Model Minimization in Markov Decision Processes*

Thomas Dean and! Robert Givan

Department of Computer Science

Brown University
Box 1910, Providence, RI 02912
{tld,rlg} @cs.brown.edu

Abstract

We use the notion of stochastic bisimulation homo-
geneity to analyze planning problems represented as
Markov decision processes (MDPs). Informally, a par-
tition of the state space for an MDP is said to be
homogeneous if for each action, states in the same
block have the same probability of being carried to
each other block. We provide an algorithm for finding
the coarsest homogeneous refinement of any partition
of the state space of an MDP. The resulting parti-
tion can be used to construct a reduced MDP which
is minimal in a well defined sense and can be used to
solve the original MDP. Our algorithm is an adapta-
tion of known automata minimization algorithms, and
is designed to operate naturally on factored or implicit
representations in which the full state space is never
explicitly enumerated. We show that simple variations
on this algorithm are equivalent or closely similar to
several different recently published algorithms for find-
ing optimal solutions to (partially or fully observable)
factored Markov decision processes, thereby providing
alternative descriptions of the methods and results re-
garding those algorithms.

Introduction

Planning problems can be characterized at a semantic
level by a state-transition graph (or model) in which
the vertices correspond to states and the edges are as-
sociated with actions. This model is typically large but
can be represented compactly using implicit represen-
tations that avoid enumerating all the possible states.
There exist efficient algorithms that operate directly
on such models, e.g., algorithms for determining reach-
ability, finding connecting paths, and computing opti-
mal policies. However, the large size of the model for
typical planning problems precludes the direct appli-
cation of such algorithms. Instead, many planning sys-
tems reason at a symbolic level about large groups of
states—groups of states that behave identically rela-
tive to the action under consideration. These systems
incur a computational cost in having to derive these
groupings repeatedly over the course of planning.

t Author order is purely alphabetical.
*Copyright (© 1997, American Association for Artificial
Intelligence (www.aaai.org). All Rights Reserved.

In this paper, we describe algorithms that perform
the symbolic manipulations required to group similarly
behaving states as a preprocessing step. The output of
these algorithms is a model of reduced size whose states
correspond to groups of states (called aggregates) in the
original model. The aggregates are described symbol-
ically and the reduced model constitutes a reformula-
tion of the original model which is equivalent to the
original for planning purposes.

Assuming that certain operations required for ma-
nipulating aggregates can be performed in constant
time, our algorithms run in time polynomial in the size
of the reduced model. Generally, however, the aggre-
gate manipulation operations do not run in constant
time, and interesting tradeoffs occur when we consider
different representations for aggregates and the opera-
tions required for manipulating these representations.

In this paper, we consider planning problems rep-
resented as Markov decision processes (MDPs), and
demonstrate that the model reduction algorithm just
described yields insights into several recently published
algorithms for solving such problems. Typically, an al-
gorithm for solving MDPs using an implicit represen-
tation can be better understood by realizing that it is
equivalent to transforming the original model into a re-
duced model, followed by applying a standard method
to the (explicitly represented) reduced model.

In related papers, we will examine the relevance of
model reduction to deterministic propositional plan-
ning, and also demonstrate how ideas of approximation
and reachability analysis can be incorporated.

Model Minimization

A Markov decision process M is a four tuple M =
(Q, A, F, R) where Q is a set of states, A is a set of
actions, R is a reward function that maps each ac-
tion/state pair (o, ¢) to a real value R(a,q), F is a set
of state-transition distributions so that for @ € A and
g€,

frgla) = Pr(Xep1 = ¢ Xy = p,Ur =)

where X; and U; are random variables denoting, re-
spectively, the state and action at time ¢. Figure 1
shows the state-transition graph in which the states
are vertices and the edges are probabilistic transitions.

4

a(0.4) ~(1)

2
b(1.0) b(1.0)

a(0.6) @3

Figure 1: State-transition graph for the MDP in which
Q = {1,2,3,4}, A = {a,b}, R(-,1) = R(-,4) = 1,
R(-,2) = R(-,3) = 0, and the transition probabilities
are indicated in parentheses.

a(1.0)

In this paper, we refer to the state-transition graph
as a model for the underlying dynamics of a planning
problem (Boutilier, Dean, & Hanks 1995).

A policy is a mapping from states to actions, m :
Q — A. The value function for a given policy maps
states to their expected value given that you start in
that state and act according the given policy:

Va(p) = R(7(p):p) +7 Y foa(m(p))Vr(a)

q€Q

where ~ is the discount rate, 0 < v < 1, and we assume
for simplicity that the objective function is expected
discounted cumulative reward (Puterman 1994).

