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Abstract
Planning methods for deterministic planning problems tradi-
tionally exploit factored representations to encode the
dynamics of problems in terms of a set of parameters, e.g.,
the location of a robot or the status of a piece of equipment.
Factored representations achieve economy of representation
by taking advantage of structure in the form of dependency
relationships among these parameters. In recent work, we
have addressed the problem of achieving the same economy
of representation and exploiting the resulting encoding of
structure forstochasticplanning problems represented as
Markov decision processes. In this paper, we extend our ear-
lier work on reasoning about such factored representations to
handle problems with large action spaces that are also repre-
sented in factored form, where the parameters in this case
might correspond to the control parameters for different
effectors on a robot or the allocations for a set of resources.
The techniques described in this paper employ factored rep-
resentations for Markov decision processes to identify and
exploit regularities in the dynamics to expedite inference.
These regularities are in the form of sets of states (described
for example by boolean formulas) that behave the same with
respect to sets of actions where these sets are thought of as
aggregate states and aggregate actions respectively. We
present theoretical foundations, describe algorithms, provide
examples in which our techniques provide leverage and
examples in which they fail to do so, and summarize the
results of experiments with a preliminary implementation.

1.  Introduction
The methods developed in this paper extend specific plan-
ning algorithms [Boutilieret al., 1995; Dean & Givan,
1997] developed for handling large state spaces to handle
large action spaces. The basic approach involves reformu-
lating a problem with large state and action spaces as a
problem with much smaller state and action spaces. These
methods are particularly effective in cases in which there
are a large set of possible actions allowed in each state, but
only a small number of actions are likely to have an impact
on the bottom line,e.g.,achieving a specified goal or mini-
mizing costs.

In some problems,e.g.,particularly difficult scheduling
problems, it is not easy to identify actions that can be elimi-

nated from consideration. In other problems, such identifi-
cation is easy. For example, a robot in traversing a darkened
room can adjust its camera (a passive sensor) in a variety of
ways, but only the sonar and infrared devices (active sen-
sors) will have any impact on the robot’s success in navigat-
ing the room. The techniques described in this paper
reformulate planning problems in a preprocessing step so as
to eliminate such actions from consideration in appropriate
contexts,i.e.,sets of states.

This paper is organized as follows: We begin by introduc-
ing and formalizing a class of planning problems cast in
terms of Markov decision processes. We consider methods
for compactly representing Markov decision processes with
large state and action spaces. We then investigate reformu-
lation methods that allow us to solve Markov decision pro-
cesses without explicitly quantifying over all states and
actions. We describe model minimization techniques as a
means of automatically performing such problem reformu-
lations. In an appendix we describe a variant of a standard
algorithm (value iteration) that performs the requisite prob-
lem reformulations on the fly. Finally, we explore some
sample problems and summarize preliminary experiments.

2.  Sequential Decision Problems
We are interested in solvingsequential decision problemsin
which we are given the dynamics of a (possibly stochastic)
environment and an objective function specifying the value
of outcomes corresponding to sequences of states, and we
are asked to generate a behavioral specification (actions to
perform in different states or times) that satisfies some
requirement in terms of the objective function.

Markov Decision Processes
Specifically, we consider the case of Markov decision pro-
cesses (MDPs) which generalize on propositional STRIPS
planning problems. Let , where is a
finite set ofstates, is a finite set ofactions, is astate-
transition distribution, and is a reward function.Transi-
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tions and rewards are defined so that ,

(1)

where the random variables and denote the state of
the system at time , and the action taken at time , respec-
tively.

We define a set ofpolicies where . A
Markov decisionproblem is an MDP together with an
objective function; in this paper we restrict our attention to
one particular objective function, expected cumulative dis-
counted reward with discount rate . A candidate
solution to a Markov decision problem is a policy. To com-
pare policies we employ the notion of avalue function

where . The value function for a fixed pol-
icy  is defined by

(2)

Here and elsewhere we assume that the rewards do not
depend on the action to keep the notation a little simpler.
The optimal policy is defined by theoptimal value function

(3)

Occasionally we use vector notation in which denotes
the th component of .

