Congruence closure with ACI function symbols

Tanji Hu and Robert Givan

Purdue University ECE
{hut, givan}@purdue.edu

Abstract. Congruence closure is the following well known reasoning
problem: given a premise set of equations between ground terms over
uninterpreted function symbols, does a given query equation follow us-
ing the axioms of equality? Several methods have been provided for
polynomial-time answers to this question. Here we consider this same
setting, but where some of the function symbols are known to be asso-
ciative, commutative, and idempotent (ACI). Given these additional ax-
ioms, does the query equation follow from the premise equations? We pro-
vide a sound and complete cubic-time procedure correctly answering such
questions. The problem requires exponential space when adding only AC
function symbols [18], but requiring idempotence restores tractability .
Our procedure is defined by providing a sound and complete “local” rule
set for the problem [11]. A “local formula” is a formula mentioning only
terms appearing in the premises or query. A local rule set is one for which
any derivable local formula has a derivation using only local intermediate
formulas. Closures under local rule sets can immediately be constructed
in polynomial time by refusing to infer non-local formulas. Finally, we
present results on the integration of ACI function symbols and equality
inference rules into more general local rule sets.

1 Introduction

Congruence closure is a well studied algorithmic problem: given a set of ground
equations over a first-order term language of uninterpreted function symbols,
which other ground equations between terms are entailed? Previous study has
provided a small variety of approaches to efficiently solving this problem [23, 21,
16] as well as a great deal of work on related algorithms [2,4,3,15]. The impor-
tance of this problem is apparent in the foundational nature of equality in almost
every deductive setting, in systems representing expressive knowledge for almost
any purpose. Keynote examples have been deductive support for advanced com-
pilers and other program analysis tools (e.g., [9]), and reasoning systems for
representing mathematics (e.g., [8,19, 5]).

A range of prior work has been conducted on congruence closure in the
presence of additional axioms about some or all of the function symbols that
are present, resulting in the “uniform word problem” in a variety of algebraic
structures [22, 13,6, 7]. Much of this work does not allow arbitrary uninterpreted
function symbols in addition to those affected by the axioms considered (typi-
cally commutativity and/or associativity). Notable among the prior related work

is [18] showing that the uniform word problem for commutative semigroups
requires exponential space. This result implies that other methods discussing
associative-commutative congruence closure that can solve this word problem,
e.g. [2], will require at least exponential time to terminate in the worst case.

Our work here studies a case that we believe has been missed in the above
panoply of results, but has a distinguished tradeoff between the desired expres-
siveness and the desired tractability. Here, we allow arbitrary uninterpreted func-
tion symbols, some subset of which is labeled as associative, commutative, and
idempotent (ACI). ACI functions that arise naturally most obviously include
intersection/union, and/or, and integer maximization/minimization. Program
analysis frequently involves integer maximization or Boolean abstractions.

Here, we provide a cubic-time complete inference algorithm for congruence
closure in this setting. Our procedure is defined using the technology of local
rule sets [11,20]; local rule sets are those for which the computed inference
relation is unchanged by restricting inference to the terms mentioned in the
premises and query. Any local rule set describes a polynomial-time decidable
inference relation. In addition to providing a complete inference relation for the
ACIT congruence closure problem using a local rule set, we consider the problem
of adding the ACI designation to function symbols in an arbitrary rule set.
With no restrictions on the rule set, adding this designation may be expensive;
however, we present a natural restriction on inference rules for which any local
rule set can be augmented by ACI designations while retaining locality and
thus polynomial-time decidability. Under this restriction, ACI function-symbol
arguments can only be accessed by the inference rules in manners independent
of the order or multiplicity of their presentation.

We proceed as follows: first, we present brief technical background on local-
ity and on congruence closure, including a local rule set for congruence closure.
Second, we present a simple rule set for reasoning about the ACI properties
of terms resulting from ACI function symbols. Third, we prove this rule set
together with the congruence closure rule set provides semantically sound and
complete inference for the congruence closure problem with multiple ACI func-
tion symbols. Fourth, we prove that the resulting rule set is local, immediately
providing a cubic-time procedure for the inference relation. Finally, we discuss
integration with arbitrary rule sets restricted to access ACI terms via tuples of
their arguments.

2 Technical Background
2.1 Locally Restricted Inference

We adopt the following definitions for reference almost directly from [11]. In the
these definitions, X' is any set of ground atomic formulas in first-order logic, and
© any single ground atomic formula.

Definition 1. A Horn clause is a first order formula of the form (1 A ... A
¥n) — W where ¥ and the v; are atomic formulas. For any rule set of Horn
clauses R, we write X b, ¢ whenever X UU(R) F ¢ in first-order logic, where
U(R) is the set of universal closures of Horn clauses in R.

We can characterize F syntactically by defining derivations under the rules R.

Definition 2. A derivation from X wusing rule set R is a sequence of ground
atomic formulas 1, ..., such that i, is ¢ and for each ; there exists a
Horn clause 81 N ... AN 0y — 60 in R and a ground substitution o such that
o(0] is ¢; and each formula of the form o[6;] is either a member of X a formula
WY; for j < i. The length of the derivation is the number n of ground formulas
in the sequence.

We then have X I ¢ if and only if there is a derivation of ¢ from X using R. Next,
by restricting inference to terms mentioned in X or ¢, we get a polynomial-time
decidable inference relation that may or may not the same as h;.