Let P = {By,..., B, } be a partition of @. P has the
property of stochastic bisimulation homogeneity with
respect to M if and only if for each B;, B; € P, for
each a € A, for each p,q € B;,

Z Jpr(@) = Z Jar (@)

TEB]' TEB]'

For conciseness, we say P is homogeneous.® A homo-
geneous partition is a partition for which every block
is stable (see Definition 1).

The model with aggregate states corresponding to
the blocks of P and transition probabilities defined by

Fi(@) =Y for(a)

reB;

where p is any state in B; is called the quotient model
with respect to P.

A partition P’ is a refinement of a partition P if and
only if each block of P’ is a subset of some block of P;
in this case, we say that P is coarser than P’. The
term splitting refers to the process whereby a block of
a partition is divided into two or more sub-blocks to
obtain a refinement of the original partition.

We introduce the notion of an initial partition to
encode certain basic distinctions among states. In tra-
ditional Al planning, we might use an initial partition

!Stochastic bisimulation homogeneity is closely related
to the substitution property for finite automata developed
by Hartmanis and Stearns (1966) and the notion of {umpa-
bility for Markov chains (Kemeny & Snell 1960).

consisting of two blocks of states: those that satisfy the
goal and those that do not. In solving an MDP, we dis-
tinguish states that differ on the basis of reward. Given
the distinctions implied by an initial partition, other
distinctions follow as a consequence of the dynamics.
In particular, a homogeneous refinement of the initial
partition is one that preserves the initial distinctions
and aggregates blocks that behave the same. For any
particular initial partition, there is one homogeneous
refinement that is of particular interest.

Theorem 1 For any initial partition P, there exists a
unique coarsest homogeneous refinement of P.

The existence of this refinement of P follows by ana-
lyzing the algorithm described below.

In the remainder of this section, we consider an
algorithm? called the model minimization algorithm
(or simply the minimization algorithm) which starts
with an initial partition Py and iteratively refines that
partition by splitting blocks until it obtains the coars-
est homogeneous refinement of Py. We refer to this
refinement as the target partition.

We discuss the algorithm at an abstract level, leav-
ing the underlying representation of the partitions
unspecified—hence our complexity measures are in
terms of the number of partition manipulation oper-
ations, and the actual complexity depends on the un-
derlying partition representation and manipulation al-
gorithms. Our complexity measures are relative to the
number of blocks in the resulting partition.

Definition 1 We say that a block C of a partition P
is stable with respect to a block B of P and action «
if and only if every state in C' has the same probability
of being carried into block B by action «. Formally,

de €[0,1],Vpe C,Pr(Xiy1 € Bl Xt =p, Uy =a) =c¢
where
Pr(Xip1 € B|Xy =p,Ur = a) =

Y Pr(Xip1 =qlX =p,Us =)
q€B

We say that C' is stable if C' is stable with respect to
every block of P and action in A.

A partition is homogeneous exactly when every block
is stable. The following theorem implies that any un-
stable block in the initial partition can be split imme-
diately, with the resulting new partition retaining the
property that it can be refined into the target parti-
tion. By repeatedly finding unstable blocks and split-
ting them, we can thus find the target partition in lin-
early many splits in the target partition size (each split
increases the partition size, which cannot exceed that
of the target partition).

2Qur algorithm is an adaptation of an algorithm by Lee
and Yannakakis (1992) which is related to an algorithm by
Bouajjani et al. (1992).

Theorem 2 (liven a partition P, blocks B and C of
P, and states p and q in block C' such that

Pr(Xi+1 € B| Xy =p) # Pr(Xe41 € B|X: = ¢q)

then p and g do not fall in the same block of the coarsest
homogeneous refinement of P.

This theorem yields an algorithm for finding the
target partition in linearly many split operations and
quadratically many stability checks:®> simply check
each pair of blocks for stability, splitting each unstable
block as it is discovered. Specifically, when a block ('
is found to be unstable with respect to a block B and
action a, we replace C'in the partition by the uniquely
determined sub-blocks C4,...,C) such that each Cj
is a maximal sub-block of C' that is stable with re-
spect to B and a. We denote the resulting partition
by SPLIT(B, C, P, o), where P is the partition just be-
fore splitting C.

Theorem 3 Gliven any initial partition P, the model
minimization algorithm computes the coarsest homoge-
neous refinement of P.