Solving Markov Decision Problems
The system of (Bellman) equations has a unique solution

(4)

Thenonlinear operator  defined by

(5)

is a contraction mapping, i.e., s.t.

(6)

with fixed point . is the basis forvalue iteration,an
iterative algorithm which converges to the optimal value
function. In the following, we focus on value iteration
because it is conceptually simple, but the techniques that
we discuss apply to other MDP solution methods. The basic
step in value iteration, called aBellman backup,corre-
sponds to applying the operator and can be performed in
time polynomial in the size of and . The challenge is

handling the case in which and are exponentially
large relative to the size of the problem description. Before
we address this challenge, we discuss how we can even rep-
resent such problems compactly.

3.  Factorial Models
Instead of assuming explicitly enumerated sets of states, we
assume that states are represented in terms of state vari-
ables, , often calledfluents. Similarly we assume that
actions can be described in terms of a set of control
parameters, , oraction fluents. The state and action
spaces are then defined in terms of products over sets of
values for the parameters describing the states and actions.

(7)

where denotes the set of possible values for the param-
eter . We typically assume that to
simplify presentation, but the techniques apply more gener-
ally. Using this factored representation for states and
actions we can define rewards and transitions

(8)

Example Factored Representation
Figure 1.a shows a Bayesian network that represents the
dependencies among state and action parameters. Bayesian
networks encode the dependencies among variables. By
applying the chain rule to factor the distribution
into a set of smaller conditional probabilities and simplify-
ing using the conditional independence relationships
implicit in the Bayesian network, we obtain the following
factored representation.

(9)

Further economy of representation can be obtained by
using a tree representation for each of the terms (condi-
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tional probabilities) in the factored form (see Figure 1.b) as
opposed to using a simple table.

In the following, we assume that for each fluent we
have a factored representation of the probability that the flu-
ent will be true given the values of fluents in the previous
stage,e.g., see Figure 1.a. Note further that this representa-
tion induces a partition of the space which we
denote by , e.g.,

(10)

in the case of conditional probability distribution shown in
Figure 1.b.

4.  Value Iteration
Value iteration is a standard technique for computing the
optimal value function for an explicitly represented MDP
(i.e., one in which we have explicit sets and for the
state and action sets rather than factorial representations of
such sets) in run-time polynomial in the sizes of the state
and action sets.

The nonlinear operator that is at the heart of value itera-
tion requires computing for each state a value maximizing
over all actions and taking expectations over all states

(11)

In structured methods for solving MDPs with factorial
representations, such as those described in [Boutilieret al.,
1995] [Dean & Givan, 1997], instead of considering the
consequences of an action taking individual states to indi-
vidual states, we consider how an action takes sets of states
to sets of states. Here we extend this idea to consider how
sets of actions takes sets of states to sets of states (see

Figure 2). The result is a reformulation of the Bellman
backup that, instead of quantifying over individual states
and actions, quantifies over the blocks of various partitions
of the state and action spaces.

(12)

In this case, value functions are defined over the blocks
of partitions. The trick is to find partitions such that for any
starting block , destination block , and block of actions

, for any action and state , the probability
is the same (or, in the case

of approximations, nearly the same). In the next section, we
describe methods which induce partitions that ensure this
sort of uniform transition behavior. In the appendix, we
describe how to perform Bellman backups which construct
the requisite partitions on the fly.

