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Abstract

In this paper, we introduce the notion of abounded-parameter Markov decision process(BMDP)
as a generalization of the familiarexactMDP. A bounded-parameter MDP is a set of exact MDPs
specified by giving upper and lower bounds on transition probabilities and rewards (all the MDPs
in the set share the same state and action space). BMDPs form an efficiently solvable special case
of the already known class of MDPs withimprecise parameters(MDPIPs). Bounded-parameter
MDPs can be used to represent variation or uncertainty concerning the parameters of sequential
decision problems in cases where no prior probabilities on the parameter values are available.
Bounded-parameter MDPs can also be used in aggregation schemes to represent the variation in
the transition probabilities for different base states aggregated together in the same aggregate
state.

We introduceinterval value functionsas a natural extension of traditional value functions. An
interval value function assigns a closed real interval to each state, representing the assertion that
the value of that state falls within that interval. An interval value function can be used to bound
the performance of a policy over the set of exact MDPs associated with a given bounded-param-
eter MDP. We describe an iterative dynamic programming algorithm calledinterval policy evalu-
ation that computes an interval value function for a given BMDP and specified policy. Interval
policy evaluation on a policy computes the most restrictive interval value function that is
sound,i.e., that bounds the value function for in every exact MDP in the set defined by the
bounded-parameter MDP. We defineoptimistic andpessimisticcriteria for optimality, and pro-
vide a variant of value iteration [1] that we callinterval value iterationthat computes policies for
a BMDP that are optimal with respect to these criteria. We show that each algorithm we present
converges to the desired values in a polynomial number of iterations given a fixed discount fac-
tor.

Keywords: Decision-theoretic planning, Planning under uncertainty, Approximate planning,
Markov decision processes.

1.  Introduction

The theory of Markov decision processes (MDPs) [11][14][2][10][1] provides the
semantic foundations for a wide range of problems involving planning under
uncertainty [5][7]. Most work in the planning subarea of artificial intelligence
addresses problems that can be formalized using MDP models — however, it is
often the case that such models are exponentially larger than the original “inten-
sional” problem representation used in AI work. This paper generalizes the theory
of MDPs in a manner that is useful for more compactly representing AI problems

π
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as MDPs via state-space aggregation, as we discuss below.

In this paper, we introduce a generalization of Markov decision processes
calledbounded-parameter Markov decision processes(BMDPs) that allows us to
model uncertainty about the parameters that comprise an MDP. Instead of encod-
ing a parameter such as the probability of making a transition from one state to
another as a single number, we specify a range of possible values for the parameter
as a closed interval of the real numbers.

A BMDP can be thought of as a family of traditional (exact) MDPs,i.e., the set
of all MDPs whose parameters fall within the specified ranges. From this perspec-
tive, we may have no justification for committing to a particular MDP in this fam-
ily, and wish to analyze the consequences of this lack of commitment. Another
interpretation for a BMDP is that the states of the BMDP actually represent sets
(aggregates) of more primitive states that we choose to group together. The inter-
vals here represent the ranges of the parameters over the primitive states belonging
to the aggregates. While any policy on the original (primitive) states induces a sta-
tionary distribution over those states that can be used to give prior probabilities to
the different transition probabilities in the intervals, we may be unable to compute
these prior probabilities — the original reason for aggregating the states is typi-
cally to avoid such expensive computation over the original large state space.