Definition 3. Let T be a set of terms that is closed under the subterm relation.
We say that a ground atomic formula v is local to T if every term appearing in
Y isinT. For I’ a set of ground atomic formulas, let Y'(I") be the subterm-closed
set of terms appearing in I'. We write X |k » @ if there exists a local derivation
of p from X, i.e. one such that every atomic formula in the derivation is local
to Y. We omit Y to get X Ikp @ when Y is (X U {p}).

McAllester [20] provides a simple proof that the inference relation I, is polynomial-
time decidable for any finite R; a straight-forward inference procedure can grow

a set of derivable ground atoms from X' by repeatedly considering each infer-
ence rule at polynomial time cost, staying always within the polynomially many
ground atoms local to (X' U {p}).

Definition 4 (McAllester, 1993). The rule set R is local if the restricted
inference relation |-y is the same as the unrestricted inference relation t.

Every inference relation that can be defined by a local rule set is then polynomial-
time decidable. It has also been shown [11] that every polynomial-time predicate
can be defined by a local rule set.

2.2 Congruence Closure

The following inference rules E define a complete, local inference relation for
ground atomic equational premises and ground equational queries.
(eq-refl) — = = (eg-symm) T =1y — Y =T
(eqtrans) T =y AN y=2 — = =2 (eq-congrl) = =1y — [(z)= f(y)

(eq-congr2) x1 =1y1 A xo =1y — g(x1,22) = g(y1,y2)

For notational simplicity, we assume wlog that all function symbols have arity
at most 2. We note that the eq-congr rules are actually abbreviations for finitely
many rules, one for each function symbol of the given arity. When the equality
rules are included with other rule sets, we will also assume eq-congr rules for
each predicate symbol of the larger rule set, representing the same principle of
substitution of equals: e.g., z =y A P(z) — P(y).

The rule set E has been proven complete even when locally restricted (IFp
is complete), proving E is local and providing a polynomial-time decision pro-
cedure for this problem, called congruence closure [21]. We refer to any rule set
containing the rules of E, among others, as an equational rule set.

3 A Congruence/ACI Rule Set

Here, we provide a set ACI of inference rules for binary function symbols known
to be ACI (associative, commutative, and idempotent (f(z,z) = x)). We assume
now that some subset of the function symbols have been designated as ACI. For
each such function symbol f, we introduce a new binary predicate <;, and the
rules in ACI are schemas providing one rule for each such function symbol. The
rules can be best understood by thinking of the new atoms z <, y as standing
for “there exists w such that f(xz,w) =y.”

(ACL-trans) ==,y N y=;z — x=;2z (ACLrefl) — ==,z
(ACLsup) x=;2 AN y=,2 — f(x,y)=Z;z (ACLsubl) — x=; f(x,y)
(ACL-antisym) ==,y A y=;x — = =1y (ACLsub2) — y=; f(x,y)

Here, the new predicates <; implement inference from the ACI axioms, but
these predicates are not intended to be part of premise sets or query formulas.
We designate the new predicates as hidden, prohibiting them in premise sets
and queries. This designation affects the claims we later make of rule-set locality
and completeness. In each case, these claims refer to inference problems without
the hidden predicates in the premises or query.

In the coming sections, we will prove this rule set, in combination with
the equality rules E, is both correct (b, acr is sound and complete) and lo-
cal (IFz acr is the same as b | ac1), thus providing a polynomial time inference
procedure for the congruence closure problem in the presence of known ACI
function symbols.

4 Correctness of the Congruence/ACI Rule Set

In this section we prove that the inference rules E U ACI are sound and com-
plete for ground inference on equations. Since our rules and our premise sets are
first-order formulas, completeness here refers to standard first-order logic inter-
pretations. Note again that the introduced predicates <, are considered hidden
and do not appear in premise sets or queries.

Definition 5. The ACI-congruence theory A is the set of first-order axioms of
equality (reflexivity, symmetry, transitivity, and substitution of equals for equals)
together with the axioms of associativity, commutativity, and idempotence for
each ACI function symbol. A ground premise set X of equations entails a ground
query equation ¢ in the ACI-congruence theory, written X' U AE ¢, when every
first-order interpretation satisfying X U A also satisfies .

Theorem 1 (Soundness and Completeness). For any ground premise set
of equations X and ground query equation p, we have X' U A E ¢ if and only if
2 U e @

Proof. We consider each direction of the theorem separately.

(Soundness) A simple induction on derivation length shows that every ground
atom in a derivation from X using £ U ACI satisfies the following invariants:

=: Atoms x = y, for any terms x and y, satisfy Y UAE z =y.
=<, : Atoms x X, y, for any terms = and y and ACI function symbol f, satisfy
YUAEJzf(z,2) =y.

Each rule preserves these invariants. The rule ACI-antisym is the hardest to
check. We must check that AU {3zf(z,2) = y, FJwf(y,w) = 2} F z = y. In-
troducing Skolem constants we have f(z,¢1) = y and f(y,c2) = x. From these
we can show f(z, f(y, f(cl,c2))) is equal to = and also to y using the given
premises. For instance f(z, f(y, f(c1,¢2))) = f(f(f(z,cl),y),c2) = f(f(y,y),c2)
= f(y,c2) = x. Thus the conclusion of the rule, x = y, is entailed as stated in
the invariant for =. Soundness of all derived equation atoms is then immediate.