5.  Constructing a Minimal Model
In this section we discuss methods to automatically convert
an MDP that is represented in factored form as above into a
possibly much smaller MDP in explicit form that captures
all the information we care about from the original MDP.
Specifically, we start with an MDP whose state space
and action space are represented as the set of truth
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Figure 1:  (a) Bayesian network representation for encoding MDP state-transition probabilities,
and (b) decision tree representation for a conditional probability distribution
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Figure 2:  State-to-state transitions versus block-
to-block transitions
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assignments to corresponding sets of propositional fluents
and , respectively. We then automatically extract

from an MDP whose state and action spaces are
simple sets, such that the optimal value function of
can be easily interpreted as the optimal value function for
our original MDP , and likewise for the optimal policy

of . may have a much smaller state and/or action
space than , and so may allow the practical application of
standard MDP solution techniques which could not be
effectively applied to the explicit form of . We call the
smallest with these properties theminimal modelof .
This work is an extension of our work on constructing min-
imal models for MDPs with factored state spaces — we
extend that work here to the case of factored action spaces.

In our previous work on model minimization with fac-
tored state spaces, the algorithm built up a partition of the
state space of the factored MDP — this partition was
represented, for example, by a set of boolean formulas, one
for each block of the partition. This partition was chosen in
such a way that the blocks of the partition could be viewed
as states in anaggregate stateMDP which was equivalent
to in the sense described above. The algorithm was
designed to select thecoarsestsuch partition, resulting in
the smallest equivalent aggregate state MDP,i.e., the mini-
mal model. In order to extend this work to allow factored
action spaces, we now consider partitions of a larger space,
the product space of  and , denoted .

Definition 1: Given an MDP , either
factored or explicit, and a partition of the space ,
we make the following definitions:

a. Theprojection of onto is the partition
of such that two states and are in the
same block if and only if for every action in

, the pairs and are in the same
block of . Likewise, theprojection of
onto is the partition of such that two
actions and are in the same block if
and only if for every state in , the pairs

and are in the same block of .
In like manner, in factored representations, we
can speak of the projection of onto any set of
fluents (meaning the projection onto the set of
truth assignments to those fluents).

b. Given a state , an action , and a set of
states, the block transition probability

from to under to denote the
sum for all states of the transition proba-
bility from state to state under action ,i.e.,

.

c. is reward homogeneous with respect to if
and only if every two state-action pairs
and in the same block of have the
same immediate reward . We
denote this reward .

d. is dynamically homogeneous with respect to
if for every two state-action pairs and

in the same block in , the block tran-
sition probability to each block in is the
same for under action as it is for under
action . That is, for each block in ,

. We denote this tran-
sition probability .

e. ishomogeneous with respect to if it is both
reward and dynamically homogeneous with
respect to .

f. When is homogeneous with respect to , the
quotient MDP is defined to be the MDP

, where
is defined as for any

state in and in (homogeneity guar-
antees that this value is independent of the
choice of and ). is formed from by
simultaneous state space and action spaceaggre-
gation.

g. Given a function for any set ,
the function lifted to , written , is func-
tion from to which maps each state in
to , where is the block of to which
belongs. Intuitively, if we think of as a function
about , then is the corresponding func-
tion about .

The following theorem implies that if we want the opti-
mal value function or an optimal policy for an MDP it
suffices to compute a homogeneous partition for , and
then compute the optimal value function and/or the optimal
policy for . Since it is possible that has a much
smaller state space than , this can lead to a significant
savings.

Theorem 1: Given an MDP and a
partition of which is homogeneous with respect
to , if and are the optimal value function and
optimal policy for , then and are the
corresponding optimal value function and optimal policy
for .

We say that one partition refines another if every block of
the second partition is contained in some block of the first
partition. It can be shown that every homogeneous partition
of a given MDP refines a distinguished partition, themini-
mal homogeneous partition.We show below how to auto-
matically compute this partition. Our algorithm is a
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generalization of the model minimization algorithm we pre-
sented for MDPs with factored state spaces but explicit
action spaces. From here on we use the notation to
denote the quotient MDP for relative to the minimal
homogeneous partition of , which we denote .

