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Abstract

In this paper, we introduce the notion obaunded-parameter Markov decision proc€88DP)

as a generalization of the familiakactMDP. A bounded-parameter MDP is a set of exact MDPs
specified by giving upper and lower bounds on transition probabilities and rewards (all the MDPs
in the set share the same state and action space). BMDPs form an efficiently solvable special case
of the already known class of MDPs witmprecise parameter@DPIPs). Bounded-parameter

MDPs can be used to represent variation or uncertainty concerning the parameters of sequential
decision problems in cases where no prior probabilities on the parameter values are available.
Bounded-parameter MDPs can also be used in aggregation schemes to represent the variation in
the transition probabilities for different base states aggregated together in the same aggregate
state.

We introduceinterval value functionsas a natural extension of traditional value functions. An
interval value function assigns a closed real interval to each state, representing the assertion that
the value of that state falls within that interval. An interval value function can be used to bound
the performance of a policy over the set of exact MDPs associated with a given bounded-param-
eter MDP. We describe an iterative dynamic programming algorithm ciatedval policy evalu-

ation that computes an interval value function for a given BMDP and specified policy. Interval
policy evaluation on a policyt  computes the most restrictive interval value function that is
sound,i.e., that bounds the value function fat  in every exact MDP in the set defined by the
bounded-parameter MDP. We defiaptimistic and pessimisticcriteria for optimality, and pro-

vide a variant of value iteration [1] that we caiterval value iteratiorthat computes policies for

a BMDP that are optimal with respect to these criteria. We show that each algorithm we present
converges to the desired values in a polynomial number of iterations given a fixed discount fac-
tor.

Keywords: Decision-theoretic planning, Planning under uncertainty, Approximate planning,
Markov decision processes.

Introduction

The theory of Markov decision processes (MDPs) [11][14][2][10][1] provides the
semantic foundations for a wide range of problems involving planning under
uncertainty [5][7]. Most work in the planning subarea of artificial intelligence
addresses problems that can be formalized using MDP models — however, it is
often the case that such models are exponentially larger than the original “inten-
sional” problem representation used in Al work. This paper generalizes the theory
of MDPs in a manner that is useful for more compactly representing Al problems
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as MDPs via state-space aggregation, as we discuss below.

In this paper, we introduce a generalization of Markov decision processes
calledbounded-parameter Markov decision proces@8IDPs) that allows us to
model uncertainty about the parameters that comprise an MDP. Instead of encod-
ing a parameter such as the probability of making a transition from one state to
another as a single number, we specify a range of possible values for the parameter
as a closed interval of the real numbers.

A BMDP can be thought of as a family of traditional (exact) MDRs,, the set
of all MDPs whose parameters fall within the specified ranges. From this perspec-
tive, we may have no justification for committing to a particular MDP in this fam-
ily, and wish to analyze the consequences of this lack of commitment. Another
interpretation for a BMDP is that the states of the BMDP actually represent sets
(aggregates) of more primitive states that we choose to group together. The inter-
vals here represent the ranges of the parameters over the primitive states belonging
to the aggregates. While any policy on the original (primitive) states induces a sta-
tionary distribution over those states that can be used to give prior probabilities to
the different transition probabilities in the intervals, we may be unable to compute
these prior probabilities — the original reason for aggregating the states is typi-
cally to avoid such expensive computation over the original large state space.

Aggregation of states in very large state spaces was our original motivation for
developing BMDPs. Substantial effort has been devoted in recent years within the
Al community [9][6][8] to the problem of representing and reasoning with MDP
problems where the state space is not explicitly listed but rather implicitly speci-
fied with afactored representatiorin such problems, an explicit listing of the pos-
sible system states is exponentially longer than the more natural implicit problem
description, and such an explicit list is often intractable to work with. Most plan-
ning problems of interest to Al researchers fit this description in that they are only
representable in reasonable space using implicit representations. Recent work in
applying MDPs to such problems.(, [9], [6], and [8]) has considered state-space
aggregation techniques as a means of dealing with this problem: rather than work
with the possible system states explicitly, aggregation techniques work with blocks
of similar or identically-behaving states. When aggregating states that have similar
but not identical behavior, the question immediately arises of what transition prob-
ability holds between the aggregates: this probability will depend on which under-
lying state is in control, but this choice of underlying state is not modelled in the
aggregate model. This work can be viewed as providing a means of addressing this
problem by allowing intervals rather than point values for the aggregate transition
probabilities: the interval can be chosen to include the true value for each of the
underlying states present in the aggregates involved. It should be noted that under
these circumstances, deriving a prior probability distribution over the true parame-
ter values is often as expensive as simply avoiding the aggregation altogether and
would defeat the purpose entirely. Moreover, assuming any particular probability
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distribution could produce arbitrarily inaccurate results. As a result, this work con-
siders parameters falling into intervals with no prior probability distribution speci-
fied over the possible parameter values in the intervals, and seeks to put bounds on
how badly or how well particular plans will perform in such a context, as well as to
provide means to find optimal plans under optimistic or pessimistic assumptions
about the true distribution over parameter values. In Section 6, we discuss the
application of our BMDP approach to state-space aggregation problems more for-
mally. Also, in a related paper, we have shown how BMDPs can be used as part of
an state-space aggregation strategy for efficiently approximating the solution of
MDPs with very large state spaces and dynamics compactly encoded in a factored
(or implicit) representation [10].

We also discuss later in this paper the potential use of BMDP methods to eval-
uate the sensitivity of the optimal policy in an exact MDP to small variations in the
parameter values defining the MDP — using BMDP policy selection algorithms on
a BMDP whose parameter intervals represent small variations (perhaps confidence
intervals) around the exact MDP parameter values, the best and worst variation in
policy value achieved can be measured.

In this paper we introduce and discuss BMDPs, the BMDP analog of value
functions, calledinterval value functionsand policy selection and evaluation
methods for BMDPs. We provide BMDP analogs of the standard (exact) MDP
algorithms for computing the value function for a fixed policy (plan) and (more
generally) for computing optimal value functions over all policies, caihterval
policy evaluationand interval value iteration(IVI) respectively. We define the
desired output values for these algorithms and prove that the algorithms converge
to these desired values in polynomial time, for a fixed discount factor. Finally, we
consider two different notions of optimal policy for a BMDP, and show how VI
can be applied to extract the optimal policy for each notion. The first notion of
optimality states that the desired policy must perform better than any other under
the assumption that an adversary selects the model parameters. The second notion
requires the best possible performance when a friendly choice of model parameters
is assumed.

Our interval policy evaluation and interval value iteration algorithms rely on
iterative convergence to the desired values, and are generalizations of the standard
MDP algorithmssuccessive approximaticemd value iteration respectively. We
believe it is also possible to design an interval-valued variant of the standard MDP
algorithmpolicy iteration but we have not done so at this writing — however, it
should be clear that our successive approximation algorithm for evaluating policies
in the BMDP setting provides an essential basic building block for constructing a
policy iteration method; all that need be added is a means for selecting a new
action at each state based on the interval value function of the preceding policy
(and a possibly difficult corresponding analysis of the properties of the algorithm).
We note that there is no consensus in the decision-theoretic planning and learning
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and operations-research communities as to whether value iteration, policy itera-
tion, or even standard linear programming is generally the best approach to solving
MDP problems: each technique appears to have its strengths and weaknesses.

BMDPs are an efficiently solvable specialization of the already known class of
Markov Decision Processes with Imprecisely Known Transition Probabilities
(MDPIPs) [15][17][18]. In the related work section we discuss in more detail how
BMDPs relate to MDPIPs.

Here is a high-level overview of how conceptual, theoretical, algorithmic, and
experimental treatments are woven together in the remainder of the paper. We
begin by introducing the concept of a Bounded Parameter MDP (BMDP), and
introducing and justifying BMDP analogues for optimal policies and value func-
tions. In terms of the theoretical development, we define the basic mathematical
objects, introduce notational conventions, and provide some background in MDPs.
We define the objects and operations that will be useful in the subsequent theoreti-
cal and algorithmic development, e.g., composition operators on MDPs and on
policies. Finally, we define and motivate the relevant notions of optimality, and
then prove the existence of optimal policies with respect to the different notions of
optimality.

In addition to this theoretical and conceptual development, in terms of algo-
rithm development we describe and provide pseudo-code for algorithms for com-
puting optimal policies and value functions with respect to the different notions of
optimality, e.g., interval policy evaluation and interval value iteration. We provide
an analysis of the complexity of these algorithms and prove that they compute
optimal policies as defined earlier. We then describe a proof-of-concept imple-
mentation and summarize preliminary experimental results. We also provide a
brief overview of some applications including sensitivity analysis, coping with
parameters known to be imprecise, and support for state aggregation methods.
Finally, we survey some additional related work not covered in the primary text
and summarize our contributions.

Before introducing BMDPs and their algorithms in Section 4 and Section 5, we
first present in the next two sections a brief review of exact MDPs, policy evalua-
tion, and value iteration in order to establish notational conventions we use
throughout the paper. Our presentation follows that of [14], where a more com-
plete account may be found.

2. Exact Markov Decision Processes

An (exact) Markov decision procedd isafourtuple (8, AFR where
Q is a set of stateshA  is a set of actiofs, is a reward function that maps each
state to a real valuR(q) LandF is a state-transition distribution so that éoe A

andp, ge Q
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Fog@ = Pi(X,1=0 | X=p, U=a) (1)

whereX; andJ, are random variables denoting, respectively, the state and action
attimet . When needed we wrif€¥  to denote the transition function of the MDP
M.

A policy is a mapping from states to actionsQ —- A . The set of all policies
is denotedIT . An MDPM together with a fixed policy e I1 determines a
Markov chain such that the probability of making a transition frgm qto is
defined byF (n(p)) Theexpected value functiofor simply thevalue functior)

associated with such a Markov chain is denovggl . The value function maps
each state to itsxpected discounted cumulative rewdefined by
Vi (D) = R(D+7 S Fodm(p)Vyy, A(0) (2)
deQ

where0<y <1 is called theliscount rate? In most contexts, the relevant MDP is
clear and we abbreviaté,, ,  ¥§

The optimal value functiorVy, (or simply®  where the relevant MDP is
clear) is defined as follows.

V'(p) = max(R(p)w Y, FofalV’ @) ©)

aecA

The value functiorV™ s greater than or equal to any value funatign in the par-
tial order >,,,, defined as followsV, >4V, if and only if for all statep
V4(g) > V,(q) (in this case we say that, dominatesV, ). We write V; >4,,,V,

to meanV, >4,,V, and for at least one stgteV,(q) > V,(0)

An optimal policy is any policyr” for whichv* = V_. . Every MDP has at
least one optimal policy, and the set of optimal policies can be found by replacing
the max in the definition o/* witargmax .

3. Estimating Traditional Value Functions

In this section, we review the basics concerning dynamic programming methods
for computing value functions for fixed and optimal policies in traditional MDPs.
We follow the example of [14]. In Section 5, we describe novel algorithms for

1. The techniques and results in this paper easily generalize to more general reward functions. We
adopt a less general formulation to simplify the presentation.

2. In this paper, we focus on expected discounted cumulative reward as a performance criterion,
but other criteriag.g.,total or average reward [14], are also applicable to bounded-parameter
MDPs.
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computing the interval analogs of these value functions for bounded-parameter
MDPs.