(Completeness) We prove completeness with a standard model-construction ap-
proach. We exhibit a first-order interpretation Z that satisfies X’U.A and satisfies
exactly equations ¢ that are derivable from X' using rules £ U ACI. We start by
defining an equivalence relation £ on terms based on the derivable equations:
t1 £ty if and only if X H, _acr t1 = to. The rules in E imply that £ is an
equivalence relation. We take the domain D7 of the interpretation to be the set
{[t]2 | t a term} of all equivalence classes of terms under 2.

Next, we define the interpretation under Z[f] of each function symbol f. We
show the two argument case, which includes all ACI function symbols, but this
definition is easily generalized to function symbols of any number of arguments.
We define I(f) on domain objects [t1]2 and [t2]a to be [f(t1,t2)]2. The inference
rule (eq-congr) for the symbol f ensures that the defined output of f on two
domain elements does not depend on which terms ¢; and t; are selected from
the equivalence classes.

We next define the interpretation Z for the predicate symbols. Like any first-
order interpretation, Z interprets equality as the identity function. We define
Z[=,], for each ACI function-symbol f, to be true on domain objects [t1]. and
[to]2 if and only if X by | act t1 %, t2. Again, the (eq-congr) rule for the predicate
=, ensures the truth value does not depend on the choice of ¢; and ¢s.

A straightforward induction on the compositional structure of an arbitrary
term ¢ shows that the interpretation Z[t] of ¢t under 7 is [t]e. It then follows that
7 satisfies an equation t; = ty if and only if t; = ¢ is derivable from X using
EUACT: i.e., we have X' by, |, i t1 = t2 if and only if [t1]s = [t2]s, by definition,
if and only if Z[t;] = Z[t,], by our inductive lemma, and thus if and only if
T E t1 = to, as desired. It is then immediate that Z satisfies 2’ and all equations
derived from X', and no others.

It remains to argue that I F A. We have that Z satisfies the first-order ax-
ioms of equality because Z[[=] is the identify function. Consider the associativ-
ity axiom for f, VaVyVzf(f(z,y),2) = f(z, f(y,2)). For any terms ¢1, ta, t3, the
ACT rule set justifies the following derivation: ¢; =, f(t1,t2), ta <, f(t1,12),
[t t2) =25 f(f(t1,t2),t3), t1 2y f(f(t1,t2),t3), ta 2y f(f(t1,t2),13),
ts = f(f(t1,t2),t3), flta,t3) 2, f(f(t1,t2) ta), f(t1, f(t2,t3)) R, f(f(t1,12),t3),

o fUf(tte),ts) 2y ftn, ft2,t3)), f(f(t1,t2),t3) = f(ta, f(t2,t3)). Thus,
[f(f(t1,t2),t3)]= is the same as [f(t1, f(t2,t3))]=. Now considering arbitrary do-

main members [t1]2,[t2]s, and [t3]., the definition of Z implies that

TSIt e, [t2]e), [ts]a) = [F(f (1, t2), t3)] s,

and likewise Z[[f]([t1]e, ZLf]([t2]=, [t3]e)) is [f(t1, f(t2,t3))]s, and thus every in-
stance of associativity is satisfied by Z, and so is the associativity axiom. Sim-
ilar arguments justify commutativity (VaVyf(z,y) = f(y,z)) and idempotence
(Vo f(z,x) = x).

We have thus exhibited Z satisfying 3 U A but not satisfying ¢ for any ¢
such that Xt | o1 ¢, as desired. Q.E.D.

5 Effective Decidability of the Congruence/ACI Rule Set

We next show that the rule set E U ACI is local (hzyaci = IFpoact), im-
plying immediately that the inference relation H; Ac; on ground equations is
polynomial-time decidable. It then follows by Theorem 1 that entailment from
ground premise sets in theory A is polynomial-time decidable.

The rule-set property of locality has been shown undecidable in general [11],
but sub-classes of the local rule sets (inductively local rule sets [11] and bounded
local rule sets [20]) have been shown to be automatically recognizable with pro-
cedures that fail to terminate on inputs representing local rule sets outside the
sub-class. We have not been able to get these procedures to terminate on our
rule set E'U ACI, leaving unresolved(prior to this work) the question of locality
for this rule set.

A semantic proof of locality can be constructed by showing that the par-
tial model constructed by locally restricted inference can always be extended
(embedded) to a full model. This technique was first presented in [10] and ex-
ploited in analyzing theory combinations in [24,14]. The latter work can be
used to handle the uninterpreted function symbols present in our setting, and
Dedekind-MacNeille completion [17] can be used to show the semantic embed-
dability needed to construct the full model in the case where we have only one
ACT function symbol [1]. However, we do not know of work extending Dedekind-
MacNeille completion to multiple function symbols (i.e. multiple partial orders).
A single completion step on one partial order destroys the ordering informa-
tion in the others. Due to the difficulty we encountered constructing a semantic
proof along these lines, we instead present a direct syntactic proof of locality.
This proof sheds syntactic insight on why local restriction does not change the
inference relation, and is of value even if the semantic proof can be repaired. For
the remainder of this section, we use the shorthand K to abbreviate £ U ACI
for readability.

One approach to proving locality of K is to prove semantic completeness
of the restricted inference I,. However, unlike in the pure congruence closure
case (IFz), the model-theoretic completeness proof of Theorem 1 does not adapt
directly to the 7' (X, p)-restricted inference of I-.. The proof encounters diffi-
culties in defining ACI function symbols. In the pure congruence-closure case,
function symbols can be arbitrarily defined in cases that produce terms in equiv-
alence classes outside of (X,), producing a simple finite model, but the ACI

theory restricts these definitions in complex ways. Due to the difficulties we en-
countered with a semantic approach, we instead prove locality with a syntactic
analysis below.