Before presenting the algorithm, we give a brief discus-
sion of the run-time complexity issues involved in using
this algorithm as a means to obtain the optimal policy for an
MDP. First, there is no guarantee that has a smaller
state space than — it is easy to construct MDPs for
which the minimal homogeneous partition is the trivial par-
tition where every block has a single state in it (for exam-
ple, any MDP where every state has a different reward
value). Second, even in cases where is much smaller
than , the process of finding can be exponentially
hard. We have shown in our previous work that when is
represented with a factored state space (but an explicit
action space), it is NP hard to find . This result general-
izes immediately to the case where also has a factored
action space. The news is not all bad, however — all the
above results concern worst-case performance — it is pos-
sible for to be exponentially smaller than and for it
to be found in time polynomial in the size of .

In the algorithm below, we assume that is represented
with factored state and action spaces, and we wish to find
the minimal homogeneous partition of . We repre-
sent partitions of as finite sets of disjoint proposi-
tional formulas over the fluents defining and . So, for
example, if is defined by the fluents ,
and is defined by the fluents , then a sim-
ple partition of could be given by the set of three
formulas .

Given a partition of represented as just
described, we assume a heuristic procedure for computing
the projections and of onto and , respec-
tively. Computing projections in this representation is an
NP-hard task in itself1, hence our reliance on heuristic
propositional manipulations here. The usefulness of the
algorithm will depend in part on the effectiveness of the
heuristics selected for computing projections. A second
NP-hard propositional operation we assume ispartition
intersection— in this operation two partitions and
are combined to form one partition whose blocks
are the non-empty pairwise intersections of the blocks from

and . It is the non-emptiness requirement that makes

this operationNP-hard, as it is just propositional satisfiabil-
ity in the above representation for blocks.

The algorithm is based on the following property of the
homogeneous partitions of an MDP : by definition, a
partition is homogeneous if and only if every block in the
partition isstable— a block in a partition isstableif
and only if for every block in , every pair in

has the same block transition probability
from  under  to .

The basic operation of the algorithm, which we call
, takes a partition of and returns a refine-

ment of that partition. Iteration of this operation is guaran-
teed to eventually reach a fixed point (because a partition of
a finite space can only be refined finitely many times). The
operation will have the property that any fixed point must
be stable. It will also have the property that each refinement
made must be present in minimal homogeneous partition

(i.e., any two state-action pairs split apart from each
other by the operation must be in different blocks in ),
thus guaranteeing that the fixed point found is in fact
(assuming that the refinements, or block divisions, present
in the partition used to start the iteration are also present in

).
We define the operation for input partition

in terms of the partitions (for each state space fluent )
provided in specifying the action dynamics for the MDP

. Let be the set of all state space fluents which are
mentioned in any formula in representation of the current
partition . First, construct the intersection of all parti-
tions  such that the fluent  is in :

(13)

makes all the distinctions needed within so that
within each block of the block transition probability to
each block of is the same (i.e., for any block of
and any two pairs , in the same block of

, the block transition probability from to under
is the same as the block transition probability from to
under ). However, may make distinctions that don’t
need to be made, violating the desired properties mentioned
above that ensure we compute theminimal partition. For
this reason it is necessary to define Backup( ) as theclus-
tering of the partition in which blocks of are com-
bined if they have identical block transition behavior to the
blocks of . Formally, we define an equivalence relation
on the blocks of such that two blocks and are
equivalent if and only if for every block in , every
pair in , and every pair , the block
transition probabilities and are
the same. We then define Backup( ) to be partition whose
blocks are the unions of the equivalence classes of blocks of

under this equivalence relation (in our block representa-

1. Given a propositional formula and new
propositional symbols , consider the pro-
jection of the partition given by the formulas

onto the symbol . This partition has two blocks
if is satisfiable and one block otherwise ( and
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tion, union can be easily constructed by taking the disjunc-
tion of the block formulas for the blocks to be unioned).