The immediate reward partition is the partition in
which two states, p and ¢, are in the same block if and
only if they have the same rewards, Vo € A, R(a, p) =
R(c, q). Let P* be the coarsest refinement of the initial
reward partition. The resulting quotient model can
be extended to define a reduced MDP by defining the
reward R'(«,4) for any block B; and action « to be
R(c, p) for any state p in B;.

Theorem 4 The exact solution of the reduced MDP
induces an exact solution of the original MDP.

The above algorithm is given independent of the
choice of underlying representation of the state space
and its partitions. However, we note that, in order
for the algorithm to guarantee finding the target par-
tition we must have a sufficiently expressive partition
representation such that any arbitrary partition of the
state space can be represented. Typically, such par-
tition representations may be expensive to manipu-
late, and may blow up in size. For this reason, we
also consider partition manipulation operations that
do not exactly implement the splitting operation de-
scribed above. Such operations can still be adequate
for our purposes if they differ from the operation above
in a principled manner: specifically, if whenever a split
is requested, the operation splits “at least as much”
as requested. Formally, we say that a block splitting
operation SPLIT' is adequate if SPLIT' (P, C, B, a) is
always a refinement of SPLIT(B,C, P, «), and we re-
fer to the minimization algorithm with SPLIT replaced

3 Observe that the stability of a block C' with respect to
another block B and any action is not affected by splitting
blocks other than B and (', so no pair of blocks need ever be
checked twice. Also the number of blocks ever considered
cannot exceed twice the number of blocks in the target
partition (which bounds the number of splits performed).

by SPLIT’ as adequate minimization. We refer to ade-
quate splitting operations which properly refine SPLIT
as non-optimal. Note that such operations may be
cheaper to implement than SPLIT even though they
“split more” than SPLIT.

Theorem 5 The minimization algorithm with SPLIT
replaced by any adequate SPLIT' returns a refinement
of the target partition, and the solutions of the resulting
reduced MDP still induce optimal solutions.

Many published techniques that operate on implicit
representations closely resemble minimization with ad-
equate but non-optimal splitting operations. We de-
scribe some of these techniques and the connection to
minimization later in this paper. In the next section,
we introduce one particular method of implicit repre-
sentation which is well suited to MDPs and then use
this as a basis for our discussion.

Factored Representations

In the remainder of this paper, we make use of
Bayesian networks (Pearl 1988) to encode implicit (or
factored) representations; however, our methods apply
to other factored representations such as probabilis-
tic STRIPS operators (Kushmerick, Hanks, & Weld
1995). Let X = {X1,...,X;n} represent the set of
state variables. We assume the variables are boolean,
and refer to them also as fluents. The state at time ¢
is now represented as a vector Xy = (X 4,..., Xpt)
where X, ; denotes the ith state variable at time 7. A
two-stage temporal Bayesian network (2TBN) (Dean &
Kanazawa 1989) is a directed acyclic graph consisting
of two sets of variables {X;;} and {X;;41} in which
directed arcs indicating dependence are allowed from
the variables in the first set to variables in the sec-
ond set and between variables in the second set. The
state-transition probabilities are now factored as

PI'(Xt+1 |Xt, Ut) = H Pr(Xm_H|Parents(Xi7t+1), Ut)

i=1

where Parents(X) denotes the parents of X in the
2TBN and each of the conditional probability distri-
butions Pr(X; ;1|Parents(X;.41),U:) can be repre-
sented as a conditional probability table or as a deci-
sion tree which we do in this paper following (Boutilier,
Dearden, & Goldszmidt 1995). We enhance the 2TBN
representation to include actions and reward func-
tions; the resulting graph is called an influence dia-
gram (Howard & Matheson 1984).

Figure 2 illustrates a factored representation with
three state variables, X = {A, B, ('}, and describes
the transition probabilities and rewards for one action.
The factored form of the transition probabilities is

PI'(Xt+1|Xt, Ut) =
PI'(At+1 |At, Bt) PI'(Bt+1 |Bt) PI'(Ct+1 |Ct, Bt)

where in this case X; = (A, By, Cy).

Pr(A|X;_9)
Xi_g X A —A
= B —B

A
g 0.8 0.7 0.9
B T-=a
T PH(B|X,_y) = 0.7 |

R e "=+ PHC|X,_y)
) R(X,) = { LifA Bc ﬁBﬁc
O else| |0.7 10 0.5

Figure 2: A factored representation with three state

variables: A, B and C.