For this proof, we first note that our definitions immediately imply that
X ki implies X Ik, » ¢ for some sufficiently large finite term set 7" containing
(X U {p}) and all terms appearing in the derivation underlying X H ¢. It
follows that we can prove locality by proving that, for any ground premise set X
and ground equation ¢, and every finite subterm-closed term set 7" containing
at least (X U {p}), X lFx ¢ if and only if X Ik 1 . (%)

We will prove (%) by induction on the construction of 7" from (X U {®}).

(Base case) T =1 (X U {¢}). In this case, the claim (x) holds trivially.

(Inductive case) We suppose the claim (*) holds for a subterm-closed term set
T containing 7'(X' U {¢}). Let a be an arbitrary term not in 7" such that every
proper subterm of « is in 7. We show that the claim (%) holds with the set
Y = T U {a} in place of 7. Here, we will assume that « is g(¢1,t2) for some
(ACI-labeled or not) g and terms ¢; and ts; the other arity cases are similar but
do not include the ACI possibility.

To show this, we consider all derivations from X using rules in K within
Y’, characterizing every atomic formula that can appear in such a derivation.
We show by a second, nested induction on the length of the derivation that
the derived formula must fall into one of several classes. To define these classes
of formula, we need some new notation. In order to use inference within 7" to
characterize the terms ¢ such that ¢ <, & can be proven within 77, if g is ACI
we define the g-closure of the set {t1,t2}, written g({t1,t2}), to be the closure
of the set {t1,t2} under the following two operations:

e For any term y in the set, add every z such that X' I » 2=, y.
e For any terms z and y in the set, add g(z,y) if that term is in 7.

In order to use inference within 7" to characterize those equations that are prov-
able in 77 between « and other terms e in 1, we define {(g(¢1,%t2) = €)) to hold
if one of the following holds about inference with 7

o Vikprt1%,e N Xl rta=X,e A ecg({ti,t2}), and g is ACI, or

e Virkrxzy =11 AN Xl raza=ts N Xk g(x1,29) = e for some
terms x1 and xs.

These properties ensure that a = e will be inferred in 7”. The first bullet char-
acterizes equations by ACI inference and the second characterizes standard con-
gruence inference. We will need the following lemmas about these definitions.

Lemma 1. If {(g(t1,t2) = e1)) then {g(t1,t2) = e2)) iff XlFic v €1 = es.

We are now ready to characterize the classes of formulas that can appear in
derivations from X' using rules K within 7”. Every such formula must fall in one
of the following classes!:

! In some cases class C2 will be contained in class C3; otherwise, all the classes are
disjoint.

[C1] A formula derivable from X using rules K within 7",
[C2] A reflexive = or =, formula about «, for any ACI f,
|

[C3] An atomic formula S, excluding =,, local to 7’ and mentioning « where
the same atom is derivable within 7" with « replaced by some term e¢ € T
(so that X' Ik, » [e/a]B), where {(g(t1,t2) = e)),

[C4] An atom e=, a for e € g({t1,t2}), or
[C5] An atom a =, e for which both X' Ik, t1 =%, e and X Ik, » 2%, €.

Classes C4 and C5 are considered empty if g is not labeled ACI. These
classes cover all formulas that can appear in derivations under I /. This can be
verified by induction on the length of the derivation, checking that each inference
rule preserves the claim. We discuss the critical (ACI-antisym) inference rule here
as an example. The rule antecedents are x <,y and y <, z. We must show that
the consequent x = y falls in one of the five given classes. There are several cases
to consider (up to symmetries):

1. o & {z,y}. Both antecedents and then the conclusion must be in class C1.

2. x =y = a. The conclusion is in class C2.

3.z #y=a, f# g. Then x € T. Both antecedents must be in class C3. So
there must be e; € 1" such that (g(t1,t2) = e1)) and X' Ik« » 2=, e;. Likewise
there must be ez € T such that ((g(t1,t2) =e2)) and X Ik » €2 X, x. It
follows from Lemma 1 that X' IF. » e; = ea. It then follows that X Ik »
x =, eg using that (eq-congr) is in K, and that X Ik, €2 = z using that
(aci-antisym) is in K. Lemma 1 then implies {(g(¢1,%2) = x)). But then since
Y kg, » = x, the rule conclusion = « satisfies the C3 class invariant.

4. 2 #y = a, f = g. Then x € 7. Antecedent = <, o is in class C4, and
antecedent « <, x is in class C5. We need to show the conclusion = «
is in class C3. To do so, we exhibit e € 1" such that X Ik » = e and
{g(t1,t2) = €)). From the antecedents, using the induction hypothesis about
classes C4 and C5, we have X Ik » t1 X, x and X |k 1 to X, z, as well as
x € g({t1,t2}). Then by definition, {(g(t1,t2) = x)), so x is the desired e.

These cases together demonstrate that any instance of (ACI-antisym) in a deriva-
tion satisfying the claim up to that point will extend that derivation with a
formula that also satisfies the claim. Together with similar analyses of all the
other rules [12], we conclude that every formula in a derivation from X using K
within 7 falls in one of these five classes.