We can now define the model minimization algorithm for
MDPs with factored action and state spaces. We start with
an initial partition of determined by the reward par-
tition in which two pairs and are in
the same block if and only if the same reward is given for
taking in as for taking in — this partition is
given directly as part of the factored representation of the
MDP. We then iterate the Backup operation on this parti-
tion, computing , then ,
and so forth until we produce the same partition twice in a
row (since each successive partition computed refines the
previous one, it suffices to stop if two partitions with the
same number of blocks are produced in successive itera-
tions).

We have the following theorems about the algorithm just
described:

Theorem 2:Given an MDP represented with factored
state and action spaces, the partition computed by the
model minimization algorithm is the minimal homoge-
neous partition .

Theorem 3: Given an MDP with factored state and
action spaces, the model minimization performs a polyno-
mial number of partition intersection and projection opera-
tions relative to the number of blocks in the computed
partition.

6.  Examples and Preliminary Experiments
In this section, we present examples that illustrate cases in
which our approach works and cases in which our approach
fails. We chose simple robotics examples to take advantage
of the reader’s intuition about spatial locality. Of course,
our algorithm has no such intuition and the hope is that the
algorithm can take advantage of locality in much more gen-
eral state and action spaces in which our spatial intuitions
provide little or no guidance. We also describe some exper-
iments involving a preliminary implementation of the
model minimization algorithm.

Examples
Consider a robot navigating in a simple collection of rooms.
Suppose there are rooms connected in a circular chain
and each room has a light which is either on or off. The
robot is in exactly one of the rooms and so there are
states. At each stage, the robot can choose to go forward or
stay in the current room and choose to turn on or off each of
the lights and so there are actions. There are
independent action parameters, one for each room. Figure 3
shows the basic layout and the relevant state and action
variables.

Now consider the following variations on the dynamics
and rewards. To keep things simple we consider only deter-
ministic cases.

Case 1: Rewards:The robot gets a reward of 1 for being
in room and otherwise receives no reward.Dynamics: If
the light is on in the room where the robot is currently
located and the robot chooses to go forward then it will end
up in the next room with probability 1 at the next stage; if
the light is off and it chooses to go forward then it will
remain in the current room with probability 1. If the robot
chooses to stay, then it will remain in the current room with
probability 1. If the robot sets the action parameter to

( ) at stage , then with probability 1 at
stage the light in room will be ( ).Analysis:
The number of states in the minimal model is and the
number of actions  (see Figure 4).

Case 2. Rewards:Exactly as in case 1.Dynamics: Sup-
pose that instead of turning lights on or off the robot is able
to choose to toggle or not toggle a switch for each light. If
the robot does not toggle the light then the light remains as
it was; if the robot does toggle the switch then the light
changes status: on to off or off to on.Analysis: In this case,
the number of states is . Consider transitions from the
block to the block

and note that the probability
of ending up in starting from depends on whether

is on or off. This dependence requires that we split
into two blocks corresponding to those in which is on
and those in which it is off. This splitting will continue to
occur implicating the lights in ever more distant rooms until
we have accounted for all of the lights. The number of
aggregated actions is relatively small however; the same
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aggregated actions as in the Case 1.
Case 3: Rewards:Reward in a state is inversely propor-

tional to the number of lights turned on. This would require
an extra variable for the total number of lights turned on in
order to represent the dynamics compactly.Dynamics: As
in case 1 except that the robot is only able to turn on lights
that are local,i.e., in the current or next room.Analysis: In
this case both the state and action spaces blow up in the
minimal model.