We present results from the theory of exact MDPs that rely on the concept of
normed linear spaces. We define operatfk, "Wihd , on the space of value
functions. We then use the Banach fixed-point theorem (Theorem 1) to show that
iterating these operators converges to unique fixed-pdifits, Vand respectively
(Theorem 3 and Theorem 4).

Let V denote the set of value functions @ . For each V , define the
(sup)norm of v by
IVl = max|v(q)l. (4)
deQ

We use the ternconvergencgéo mean convergence in the norm sense. The space
V together with| -|| constitute a complete normed linear spacBaoach Space

If U is a Banach space, then an operaiotJ —» U soatraction mappingf
there exists & Q<A <1 suchthfitv—Td <Alv—u| forall and Un

Define VI:V—>V andforeacheIl VI :V—V oneaghe Q by

VIR = max(R(p +7 3 Fode)v(@) , and )
oe 4cQ
VL)) = R(D+7 Y Fom(mv(a) - ©)
qeQ

In cases where we need to make explicit the MDP from which the transition func-
tion F originates, we write/l, . an¥I,, to denote the operaMls dhd

just defined, except that the transition functien F4 . More generally, we write
Viy V=V andVly, ,:V—V todenote operators defined on e@aehQ as:
Vi () = R(P+7 Y FY((p)V(A)
deQ
(7)
Vi o) = R(A+7 3 FM(a)v(a)
deQ

Using these operators, we can rewrite the definitiotvfor ~ \gnd as
Vi(p) = VI(V)(p) and V. (p) = VI (V. )(p) (8)

for all statesp € Q . Thisimplies that® and_  are fixed point3/df &g :
respectively. The following four theorems show that for each operator, iterating the
operator on an initial value estimate converges to these fixed points. Proofs for
these theorems can be found in the work of Puterman [14].

Bounded-parameter Markov Decision Procesdsy 22, 2000 6



Theorem 1. For any Banach spacd  and contraction mappingy — U ,
there exists a unique® i such tiBt* = v*  ; and for arbitrely Uin
the sequencév"} defined by = Tv"-1 = T"O0  convergesg'to

Theorem 2: VI andVI_ are contraction mappings.

Theorem 1 and Theorem 2 together prove the following fundamental results in the
theory of MDPs.

Theorem 3: There exists a unique/* € V. satisfying = VI(v*) ; further-
more,v" = V" . SimilarlyV_ is the unique fixed-point ufl

Theorem 4: For arbitrary V0 € V , the sequencévh} defined kY =
VI(vh-1) = VI"(vO) converges tov™ . Similarly, iteratinyl . converges to
\Y

An important consequence of Theorem 4 is that it provides an algorithm for find-
ing V* andV_ . In particular, to find/*  we can start from an arbitrary initial value
function v in V , and repeatedly apply the operaidr to obtain the sequence
{v"} . This algorithm is referred to aslue iteration Theorem 4 guarantees the
convergence of value iteration to the optimal value function. Similarly, we can
specify an algorithm calledolicy evaluatiorthat findsV_ by repeatedly applying
V1 starting with an initiab® e V .

T

The following theorem from [12] states a convergence rate of value iteration
and policy evaluation that can be derived using bounds on the precision needed to
represent solutions to a linear program of limited precision (each algorithm can be
viewed somewhat nontrivially as solving a linear program).

Theorem 5: For fixedy , value iteration and policy evaluation converge to the
optimal value function in a number of steps polynomial in the number of states,
the number of actions, and the number of bits used to represent the MDP
parameters.

Another important theorem that is used extensively in the proofs of the suc-
ceeding sections results directly from the monotonicity of ¥He operator with
respect to thes,,,, and,,, orderings, together with the above theorems.

Theorem 6: Let © € IT be a policy andV an MDP. Suppose there exists
ue V for which U<ym (Zgom) Vg, () , thenu <yom(Zgom) Vi 5 - Likewise
for the orderings<y,, ancyo,

4. Bounded-parameter Markov Decision Processes

A bounded-parameter MDP (BMDR3 a four tupleM, = (Q, A F,R) where
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Figure 1. The state-transition diagram for a simple bounded-parameter Ma
decision process with three states and a single action. The arcs indicate p
transitions and are labeled by their lower and upper bounds.

Q andA are defined as for MDPs, afkd  aRd are analogous to the MDP
andR but yield closed real intervals instead of real values. That is, for any action
a and statep, g R(p) an#, (o) are both closed real intervals of the form
[I,u] for real numberd andi with<u , where in the caseFof  we require
0<l<u<1.23ToensurethaF, admits only well-formed transition functions, we
require that for any action  and state , the sum of the lower bounBs,0f(a)

over all stateg) must be less than or equalto  while the upper bounds must sum
to a value greater than or equalio . Figure 1 depicts the state-transition diagram
for a simple BMDP with three states and one action. We use a one-action BMDP to
illustrate various concepts in this paper because multi-action systems are awkward
to draw, and one action suffices to illustrate the concepts. Note that a one action
BMDP or MDP has only one policy available (select the only action at all states),
and so represents a trivial control problem.

ABMDP M, = (Q, A F,R) defines a set of exact MDPs that, by abuse of
notation, we also calM, . For any exact MD® = (Q',A’,F',R’) , we have
MeM, if Q =Q', A= A, and for any actioro. and statgs q R/(p) IS in
the intervalR (p) and:'p’ q(a) is in the intervdd, , (o) . We rely on context to
distinguish between the tuple view &,  and the set of exact MDPs vieMl, of
In the remaining definitions in this section, the BMIN® is implicit. Figure 3
shows an example of an exact MDP belonging to the family described by the
BMDP in Figure 1. We use the convention that thick wavy lines represent interval
valued transition probabilities and thinner straight lines represent exact transition
probabilities.

3. To simplify the remainder of the paper, we assume that the reward bounds are alwayss tight,
that for allg e Q , for some redl R(q) = [I,1] , and we refento Rig) . The generalization
of our results to nontrivial bounds on rewards is straightforward.
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An interval value functionV, is a mapping from states to closed real inter-
vals. We generally use such functions to indicate that the value of a given state falls
within the selected interval. Interval value functions can be specified for both exact
MDPs and BMDPs. As in the case of (exact) value functions, interval value func-
tions are specified with respect to a fixed policy. Note that in the case of BMDPs a
state can have a range of values depending on how the transition and reward
parameters are instantiated, hence the need for an interval value function.

For each interval valued functioe.g., F,, R, V., , and those we define later)
we define two real valued functions that take the same arguments and return the
upper and lower interval bounds, respectively, denoted by the following syntactic
variations:F; ,R+ \V; forupper bounds, afkd R, Vi,  forlower bounds, respec-
tively. So, for example, at any staje  we havéy) = [Vi(q), V1(9)]

We note that the number of MDRd € M,  is in general uncountable. We start
our analysis by showing that there is a finite subsgt € M, of these MDPs of
particular interest. Given any orderi@  of all the stateQin , there is a unique
MDP M € M, that minimizes, for every statg and actiean , the expected “posi-
tion in the ordering” of the state reached by taking aciion in sgate — in other
words, an MDP that for every statgand actionn sends as much probability mass
as possible to states early in the orderdgvhen taking actior. in stateq. For-
mally, we define the following concept:

Definition 1. Let O = qy,0,, ..., q, be an ordering ofQ . We define the
order-maximizing MDPM 5 with respect to orderin®  as follows.

Let r be the indexL <r <k that maximizes the following expression without
letting it exceed 1:

r-1 k
2 Frpq(@) + 2 Fup (@) (9)
i=1 i=r

The valuer is the index into the state orderifg } such that below index
we assign the upper bound, and above index we assign the lower bound, with
the rest of the probability mass from under being assignegto . Formally,
we selecMy € M, by choosinﬁ'g{'%(a) foralle Q as follows:

Frpg(@) if j<r

FMo(a) = and

PG Flpg(@) if j>r
i=k
Fglq?(o‘) =1-> Fli\)/lq?(a)'

i=1i#r
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Figure 2: An illustration of the transition probabilities in the order-maximiz
MDP at the statgp for the order shown. The lighter shaded portions of ea
represent the required lower bound transition probability and the darker s
portions represent the fraction of the remaining allowed transition proba
assigned to the arc by

—0.89
Reward =9
0.11
Reward = 1 -
0.1
0.9%
0.3 Reward = 10

Figure 3: The order-maximizing MDP for the BMDP shown in Figure 1 us
the state order 2 >3 > 1.

Figure 2 shows a diagrammatic representation of the order-maximizing MDP at a
particular statep for the particular ordering of the state space shown. Figure 3
shows the order-maximizing MDP for the particular BMDP shown in Figure 1
using a particular state order (2 > 3 > 1), as a concrete example.
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Definition 2. Let X,, be the set of order-maximizing MDRd, M, ,one
for each ordering® . Note that since there are finitely many orderings of states,
Xy s finite.

We now show that the set,,  in some sense contains every MDP of interest from
M., . In particular, we show that for any policy and any MM N | the value
of = in M is bracketed by values af in two MDPsXg,

Lemma 1: For any MDPM € M, ,
(a) For any policyr € IT , there are MDR&; € Xy, alld, € Xy such

that
VMl,ngdomVM,nSdomVMz,n : (10)
(b) Also, for any value functiom e V , there are MDHs X, and
M, e Xy, such that
VIMM(V) <gom VIm, (V) SdomVIMA’ V) . (11)

Proof: See Appendix.

Interval Value Functionsfor Policies. We now define the interval analogue to the
traditional MDP policy-specific value functio, , and state and prove some of
the properties of this interval value function. The development here requires some
care, as one desired property of the definition is not immediate. We first observe
that we would like an interval-valued function over the state space that satisfies a
Bellman equation like that for traditional MDPs (as given by Equation 2). Unfortu-
nately, stating a Bellman equation requires us to have specific transition probabil-
ity distributions F rather than a range of such distributions. Instead of defining
policy value via a Bellman equation, we define the interval value function directly,

at each state, as giving the range of values that could be attained at that state for the
various choices of allowed by the BMDP. We then show that the desired mini-
mum and maximum values can be achieved independent of the state, so that the
upper and lower bound value functions are just the values of the policy in particu-
lar “minimizing” and “maximizing” MDPs in the BMDP. This fact enables the use

of the Bellman equations for the minimizing and maximizing MDPs to give an
iterative algorithm that converges to the desired values, as presented in Section 5

Definition 3. For any policyr and statq , we define théerval valueV, (q)
of © atq to be the interval
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V, (0) = L\Znel?/l Vi, =), I\TS;( VM,n(Q)] (12)

We note that the existence of these minimum and maximum values follows
from Lemma 1 and the finiteness of the 3§} — because Lemma 1 implies
thatV, (g) is the same as the following where the minimization and maximiza-

tion are done over finite sets:

— | mnV max VvV
V@ = | m i Vi, (0 maX Vi @), (13)

In preparation for the discussion in Section 5, we show in Theorem 7 that for any
policy there is at least one specifiolicy-maximizingVIDP in M, that achieves the
upper bound in Definition 3 at all statgs  simultaneously (and likewise a different
specific policy-minimizingMDP that achieves the lower bound at all statgs
simultaneously). We formally define these terms below.