Since every formula in these classes either mentions « (classes C2 to C5)
or is derivable within 7" (class C1), we have shown that for any ¢ local to 7,
Y k. x @ if and only if X' Ik 4 ¢, which together with our (outer) induction
hypothesis implies that (x) holds for 77, as desired. We have thus shown the
following theorem.

Theorem 2. The rule set E U ACI is local. The inference relation b | acr 48
polynomial-time decidable.

The techniques discussed in [20] provide a straightforward ©(n?®) procedure
via the locally restricted inference process.

6 Integrating ACI Functions into Other Rule Sets

We now turn our attention to general equational rule sets for which we may
wish to designate some of the function symbols as ACI. We suppose an arbitrary
equational rule set R is known to be local and consider the question of whether
R U ACI, with some function symbol f labeled to be ACI, remains local.

In fact, it is easy to see that the addition of ACI in R U ACI will not
in general preserve locality. Rules in R may contain specific nested applica-
tions of the ACI-labeled function symbol f, and if the local expressions con-
tain ACl-equivalent terms that don’t match that specific nesting, the rules in-
volved will not be part of derivations. For example, the single-rule local rule
set {P(f(z, f(y,2))) — Q(z)} can draw no conclusions with local derivations
on premise set P(f(f(a,b),c)), but upon expanding the rule set with the ACI
rules, can conclude Q(c). Rules like this one are using the function symbol f in
a manner somehow inconsistent with the assumption that f is ACI.

As an example, consider the following local rule set for binary intersections
and unions [11]:

— zCx rCyNyCz - zCz
- yCzUy rCzANyCz - zUyCz — zCaxUy
— Ny Cuy zCax N zCy — zCaxNy — zNyCx

The techniques in this section are designed to enable the addition of complete
inference from the ACI properties for intersection and union to rule sets like
this without losing the locality property that ensures efficient inference, by re-
formulating the ACI function symbols (in this case U and N) as being applied
to single arguments that are tuples of terms, where ACI properties are managed
by equating ACI-equivalent tuples. What we show here is that a rule set that is
local before adding these ACI properties on tuple argument, will remain so after
this addition is made. The remainder of this section formalizes this idea. As an
introduction, consider the tuple formulation of the rule set just presented:

— xCx rCyANyCz - xzCz VeelzCz - UACz
reX - xz CUA reX - NACuz VeelzCx — zC A
Here, the A rule variable represents a tuple of terms, with implicitly ACI func-
tion symbols | J and [being applied to such tuples. Rule antecedents involving
€ with tuples are abbreviations as discussed below. The rule set is restricted
from accessing the tuple structure in any other way than with the types of €
antecedents shown here and formalized below. What we prove here, with some
substantial difficulty, is that if the rule set is local before this transformation,
without the ACI properties on its tuples, it will remain local when the ACI
properties are enforced.

6.1 Every/Some ACI Rule Sets

Here, we propose to limit the ways that the rule set R can mention the ACI
function symbols to ensure that ACI inferences do not interact badly with the
rules. Our proposal below supports two interactions between ACI terms and

rules: testing that every (nested) argument to an ACT function symbol satisfies
a predicate, and forcing a variable to represent an arbitrary (nested) argument to
the ACI symbol. In addition, we note that any number of ACI function symbols
can be represented if the theory supports a single ACI “tupling” function symbol.
So we limit consideration to implementing a single ACI function symbol for
tupling.

Kinds. In order to enforce separation between the ACI inference and the
arbitrary rule set R, we introduce the concept of “kind” into the representation.
For simplicity here, without loss of generality, we assume there are just two kinds:
basic-term (B) and tuple (7). Every function symbol and predicate symbol has
a signature over the kinds, so that every well-formed term has a syntactic kind.
Applications of functions and predicates to expressions of the wrong kind are
considered ill-formed. Every variable in a rule also has a kind and rule instances
can only be formed by substituting variables with terms of the matching kind.
The equational rules E, contained in any equational R, are assumed duplicated
for each kind, with (eq-congr) present for each signature of function symbol or
predicate symbol. Throughout this section, ¢, z, y, and z are basic-term variables,
and A is a tuple variable.

Tuples. The only expressions of tuple kind are formed from two function
symbols: (t) coerces basic-term t into a (singleton) tuple, and (A1 - A2) combines
two tuples. The function symbol (+) is the only function symbol labeled ACIL
Every predicate symbol that operates on tuple arguments is designated hidden,
i.e. cannot appear in premise sets, and besides equality on tuples the only such
predicate symbols are introduced by the rules for ACI inference (<,, Z3, and
Zyp, introduced below). All other predicate symbols are not hidden. The only
function symbols that have tuple arguments have exactly one argument—it is
these function symbols that are implicitly ACI by accepting their arguments in
tuple form. We write z € A by abuse of notation to mean that x is a maximal
basic-term subexpression of the tuple A.

Rule set restrictions. We restrict the rule set R to contain only basic-
term variables and expressions, except for the equational rules in E for tuples,
mentioned above, and for the specific enrichment to use tuples that we propose
next. We allow tuple variables in rules in the following forms:

e as sub-expressions of a basic-term (i.e. as an argument tuple), or
e in “every” or “some” antecedents, as detailed below.

Moreover, we require each tuple variable in a rule to occur at least once as a
sub-expression of a basic-term.

Some. We allow rule antecedents of the form x € A. The basic-term variable
x may be used elsewhere in the rule; this antecedent can be thought of as binding
x for use elsewhere in the rule. Semantically, the “some” antecedent abbreviates
Jzs = ({(z) - 2).