Aggregation of states in very large state spaces was our original motivation for
developing BMDPs. Substantial effort has been devoted in recent years within the
AI community [9][6][8] to the problem of representing and reasoning with MDP
problems where the state space is not explicitly listed but rather implicitly speci-
fied with afactored representation. In such problems, an explicit listing of the pos-
sible system states is exponentially longer than the more natural implicit problem
description, and such an explicit list is often intractable to work with. Most plan-
ning problems of interest to AI researchers fit this description in that they are only
representable in reasonable space using implicit representations. Recent work in
applying MDPs to such problems (e.g., [9], [6], and [8]) has considered state-space
aggregation techniques as a means of dealing with this problem: rather than work
with the possible system states explicitly, aggregation techniques work with blocks
of similar or identically-behaving states. When aggregating states that have similar
but not identical behavior, the question immediately arises of what transition prob-
ability holds between the aggregates: this probability will depend on which under-
lying state is in control, but this choice of underlying state is not modelled in the
aggregate model. This work can be viewed as providing a means of addressing this
problem by allowing intervals rather than point values for the aggregate transition
probabilities: the interval can be chosen to include the true value for each of the
underlying states present in the aggregates involved. It should be noted that under
these circumstances, deriving a prior probability distribution over the true parame-
ter values is often as expensive as simply avoiding the aggregation altogether and
would defeat the purpose entirely. Moreover, assuming any particular probability
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distribution could produce arbitrarily inaccurate results. As a result, this work con-
siders parameters falling into intervals with no prior probability distribution speci-
fied over the possible parameter values in the intervals, and seeks to put bounds on
how badly or how well particular plans will perform in such a context, as well as to
provide means to find optimal plans under optimistic or pessimistic assumptions
about the true distribution over parameter values. In Section 6, we discuss the
application of our BMDP approach to state-space aggregation problems more for-
mally. Also, in a related paper, we have shown how BMDPs can be used as part of
an state-space aggregation strategy for efficiently approximating the solution of
MDPs with very large state spaces and dynamics compactly encoded in a factored
(or implicit) representation [10].

We also discuss later in this paper the potential use of BMDP methods to eval-
uate the sensitivity of the optimal policy in an exact MDP to small variations in the
parameter values defining the MDP — using BMDP policy selection algorithms on
a BMDP whose parameter intervals represent small variations (perhaps confidence
intervals) around the exact MDP parameter values, the best and worst variation in
policy value achieved can be measured.

In this paper we introduce and discuss BMDPs, the BMDP analog of value
functions, calledinterval value functions, and policy selection and evaluation
methods for BMDPs. We provide BMDP analogs of the standard (exact) MDP
algorithms for computing the value function for a fixed policy (plan) and (more
generally) for computing optimal value functions over all policies, calledinterval
policy evaluationand interval value iteration(IVI) respectively. We define the
desired output values for these algorithms and prove that the algorithms converge
to these desired values in polynomial time, for a fixed discount factor. Finally, we
consider two different notions of optimal policy for a BMDP, and show how IVI
can be applied to extract the optimal policy for each notion. The first notion of
optimality states that the desired policy must perform better than any other under
the assumption that an adversary selects the model parameters. The second notion
requires the best possible performance when a friendly choice of model parameters
is assumed.

Our interval policy evaluation and interval value iteration algorithms rely on
iterative convergence to the desired values, and are generalizations of the standard
MDP algorithmssuccessive approximationand value iteration, respectively. We
believe it is also possible to design an interval-valued variant of the standard MDP
algorithmpolicy iteration, but we have not done so at this writing — however, it
should be clear that our successive approximation algorithm for evaluating policies
in the BMDP setting provides an essential basic building block for constructing a
policy iteration method; all that need be added is a means for selecting a new
action at each state based on the interval value function of the preceding policy
(and a possibly difficult corresponding analysis of the properties of the algorithm).
We note that there is no consensus in the decision-theoretic planning and learning



Bounded-parameter Markov Decision Processes,May 22, 2000 4

and operations-research communities as to whether value iteration, policy itera-
tion, or even standard linear programming is generally the best approach to solving
MDP problems: each technique appears to have its strengths and weaknesses.

BMDPs are an efficiently solvable specialization of the already known class of
Markov Decision Processes with Imprecisely Known Transition Probabilities
(MDPIPs) [15][17][18]. In the related work section we discuss in more detail how
BMDPs relate to MDPIPs.

Here is a high-level overview of how conceptual, theoretical, algorithmic, and
experimental treatments are woven together in the remainder of the paper. We
begin by introducing the concept of a Bounded Parameter MDP (BMDP), and
introducing and justifying BMDP analogues for optimal policies and value func-
tions. In terms of the theoretical development, we define the basic mathematical
objects, introduce notational conventions, and provide some background in MDPs.
We define the objects and operations that will be useful in the subsequent theoreti-
cal and algorithmic development, e.g., composition operators on MDPs and on
policies. Finally, we define and motivate the relevant notions of optimality, and
then prove the existence of optimal policies with respect to the different notions of
optimality.