Definition 4. For any policyr , an MDPM e M,  ist-maximizingif V,
dominatesVy,. , foranyM'e M, Le, foranyM’'e M, ,Vy  2nVy -
Likewise,M € M, isn m|n|m|Z|ng|f it is dominated by all such/M, ie.,
foranyM" e M, Vi <4somVm' 1 -

Figure 4 shows the interval value function for the only policy available in the (triv-
ial) one-action BMDP shown in Figure 1, along with tirenaximizing andt-min-
imizing MDPs for that policy.

We note that Lemma 1 implies that for any single site  and any pelicy we can
select an MDPM € M, to maximize (or minimizey,, .(q) by selecting the
MDP in X,, that gives the largest value far at . However, we have not shown
that a single MDP can be chosen to 5|multaneously maximize (or minimize)
V. (0) atall statesg e Q i(e., that there existt -maximizing and  -minimiz-
ing MDPs). In order to show this fact, we show how to compose two MDPs (with
respect to a fixed policg ) to construct a third MDP such that the value of in the
third MDP is not less than the value of in either of the initial two MDPs, at every
state. We can then constructta -maximizing MDP by composing together all the
MDPs that maximize the value of at the different individual states (likewise for
n-minimizing MDPs using a similar composition operator). We start by defining
the just mentioned policy-relative composition operators on MDPs:

Definition 5. Let @] and®[., denote composition operators on MDPs with

respect to a policyt € IT , defined as follows:
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V, = [80.1 85.3

Reward = 10
V, = [70.1, 79.9

V = 80.1 V = 85.2
Reward =9 Reward = 9

Reward = 10 Reward = 10
V =701 V =798
n—minimizing MDP n—maximizing MDP

Figure 4: The interval value function (shown ag on the top subfigu
policy-minimizing MDP with state values (lower left), and policy-maximiziy
MDP with state values (lower right) for the one-action BMDP shown in Figuf
under the only policy. We assume a discount factor of 0.9. Note that the Ig
bound values in the interval value function are the state values under the p
minimizing MDP, and the upper-bound values are the state values unde
policy-maximizing MDP. Also, note that the policy-maximizing MDP is t
order-maximizing MDP for the state order 3>2>1 and the policy-minimiz
MDP is the order-maximizing MDP for the order 1>2>3—policy-minimizif
and maximizing MDPs are always order-maximizing for some order (but
orders need not be reverse to one another as they are in this example).
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V = 84.8 V = 85.0 V = 85.2
Reward = 9 Reward = 9 Reward = 9

Reward = 10 Reward = 10 Reward = 10

V =794 V =793 V =798
MDP M; MDP Mj M, &% M,

Figure 5. Two MDPsM, andM, from the BMDP shown in Figure 1, and the
composition under®?r ., whereis the only available policy in the one-actic
BMDP. State transition probabilities for the composition MDP are selected
the component MDP that achieves the greater value for the source state
transition. State values are shown for all three MDPs — note that
composition MDP achieves higher value at every state, as claimed in Lem

If M, M, e M,, thenM5 = M, ®F .. M, if for all state, qe Q ,

Fha(a)  if Viy (p) =V (p) ando=n(p)

FMs(a) =
P Fhi(a)  otherwise

If M, M, e M,, thenM5; = M, @1, M, if for all state, qe Q ,
F'r\JAql(O‘) if Vi (P) <Vy (p) anda=r(p)

Fh@(o)  otherwise

We give as an example in Figure 5 two MDPs from the BMDP of Figure 1, along

with their composition under thé&[ .. operator wheres the single available

policy for that one-action BMDP. We now state the property claimed above for this

MDP composition operator:

Lemma 2: Let t be a policy inf1 and1,, M, be MDPs M,
(a) ForM3 = M ®F . M, ,

max

VMS,nZdomVMlan andVMMzdomv,\,lwE , and (14)
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(b) forM; = M &%, M,

Vi, Saom Vi, ¢ ANV 2 <omViy 1 - (15)

Proof: See Appendix.
These MDP composition operators can now be used to show the existence of pol-
icy-maximizing and policy-minimizing MDPs withil,

Theorem 7: For any policyrn € IT , there exist -maximizing amd -minimiz-
ing MDPs inXMI M,

Proof: EnumerateX,, as a finite sequence of MDRs, ...,M, . Consider
composing these MDPs together to construct the WDP  as follows:
M = (((M ®max 2) @max ) ®max k) (16)

Note thatM may depend on the orderingMf, ..., M, , but that any ordering
is satisfactory for this proof. It is straightforward to show by induction using
Lemma 2 thatVy, ; 2¢mVy, , foreach<i<k ,andthen Lemma 1 implies
that vV, . dova for anyM e M, .M is thus ar -maximizing MDP.
AIthougﬁ M may ot be inXy, , Lemma 1 implies thetf, ,  must be domi-
nated byV,, . for som#’ e X,\,I , Which must alsosbe -maximizing.

An identical proof implies the existence of -minimizing MDPSs, replacing
each occurrence of “max” with “min” and eagly,, Wwih,,, O

Corollary 1: Vi, = miny .y (Vy, o) andVy, = maxy, .y (Vy, ) where the
minimum and maximum are computed relative 4g,, and are well-defined by
Theorem 7.

We give an algorithm in Section 5 that convergesvq by also converging to a
m-minimizing MDP in M, (similarly forV;_, exchangingt -maximizing fot -
minimizing).

Optimal Value Functionsin BMDPs. We now consider how to define an optimal
value function for a BMDP. First, consider the expressimax_ _ (V. ) . This
expression is ill-formed because we have not defined how to rank the interval value
functions V, _ in order to select a maximuhive focus here on two different
ways to order these value functions, yielding two notions of optimal value function
and optimal policy. Other orderings may also yield interesting results.

First, we define two different orderings on closed real intervals:

4. Similar issues arise if we attempt to define the optimal value function using a Bellman style
equation such as Equation 3 because we must compute a maximization over a set of intervals.
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([ U] Spesllo, Us]) & (11 <1, or (I=15 AUy <Uy))
(17)

([11, Ug] <ope[15, Upl) < (Ug < Uy Or (Up=up Aly<1y))

We extend these orderings to partial orders over interval value functions by relat-
ing two value functionsV, ; <,/ V,, only whenV, ;(q) <,/ V. () for every state

g. We can now use either of these orderings to compoéex. _ ; (V, ) , yielding
two definitions of optimal value function and optimal policy. However, since the
orderings are partial (on value functions), we prove first (Theorem 8) that the set of
policies contains a policy that achieves the desired maximum under each ordering
(i.e., a policy whose interval value function is ordered above that of every other

policy).

Definition 6. An optimistically optimal policyr,, is any policy such that
V., _OptV for all policiesn . Apessimistically optimal policy,. is any pol-
icy such that\/I 2,,6,5\/I7T for all policies

In Theorem 8, we prove that there exist optimistically optimal policies by
induction (an analogous proof holds for pessimistically optimal policies). We
develop this proof in two stages, mirroring the two-stage definitioregf (first
emphasizing the upper bound and then breaking ties with the lower bound). We
first construct a policyt’ for which the upper bounds of the interval value function
Vi dominate thosé&/; ., of any other polisy’ . We then show that the finite set
of such policies (all tied on upper bounds) can be combined to construct a policy
T With the same upper bound valu¥s_ and whose lower bqugs domi-
nate those of any other policy. Each of these constructions relies on the following
policy composition operator:

Definition 7. Let @, and@ denote composition operators on policies,
defined as follows. Consider poI|C|e§ n,ell

Let g = ny @, if for all statesp e Q :

opt
_ TCl(p) i V (p) —opt (p) 18
o(P) = n(p)  otherwise (19)
Let my = my ®peqm,, if for all statespe Q -
_ m1(p) if V, (p) Zpes nz(p) 19
o(P) = n(p)  otherwise (19)
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Our task would be relatively easy if it were necessarily true that

V,

17[2 .

V. - and V, (20)

V, > >
t(my optnz) Opt t(my optnz) opt

(and likewise for the pessimistic case). However, because of the lexicographic
nature of >, , these statements do not hold (in particular, the lower bound values
for some states may be worse in the composed policy than in either component
even when the upper bounds on those states do not change). For this reason, we
prove a somewhat weaker result that must be used in a two-stage fashion as dem-
onstrated below:

Lemma 3: Given a BMDPM, , and policiest;, m, e IT 73 = 13 @1,
andm, = m; GBpeSnz ,

(a) VTTL'3 Zdom VTT[l andVTTca Zdom VTTCZ

(b) If Vo =Vi then Vo >, Vo, andV, | >, V.
(©) V¢n4 Zgom Vg andv% _domV¢

(d) If Vi =Vig, ‘then V. _peSV

11‘[1

andV _peSV

111;2
Proof: See Appendix.

Theorem 8: There exists at least one optimistically (pessimistically) optimal
policy.

Proof: Enumeratell as a finite sequence of policigs..., . Consider
composing these policies together to construct the p@[j@/up as follows:
opL up (((nl opt TCZ) ®opt ) 6aopt Tck) (21)
Note thatr, ,,, may depend on the orderingmgf ..., m, , but that any order-
ing is satisfactory for this proof. It is straightforward to show by induction using
Lemma 3that,, = >4, VTn foreach <i<k .Now enumerate the subset of
IT for which the va1ue function upper bounds equal thosa(g& up i.e.,enu-
merate{n’ | Vs = VTn } as{n,',...,m'} . Consider again composmg the
policiesr;" together as Above to form the polmagt
opt (((nl opt 1t2') @opt ) @opt nk’) (22)
It is again straightforward to show using Lemma 3 thlaf  >,,,, Vi . for each

1<i<l. It follows immediately thatV,, >,Vi, for everyr e 11 , as
Qeswed. A similar construction u3|r@peS ylelds a pessimistically optimal pol-
ICY Tpes. [

Theorem 8 justifies the following definition:
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Definition 8. The optimistic optimal value functioV, ,,, and thepessimistic
optimal value functiorV, .., are given by:

Vigpt = Max, _;(V.,) using <., to order interval value functions
\/ipes

max_ _;(V.,) using <, to order interval value functions

The above two notions of optimal value can be understood in terms of a two player
game in which the first player chooses a policy and then the second player
chooses the MD® iV, in which to evaluate the policy (see Shapley’s work
[16] for the origins of this viewpoint). The goal for the first player is to get the
highes{’ resulting value function/,, .~ . The upper bounds,, of the optimisti-
cally optimal value function represent the best value function the first player can
obtain in this game if the second player cooperates by selecting an MDP to maxi-
mize V), . (the lower bound/,,, corresponds to how badly this optimistic strat-
egy for the first player can misfire if the second player betrays the first player and
selects an MDP to minimiz¥,, . ). The lower bounds.;  of the pessimistically
optimal value function represent the best the first player can do under the assump-
tion that the second player is an adversary, trying to minimize the resulting value
function.