Experiments
The case analyses in the previous section only tell part of
the story. Our model reduction algorithm is polynomial in
the size of the minimal model assuming that partition inter-
section and projection operations blocks can be performed
in polynomial time in the size of the domain description.
Unfortunately, these operations are computationally com-

plex in the worst case. There are two methods that we can
use to deal with this complication: First, we could simply
proceed using the best known heuristics for manipulating
partitions represented as sets of logical formulas and hope
that the worst case doesn’t occur in practice. Second, we
could choose a restrictive representation for partitions such
that the partition operations can be performed in polyno-
mial time in the size of their output. Neither is entirely sat-
isfactory. The first has the problem that the worst case can
and does occur in practice. The second has the problem that
the less expressive representation for partitions may not
allow us to represent the desired partition and that the
resulting reduced model may be exponentially larger than
the minimal model (see [Dean & Givan, 1997] for details).

To understand the issues a little better we have imple-
mented a version of the model minimization algorithm
described in Section 5 . It is not quite this algorithm how-
ever as we have adopted the second of the methods for deal-
ing with the issue of the complexity of partition operations
raised in the previous paragraph. We assume that all blocks
in all partitions are represented as conjunctions of state and
action parameters. The resulting implementation is not
guaranteed to find the minimal model and hence we refer to
it as amodel reduction algorithm.

At the time of submission, we had just begun to experi-
ment and so we only summarize here one simple, but illus-
trative set of experiments. We encoded a sequence of Case
1 robot problems with increasing numbers of rooms. Our
primary interest was to determine the actual size of the
reduced models produced by our algorithm and the running
time. The hope is that both factors would scale nicely with
the size of the room. In fact this turned out to be the case
and results for 2 to 9 rooms are shown in Table 1.

We are in the process of performing experiments on sim-
ilar robot domains with more complex room topologies and
additional (non-spatial) dimensions. We are also consider-
ing examples that involve resource allocation and transpor-
tation logistics in an effort to understand better where the
methods described in the this paper provide leverage.

R i=( ) Li on=( )∧

R i=( ) Li off=( )∧
states

actions

M go=( ) Ai turn_off=( )∧

M go=( ) Ai turn_on=( )∧

M go=( ) Ai turn_off=( )∧

M go=( ) Ai turn_on=( )∧

M stay=( ) Ai turn_on=( )∧

M stay=( ) Ai turn_off=( )∧

Figure 4: Aggregate states and actions for the
minimal model of Case 1.

Ai 1+ turn_off=( )∧

Ai 1+ turn_off=( )∧

Ai 1+ turn_on=( )∧

Ai 1+ turn_on=( )∧

Number of rooms 2 3 4 5 6 7 8 9

Number of aggregate blocks 14 20 26 32 38 44 50 56

Elapsed time in seconds 0.07 0.15 0.27 0.43 0.93 1.24 2.00 2.75

# States in Unminimized MDP 8 24 64 160 384 896 2024 4608

#Actions in Unminimized MDP 8 16 32 64 128 256 512 1024

Table 1: Experimental Results



7.  Related Work and Discussion
This work draws on work in automata theory that attempts
to account for structure in finite state automata [Hartmanis
& Stearns, 1966]. Specifically, the present work builds on
the work of Lee and Yannakakis [1992] involving on-line
model minimization algorithms, extending their work to
handle Markov decision processes with large state [Dean &
Givan, 1997] and now action spaces. The present work
owes a large debt to the work of Boutilieret al. [1995,
1996] which assembled the basic ideas for using a factored
representation together with a stochastic analog of goal
regression to reason about aggregate behaviors in stochastic
systems. We explore the connections between model mini-
mization and goal regression in [Givan & Dean, 1997].
Tsitsiklis and Van Roy [1996] also describe algorithms for
solving Markov decision processes with factorial models.
Our basic treatment Markov decision processes borrows
from Puterman [1994].

