes�Thomas Dean andy Robert GivanDepartment of Computer ScienceBrown UniversityBox 1910, Providence, RI 02912ftld,rlgg@cs.brown.eduAbstractWe use the notion of stochastic bisimulation homo-geneity to analyze planning problems represented asMarkov decision processes (MDPs). Informally, a par-tition of the state space for an MDP is said to behomogeneous if for each action, states in the sameblock have the same probability of being carried toeach other block. We provide an algorithm for �ndingthe coarsest homogeneous re�nement of any partitionof the state space of an MDP. The resulting parti-tion can be used to construct a reduced MDP whichis minimal in a well de�ned sense and can be used tosolve the original MDP. Our algorithm is an adapta-tion of known automata minimization algorithms, andis designed to operate naturally on factored or implicitrepresentations in which the full state space is neverexplicitly enumerated. We show that simple variationson this algorithm are equivalent or closely similar toseveral di�erent recently published algorithms for �nd-ing optimal solutions to (partially or fully observable)factored Markov decision processes, thereby providingalternative descriptions of the methods and results re-garding those algorithms.IntroductionPlanning problems can be characterized at a semanticlevel by a state-transition graph (or model) in whichthe vertices correspond to states and the edges are as-sociated with actions. This model is typically large butcan be represented compactly using implicit represen-tations that avoid enumerating all the possible states.There exist e�cient algorithms that operate directlyon such models, e.g., algorithms for determining reach-ability, �nding connecting paths, and computing opti-mal policies. However, the large size of the model fortypical planning problems precludes the direct appli-cation of such algorithms. Instead, many planning sys-tems reason at a symbolic level about large groups ofstates|groups of states that behave identically rela-tive to the action under consideration. These systemsincur a computational cost in having to derive thesegroupings repeatedly over the course of planning.yAuthor order is purely alphabetical.�Copyright c 1997, American Association for Arti�cialIntelligence (www.aaai.org). All Rights Reserved.

In this paper, we describe algorithms that performthe symbolic manipulations required to group similarlybehaving states as a preprocessing step. The output ofthese algorithms is a model of reduced size whose statescorrespond to groups of states (called aggregates) in theoriginal model. The aggregates are described symbol-ically and the reduced model constitutes a reformula-tion of the original model which is equivalent to theoriginal for planning purposes.Assuming that certain operations required for ma-nipulating aggregates can be performed in constanttime, our algorithms run in time polynomial in the sizeof the reduced model. Generally, however, the aggre-gate manipulation operations do not run in constanttime, and interesting tradeo�s occur when we considerdi�erent representations for aggregates and the opera-tions required for manipulating these representations.In this paper, we consider planning problems rep-resented as Markov decision processes (MDPs), anddemonstrate that the model reduction algorithm justdescribed yields insights into several recently publishedalgorithms for solving such problems. Typically, an al-gorithm for solving MDPs using an implicit represen-tation can be better understood by realizing that it isequivalent to transforming the original model into a re-duced model, followed by applying a standard methodto the (explicitly represented) reduced model.In related papers, we will examine the relevance ofmodel reduction to deterministic propositional plan-ning, and also demonstrate how ideas of approximationand reachability analysis can be incorporated.Model MinimizationA Markov decision process M is a four tuple M =(Q;A; F;R) where Q is a set of states, A is a set ofactions, R is a reward function that maps each ac-tion/state pair (�; q) to a real value R(�; q), F is a setof state-transition distributions so that for � 2 A andp; q 2 Q,fpq(�) = Pr(Xt+1 = qjXt = p; Ut = �)where Xt and Ut are random variables denoting, re-spectively, the state and action at time t. Figure 1shows the state-transition graph in which the statesare vertices and the edges are probabilistic transitions.