We conclude this section by stating a Bellman equation theorem for the opti-
mal interval value functions just defined. The equations below form the basis for
our iterative algorithm for computing the optimal interval value functions for a
BMDP. We start by stating two definitions that are useful in proving the Bellman
theorem as well as in later sections. It is useful to have notation to denote the set of
actions that maximize the upper bound at each state. For a given value fuviction
we write p,, for the function from states to sets of actions such that for each state

P,

py(p) = argmaxmax Vly, (V)(p). (23)
acA MeM,

Likewise, for the pessimistic case, we defiag for the function from states to
sets of actions giving the actions that maximize the lower bound. For eaclpstate

oy(p) is given by

oy(p) = argmaxmin VI, ,(V)(p). (24)
acA MeM, ’

Theorem 9: For any BMDPM, , the following Bellman-like equations hold at
every state,

5. Value functions are ranked by,
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Vi) = Max | min Vi, (Vi) (). MaX Vi (Vid(P) | (25)
aehA < “MeM, M e M,

and

VipedP) = MAX | MIN Vi o(Veped(P). MAX Vi o(Viped(P) | (26)
achA <-MeM, M e M,

Proof: See Appendix.

5. Estimating Interval Value Functions

In this section, we describe dynamic programming algorithms that operate on
bounded-parameter MDPs. We first define the interval equivalent of policy evalua-
tion IVI, . which computes/, , and then define the variaits BAd oo
which compute the optimistic and pessimistic optimal value functions.

5.1 Interval Policy Evaluation

In direct analogy to the exact MDP definition dfl in Section 3, we define a
function VI, _ (forinterval value iteratiof which maps interval value functions to
other interval value functions. We prove that iterativg, on any initial interval
value function produces a sequence of interval value functions that converges to

V., in a polynomial number of steps, given a fixed discount factor
IVI, _(V,) is an interval value function, defined for each sfate  as follows:
IVI(V)(P) = | min Viy, (V)(p), Max Vi, (Vi)(P)| @7)
M e M, MeM,

We definelVI, . andVI;_ to be the corresponding mappings from value functions
to value functions (note that for inpM 1VI, . does notdepend/on  and so can
be viewed as a function froMd W — likewise fdf, . aAad ).

The algorithm to computévIl, s very similar to the standard MDP computa-
tion of VI, except that we must now be able to select an MDP  from the family
M, that minimizes (maximizes) the value attained. We select such an MDP by
selecting a transition probability functida  within the bounds specified byrthe
component ofM, to minimize (maximize) the value — each possible way of
selectingF corresponds to one MDP Ny . We can select the valug )
independently foreachh angl , but the values selected for different sfates  (for
fixed o andp ) interact: they must sum up to one. We now show how to determine,
for fixed o andp , the value oIFp (o) for each staje so as to minimize (maxi-
mize) the expressio Q(qu(a V(q) . This step constitutes the heart of the
IVI, . algorithm and the only significant way the algorithm differs from standard
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Figure 6: An illustration of the basic dynamic programming step
computing an approximate value function for a fixed policy and bound
parameter MDPV;  gives the upper bounds of the current interval estim
of V_. The Irghter shaded portions of each arc represent the required I
bound transition probability and the darker shaded portions represen
fraction of the remaining transition probability to the upper bound assigne
the arc byF .

policy evaluation by successive approximation by itera¥ihg

To compute the lower bound¥l, the idea is to sort the possible destination
statesq into increasing order according to théjr value, and then choose the
transition probabilities within the intervals specified By = so as to send as much
probability mass to the states early in the ordering (upper bounds are computed
similarly, but sorting the states into decreasing order by th&gir value). Let

= 0;, 0y, ..., O be such an ordering o@ — so that for all and if
1< I <j <k thenV(q,) <V¢(q) (increasing order). We can then show that the
order maximizing MDPM 4 |s the MDP that minimizes the desired expression
2qe Q(F'\" (0)V(Q)) . The order-maximizing MDP for the decreasing order based
on V; WI| maximize the same expression to generate the upper bound in
Equation 27.

Figure 6 illustrates the basic iterative step in the above algorithm, for the upper
bound,i.e. maximizing, case. The statgs  are ordered according to the value esti-
mates inV; . The transitions from a stgte  to stajes  are defined by the function
F such that each transition is equal to its lower bound plus some fraction of the
leftover probability mass. For a more precise account of the algorithm, please refer
to Figure 7 for a pseudocode description of the computatidvil of(V,)

Techniques similar to those in Section 3 can be used to prove that iterating
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VI, (V,, )

\\we assume that, is represented as:
\\ V. is a vector of n real numbers giving lower-bounds for staés q,
\\ V; is a vector of n real numbers giving upper-bounds for statés q,

{ CreateO, a vector oh states for holding a permutation of the state® q,

\\first, compute new lower bounds
O = sort_increasing_ordeyy{,...0n.<pp); \\ <|, compares state lower-boun(
Updatel{, x, O);

\\second, compute new upper bounds

O = sort_decreasing_ordgj(... 0n.<up); \\ <yp COMpares state upper-bnad
Updatey; i, O)}

\\ Updatey, =, 0) updates v using the order-maximizing MDP for o
\\ o is a state ordering—a vector of states (a permutation,of,q,)
\\ vis a value function—a vector of real numbers of length n
Updatey, =, 0)

{ CreateF’, a matrix ofn by nreal numbers

\\ the next loop sets F’ to describhen the order-maximizing MDP for o
for each statp {
used =Y Fup ((n(p)) ;
stateq
remaining = 1 — used,
\\ distribute remaining probability mass to states early in the ordering
fori=1ton { \\'i is used to index into ordering o
min = Fip, O(i)(n(p)) ;
desired =1, )(n(p)) ;
if (desired <= remaining)
thenF’ (p,o(i)) = min+desired;
elseF’ (p,o(i)) = min+remaining;
remaining = max(0,remaining-desired)}}
\\ F’ now describes in the order-maximizing MDP w/respect to O,
\\ finally, update v using a value iteration-like update based on F’
for each statp
v(p) =R(p) +v Y. F(p,q) v(a) }

stateq
Figure 7: Pseudocode for one iteration of interval policy evaluatlh, ( )

IVIL, (or IVI+ ) converges tov, (oN:_ ). The key theorems, stated below,
assert first thatVl,  is a contraction mapping, and second\that is a fixed-
point of IVly and are easily proven.

Theorem 10: For any policyr VI, andVI;_ are contraction mappings.
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Proof: See Appendix.

Theorem 11: For any policyn ,V._ is a fixed-point ofVI,  and;_  of
IVI+,, and thereford/, . is a fixed-point BfI,

These theorems, together with Theorem 1 (the Banach fixed-point theorem) imply
that iteratinglVI, . on any initial interval value function converged/tp , regard-
less of the starting point.

Theorem 12: For fixed y< 1, interval policy evaluation converges to the
desired interval value function in a number of steps polynomial in the number
of states, the number of actions, and the number of bits used to represent the
BMDP parameters.

Proof: (sketch) We provide only the key ideas behind this proof.

(a) By Theorem 10IVI,  is a contraction gy  on both the upper and lower
bound value functions, and thus the successive estimatés of produced
converge exponentially to the unique fixed-point.

(b) By Theorem 11, the unigue fixed-point is the desired value function.

(c) The upper bound and lower bound value functions making up the true
V, . are the value functions of in particular MDPs ( -maximizing and
n-minimizing MDPs, respectively) iiXy,

(d) The parameters for the MDPs XM can be specified with a number of
bits polynomial in the number of bits used to specify the BMDP parame-
ters.

(e) The value function for a policy in an MDP can be written as the solution
to a linear program. The precision of any such solution can be bounded in
terms of the number of bits used to specify the linear program. This preci-
sion bound allows the definition of a stopping condition fat, when
adequate precision is obtained.

O (Theorem 12).

5.2 Interval Value lteration

As in the case of alteriny| . to obtaMl , it is straightforward to modi#y, _

so that it computes optimal policy value intervals by adding a maximization step
over the different action choices in each state. However, unlike standard value iter-
ation, the quantities being compared in the maximization step are closed real inter-
vals, so the resulting algorithm varies according to how we choose to compare real
intervals. We define two variations of interval value iteration — other variations
are possible.
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VI,opV)(p) = max [min Vi o(V2)(p), Max VIM’Q(VT)(p)} (28)
aehA <, “MeM, M e M,

VI pedV)(P) = max min Vg, «(M)(p), max VIM’a(VT)(p)} (29)
(XEA,Spes MEMl MEM,

The added maximization step introduces no new difficulties in implementing the
algorithm—for more details we provide pseudocode I1‘<er10 i in Figure 8. We
discuss convergence fdvl,,, — the convergence resuItM%es are similar.
We first summarize our approach and then cover the same ground in more detail.

We write VI, for the upper bound returned byl, ;, , and we consider
'V|Topt a function romV tov becausle}/IT0 (V) dependsoniy\gn  due tothe
way <, compares intervals primarily based on their upper boiMdo ¢ can
easily be shown to be a contraction mapping, and it can be showh/m,at is a
fixed point of IVly, . . It then follows thatVIT0 ¢ convergest4,, (and we can
argue as forlVI, _  that this convergence occurs in polynomially many steps for
fixed y). The analogous results fdk/u0|ot are somewhat more problematic.
Because the action selection is done according o , which focuses primarily on
the interval upper bound$VI¢opt is not properly a mapping fldm Vto , asthe
action choice forIVI¢O t(V) depends on both awd . In particular, for each
state, the action that maX|m|zes the lower bound is chosen from among the subset
of actions that (equally) maximize the upper bound.

To deal with this complication, we observe that if we fix the upper bound value
function V; , we can vieV\NuoIDt as a function froMd ¥  carrying the lower
bounds of the input value function to the lower bounds of the output. To formalize
this idea, we introduce some new notation. First, given two value funciigns  and
V, we define the interval value functidiv,, V,]  to be the function from states
to intervals[V,(p), V,(p)] (this notation is essentially the inverse of thend T
notation which extracts lower and upper bound functions from interval functions).
Usmg this new notation, we define a famifyVi,, ot V) of functions fram  to

V, indexed by a value functio’’/ . For each value functign , we define
IVIyopt v(V') to be the function fromv  td/  that mapé’ Wuopt([V’,V])
(Ana ogously, we defindVly o (V') to mag’ tb/lTpeS([V, V']) ). We note

thatIVly,, v has the following relationships gl

VL opfM) = [IVEgp v (V0), VIV

B (30)
IVIigpdV) = IVEgn v, (V1)

In analyzinglVIIopt , we also use the notation defined in Section 4 for the set of
actions that maximize the upper bound at each state. We restate the relevant defini-
tion here for convenience. For a given value functibon , we wsige  for the func-
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IVI ! opt(\/l)

\\we assume that, is represented as:
\\ V. is a vector of n real numbers giving lower-bounds for staés q,
\\ V; is a vector of n real numbers giving upper-bounds for statés q,

{ CreateO, a vector oh states for holding a permutation of the state® q,

\\first, compute new lower bounds
O = sort_increasing_ordeyy{,...0n.<pp); \\ <|, compares state lower-boun(
VI-Update(V. ,0);

\\second, compute new upper bounds

O = sort_decreasing_ordgj(... dn.<up); \\ <yp COMpares state upper-bnad
VI-Update(V; ,0)}

\\ VI-Updateg, 0 updates v using the order-maximizing MDP for o
\\ o is a state ordering—a vector of states (a permutation,af,q,)
\\ vis a value function—a vector of real numbers of length n
VI-Updatef, 0)

{ CreateF,, a matrix ofn by nreal numbers for each actian

\\ the next loop sets each t# describe a in the order-maximizing MDP foj
for each statp and actiora {
used =Y Fi, (@) ;
stateq
remaining = 1 — used,
\\ distribute remaining probability mass to states earlier in ordering
fori=1ton { \\'i is used to index into ordering o
min = Fip, O(i)(a) ;
desired :F¢p’0(i)(a) X
if (desired <= remaining)
thenF4(p,0(i)) = min+desired,
elseF,(p,o(i)) = min+remaining;
remaining = max(0,remaining-desired)}}

\\ F, now describes a in the order-maximizing MDP w/respect to O,
\\ finally, update v using a value iteration-like update based on F’
for each statp

vp) = max [Rp)+y 3 Fa(p.a) v(a) }]

aeA stateq

Figure 8: Pseudocode: an iteration of optimistic interval value iteratigih, ()pt

tion from states to sets of actions such that for each gtate

py(p) = argmaxmax Vi, .(V)(p) (31)
aeA MeM,
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Likewise, for the pessimistic case, we defirgd in Section 4.