Every. We allow rule antecedents of the form VzeA P(z) where P is any
one-argument predicate symbol on basic-terms. For notational simplicity here,
we assume P has no other arguments, but the extension to allow arbitrary other

basic-term arguments not mentioning x is straightforward. The basic-term vari-
able z must not appear in the rule outside of this antecedent. We think of the
V as binding x locally to this antecedent. Semantically, the “every” antecedent
abbreviates Vx 3z A = ({(z) - z) — P(x).

Syntactically, we eliminate “every” and “some” antecedents as follows. In-
troduce a new hidden predicate Z3 of signature (basic-term x tuple) for the
implementation of “some”. For each predicate P appearing in any “every” an-
tecedent, introduce a new hidden predicate Zyp on tuples, i.e., of signature (tu-
ple). Replace each antecedent z € s with the atom Z3(z, A), and each antecedent
Vze P(x) with the atom Zyp(A). Then, the following rules are added to R; it
is straightforward to verify that these rules are sound under the semantics just
given for “every” and “some” antecedents:

(Z3-subl) Zs(z, A1) — Z3(x, (A1 A2)) (Zg-init) — Z3(x, (x))

(Z3-sub2) Z3(x2,X2) — Z3(x, (A1 A2)) (Zyp-init) P(z) — Zyp({(x))
(Zy— combine) va(/\|) A Z‘vp(/\g) — va(()u . /\3))

where the Zyp rules are present once for each predicate P appearing in an “ev-
ery” antecedent.

Definition 6. An every/some rule set is an equational rule set R for the kinds
basic-term and tuple in which every tuple sub-expression is a tuple variable that
occurs within a basic-term expression, and may also occur within “every” an-
tecedents and/or “some” antecedents. The only predicate and function symbols
involving the tuple kind are the tuple-constructors {) and (-), implicitly ACI
function symbols (signature tuple— basic-term), and those abbreviated by ev-
ery/some. Each such rule set abbreviates a rule set with no every/some an-
tecedents via the transformation just described.

For our purposes here, it is important to note that an every/some rule set
does not yet have any ACI properties enforced. The rule set will not be able
to infer the equivalence of tuples that are ACI variants of each other, and so
function applications of implicitly ACI function symbols (applied to tuples) will
also not benefit from the ACI properties. All inference on such terms will depend
on the argument order and multiplicity. What we wish to show is that we can
add the ACI properties while preserving the locality of the rule set.

6.2 Adding ACI to Every/Some Rule Sets Preserves Locality

Here we prove that we can add the theory ACI for tuples to any local every /some
rule set R, preserving locality and thus polynomial-time decidability. The proof
is rather technical and carefully constructed. We provide the key major structure
here and refer to our website supplement [12] for many technical verifications
underlying the proof.

Definition 7. For any set of rules R, subterm-closed set of terms T, premise
set X local to T, and positive integer k, and we write C, (X, R,T) for the set of
all formulas derivable from X using R with a derivation local to T of length at

most k. We write Bx(X, R,T") for the non-hidden subset of Cx,(X, R, T). Finally,
we write C(X,R,T) for Upe; Cx(X,R,T), and likewise B(X,R,T).

We will also need some notation and invariants characterizing exactly when
tuples become related by inference.

Definition 8. Given two sets of basic-term expressions S1 and Sy and a set of
formulas I', we write (S1 C,, S2) € I if there are equations in I' to make Sy
a subset of So, i.e. if for every x € S1 there is y € Sy such that x =y € I'.
Extending this notation to tuple expressions A1 and Ao, we write (A C,, Ag) € I
to abbreviate ({x |z € M1} C., {y|y € A2}) € I'. Finally, we write (A =,, A2) € I’

Zf both ()\1 Qeq)\2) el and ()\2 Qeq)\1) el.

Using this new notation, the locality of a rule set R implies for instance that
B(X,R,T) =y B(X,R,Y") for every subterm-closed 7", premise set X' local to 7,
and 7" containing 7. Here, we introduce the notation =y to represent equality
between two sets of formulas after restricting each set to the formulas local to
T. We likewise define Co.

We can now state the key invariants regarding ACI inference on tuples. These
invariants are stated for any every/some rule set R, subterm-closed 7, premise
set X local to 7 and positive integer k. We temporarily abbreviate the set of
consequences Ci (X, RUACLY) as I, and C(X, RUACLY) as ['y:

1. (ACI-1) A=A € I}, implies (A =., A2) € Ik, and conversely,
()\1 =eq)\2) eIy 1mphes A =X € [.

2. (ACI-2) A=A € I}, implies (A1 C.q A2) € I, and conversely,

()\1 Qeq)\2) eIy implies A1 'J<_(,> Ao € I's.
3. (ACI-3) Zyp()\) € I implies P(t) € Iy, for every t € A, and conversely,
P(t) € I, for every t € A implies Zyp(A) € .

4. (ACI-4) Z5(t',) € I}, implies t = ¢’ € I, for some ¢t € X, and conversely,
t =1t € I} for t € X implies Z3(t', \) € I'.

These invariants are easily demonstrated by induction on the length of deriva-
tions for the forward directions, showing that each rule preserves these invariants,
and induction on the tuple structures for the converses. The same invariants,
dropping ACI-2, can be shown replacing R U ACI by R, but in stating ACI-1
using a narrower definition of (A\; C., A2) that requires directly matching tuple
structure from A\; and Ay (for lack of ACI rules).