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1Figure 1: State-transition graph for the MDP in whichQ = f1; 2; 3; 4g, A = fa; bg, R(�; 1) = R(�; 4) = 1,R(�; 2) = R(�; 3) = 0, and the transition probabilitiesare indicated in parentheses.In this paper, we refer to the state-transition graphas a model for the underlying dynamics of a planningproblem (Boutilier, Dean, & Hanks 1995).A policy is a mapping from states to actions, � :Q ! A. The value function for a given policy mapsstates to their expected value given that you start inthat state and act according the given policy:V�(p) = R(�(p); p) + Xq2Q fpq(�(p))V�(q)where  is the discount rate, 0 �  < 1, and we assumefor simplicity that the objective function is expecteddiscounted cumulative reward (Puterman 1994).Let P = fB1; : : : ; Bng be a partition ofQ. P has theproperty of stochastic bisimulation homogeneity withrespect to M if and only if for each Bi; Bj 2 P , foreach � 2 A, for each p; q 2 Bi,Xr2Bj fpr(�) = Xr2Bj fqr(�)For conciseness, we say P is homogeneous.1 A homo-geneous partition is a partition for which every blockis stable (see De�nition 1).The model with aggregate states corresponding tothe blocks of P and transition probabilities de�ned byf 0ij(�) = Xr2Bj fpr(�)where p is any state in Bi is called the quotient modelwith respect to P .A partition P 0 is a re�nement of a partition P if andonly if each block of P 0 is a subset of some block of P ;in this case, we say that P is coarser than P 0. Theterm splitting refers to the process whereby a block ofa partition is divided into two or more sub-blocks toobtain a re�nement of the original partition.We introduce the notion of an initial partition toencode certain basic distinctions among states. In tra-ditional AI planning, we might use an initial partition1Stochastic bisimulation homogeneity is closely relatedto the substitution property for �nite automata developedby Hartmanis and Stearns (1966) and the notion of lumpa-bility for Markov chains (Kemeny & Snell 1960).

consisting of two blocks of states: those that satisfy thegoal and those that do not. In solving an MDP, we dis-tinguish states that di�er on the basis of reward. Giventhe distinctions implied by an initial partition, otherdistinctions follow as a consequence of the dynamics.In particular, a homogeneous re�nement of the initialpartition is one that preserves the initial distinctionsand aggregates blocks that behave the same. For anyparticular initial partition, there is one homogeneousre�nement that is of particular interest.Theorem 1 For any initial partition P , there exists aunique coarsest homogeneous re�nement of P .The existence of this re�nement of P follows by ana-lyzing the algorithm described below.In the remainder of this section, we consider analgorithm2 called the model minimization algorithm(or simply the minimization algorithm) which startswith an initial partition P0 and iteratively re�nes thatpartition by splitting blocks until it obtains the coars-est homogeneous re�nement of P0. We refer to thisre�nement as the target partition.We discuss the algorithm at an abstract level, leav-ing the underlying representation of the partitionsunspeci�ed|hence our complexity measures are interms of the number of partition manipulation oper-ations, and the actual complexity depends on the un-derlying partition representation and manipulation al-gorithms. Our complexity measures are relative to thenumber of blocks in the resulting partition.De�nition 1 We say that a block C of a partition Pis stable with respect to a block B of P and action �if and only if every state in C has the same probabilityof being carried into block B by action �. Formally,9c 2 [0; 1]; 8p 2 C;Pr(Xt+1 2 BjXt = p; Ut = �) = cwhere Pr(Xt+1 2 BjXt = p; Ut = �) =Xq2B Pr(Xt+1 = qjXt = p; Ut = �)We say that C is stable if C is stable with respect toevery block of P and action in A.A partition is homogeneous exactly when every blockis stable. The following theorem implies that any un-stable block in the initial partition can be split imme-diately, with the resulting new partition retaining theproperty that it can be re�ned into the target parti-tion. By repeatedly �nding unstable blocks and split-ting them, we can thus �nd the target partition in lin-early many splits in the target partition size (each splitincreases the partition size, which cannot exceed thatof the target partition).2Our algorithm is an adaptation of an algorithm by Leeand Yannakakis (1992) which is related to an algorithm byBouajjani et al. (1992).