Given the definition of<,, , it is straightforward to show the following lemma.

Lemma 4: For any value function¥, V' and stgte
Vg v(V(P) = max  min Vi (V)(p)
a € pv(p) M € M1

max min Vi (V')(p)
aeocy(p) MeM,

(32)

IVI Tpes V(V’)(p)

Proof: By inspection of the definitions cbvllopt amﬂlpes

O (Lemma 4).

We now show that for eack 'VUopr,v IS a contraction mapping relative to the
sup norm, and thus converges to a unique fixed point, as desired. Theorem 9 then
implies thatV, ., is the unique fixed-point found/, (s  inthe casé\df .. ). We
then show at that at any point after polynomially many iteration:l;\/chOIDt , the
resulting interval value functio®, has upper bounds  that have converged to a
fixed point of IVl+ , and thus further iteration &1, .,  is equivalent to iterating
IVIrgpe @and IV, . together in parallel to generate the upper and lower bounds,
respectively. We can also show that for adly , polynomially many iterations of
VI, v suffice for convergence to a fixed point. Similar results holdi¥dr,

We now give the details of these results.

Theorem 13:
(@) IVt opt andIVI¢Ioes are contraction mappings.
(b) For any value functio’v and associated action set selection fungion
andoy IVl andVipgegy are contraction mappings.

Proof: See Appendix.

Theorem 14: For fixedy , polynomially many iterations ¢¥/1, .,  can be used

to find V, o ,» and polynomially many iterations d)‘f/lipes can be used to find
V, pes, With both polynomials defined relative to the problem size including the
number of bits used in specifying the parameters.

Proof: (sketch)

The argument here is exactly as in Theorem 12, relying on Theorems 9 and 13,
except that the iterations must be taken to convergence in two stages. Consider-
ing |V|¢opp we must first iterate until the upper bound has converged, with the
polynomial-time bound on iterations deriving by a similar argument to the
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proof of Theorem 12; then once the upper bounds have converged we must then
iterate until the lower bounds have converged, again in polynomially many iter-
ations by another argument similar to that in the proof of Theorem 12.

More precisely, leV,; V., ... , be asequence of interval value functions found
by iterating IVI, ., , so that for each greater or equallto  we hdyg

equal to |V|Iopt(V¢i) . Then an argument similar to the proof of Theorem 12
guarantees that for sonje polynomial in the size of the prob‘ilg[n, must have
upper bounds that are equal to the true fixed point upper bound values, up to the
maximum precision of the true fixed point. We then know that truncating the
upper value bounds iV¥,; to that precision (to get an interval value function
V.,") gives the true fixecj point upper bound values. We can then it@va;gpt
starting onV, ;" to get another sequence of value functions where the upper
bounds are unchanging and the lower bounds are converging to the correct fixed
point values in the same manner.

A similar argument shows polynomial convergencel‘fl:igIDes
O (Theorem 14).

6. Policy Selection

In this section, we consider the problem of selecting a policy based on the value
bounds computed by our IVI algorithms. This section is not intended as an addi-
tional research contribution as much as a discussion of issues that arise in solving
BMDP problems and of alternative approaches to policy selection (other than the
optimistic and pessimistic approaches we take here). We begin by reemphasizing
some ideas introduced earlier regarding the selection of policies. To begin with, it
is important that we are clear on the status of the bounds in a bounded-parameter
MDP. A bounded-parameter MDP specifies upper and lower bounds on individual
parameters; the assumption is that we have no additional information regarding
individual exact MDPs whose parameters fall with those bounds. In particular, we
have no prior over the exact MDPs in the family of MDPs defined by a bounded-
parameter MDP. We note again that in many applications it is possible to compute
prior probabilities over these parameters, but that these computations are prohibi-
tively expensive in our motivating application (solving large state-space problems
by approximate state-space aggregation).

Despite the fact that a BMDP does not specify which particular MDP we are
facing, we may have to choose a policy. In such a situation, it is natural to consider
that the actual MDR,e., the one in which we ultimately have to carry out the pol-
icy, is decided by some outside process. That process might choose so as to help or
hinder us, or it might be entirely indifferent. To maximize potential performance,
we might assume that the outside process cooperates by choosing the MDP in
order to help us; we can then select the policy that performs as well as possible
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given that assumption. In contrast, we might minimize the risk of performing
poorly by thinking in adversarial terms: we can select the policy that performs as
well as possible under the assumption that an adversary chooses the MDP so that
we perform as poorly as possible (in each case we assume that the MDP is chosen
from the BMDP family of MDPsafterthe policy has been selected in order to min-
imize/maximize the value of that policy).

These choices correspond to optimistic and pessimistic optimal policies as
defined above. We have discussed in the last section how to compute interval value
functions for such policies — such value functions can then be used in a straight-
forward manner to extract policies that achieve those values.

We note that it may seem unnatural to be required to take an optimistic or a
pessimistic approach in order to select a policy — certainly this is not analogous to
policy selection for standard MDPs. This requirement grows out of our model
assumption that we have no prior probabilities on the model parameters, and we
have argued that this assumption is in fact natural at very least in our motivating
domain of approximate state-space aggregation. The same assumption is also natu-
ral in performing sensitivity analysis, as described in the next section. We also note
that there is precedent in the related MDP literature for considering optimistic and
pessimistic approaches to policy selection in the face of uncertainty about the
model; see, for example, the work of Satia and Lave in [15].

Alternative approaches to selecting a policy are possible, but some approaches
that seem natural at first run into trouble. For instance, we might consider placing a
uniform prior probability on each model parameter within its specified interval.
Unfortunately, the model parameters cannot in general be selected independently
(because they must together represent a well-formed probability distribution after
selection), and there may not even be any joint prior distribution over the parame-
ters which marginalizes to the uniform distribution over the provided intervals
when marginalized to each parameter. Therefore, the uniform distribution over the
provided intervals does not enjoy any distinguished status — it may not even cor-
respond to a well-formed prior over the underlying MDPs in the BMDP family.

There are other well-formed choices corresponding to other means of totally
ordering real closed intervals (other thag, afg. ). For instance, we might
order intervals by their midpoints, asserting a preference for states where the high-
est and lowest value possible in the underlying MDP family have a high mean. Itis
not clear when this choice might be prefered; however, we believe our methods can
be naturally adapted to compute optimal policy values for other interval orderings,
if desired.

A natural goal would be to find a policy whose average performance over all
MDPs in the family is as good as or better than the average performance of any
other policy. This notion of average is potentially problematic, however, as it
essentially assumes a uniform prior over exact MDPs and, as stated earlier, the
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bounds do not imply any particular prior. Moreover, it is not at all clear how to find
such a policy — our methods do not appear to generalize in this direction. As
noted just above, this goal doast correspond to assuming a uniform prior over
the model parameters, but rather a more complex joint distribution over the param-
eters. Also, this average case solution would not in general provide useful informa-
tion in our motivating application of state-space aggregation: we would have no
guarantee that the uniform prior over MDP models consistent with the BMDP had
any useful correlation with the original large MDP that aggregated to the BMDP.
In contrast, as discussed below, the optimistic and pessimistic bounds we compute
apply directly to any MDP when the BMDP analyzed is formed by state-space
aggregation of that MDP. Nevertheless, the question of how to compute the opti-
mal average case policy for a BMDP appears to be a useful direction for future
research.

7. Prototype Implementation Results and Potential Applications

In this section we discuss our intended applications for the new BMDP algorithms,
and present empirical results from a prototype implementation of the algorithms
for use in state-space aggregation. We note that no particular difficulties were
encountered in implementing the new BMDP algorithms — implementation is
more demanding than that of standard MDP algorithms, but only by the addition of
a sorting algorithm.

Sengitivity Analysis. One way in which bounded-parameter MDPs might be useful

in planning under uncertainty might begin with a particular exact MDP (say, the
MDP with parameters whose values reflect the best guess according to a given
domain expert). If we were to compute the optimal policy for this exact MDP, we
might wonder about the degree to which this policy is sensitive to the numbers
supplied by the expert.

To assess this possible sensitivity to the parameters, we might perturb the MDP
parameters and evaluate the policy with respect to the perturbed MDP. Alterna-
tively, we could use BMDPs to perform this sort of sensitivity analysis on a whole
family of MDPs by converting the point estimates for the parameters to confidence
intervals and then computing bounds on the value function for the fixed policy via
interval policy evaluation.

Aggregation. Another use of BMDPs involves a different interpretation altogether.
Instead of viewing the states of the bounded-parameter MDP as individual primi-
tive states, we view each state of the BMDP as representing a aggoegateof
states of some other, larger MDP. We note that this use provides our original moti-
vation for developing BMDPs, and therefore it is this use that we give prototype
empirical results for below.

In the state-aggregate interpretation of a BMDP, states are aggregated together
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because they behave approximately the same with respect to possible state transi-
tions. A little more precisely, suppose that the set of states of the BMDP corre-
sponds to the set adblocks {B,, ..., B,} such that the{B;} constitutes the
partition of another MDP with a much larger state space.

Now we interpret the bounds as follows; for any two blodks ﬁ]d , let
F, BjB_((x) represent the interval value for the transition frém Bo on action
defined as follows:

Fopp (@) = [min Y Fofo), max Y qu((x)} (33)
: PeB geB; PeB qgeB;

Intuitively, this means that all states in a block behave approximately the same
(assuming the lower and upper bounds are close to each other) in terms of transi-
tions to other blocks even though they may differ widely with regard to transitions
to individual states.

In Deanet. al.[10] we discuss methods for using an implicit representation of
a exact MDP with a large number of states to construct an explicit BMDP with a
possibly much smaller number of states based on an aggregation method. We then
show that policies computed for this BMDP can be extended to the original large
implicitly-described MDP. Note that the original implicit MDP is not even a mem-
ber of the family of MDPs for the reduced BMDP (it has a different state space, for
instance). Nevertheless, it is a theorem that the policies and value bounds of the
BMDP can be soundly applied in the original MDP (using the aggregation map-
ping to connect the state spaces). In particular, the lower interval bounds computed
on a given state block b1, ,.;  give lower bounds on the optimal value for states
in that block in the original MDP; likewise, the upper interval bounds computed by
IVt gpt give upper bounds on the optimal value in the original MDP.