L/

—-AAB

A®ﬁA

Figure 3: Quotient models for the MDP represented by
the factored representation shown in Figure 2 for (a)
the immediate reward partition and (b) the coarsest
homogeneous partition computed by the minimization
algorithm.

Figure 3(a) shows the quotient model induced by the
immediate reward partition for the MDP described in
Figure 2; there are two blocks: states in which the
reward is 1 and states in which the reward is 0. Fig-
ure 3(b) shows the quotient model for the refined parti-
tion constructed by the model minimization algorithm.

In this paper, we consider two different partition rep-
resentations. The first and most general representation
we use represents a partition as a set of mutually incon-
sistent DNF boolean formulas, one for each block, such
that a state is in a block if and only if the state’s cor-
responding truth assignment satisfies the block’s DNF
formula. Given the generality of this representation,
the following result is not surprising.

Theorem 6 Gliven a factored MDP and initial par-
tition P represented in DNF, the problem of finding
the coarsest homogeneous refinement of P is NP-hard,
even under the assumption that this refinement has a
DNF representation of size polynomial in |X|.

The NP-hardness in the above theorem lies in main-
taining DNF block descriptions in simplest form. The
minimization algorithm described above can run in
time polynomial in the size of its output if it never
simplifies the block descriptions—however that output
will therefore not be the simplest description of the
coarsest homogeneous refinement of P.

As a second partition representation, we consider
any subset S of the fluents (i.e., X) to be the flu-
entwise representation of the partition which would be

represented in DNF as the full set of complete truth
assignments to S. Note that this representation cannot
express most partitions.

Existing Algorithms on Factored
Representations

In the following three subsections, we briefly describe
several existing algorithms that operate on factored
representations. We argue that each algorithm is
asymptotically equivalent to first applying the mini-
mization algorithm and then solving it using an algo-
rithm that operates on the reduced MDP. Space limi-
tations preclude detailed descriptions of the algorithms
and explication of the background necessary to formal-
ize our arguments; hence, the arguments provided in
this paper are only sketches of the formal arguments
provided in the longer version of this paper.

State-Space Abstraction

State-space abstraction (Boutilier & Dearden 1994) is
a means of solving a factored MDP by generating an
equivalent reduced MDP by determining with a su-
perficial analysis which fluents’ values are necessarily
irrelevant to the solution. The reduced MDP gener-
ated is always a fluentwise partition of the state space,
and the analysis can be viewed as minimization where
the splitting operation is adequate but non-optimal.

Let FSPLIT(B, C, P,a) be the coarsest refinement
of SPLIT(B, C, P, «) which is fluentwise representable.
FSPLIT is adequate and computable in time polyno-
mial in the size of M.

Theorem 7 Minimization using FSPLIT yields the
same partition that state space abstraction does.

The following theorem shows that there is an opti-
mal reduced MDP given the restriction to fluentwise
partitions.

Theorem 8 For any MDP and initial partition P,
there is a unique coarsest homogeneous refinement of
P that is fluentwise representable.

The state-space abstraction analysis is quite sensi-
tive to the factored representation of the MDP. A par-
ticular explicit MDP may have many different factored
representations, and state space abstraction performs
well only when the representation chosen represents
the independence properties of the fluents well, so that
the superficial analysis can easily detect which fluents
are relevant. The presentation in (Boutilier & Dearden
1994) relies on a slightly more expressive factored rep-
resentation than that presented above to allow the ex-
pression of a richer class of independence properties—
each action is described by multiple but consistent as-
pects which apply simultaneously; each aspect is rep-
resented just as an action above. The next theorem
shows that, using this more expressive representation,
there is always a way to factor an explicit MDP so that
the optimal fluentwise partition is found by state-space
abstraction and/or FSPLIT minimization.

Theorem 9 For any MDP M and initial partition P,
there is a factored MDP representation of M (using as-
pects) such that state space abstraction finds the coars-
est homogeneous fluentwise refinement of P.

Structured Policy Iteration

Policy iteration is a well-known technique for finding
an optimal policy for an explicitly represented MDP
by evaluating the value at each state of a fixed pol-
icy and using those values to compute a locally better
policy—iterating this process converges to an optimum
policy (Puterman 1994). In explicit MDPs, the eval-
uation of each fixed policy can be done with another
well-known algorithm called successive approzimation,
which involves repeatedly computing the value of each
state using the just computed values for neighboring
states—iterating this process converges in the infinite
limit to the true values, and a stopping criterion can
be designed to indicate when the estimated values are
good enough to proceed with another step of policy
iteration (Puterman 1994).