Theorem 2 Given a partition P , blocks B and C ofP , and states p and q in block C such thatPr(Xt+1 2 BjXt = p) 6= Pr(Xt+1 2 BjXt = q)then p and q do not fall in the same block of the coarsesthomogeneous re�nement of P .This theorem yields an algorithm for �nding thetarget partition in linearly many split operations andquadratically many stability checks:3 simply checkeach pair of blocks for stability, splitting each unstableblock as it is discovered. Speci�cally, when a block Cis found to be unstable with respect to a block B andaction �, we replace C in the partition by the uniquelydetermined sub-blocks C1; : : : ; Ck such that each Ciis a maximal sub-block of C that is stable with re-spect to B and �. We denote the resulting partitionby SPLIT(B;C; P; �), where P is the partition just be-fore splitting C.Theorem 3 Given any initial partition P , the modelminimization algorithm computes the coarsest homoge-neous re�nement of P .The immediate reward partition is the partition inwhich two states, p and q, are in the same block if andonly if they have the same rewards, 8� 2 A; R(�; p) =R(�; q). Let P � be the coarsest re�nement of the initialreward partition. The resulting quotient model canbe extended to de�ne a reduced MDP by de�ning thereward R0(�; i) for any block Bi and action � to beR(�; p) for any state p in Bi.Theorem 4 The exact solution of the reduced MDPinduces an exact solution of the original MDP.The above algorithm is given independent of thechoice of underlying representation of the state spaceand its partitions. However, we note that, in orderfor the algorithm to guarantee �nding the target par-tition we must have a su�ciently expressive partitionrepresentation such that any arbitrary partition of thestate space can be represented. Typically, such par-tition representations may be expensive to manipu-late, and may blow up in size. For this reason, wealso consider partition manipulation operations thatdo not exactly implement the splitting operation de-scribed above. Such operations can still be adequatefor our purposes if they di�er from the operation abovein a principled manner: speci�cally, if whenever a splitis requested, the operation splits \at least as much"as requested. Formally, we say that a block splittingoperation SPLIT0 is adequate if SPLIT0(P;C;B; �) isalways a re�nement of SPLIT(B;C; P; �), and we re-fer to the minimization algorithmwith SPLIT replaced3Observe that the stability of a block C with respect toanother block B and any action is not a�ected by splittingblocks other than B and C, so no pair of blocks need ever bechecked twice. Also the number of blocks ever consideredcannot exceed twice the number of blocks in the targetpartition (which bounds the number of splits performed).

by SPLIT0 as adequate minimization. We refer to ade-quate splitting operations which properly re�ne SPLITas non-optimal. Note that such operations may becheaper to implement than SPLIT even though they\split more" than SPLIT.Theorem 5 The minimization algorithm with SPLITreplaced by any adequate SPLIT0 returns a re�nementof the target partition, and the solutions of the resultingreduced MDP still induce optimal solutions.Many published techniques that operate on implicitrepresentations closely resemble minimization with ad-equate but non-optimal splitting operations. We de-scribe some of these techniques and the connection tominimization later in this paper. In the next section,we introduce one particular method of implicit repre-sentation which is well suited to MDPs and then usethis as a basis for our discussion.Factored RepresentationsIn the remainder of this paper, we make use ofBayesian networks (Pearl 1988) to encode implicit (orfactored) representations; however, our methods applyto other factored representations such as probabilis-tic STRIPS operators (Kushmerick, Hanks, & Weld1995). Let X = fX1; : : : ; Xmg represent the set ofstate variables. We assume the variables are boolean,and refer to them also as uents. The state at time tis now represented as a vector Xt = hX1;t; : : : ; Xm;tiwhere Xi;t denotes the ith state variable at time t. Atwo-stage temporal Bayesian network (2TBN) (Dean &Kanazawa 1989) is a directed acyclic graph consistingof two sets of variables fXi;tg and fXi;t+1g in whichdirected arcs indicating dependence are allowed fromthe variables in the �rst set to variables in the sec-ond set and between variables in the second set. Thestate-transition probabilities are now factored asPr(Xt+1jXt; Ut) = mYi=1Pr(Xi;t+1jParents(Xi;t+1); Ut)where Parents(X) denotes the parents of X in the2TBN and each of the conditional probability distri-butions Pr(Xi;t+1jParents(Xi;t+1); Ut) can be repre-sented as a conditional probability table or as a deci-sion tree which we do in this paper following (Boutilier,Dearden, & Goldszmidt 1995). We enhance the 2TBNrepresentation to include actions and reward func-tions; the resulting graph is called an inuence dia-gram (Howard & Matheson 1984).Figure 2 illustrates a factored representation withthree state variables, X = fA;B;Cg, and describesthe transition probabilities and rewards for one action.The factored form of the transition probabilities isPr(Xt+1jXt; Ut) =Pr(At+1jAt; Bt) Pr(Bt+1jBt) Pr(Ct+1jCt; Bt)where in this case Xt = hAt; Bt; Cti.