Empirical Results. We constructed a prototype implementation of our BMDP
algorithms, interval value iteration and interval policy evaluation. We then used
this implementation in conjunction with implementations of our previously pre-
sented approximate state-space aggregation algorithms [10] in order to compute
lower and upper bounds on the values of individual states in large MDP problems.

The MDP problems used were derived by partially modelling air campaign
planning problems using implicit MDP representations. These problems involve
selecting tasks for a variety of military aircraft over time in order to maximize the
utility of their actions, and require modeling many aspects of the aircraft capabili-
ties, resources, crew, and tasks. Modeling the full problem as an MDP is still out of
reach — the MDP models used in these experiments were constructed by repre-
senting the problem at varying degrees of (extremely coarse) abstraction so that the
resulting problem would be within reach of our prototype implementation.

We show in Table 15 the original problem state-space size, the state-space size
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Table 15: Model Size after Approximate Minimization

ﬁ%ﬁe#smms =0 £=001 £=01 =03 £=05 £=0.8
9 512 114 114 72 24 11 8
10 | 1024 131 122 85 55 21 21
13 | 8192 347 347 272 148 66 63
14 | 16384 442 153 67 63
15 | 32768 520 152 88 69

IVI Inaccuracy: 0% 0.2% 10% 40% 58% 62%

of the BMDP that results from our aggregation algorithm, and the quality of the
resulting state-value bounds for several different sized MDP problems. Each row
in the table corresponds to a specific explicit MDP that we solved (approximately
and/or exactly) using state-space aggregation. We note that one paraghetier (

our aggregation method is the degree of approximation tolerated in transition prob-
ability — this corresponds to the interval width in the BMDP parameter intervals.
As this parameter is given larger and larger values across the columns of the table,
the aggregate BMDP model has fewer and fewer states — in return, the value
bounds obtained are less and less tight. The quality of the resulting state-value
bounds is given by showing “IVI Inaccuracy” — this percentage is the average
width of the value intervals computed as a percentage of the difference between
the lowest possible state value and the highest possible state value (these are
defined by assuming a repeated occurence of the lowest/highest reward available
for an infinite time period and computing the total discounted reward obtained).
Our prototype aggregation code was incapable of handling the exact and near-
exact analysis of the largest models tried, and those entries in the table are there-
fore missing.

We note that IVI inaccuracies of much greater than 25% may not represent
very useful bounds on state value (we have not yet conducted experiments to eval-
uate this question). For this reason, the last three columns of the table are shown
primarily for completeness and to satisfy curiosity. However, an inaccuracy of
10% can be expected to yield useful information in selecting between different
control actions — we can think of this level of inaccuracy as allowing us to rate
each state on a scale of one to ten as to how good its value is. Such ratings should
be very useful in designing control policies.

We note that our prototype code is not optimized in its handling of either space
or time. Similar prototype code for explicit MDP problems can handle no more
than a few hundred states. Production versions of explicit MDP code today can
handle as many as a million or so states. Our aggregation and BMDP algorithms,
even in this unoptimized form, are able to obtain nontrivial bounds on state value
for state-space sizes involving thousands of states. We believe that a production
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version of these algorithms could derive near-optimal policies for MDP planning
problems involving hundreds of millions of states.

8. Related Work and Conclusions

Our definition for bounded-parameter MDPs is related to a number of other ideas
appearing in the literature on Markov decision processes; in the following, we
mention just a few of the closest such ideas. First, BMDPs specialize the MDPs
with imprecisely known parameters (MDPIPs) described and analyzed in the oper-
ations research literature by White and Eldeib [17], [18], and Satia and Lave [15].
The more general MDPIPs described in these papers require more general and
expensive algorithms for solution. For example, [17] allows an arbitrary linear pro-
gram to define the bounds on the transition probabilities (and allows no impreci-
sion in the reward parameters) — as a result, the solution technique presented
appeals to linear programming at each iteration of the solution algorithm rather
than exploit the specific structure available in a BMDP as we do here. [15] men-
tions the restriction to BMDPs but gives no special algorithms to exploit this
restriction. Their general MDPIP algorithm is very different from our algorithm
and involves two nested phases of policy iteration — the outer phase selecting a
traditional policy and the inner phase selecting a “policy” for “natureg,, a
choice of the transition parameters to minimize or maximize value (depending on
whether optimistic or pessimistic assumptions prevail). Our work, while originally
developed independently of the MDPIP literature, follows similar lines to [15] in
defining optimistic and pessimistic optimal policies. In summary, when uncer-
tainty about MDP parameters is such that a BMDP model is appropriate, the
MDPIP literature does not provide an approach that exploits the restricted structure
to achieve an efficient method (we note appealing to linear programming at each
iteration can be very expensive).

Shapley [16] introduced the notion sfochastic game® describe two-person
games in which the transition probabilites are controlled by the two players.
MDPIPs, and therefore BMDPs, are a special cas@tefnating stochastic games
in which the first player is the decision-making agent and the second player, often
considered as either an adversary or advocate, makes its move by choosing from
the set of possible MDPs consistent with having seen the agent’s move.

Bertsekas and Castafion [3] use the notion of aggregated Markov chains and
consider grouping together states with approximately the same residuals. Methods
for bounding value functions are frequently used in approximate algorithms for
solving MDPs; Lovejoy [13] describes their use in solving partially observable
MDPs. Puterman [14] provides an excellent introduction to Markov decision pro-
cesses and techniques involving bounding value functions.

Boutilier, Dean and Hanks [5] provide a careful treatment of MDP-related
methods demonstrating how they provide a unifying framework for modeling a
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wide range of problems in Al involving planning under uncertainty. This paper
also describes such related issues as state space aggregation, decomposition and
abstraction as these ideas pertain to work in Al. We encourage the reader unfamil-
iar with the connection between classical planning methods in Al and Markov
decision processes to refer to this paper.

Boutilier and Dearden [6] and Boutiliet. al.[8] describe methods for solving
implicitly described MDPs using dynamic aggregation — in their methods the
state space aggregates vary over the iterations of the dynamic programming algo-
rithm. This work can be viewed as using a compact representation of both policies
and value functions in terms of state aggregates to perform the familiar dynamic
programming algorithms. Dean and Givan [9] reinterpret this work in terms of
computing explicitly described MDPs with aggregate states corresponding to the
aggregates that the above compactly represented value functions use when they
have converged. Dean, Givan, and Leach [10] discuss relaxing these aggregation
techniques to construct approximate aggregations — it is from this work that the
notion of BMDP emerged in order to represent the resulting aggregate models.

Bounded-parameter MDPs allow us to represent uncertainty about or variation
in the parameters of a Markov decision process. Interval value functions capture
the resulting variation in policy values. In this paper, we have defined both
bounded-parameter MDP and interval value function, and given algorithms for
computing interval value functions, and selecting and evaluating policies.
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11. Appendix — Proofs Omitted Above for Readability

Lemma 1: For any policyr € IT , MDPM € M, , and value functionre V..,
(a) there are MDPM ; € X, ard, € X,,  such that

VMl,ngdomVM,nSdomVMz,n : (34)
(b) Also, there are MDPB!; € X,  ardd, € X,  such that

V||\/|3,n(v) SdomVIM’n(V) SdomV|M4’n(V) . (35)

Proof: To show the existence df1, ,l€d = q;,...,q, be an ordering on
states such that for all  angd iE<i<j<k theW (q) SVM’n(qj)
(increasing order). Note that ties in state values permit different orderings; for
the proof, it is sufficient to chose one ordering arbitrarily. Considey € Xy, ,
the order-maximizing MDP o0 M, is constructed so as to send as much
probability mass as possible to states earlier in the ordeting , i.e. to those
statesq with lower valu¥, (q) . It follows that for any state

2 (F'F\’Aqo(ﬂ(p))VM,n(Q)) <> (Fﬁ,”q(n(p))VM,n(q)) (36)
qeQ ge Q

Thus, for any statp

Vi (D) = R(D+1 Y (FMGE)Vy, 1) (37)
qe Q

>R(D+71 Y, (FMo((p)Vy, ) (38)
qe Q

= Vg, x(Vw, 2(P) (39)

By Theorem 6, these lines implyMoy 2 SiomVy, o+ @s desired.

The existence oM, can be shown in the same excep@hat is chosen to order

the states by increasing value. Thvdsg, is constructed so that
ZQ(FB”q(’T(p))VM, @) < ZQ(F Mo (R(P)V i, (@) (40)
qe ge
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Part (b) is shown in the same manner as part (a) except that we replace each
occurrence ofVy, (p) withVIl,, _(v)(p) and each occurrence\df; .(q)
with v(Q) .

O (Lemma 1)

Lemma 2: Let = be a policy inl and1,, M, be MDPs M,

(@ ForM; = M, &% M, ,

VMS,TE ZdOmVMl,n andVM3,TE ZdomVMz,TE ’ and (41)
(b)forM5 = M, ®F;, M,

Vi, 7 Ztom Vi, = 8NV, 7 Saom Vi, (42)

Proof: Part (a): We construct a value functiom  such thatg,, Vlv|1 o
V>4om V,\,|2 o0 andv <., V,\,|3 . » as follows. For eaghe Q , let

v(p) = maxVy_ (P Vi, (P) (43)

Note that this impliesv >y, V,\,|1 L andr>g Vv M, - We now show using
Theorem 6 thatv<y,n, VM n By Theorem6 it suﬁlces to prove that
V <gom V., (V) , Which we “now do by showing( p) < VI,\,I 2(W(p) forarbi-

trary p €

Case 1We suppose&/y, (p)=Vy_ .(p)

From Equation 43 we then have thetp) = V\, .(p) . By the definition of
©Fax, We know F¥3(n(p) = FMi(n(p) whenVy, (p)>V,y, (p) as in

this case. This fact together with the deflnltlons\df e @T‘ , and
allow the following chain of equations to conclude the proof of case 1

v(p) = Vi, (P)

= R(P+71 Y FMG(P)Vy, )

deQ

< R(P+y Y Fpg(p)v(d) (44)
deQ

= R(P+y Y Fpg(r(p)v(a)
qeQ

Viy, )(p)

Case 2: Suppose\/Mlyn(p) < Vszn(p) .
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We then haveFya(n(p)) = FiAn(p)) by the definition ofr,, , and
v(p) = Vv, n by the definition c}v and Equation 44 holds with,  replaced
by M, , as deswed concluding the proof of part (a).

Part (b): The proof is exactly dual to part (a) by replacing “max” with “min,
< with > (and vice versa), and < with >.

0 (Lemma 2).

Lemma 3: Given a BMDPM, , and policies;, t, e I1 73 = n; @ , and

Ty = T Dpeg Mo,

optnz
pes
(a) VTn —domVTn andVTTc —domVTﬂ:
(b) If VTT[ =Vi, then V.o >, V.o andV, ;. >0, V,
(c) V¢n4 >gom Vi, andv% > dom V%
(d) If V¢n1:V¢ thenV _peSV

inl

andV, _ _pesV

Inz

Proof: Part (a): We prove part (a) of the lemma by constructing a value func-
tion v such thatv >y, VTnl andv >y, VTn2 . We then show thaty,, V¢n3
using Theorem 6. We construet  as follows. Mep)  max(Vsr, (p), V1. (P))
foreachpe Q .