Boutilier et al. (1995) describe variants of policy it-
eration and successive approximation designed to work
on factored MDP representations, called structured
policy iteration (SPI) and structured successive approx-
imation (SSA), respectively. These algorithms can
both be understood as variants of minimization using
a particular non-optimal but adequate split operation.
For the remainder of this paper, we assume the DNF
partition representation.

Definition 2 We say that a block C of a partition P
is fluentwise stable with respect to a fluent X and ac-
tion « if and only if every state in C has the same
probability under action a of being carried into a state
with Xy true. Formally,

Jec € [07 1]avP e, Pr(Xk7t+1|Xt =p, U = a) =c

We say that C' is fluentwise stable with respect to block
B and action « if C is fluentwise stable with respect to
every fluent mentioned in the DNF formula describing
block B.

Let SSPLIT(B, C, P,«) be the coarsest refinement of
SPLIT(B, C, P, «) for which C'is fluentwise stable with
respect to B and «. SSPLIT is adequate and com-
putable in time polynomial in the number of new
blocks introduced plus the size of its inputs.

Structured Successive Approximation For a fix-
ed policy # and MDP M, we define the m-restricted
MDP M, to be the MDP M modified so that actions
not prescribed by 7 do nothing: in M,, if action « is
taken in a state ¢ such that o # w(q), the result is
state ¢ again with probability 1. Minimization of the
m-restricted MDP using SSPLIT is equivalent to SSA.

Theorem 10 For any MDP M and policy w, SS5A ap-
plied to M and © produces the same resulting parti-
tion and value convergence properties as minimization

of M, wusing SSPLIT, followed by traditional succes-
sive approzimation on the resulting reduced MDP. Both
algorithms run in time polynomial in the number of
blocks in the resulting partition.

Structured Policy Iteration Each iteration of
structured policy iteration accepts as input a value
function Vi : @ — R, and selects a new policy =’
by considering the possible advantages of choosing ac-
tions on the first step alternative to those indicated
by the current policy and assuming that the value in
subsequent steps is determined by V.. We cast pol-
icy iteration as a minimization problem by considering
a special MDP Mpy (where PI stands for “policy im-
provement”) that forces all actions after the first step
to be chosen according to 7. In order to distinguish the
first step from subsequent steps, we introduce a new
fluent First. The actions executed on the first step are
executed in the subspace in which First is true and ac-
tions executed on subsequent steps are executed in the
subspace in which First is false. For a factored MDP
M with fluents A and policy 7, we define Mpy to be
the MDP with fluents X U {First} so that

e the actions always set First to false,

e when First is true, the actions behave on X as they
would in M, and

e when First is false, the actions behave on A’ as they
would in M.

Theorem 11 For any MDP M and previous policy m,
one iteration of SPI computes the same partition as the
partition of the subspace in which First is true which is
produced by the minimization of Mpy using SSPLIT.

Once the new partition is computed (by either
method), we select an improved policy by choosing
for each block of the new partition the action that
maximizes the immediate reward plus the probability
weighted sum of the V; values of the possible next
states.

Explanation-Based Reinforcement
Learning

Splitting an unstable block requires computing the
preimage of the block with respect to an action. This
basic operation is also fundamental in regression plan-
ning and explanation-based learning. Explanation-
based learning (EBL) techniques use regression to ma-
nipulate sets instead of individual states.
Reinforcement learning (RL) is an on-line method
for solving MDPs (Barto, Sutton, & Watkins 1990),
essentially by incremental, on-line dynamic program-
ming. Dietterich and Flann (1995) note that comput-
ing preimages is closely related to the iterative (dy-
namic programming) step in policy iteration and other
standard algorithms for computing optimal policies.
They describe RL algorithms that use regression in

combination with standard RL and MDP algorithms
to avoid enumerating individual states

Their algorithms make use of a particular represen-
tation for partitions based on rectangular regions of
the state space. The direct application of model mini-
mization in this case is complicated due to the on-line
character of RL. However, an off-line variant (which
they present) of their algorithm can be shown to be
asymptotically equivalent to first computing a reduced
model using an adequate splitting operation based on
their rectangular partition representation followed by
the application of a standard RL or MDP algorithm to
the reduced model. We suspect that the rest of their
algorithms as well as other RL and MDP algorithms for
handling multidimensional state spaces (Moore 1993;
Tsitsiklis & Van Roy 1996) can be profitably analyzed
in terms of model reduction.