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(a) (b)Figure 3: Quotient models for the MDP represented bythe factored representation shown in Figure 2 for (a)the immediate reward partition and (b) the coarsesthomogeneous partition computed by the minimizationalgorithm.Figure 3(a) shows the quotient model induced by theimmediate reward partition for the MDP described inFigure 2; there are two blocks: states in which thereward is 1 and states in which the reward is 0. Fig-ure 3(b) shows the quotient model for the re�ned parti-tion constructed by the model minimization algorithm.In this paper, we consider two di�erent partition rep-resentations. The �rst and most general representationwe use represents a partition as a set of mutually incon-sistent DNF boolean formulas, one for each block, suchthat a state is in a block if and only if the state's cor-responding truth assignment satis�es the block's DNFformula. Given the generality of this representation,the following result is not surprising.Theorem 6 Given a factored MDP and initial par-tition P represented in DNF, the problem of �ndingthe coarsest homogeneous re�nement of P is NP-hard,even under the assumption that this re�nement has aDNF representation of size polynomial in jX j.The NP-hardness in the above theorem lies in main-taining DNF block descriptions in simplest form. Theminimization algorithm described above can run intime polynomial in the size of its output if it neversimpli�es the block descriptions|however that outputwill therefore not be the simplest description of thecoarsest homogeneous re�nement of P .As a second partition representation, we considerany subset S of the uents (i.e., X ) to be the u-entwise representation of the partition which would be

represented in DNF as the full set of complete truthassignments to S. Note that this representation cannotexpress most partitions.Existing Algorithms on FactoredRepresentationsIn the following three subsections, we briey describeseveral existing algorithms that operate on factoredrepresentations. We argue that each algorithm isasymptotically equivalent to �rst applying the mini-mization algorithm and then solving it using an algo-rithm that operates on the reduced MDP. Space limi-tations preclude detailed descriptions of the algorithmsand explication of the background necessary to formal-ize our arguments; hence, the arguments provided inthis paper are only sketches of the formal argumentsprovided in the longer version of this paper.State-Space AbstractionState-space abstraction (Boutilier & Dearden 1994) isa means of solving a factored MDP by generating anequivalent reduced MDP by determining with a su-per�cial analysis which uents' values are necessarilyirrelevant to the solution. The reduced MDP gener-ated is always a uentwise partition of the state space,and the analysis can be viewed as minimization wherethe splitting operation is adequate but non-optimal.Let FSPLIT(B;C; P; �) be the coarsest re�nementof SPLIT(B;C; P; �) which is uentwise representable.FSPLIT is adequate and computable in time polyno-mial in the size of M .Theorem 7 Minimization using FSPLIT yields thesame partition that state space abstraction does.The following theorem shows that there is an opti-mal reduced MDP given the restriction to uentwisepartitions.Theorem 8 For any MDP and initial partition P ,there is a unique coarsest homogeneous re�nement ofP that is uentwise representable.The state-space abstraction analysis is quite sensi-tive to the factored representation of the MDP. A par-ticular explicit MDP may have many di�erent factoredrepresentations, and state space abstraction performswell only when the representation chosen representsthe independence properties of the uents well, so thatthe super�cial analysis can easily detect which uentsare relevant. The presentation in (Boutilier & Dearden1994) relies on a slightly more expressive factored rep-resentation than that presented above to allow the ex-pression of a richer class of independence properties|each action is described by multiple but consistent as-pects which apply simultaneously; each aspect is rep-resented just as an action above. The next theoremshows that, using this more expressive representation,there is always a way to factor an explicit MDP so thatthe optimal uentwise partition is found by state-spaceabstraction and/or FSPLIT minimization.