This construction implies thav >y, VTR and >4, Vig, - We now show
V <gom VTn by giving an MDPM, for WhIChVM 7y Zdom V. - Usmg Theorem 6
it suffices to show thaWIM - (V) 24om V

Let M; € M, be ar; -maximizing MDP, an#1, e M, be®m, -maximizing
MDP. Note that this implies that,, = V\, . aMd, =V

We now construcM ; € M, as follows: for eaphg, a

FRa(@)  if Vi, (P) 2o Vi 1 (P)

Fpgo)  otherwise

FM?’(OL) —

It remains to show thaVIM& ng(v)(p) >v(p) foralpe Q . Now fix an arbi-
trarype Q.

Case 1:SupposeV, (p) Zopt V, (p)

Then by the definition oEDOpt n3(p) = n,(p) .Also, by the definition ef,,
VTT[ (p) > Vrn (p), and sov(p) = V,\,I m (p) is true, and by the definition of
Mj, qu(rcs(p)) = F (ns(p)) The foIIowmg inequations thus hold:

v(p) = Vi, (P) (45)
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R(D +7 Y (Fpg(a(p)Vag (@) (46)

qeQ

= R(P+7 Y, (Fpg (ma(P)Var (a) (47)
qeQ

< R(P+y Y (Fpg(ma(p)v(a) (48)
aeQ

= Vly, . M(P) (49)

Case 2:SupposeV, (p) <opt Vi (p)

Then by the definition ot{aopt n3(p) = my(p) . Also, by the definition ef,,,
VTn (p) < V% (p), and sov(p) = V,\,I o, (p) is true, and by the definition of
Mg, pq(n3(p)) = F (ns(p)) Then Equatlon 45 thru Equation 49 hold with
M, and m, in place ofM, andr; respectively, yielding again that
v(p) <Vl - (V)(p), as desired.

Case 1 and Case 2 together imply th@p) <Vl . (V)(p) for plE Q :
which with Theorem 6 implies part (a) of the lemma.

Proof: Part (b): Supposing thatv; = V% , we show, _optV - and
Vi z, Zopt Vi - From part (a) of the theorem we know trM;tn Zgom Vir, and
VTn3 ZdomVTnz It suffices to prove in addition thatv, 3>domV¢ and
Vi, Zdom iy, - We show both by definingy(p) = max(V%l(p), V%z(p)) for
each statp € Q , observing thaty,, V¢nl and,,., V¢n2 , and then showing

that Vi , ZdomV -

We can show, >,V by showing that for arbitraly € M, V. 7, Zdom V
By Theorem 6 it “suffices to show that for arbitrary state Q VIM’7T M (p)
> v. We divide now into two cases:

Case 1:Suppose/¢nl(p) > V¢n2(p) .

With the part (b) assumptioV{, = Vi, ), this impliévsnl(p) >0t Inz(p)
Then by the definition of6,; 75(p) = m,(p) . Also by definition in this case
v(p) = V¢n1(p). Let M, be an; -minimizing MDP. The following inequation
chain gives the desired conclusion:

v(p) = Vi (P) (50)

= R(P +y Y Fpd(ma(p)Ve, (@) (51)
qe Q
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<R(P+y ), FRym(P)Ve, (0) (52)

qeQ
<R(P+y Y, FY(na(p)V(0) (53)
qeQ
< Vg, -, (V(P) (54)
Line 52 requires some justification. Consider an MBF defined to agree

with M, everywhere except théﬁgﬂqi = Fg"q for evegye Q . If Line 52 did
not hold, we would hav&/1y, . (Vi) <aom Vi, ~ and then Theorem 6 could be
used to show thanl,, z, <dom V¢n1 , contradicting the definitior\/o,f1

Case 2:Suppose\/¢n1(p) < V¢n2(p) .

With the part (b) assumption this implies thagrl(p) <0pt\4n2(p)

Then by the definition ofd,; 5(p) = nx(p) . Alse(p) = Vi (p) .Lew,
be an, -minimizing MDP. Equations 50 through 54 now hold wih and
replaced byM, and, ,respectively.

We have now shown in both cases thép) SVlM,ns(V)(p) , as desired, con-
cluding the proof of part (b) of the theorem.

Proof: Part (c): We prove part (c) of the lemma by constructing a value func-
tion v such thatv >, V%l ands >4, V%z . We then show thakK,,, V¢n4
using Theorem 6. We construet  as follows. hép) XV, (p), Vi (P))

for each p e Q . This impliesv >4, V¢n1 and/ >4, V%z . We now show
VSdomV¢n4 by showing that for arbitraryM € M, ,VM,mZdomV . Using
Theorem 6 it suffices to show thet,, M(v) >4omV

Let M; € M, be arn; -minimizing MDP, anM, e M, be a, -minimizing
MDP. Note that this implies that,, =V, . and = Vy .

Now fix an arbitraryp € Q , and show th‘&(ﬂM,m(v)(p) > V(p)

Case 1:SupposeV, nl( P) Zpes V. nz( 0))

Then by the definition O@pes 74(p) = my(p) . Also, by the definition of,.s
V¢nl(p) > V%z(p), and sov(p) = Vu, JTl(p) is true. Equations 50 through 54
now hold withr, in place ofi; , giving the desired result.

Case 2:SupposeV, 7r1(p) <pes\4n2( p) .

Then by the definition opres n4(P) = my(p) . Also, by the definition of s
V¢nl(p) < V%Z(p), and sov(p) = VMz, nz(p) is true. Then Equations 50
through 54 hold withM, ., , andy, inplace &, =, ,and , respec-
tively, yielding again that(p) < VI, m(v)(p) , as desired.
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Case 1 and Case 2 together imply thap) <Vl . (V)(p) for plE Q :
which with Theorem 6 implies part (c) of the theorem.

Proof: Part (d): Supposing thav, = V¢ , we shov\{/I7T _peSV and
\/¢n4 2pes\4n From part (c) of the theorem e know thg —domV¢ and
V¢n42domV¢ . It suffices to prove in addition that\/TTE _domVTn and
Vig, 2domV¢n2. We show both by defining/(p) = ma><(V¢n1(p), V%(p)) for
each statgp € Q , observing that,, Vi, and ., Vi, , and then showing
that V¢n >omV by giving an MDP M4 for WhichVMA,Mzdomv . Using

Theorem 6 it suffices to show th\alMA’ n4(v) > 4om V

Let M; € M, be ar; -maximizing MDP, an#1, e M, be®m, -maximizing
MDP. Note that this implies that,, =V . and, = Vy .

We now construcM, € M, as follows: for eaghg, o

Fpa(@) if Vi (D) 2pes Vi (P)

Fpglo)  otherwise

Foa(e) =

It remains to show thaVIM‘h M(v)(p) >v(p) foralpe Q . Now fix an arbi-
trarype Q.

Case 1:SupposeV¢nl( 0)) ZpesVTTcz(p) .

With the part (d) assumption this implies thérl;rl(p) > es Inz( p)

Then by the definition of})pes 74(p) = m(p) Also by definition in this case
v(p) = VTnl(p). Also, by the definition ofM, ,F (n4(p)) = F (n4(p))
Equations 45 through 49 with;  arM , replaceddq,y amgl complete the
argument.

Case 2:Suppose\/¢n1(p) < VTnz(p) .
With the part (d) assumption this implies thérl;tl(p) < opt 1nz(p)
Then by definition ny(p) = my(p) . Alsov(p) = VTn(p) Equations 45

through 49 now hold withM; m; , and, replaced y, m, ,angd
respectively.

We have now shown in both cases thép) <Vliy, 7t4(v)(p) , as desired, con-
cluding the proof of part (d) of the theorem.

O (Lemma 3).

Theorem 9: For any BMDPM, , at every stafe

Vi) = Max | min Vi ,(Vigs) (). MaX Vi (Vipd(P) | (55)
aeh <, “MeM, M e M,
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and

VedP) =  Max [min Vi oVped (D), mawa,a(vaes)(p)] (56)
acA Z-MeM M e M,

Proof: We consider theV,,,, version only. Throughout this proof we assume
T IS an optimistically optimal policy foM, , which exists by Theorem 8. We
suppose Equation 55 is false and show a contradiction. We have two cases:

Case 1:Suppose the upper bounds are not equal at somepstate

VTopt(p) # MaxX max Vll\/l, (x(VTopt)(p) . (57)
acAMEeM,

There are two ways this can happen:

Subcase laSuppose there exist some MNP € M, and actior A such
that

Viop(P) < Vi, o(V1opd(P) (58)

We show how to construct a poliey ~ whose interval valiie domin¥tgs
under <., , contradicting the definition of,,,, . Define to be the same as
Toe €XCept thatn(p) = a . By the definition OMnom , there must exist
M'e M, such thatVy,, = V%om = Vu., T From the theory of exact MDPs,
we then have that:

Vit = Vi = Vv Vi) = Vi o (Vo) - (59)
Our subcase assumption implies
VTopt( p) < VIM, n(VTopt)(p) . (60)

Consider the MDRM; € M,  with the same parameter$/ds except atpstate
where the parameters are givenNMy . More formally,

M
F,, whenp =p
Fay =1 o4 61)
M’ .
Foq otherwise

This construction oM 5 , together with Equation 59 and Equation 60, guaran-
tees the following property 0fs,

VTopt <dom Vi M., n(VTopt) (62)
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Equation 62 along with Theorem 6 implies thap;,l 1 >dom Vopt and thus that
V. ; >opt Vi opt» CONtradicting the definition of, and concluding Subcase la.

Subcase 1lsuppose that for every choice@fe A avide M,
Viopd P) > Vi o (Viopd(P) - (63)

We obtain a contradiction directly by exhibiting aiMl € M, in violation of
this supposition. Letx  be,,(p) .Lé¥! bem, -maximizing MDPM;
which exists by Theorem 7. Our selectiome)t guarantees\mfat = Viopt ,
and our choice oM guarantees thay, | = Vi, Equatlons 7 and 8 from
the theory of exact MDPs then ensure thé}gpt(p3 VIM,G(VTOpJ(p) , con-
cluding case 1.

Case 2Suppose at every state  the upper bounds are equal but at some state
the lower bounds are not equal:

for all d. VTopt(q) = max maXVIM ot(VTOPI)(q)’ anc
aeA M e M, '

Vieg(P) # max  min Viy ,(Vie)(p)
ae pVTop((p) M e MT

(64)

Note that the action selection in the second line of Equation 64 is restricted to
range over those actions R, (p) because those are the only actions that can
be selected in Equation 55 due to the emphasis<gf on upper bounds (the
upper bounds achievable by an action primarily determine whether it is selected
by the outer maximization in Equation 55, and only if the action is tied for the
maximum upper bound.e.in p,, (p) does its lower bound affect the maximi-
zation).

Again, there are two ways the second line of Equation 64 can hold.