Partially Observable MDPs

The simplest way of using model reduction techniques
to solve partially observable MDPs (POMDPs) is to
apply the model minimization algorithm to an initial
partition that distinguishes on the basis of both reward
and observation and then apply a standard POMDP
algorithm to the resulting reduced model. We suspect
that some existing POMDP algorithms can be par-
tially understood in such terms. In particular, we con-
jecture that the factored POMDP algorithm described
in (Boutilier & Poole 1996) is asymptotically equiva-
lent to minimizing the underlying MDP and then using
Monahan’s (1982) POMDP algorithm.

Conclusion

This paper is primarily concerned with introducing the
method of model minimization for MDPs and present-
ing it as a way of analyzing and understanding exist-
ing algorithms. We are also working on approxima-
tion algorithms with provable error bounds that con-
struct reduced models using a criterion for approxi-
mate stochastic bisimulation homogeneity.

The methods of this paper extend directly to ac-
count for reachability from an initial state or set of
initial states. We are also working on algorithms that
use minimization and reachability to extend decompo-
sition and envelope-based techniques such as (Dean et
al. 1995) to handle factored representations.

References
Barto, A. G.; Sutton, R. S.; and Watkins, C. J. C. H. 1990.

Learning and sequential decision making. In Gabriel, M.,
and Moore, J., eds., Learning and Computational Neuro-

science: Foundations of Adaptive Networks. Cambridge,
Massachusetts: MIT Press.

Bouajjani, A.; Fernandez, J.-C.; Halbwachs, N.; Ray-
mond, P.; and Ratel, C. 1992. Minimal state graph gen-
eration. Science of Computer Programming 18:247-269.

Boutilier, C., and Dearden, R. 1994. Using abstractions
for decision theoretic planning with time constraints. In

Proceedings AAAI-94,1016-1022. AAAIL

Boutilier, C., and Poole, D. 1996. Computing optimal
policies for partially observable decision processes using

compact representations. In Proceedings AAAI-96, 1169—
1175. AAAIL

Boutilier, C.; Dean, T.; and Hanks, S. 1995. Planning
under uncertainty: Structural assumptions and compu-
tational leverage. In Proceedings of the Third Furopean
Workshop on Planning.

Boutilier, C.; Dearden, R.; and Goldszmidt, M. 1995.
Exploiting structure in policy construction. In Proceedings

1JCAI 1/, 1104-1111. 1JCAIL

Dean, T., and Kanazawa, K. 1989. A model for reasoning
about persistence and causation. Computational Intelli-

gence 5(3):142-150.
Dean, T.; Kaelbling, L.; Kirman, J.; and Nicholson, A.

1995. Planning under time constraints in stochastic do-

mains. Artificial Intelligence 76(1-2):35-74.
Dietterich, T. G., and Flann, N. S. 1995. Explanation-

based learning and reinforcement learning: A unified view.
In Proceedings Twelfth International Conference on Ma-
chine Learning, 176-184.

Hartmanis, J., and Stearns, R. E. 1966. Algebraic Struc-
ture Theory of Sequential Machines. Englewood Cliffs,
N.J.: Prentice-Hall.

Howard, R. A., and Matheson, J. E. 1984. Influence dia-
grams. In Howard, R. A., and Matheson, J. E., eds., The
Principles and Applications of Decision Analysis. Menlo
Park, CA 94025: Strategic Decisions Group.

Kemeny, J. G., and Snell, J. L. 1960. Finite Markov
Chains. New York: D. Van Nostrand.

Kushmerick, N.; Hanks, S.; and Weld, D. 1995. An al-
gorithm for probabilistic planning. Artificial Intelligence
76(1-2).

Lee, D., and Yannakakis, M. 1992. Online minimization
of transition systems. In Proceedings of 24th Annual ACM
Symposium on the Theory of Computing.

Monahan, G. E. 1982. A survey of partially observable
Markov decision processes: Theory, models, and algo-
rithms. Management Science 28(1):1-16.

Moore, A. W. 1993. The parti-game algorithm for vari-
able resolution reinforcement learning in multidimensional
state spaces. In Hanson, S. J.; Cowan, J. D.; and Giles,
C. L., eds., Advances in Neural Information Processing 5.
San Francisco, California: Morgan Kaufmann.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. San Francisco, Cal-
ifornia: Morgan Kaufmann.

Puterman, M. L. 1994. Markov Decision Processes. New
York: John Wiley & Sons.

Tsitsiklis, J. N., and Van Roy, B. 1996. Feature-based
methods for large scale dynamic programming. Machine
Learning 22:59-94.