Theorem 9 For any MDP M and initial partition P ,there is a factored MDP representation of M (using as-pects) such that state space abstraction �nds the coars-est homogeneous uentwise re�nement of P .Structured Policy IterationPolicy iteration is a well-known technique for �ndingan optimal policy for an explicitly represented MDPby evaluating the value at each state of a �xed pol-icy and using those values to compute a locally betterpolicy|iterating this process converges to an optimumpolicy (Puterman 1994). In explicit MDPs, the eval-uation of each �xed policy can be done with anotherwell-known algorithm called successive approximation,which involves repeatedly computing the value of eachstate using the just computed values for neighboringstates|iterating this process converges in the in�nitelimit to the true values, and a stopping criterion canbe designed to indicate when the estimated values aregood enough to proceed with another step of policyiteration (Puterman 1994).Boutilier et al. (1995) describe variants of policy it-eration and successive approximation designed to workon factored MDP representations, called structuredpolicy iteration (SPI) and structured successive approx-imation (SSA), respectively. These algorithms canboth be understood as variants of minimization usinga particular non-optimal but adequate split operation.For the remainder of this paper, we assume the DNFpartition representation.De�nition 2 We say that a block C of a partition Pis uentwise stable with respect to a uent Xk and ac-tion � if and only if every state in C has the sameprobability under action � of being carried into a statewith Xk true. Formally,9c 2 [0; 1]; 8p 2 C;Pr(Xk;t+1jXt = p; Ut = �) = cWe say that C is uentwise stable with respect to blockB and action � if C is uentwise stable with respect toevery uent mentioned in the DNF formula describingblock B.Let SSPLIT(B;C; P; �) be the coarsest re�nement ofSPLIT(B;C; P; �) for which C is uentwise stable withrespect to B and �. SSPLIT is adequate and com-putable in time polynomial in the number of newblocks introduced plus the size of its inputs.Structured Successive Approximation For a �x-ed policy � and MDP M , we de�ne the �-restrictedMDP M� to be the MDP M modi�ed so that actionsnot prescribed by � do nothing: in M� , if action � istaken in a state q such that � 6= �(q), the result isstate q again with probability 1. Minimization of the�-restricted MDP using SSPLIT is equivalent to SSA.Theorem 10 For any MDP M and policy �, SSA ap-plied to M and � produces the same resulting parti-tion and value convergence properties as minimization

of M� using SSPLIT, followed by traditional succes-sive approximation on the resulting reduced MDP. Bothalgorithms run in time polynomial in the number ofblocks in the resulting partition.Structured Policy Iteration Each iteration ofstructured policy iteration accepts as input a valuefunction V� : Q ! R, and selects a new policy �0by considering the possible advantages of choosing ac-tions on the �rst step alternative to those indicatedby the current policy and assuming that the value insubsequent steps is determined by V� . We cast pol-icy iteration as a minimization problem by consideringa special MDP MPI (where PI stands for \policy im-provement") that forces all actions after the �rst stepto be chosen according to �. In order to distinguish the�rst step from subsequent steps, we introduce a newuent First. The actions executed on the �rst step areexecuted in the subspace in which First is true and ac-tions executed on subsequent steps are executed in thesubspace in which First is false. For a factored MDPM with uents X and policy �, we de�ne MPI to bethe MDP with uents X [ fFirstg so that� the actions always set First to false,� when First is true, the actions behave on X as theywould in M , and� when First is false, the