Subcase 2aSupposeVi,(p) is too small.e., there exists some action
o€ pVTom(p) such that for every MDR1 € M, , we have

Viop(P) < Vi o(Miop)(P) - (65)

We show a contradiction by giving a poliey  whose interval value function is
greater thanv, ,,, under the<,, ordering. Define  to be the same,as
except thatn(p) = o . By the definition o, , there must exist'e M,

such thatVy,y, = V¢nom = Vi T .Asin Subcase la, we then have that:

Vioet = Virr s = Vine o Vi) = Vi o (Vi) - (66)
From Equation 64 and e pvm(p) it follows that for soflec M, ,
ViepdP) = Vi o(Viopd(P) (67)
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and thus forM; € M, defined as in Subcase 1a to be equil'to everywhere
except at statp  wheM,; isequaMo , we have

VTopt = VIMB, Tc(VTopt) . (68)

ThereforeVy, . = Vi , and by the definitions of,, akd, ~, we then have
that Vi op 2gom V. dova x = Vi, and sovy,is equal ¥y, . We must
now show thatv, >dc,mV¢Opt to conclude Subcase 2a. We show this by show-
ing that for every MDP M, e M, , Vi, <,,omVI,\,I a(Mop) and using
Theorem 6 to conclude M, = >dom Yiopt and thus_ >dom Viopt as desired.

To conclude Subcase 2a, then, we must shay, <d()mVI,\,I (Mo . We
show this by contradiction.  Suppose this is false — then either
Vigpe = Vly, 2(Miopd) » which our Subcase 2a assumption rules out at gtate , or
there must be some state  for whith,,(0) >Vly, a(Migp(d@) . Again our
Subcase assumption rules this out for sfate , so we knowgthat is not equal to
p, and therefore by our choice af we have tlitaq) = Topdd) , and thus that
Viop(0) > Vig, x, (Viom)(q) We can now derive a contradiction by combining
M, at stateq with an,, -minimizing MDAM g  at all other states to get an
MDP Mg e M, for whichV,,,, strictly dommateS/I,\,I 1. (Mo, showing that
Viopt >dova - (by Theorem 6) contradicting the fact thm = Vigpt

(The combination oM, an#l; togddy isanalogousto the Construction in
Line 61 above).

Subcase 2bSupposeV,,,(p) is “too big” in Line 64i.e., for every action
o€ pVTom(p) there is some MDMM , eM, suchthety, (Vig)(P) <Viex(P)-

Considera. = m,,(p) . The definition of “optimistically optimal” along with the
theory of exact MDPs guarantees us that there is someMIDP  such that

Viopt = VTnom = VM,EO =Vl o (V,\,I - ) =Vliy o (VTOpJ (69)
By our case 2 assumption,

VTopt(p) = max max VIM, (x(VTopt)(p) ) (70)
aeAMEeM,

and this, together with Line 69 ard = m,(p)  implies

VIM T, (VTopo(p) = max maXVlM (x(VTopo(p) (71)
aeAMEeM,

and therefore that

Tl:opt( p) € argmaxmax VlM, a(VTODt)(p) , (72)
aceA MeM,

Bounded-parameter Markov Decision Procesdsy 22, 2000 42



which implies that o = mo,(p) € Pv,,, (p) . We can then use our subcase
assumption that there must be an MDRM , € M, such that

Vi n (Veo)(P) < Viou(P) .

Let M; be an,, -minimizing MDP, as per Theorem 7. Thep . = V., =
Viopt by expanding definitions. SWly, . (Mg = Vi . We ¢an now create
a new MDPMg by copyingM, at every state excgpt , whistg copies

, following the construction used to defifd;  in Subcase 1a. By construc-
tion we then have

Vg, (Veop) <gom Viopt: (73)

which by Theorem 6 impliey/, <domV¢opt contradicting our choicemf;
and concluding Subcase 2b, Case 2, and the proof of Theorem 9.

O (Theorem 9).
Theorem 10:For any policyr VI, andVI:_  are contraction mappings.

Proof: We first show thatlVl;_ is a contraction mapping ¥n , the space of
value functions. Strictly speakindVly_  is a mapping from an interval value
function V, to a value functio’v . However, the specific valuégs) only
depend on the upper boundls  \f . Therefore, the mapiMhg is isomor-
phic to a function that maps value functions to value functions and with some
abuse of terminology, we can considei; to be such a mapping. The same is
true for VI, , which depends only on the lower boukis

Let 0 and V be interval value functions, fipe Q , and assume that
IVI+ (W)(p) > IVI+ (O)(p). Let M be an MDPM € M, that maximizes the
expressionVly, .(»)(p) (Lemma 1 implies that there is such an MDP in the
finite setX,, , guaranteeing the existence\df  in spite of the infinite cardinal-
ity of M, ).

Then,
0 < IVI4, (V)(p) — V11 (B)(P) (74)
= maxVly  (v)(p) —maxVly (u)(p) (75)
M e M, MeM,

<R(p+1( Y Firv@) -R(D -1 Y Far()u@)  (76)
qeQ qeQ

=3[ 3 Fifr(p)vi(@) - ()]) (77)
geQ
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sV(qgQthqw» vt — ) (78)

= ylvi = (79)

Line 75 expands the definition ¢¥1+_ . Line 76 follows by expanding the defi-
nition of VI and from the fact thabl  maximizesély,  (v)(p) by definition.
In Line 77, we simplify the expression by cancelling the immediate reward
terms and factoring out the coefficie . In Line 78, we introduce an ine-
quality by replacing the termy(q) —uy(q)  with the maximum difference over
all states, which by definition is the sup norm. The final step Line 79 follows
from the fact thatF is a probability distribution that sumslto  drd— ||

does not depend anp

Repeating this argument interchanging the role@ of \miatv in the case that
IVI+_ (W)(p) < IVI+_ (O)(p) implies
IV (@)(p) = V2 (@(P)| < v[[vr — ] (80)

for all p e Q. Taking the maximum ovep in the above expression gives the
result.

The proof thatlVl, . is a contraction mapping is very similar, repladMig
with VI, throughout, replacing maximization with minimization in Line 74,
and selecting MDPM  to minimize the expressiofly, . (uy)(p) when

VI (W)(p) 2 IV (G)(p) -
O (Theorem 10).

Theorem 11:For any policyr ,Vi_ isafixed-pointadivIl, — and. — ¥l
and thereforev, . is a fixed-point 6f1, _

Proof: We prove the theorem folVl, ~ ; the proof fdvl, ~is similar. We
show

@ VI (M, 1) <dom Vi » @nd

(b) V1L (V) Zgom Vi
from which we conclude thatvly (V. ) = Vi . Throughout both cases we

takeM™ to be at -minimizing MDP, so that, . = VM* N . By Theorenw?
must exist. '
We first prove (a). From Theorem 3, we know thag,. is a fixed point of
Vly- .- Thus, forany statge Q

Vi@ = Vi @) = Vg (Vi D@ = Vi (M) (81)
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Using this fact and expanding the definitionid ., we have, at every gtate

VI (V@) = min Viy (Vi )(0)
M e M,

Viy- (M) (82)
Vi (a).

IN

This implies thatV1y (V. ) <4om VL, as desired.

To prove (b), suppose for sake of contradiction that for some spte
IVIL(V, )(p) < Vi (p). Let M; € M, be an MDP that minimiz8she expres-
sionVly, (Ve )(p) -

Then, substituting; into the definition Bf1,

We can then construct an MDM, by copyiiy’ at every state exgept
whereM, copiesM, (see the proof of Theorem 9, Case 1a for the details of a
similar construction). BecausM, is a copy bF at every statepout
Equation 81 must hold wittM, replacingl®  at every state put . Because
M, is acopy ofM, atstat@ , Equation 83 wikh,  replacikig must hold
at statep . These two facts together imply

Vi o(Ver) <gom Vi (84)

Then by Theorem &/, . <qom Vi, , contradicting the definitiorMof
O (Theorem 11).

Theorem 13:
(@) IVt opt andIVI¢Ioes are contraction mappings.

(b) For any value functio’v and associated action set selection fungion
andoy IVl andViygegy are contraction mappings.

Proof: We first prove (a). The proof thzﬂ/lTopt is a contraction mapping is an
extension of the proof of Theorem 10. L&  and be interval value functions,
fix pe Q, and assume that\/ITOpt(\‘/)(p) > IVITOpt(G)(p) . Selebt e M, and

a € A to maximize the expressiovly, (v)(p)  (again, Lemma 1 implies that

6. Such an MDP exists by Lemma 1, which implies that there must be such an MDP in the finite set
Xy S M, .
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there is such an MDP in the finite skf, , guaranteeing the existenie of  in
spite of the infinite cardinality dfl, ).

Then,
0= IVl @)(P) = V110 @(P) (85)
= max max Vly ,()(p)—max maxVly, ,(um)(p) (86)
aeAMeM, ’ acAMeM, ’

<R(p+1( Y Fi@v@) -R(D -1 Y Frf@)u@) (87)
qeQ qeQ

<ylve = - (88)

Line 86 expands the definition (Whopt , noting that maximizing usidg,

selects interval upper bounds based only on the upper bounds of the input inter-
vals. Line 87 follows from our choice d¥  and  to maximixd,, ,(v+)(p)

Line 88 follows from Line 87 in the same manner that Line 79 followed from
Line 76 in the proof of Theorem 10, and the desired resultiVer for part
(a) of the theorem also follow in the same manner as the remainder of
Theorem 10 followed from Line 79.

To prove thatlVl, ., is a contraction mapping, we again fix a sfate  and
assume IVI¢pes(\7)(p) > IVI¢pegﬂ)(p) . We then use  to choose an action
that maximizesminy, .\ (Vly o(w)(p)) andy to choose an MIWP that
minimizes VI, ,(w)(p) (again, Lemma 1 implies that there is such an MDP
in the finite setX,, , guaranteeing the existenceMdf ). Using &ihd as
defined above, we have

0= V14 o) (P) — V1o O)(P) (89)
= max min Viy (w)(p) —max min Vi  (w)(p) (90)
aeAMEeM, acAMeM,
< min Viy 4(w)(p) - min Viy (w)(p) (91)
MeM, M e M,
<Viy, o()(P) =Viy o(W)(p) (92)

Line 90 expands the definition a¥1, ., , using the fact that maximizing over
<pes Selects lower bounds based only on the lower bounds of the intervals
being maximized over. Line 91 substitutes the acidton , which introduces the
inequality sincex.  was chosen to guarantee
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min Vly ,(w)(p) = max min Vi, (w)(p), (93)
M e M, acAMEeM,

and the meaning of maximization guarantees that

min Vi, ,(w)(p) <max min Vi, (w)(p). (94)
M e M, acAMEeM,

Line 92 follows similarly becaus®!  was chosen to guarantee

Vi, o(Ww)(p) = h;nlr“lﬂ Vi, o(w)(p), (95)

and the meaning of minimization guarantees that

Vig o(w)(P) = min Vi, (w)(p). (96)
M e M,

The desired result 1‘or\/lipes in part (a) of the theorem then follows directly
from Line 92 in the same manner as the result fot, followed from
Line 86, concluding the proof of part (a) of the theorem.

For part (b), the proof fotIVI¢OpLV follows exactly as the proof ﬂbfupes ,
except that the set of actions considered in the maximization over actions at
each statep is restricted t8,(p) . Likewise, proving Tpes V is the same as
proving IVI1gpt where the set of actions is restricted {¢p)

O (Theorem 13).
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