We are now ready to develop the main theorem of this section. We restrict
consideration to a particular local every/some rule set R, arbitrary subterm-
closed term set 7", and premise set Y. We first consider the effect on inference
from X using R U ACI when we add a single basic-term to 7. It is in this case
that the locality of the base rule set R comes into play.

Lemma 2. (Basic-term Extension) For any basic-term expression «, where all

proper subexpressions of a are in T, B(X, RUACL YU{«a}) =y B(X, RUACLY).

Proof. The backward containment is immediate because B(,,7") is clearly mono-
tone in 7, as every derivation local to 7 is local to any superset of 1.

To show the forward containment, the central proof idea is to observe that if
R U ACI has a locality violation, then we can construct such a locality violation
for R on a premise set that contains X along with some additional premises
(those non-hidden formulas that could have been derived by ACT if ACI were
in use). Since the property of rule-set locality is a property that applies to all
premise sets, the larger premise set cannot generate a locality violation under
R (i.e. there can be no R-derivable fact from the larger premise set that is not
derivable by locally restricted inference from that premise set).

To formalize this idea, we introduce an enriched premise set X' = B(X, RU
ACLY) and counsider the consequences under inference from X’ using rule sets
R U ACI, within the enlarged term set " U {a}. The key observation, discussed
next, is that any derivation of a new consequence within 7" using R U ACI will
have to start by using R alone to get the first new consequence within 7. But
R alone cannot get new consequences within 7" as R is local.

We now show the desired forward containment, but for X/: B(X’, RUACI, TU
{a}) Cr B(X',RUACLY). To show this, suppose for contradiction that the
desired containment is false, so that there must be some formula ¢ local to 7" in
B(X',RUACL Y U{a}) but not in B(X’, RUACLY). In this context, we refer
to formulas local to 7" in B(X’, RUACI, Y U {a}) but not in B(X’, RUACLY)
as newly derivable formulas; ¢ is a newly derivable formula. Also here we refer
to formulas local to 1" as local; ¢ is a newly derivable local formula.

Consider any derivation of ¢ from X’ using RUACI within Y’U{«a}. We refer
to formulas in the derivation as earlier or later in the derivation according to
their index in the sequence (with lower index corresponding to earlier). Consider
the earliest newly derivable local formula 8 in the derivation, which occurs at
latest at . Then every non-hidden local formula in the (prefix) derivation of
is in B(X', RUACIY) and thus in X', as X' is already closed under R U ACI
within 7. We show that there is a derivation of 8 from X’ using only rules in R,
which contradicts the locality of R (which can’t derive new formulas local to 7"
by using «), to conclude the proof, as argued below.

Observe no instance of a rule in ACI within ’U{«} can mention «, since every
expression in the ACI rules is a tuple expression, and « is not a subexpression
of any tuple expression in 7"U {«a}. Thus every formula in any ACI rule instance
used in the derivation of 3 is local to T.

We now show that 8 is in B(X’, R,YU{a}). We show that there is no formula
in the derivation of 5 being considered that can be justified only by an ACI rule,
from the derivation to that point and the premises X’. To show this, we show
that there can be no earliest such formula 7. Supposing, for contradiction, there
is such n, then 7 is local to 7, as just argued for ACI rule instances in the
derivation of 3, and cannot be a member of X’ (or ACI rules would not be the
only justification for n). Formula 1 cannot be a <, formula or it could only be
justified by another ACI rule and thus would not be the earliest choice. Formula
1 cannot be a Z3 or Zyp formula or it would not be a possible consequent of

an ACI rule. So, n must not be hidden. Thus, 7 is a non-hidden local formula
in the derivation of S—so, by our choice of 8, we have n € X', the premise
set, contradicting the choice of 1 as requiring justification by an ACI rule. We
conclude from this contradiction that every formula in the derivation of § is
either in X’ or can be justified by a rule in R, so 8 is in B(X', R, U{a}). Since
B is newly derivable, 8 ¢ B(X',RU ACL,T) and thus 8 ¢ B(X',R,Y). This
violates the locality of R, completing our proof that B(X’, RUACL, T U{«a}) Cr
B(X',RUACLY).

But X’ can be replaced by X' in this claim, as the inference under R U ACI
within 7" that constructs X’ from X is already included in both B(,,) closures
being considered. This gives us the desired containment to conclude our proof
of the lemma. Formally,

B(Y',RUACLTU{a}) = B(B(X,RUACL,T),RUACLT U {a})
= B(X,RUACL T U{a})

and likewise

B(X',RUACLT) = B(B(X, RUACLY), RUACLT)
= B(¥,RUACLY).

Q.E.D. (Basic-term Extension Lemma)

A separate induction on derivation length is needed to handle extensions
of 7 by new tuple expressions, leveraging the invariants stated above on tuple
inference ((ACI-1) to (ACI-4)).

Lemma 3. (Tuple Extension) For any tuple expression «, where all proper
subexpressions of a are in T, B(X¥, RUACLT U {a}) =r B(X,RUACLY).

Proof. The backward containment is again immediate. We prove the forward
containment by induction on k to show, for all k, Bx(X, RUACL Y U {a}) Cr
B(X, RUACLT). Please see our website supplement [12] for technical verification
that each inference rule preserves this property of derivations, leveraging the
tuple invariants (ACI-1) to (ACI-4). Here we discuss in detail the argument for
one example inference rule chosen to illustrates all the key ideas.