actions behave on X as theywould in M� .Theorem 11 For any MDP M and previous policy �,one iteration of SPI computes the same partition as thepartition of the subspace in which First is true which isproduced by the minimization of MPI using SSPLIT.Once the new partition is computed (by eithermethod), we select an improved policy by choosingfor each block of the new partition the action thatmaximizes the immediate reward plus the probabilityweighted sum of the V� values of the possible nextstates.Explanation-Based ReinforcementLearningSplitting an unstable block requires computing thepreimage of the block with respect to an action. Thisbasic operation is also fundamental in regression plan-ning and explanation-based learning. Explanation-based learning (EBL) techniques use regression to ma-nipulate sets instead of individual states.Reinforcement learning (RL) is an on-line methodfor solving MDPs (Barto, Sutton, & Watkins 1990),essentially by incremental, on-line dynamic program-ming. Dietterich and Flann (1995) note that comput-ing preimages is closely related to the iterative (dy-namic programming) step in policy iteration and otherstandard algorithms for computing optimal policies.They describe RL algorithms that use regression in



combination with standard RL and MDP algorithmsto avoid enumerating individual statesTheir algorithms make use of a particular represen-tation for partitions based on rectangular regions ofthe state space. The direct application of model mini-mization in this case is complicated due to the on-linecharacter of RL. However, an o�-line variant (whichthey present) of their algorithm can be shown to beasymptotically equivalent to �rst computing a reducedmodel using an adequate splitting operation based ontheir rectangular partition representation followed bythe application of a standard RL or MDP algorithm tothe reduced model. We suspect that the rest of theiralgorithms as well as other RL andMDP algorithms forhandling multidimensional state spaces (Moore 1993;Tsitsiklis & Van Roy 1996) can be pro�tably analyzedin terms of model reduction.Partially Observable MDPsThe simplest way of using model reduction techniquesto solve partially observable MDPs (POMDPs) is toapply the model minimization algorithm to an initialpartition that distinguishes on the basis of both rewardand observation and then apply a standard POMDPalgorithm to the resulting reduced model. We suspectthat some existing POMDP algorithms can be par-tially understood in such terms. In particular, we con-jecture that the factored POMDP algorithm describedin (Boutilier & Poole 1996) is asymptotically equiva-lent to minimizing the underlying MDP and then usingMonahan's (1982) POMDP algorithm.ConclusionThis paper is primarily concerned with introducing themethod of model minimization for MDPs and present-ing it as a way of analyzing and understanding exist-ing algorithms. We are also working on approxima-tion algorithms with provable error bounds that con-struct reduced models using a criterion for approxi-mate stochastic bisimulation homogeneity.The methods of this paper extend directly to ac-count for reachability from an initial state or set ofinitial states. We are also working on algorithms thatuse minimization and reachability to extend decompo-sition and envelope-based techniques such as (Dean etal. 1995) to handle factored representations.ReferencesBarto, A. G.; Sutton, R. S.; and Watkins, C. J. C. H. 1990.Learning and sequential decision making. In Gabriel, M.,and Moore, J., eds., Learning and Computational Neuro-science: Foundations of Adaptive Networks. Cambridge,Massachusetts: MIT Press.Bouajjani, A.; Fernandez, J.-C.; Halbwachs, N.; Ray-mond, P.; and Ratel, C. 1992. Minimal state graph gen-eration. Science of Computer Programming 18:247{269.
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