The primary contributions of this paper consist of (a) not-
ing that we can factor the dynamics of a planning domain
along the lines of action parameters as well as state parame-
ters (fluents) and (b) that we can extend the notions quotient
graph, minimal model, and model reduction to handle large
action spaces as well as large state spaces. The methods
presented in this paper extract some but probably not all of
the useful structure in the description of the dynamics. They
suffer from the problem that if the minimal model is large
(say exponential in the number of state and action parame-
ters), then they will incur a cost at least linear in the size of
the minimal model. In some cases, this cost can be amelio-
rated by computing an -approximate model [Deanet al.,
1997], but such approximation methods offer no panacea
for hard scheduling problems.

Many scheduling problems can be represented compactly
in terms of a set action parameters in much the same way as
large state spaces can be represented in terms of a set of
state variables or fluents, but the techniques in this paper do
not by themselves provide a great deal of leverage in solv-
ing scheduling problems. It is the nature of hard scheduling
problems that there are a large set of actions most of which
have some impact on solution quality, the trick is to restrict
attention to only those actions that have a significant impact
on the bottom line. We see the methods described in this
paper as contributing to a compilation or preprocessing
technology used to exploit structure so as to reduce com-
plexity thereby reducing reliance on human cleverness in
representing planning problems.
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9.  Appendix A: Structured Bellman Backups
As explained in Section 4 , we want to partition the state
and action spaces into blocks, so that we can quantify over
blocks of states and actions instead of over individual states
and actions. Section 5 provides a general method for com-
puting the necessary partitions. In this section, we consider
how to implement a structured form of value iteration
thereby extending work described in [Boutilieret al.,1995]
and [Boutilier & Dearden, 1996]. In terms of value itera-
tion, we want to represent the value function on each itera-
tion as function over blocks of a partition of the state space.
Typically the initial value function given to value iteration
is the immediate reward function, which we assume has a
factored form similar to that shown in Figure 1.b. For exam-
ple, we might have

(14)

Note that the above representation implies a partition of
consisting of the three blocks represented by the follow-

ing formulas: . Our problem
now reduces to the following: given a value function
defined on blocks of a partition how do we compute
the Bellman backup corresponding to with its associ-
ated partition .
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We work backward from the blocks of each of
which is represented as a formula involving the fluents
describing the state and action spaces; for each block, we
want to determine how we might end up in that block. Sup-
pose the partition consists of formulas involving the
fluents , and , then we have to distinguish
between states in the previous stage that have different state
transition probabilities with respect to these fluents. To
make all of the distinctions necessary to compute the proba-
bility that we end up in some block of we need to com-
bine the partitions associated with each of the variables
used in describing the blocks of ; this combination is
the coarsest partition which is a refinement of all the
and it is denoted ,e.g., see Figure 5.

The partition that we use to represent namely
will be a coarsening of ,i.e., a partition in which
each block is a union of blocks in . Next we have
to calculate the value of each block in .

Note that while is a partition of the state space,
is actually a partition of the product of the state and

action spaces; think of each block as represented by a for-
mula consisting of two subformulas: one involving only
state variables and the other involving only action fluents.
Let and denote the projections of

restricted to and respectively. These two
partitions allow us to take expectations and perform maxi-
mizations in the Bellman backup without quantifying over
all states and actions. There is one further complication that
we have to deal with before we can implement structured
Bellman backups. We need to be able to calculate

(15)

for any , , and . We

could do this if each was represented as an assignment
to fluents, but this need not be the case; the blocks of
could be represented as arbitrary formulas. And so we com-
pute a refinement of which we denote in which
each block is replaced by the set of blocks corre-
sponding to the set of all assignments to the fluents in the
formula representing .

Figure 6 illustrates the basic objects involved in perform-
ing a structured Bellman backup. The objective is to com-
pute the Bellman backup for all states and actions
(Figure 6.a) but without quantifying over all states and
actions. We begin with a representation of the -stages to
go value function specified in terms of the blocks of the
partition . When we are done we will have a representa-
tion of the -stages to go value function specified
in terms of the blocks of the partition  (Figure 6.g).
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Figure 5:  Combining partitions from multiple
conditional probability distributions
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