Suppose for induction that By_1 (X, RUACL, T U{a}) Cy B(X, RUACLY).
Consider a k-step derivation ending in a non-hidden formula ¢ justified by an
instance of an inference rule from the basic rule set R, but not an equational rule
from E. We show that the conclusion of this derivation is a member of B(X, RU
ACLT). We will show (a) every antecedent formula of the inference instance
used is in C(X, R U ACI,Y), and (b) the consequent ¢ is local to 7" and not
hidden. From these two statements we can conclude that ¢ € B(X, RUACLT)
as desired. To see (b), observe that ¢ is not hidden, so it cannot mention the
new tuple a and so, being local to 7" U {a} must also be local to 7.

Then, to argue for (a), consider an arbitrary antecedent formula S of the
rule instance. We have 8 € Ci_1(X, R U ACIL,Y U {«a}) since § appears in a
k-step derivation as an antecedent. Please refer to our website supplement [12]
for details of the induction proof. Q.E.D. (Tuple Extension Lemma)

By a simple induction on the construction of subterm-closed set 7’ containing

Y, these two lemmas directly imply that R U ACI is local.

Theorem 3. For any local every/some rule set R, the rule set RUACI is local.

It follows that R U ACI defines a polynomial-time decidable inference relation.

7

Conclusion

We have shown a local rule set provably providing sound and complete congru-
ence closure with ACI function symbols. We also provide a detailed example
integrating ACI inference into other local rule sets preserving locality.

References

1. Anonymous Reviewer: Personal email communication (March 2013)

2. Bachmair, L., Ramakrishnan, I., Tiwari, A., Vigneron, L.: Congruence closure modulo associa-
tivity and commutativity. FroCoS pp. 245-259 (2000)

3. Bachmair, L., Tiwari, A.: Abstract congruence closure and specializations. In: Proceedings of the
17th International Conference on Automated Deduction. pp. 64-78. CADE-17, Springer-Verlag,
London, UK, UK (2000)

4. Bachmair, L., Tiwari, A., Vigneron, L.: Abstract congruence closure. J. Autom. Reason. 31(2),
129-168 (Dec 2003)

5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development — Coq’Art:
The Calculus of Inductive Constructions. SpringerVerlag (2004)

6. Bloniarz, P., Hunt III, H., Rosenkrantz, D.: Algebraic structures with hard equivalence and
minimization problems. J. ACM 31(4), 879-904 (1984)

7. Burris, S.: Polynomial time uniform word problems. Mathematical Logic Quarterly 41(2), 173—
182 (1995)

8. Conchon, S., Contejean, E., Kanig, J., Lescuyer, S.: CC (X): Semantic combination of congruence
closure with solvable theories. Elec. Notes in Theor. Comp. Science 198(2), 51-69 (2008)

9. De Moura, L., Bjgrner, N.: Z3: An efficient smt solver. Tools and Algorithms for the Construction
and Analysis of Systems pp. 337-340 (2008)

10. Ganzinger, H.: Relating semantic and proof-theoretic concepts for polynomial time decidability
of uniform word problems. In: Logic in Computer Science, 2001. Proceedings. 16th Annual IEEE
Symposium on. pp. 81-90. IEEE (2001)

11. Givan, R., McAllester, D.: Polynomial-time computation via local inference relations. ACM
Transactions on Computational Logic 3, 521-541 (Oct 2002)

12. Hu, T., Givan, R.: Additional proof details for ADDCT 2013 paper submisison.
https://engineering.purdue.edu/~relation/addct13.html (2013)

13. Hunt III, H., Rosenkrantz, D., Bloniarz, P.: On the computational complexity of algebra on
lattices. SIAM Journal on Computing 16(1), 129-148 (1987)

14. Ihlemann, C., Sofronie-Stokkermans, V.: On hierarchical reasoning in combinations of theories.
In: Automated Reasoning, pp. 30-45. Springer (2010)

15. Kapur, D.: Shostak’s congruence closure as completion. In: Proceedings of the 8th International
Conference on Rewriting Techniques and Applications. pp. 23—-37. RTA ’97, Springer-Verlag,
London, UK, UK (1997)

16. Kozen, D.: Complexity of finitely presented algebras. In: Proceedings of the ninth annual ACM
symposium on Theory of computing. pp. 164-177. STOC *77, ACM, New York, NY, USA (1977)

17. MacNeille, H.M.: Partially ordered sets. Trans. Amer. Math. Soc 42(3), 416-460 (1937)

18. Mayr, E., Meyer, A.: The complexity of the word problems for commutative semigroups and
polynomial ideals. Advances in mathematics 46(3), 305-329 (1982)

19. McAllester, D.: Ontic: A Knowledge Representation System for Mathematics. MIT Press, Cam-
bridge, MA (1989)

20. McAllester, D.: Automatic recognition of tractability in inference relations. Journal of the ACM
40(2), 284-303 (April 1993)

21. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. Journal of the
ACM 27(2), 356-364 (April 1980)

22. Rehof, J., Mogensen, T.: Tractable constraints in finite semilattices. Science of Computer Pro-
gramming 35(2), 191-221 (1999)

23. Shostak, R.E.: An algorithm for reasoning about equality. Communications of the ACM 21(7),
583-585 (Jul 1978), http://doi.acm.org/10.1145/359545 . 359570

24. Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In: Automated

Deduction-CADE-20, pp. 219-234. Springer (2005)