In addition to this theoretical and conceptual development, in terms of algo-
rithm development we describe and provide pseudo-code for algorithms for com-
puting optimal policies and value functions with respect to the different notions of
optimality, e.g., interval policy evaluation and interval value iteration. We provide
an analysis of the complexity of these algorithms and prove that they compute
optimal policies as defined earlier. We then describe a proof-of-concept imple-
mentation and summarize preliminary experimental results. We also provide a
brief overview of some applications including sensitivity analysis, coping with
parameters known to be imprecise, and support for state aggregation methods.
Finally, we survey some additional related work not covered in the primary text
and summarize our contributions.

Before introducing BMDPs and their algorithms in Section 4 and Section 5, we
first present in the next two sections a brief review of exact MDPs, policy evalua-
tion, and value iteration in order to establish notational conventions we use
throughout the paper. Our presentation follows that of [14], where a more com-
plete account may be found.

2.  Exact Markov Decision Processes

An (exact) Markov decision process is a four tuple = where
is a set of states, is a set of actions, is a reward function that maps each

state to a real value 1 and is a state-transition distribution so that for
and

M M Q A F R, , ,〈 〉
Q A R

R q( ) F α A∈
p q, Q∈
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(1)

where and are random variables denoting, respectively, the state and action
at time . When needed we write to denote the transition function of the MDP

.

A policy is a mapping from states to actions, . The set of all policies
is denoted . An MDP together with a fixed policy determines a
Markov chain such that the probability of making a transition from to is
defined by . Theexpected value function(or simply thevalue function)
associated with such a Markov chain is denoted . The value function maps
each state to itsexpected discounted cumulative reward defined by

(2)

where is called thediscount rate.2 In most contexts, the relevant MDP is
clear and we abbreviate  as .

The optimal value function (or simply where the relevant MDP is
clear) is defined as follows.

(3)

The value function is greater than or equal to any value function in the par-
tial order defined as follows: if and only if for all states ,

(in this case we say that dominates ). We write
to mean  and for at least one state , .

An optimal policy is any policy for which . Every MDP has at
least one optimal policy, and the set of optimal policies can be found by replacing
the  in the definition of  with .

3.  Estimating Traditional Value Functions

In this section, we review the basics concerning dynamic programming methods
for computing value functions for fixed and optimal policies in traditional MDPs.
We follow the example of [14]. In Section 5, we describe novel algorithms for

1. The techniques and results in this paper easily generalize to more general reward functions. We
adopt a less general formulation to simplify the presentation.

2. In this paper, we focus on expected discounted cumulative reward as a performance criterion,
but other criteria,e.g., total or average reward [14], are also applicable to bounded-parameter
MDPs.

Fpq α( ) Pr Xt 1+ =q Xt=p Ut=α,( )=

Xt U t
t FM

M

π:Q A→
Π M π Π∈

p q
Fpq π p( )( )

VM π,

VM π, p( ) R p( ) γ Fpq π p( )( )VM π, q( )
q Q∈
∑+=

0 γ 1<≤
VM π, Vπ

VM
* V*

V* p( ) R p( ) γ Fpq α( )V* q( )
q Q∈
∑+ 

 
α A∈
max=

V* Vπ
≥dom V1 V2≥dom q

V1 q( ) V2 q( )≥ V1 V2 V1 V2>dom

V1 V2≥dom q V1 q( ) V2 q( )>

π* V* Vπ*=

max V* argmax
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computing the interval analogs of these value functions for bounded-parameter
MDPs.

We present results from the theory of exact MDPs that rely on the concept of
normed linear spaces. We define operators, and , on the space of value
functions. We then use the Banach fixed-point theorem (Theorem 1) to show that
iterating these operators converges to unique fixed-points, and respectively
(Theorem 3 and Theorem 4).

Let denote the set of value functions on . For each , define the
(sup)norm of  by

. (4)

We use the termconvergenceto mean convergence in the norm sense. The space
together with constitute a complete normed linear space, orBanach Space.

If is a Banach space, then an operator is acontraction mappingif
there exists a ,  such that  for all  and  in .

Define  and for each ,  on each  by

, and (5)

. (6)

In cases where we need to make explicit the MDP from which the transition func-
tion originates, we write and to denote the operators and
just defined, except that the transition function is . More generally, we write

 and  to denote operators defined on each  as:

. (7)

Using these operators, we can rewrite the definition for  and  as

(8)

for all states . This implies that and are fixed points of and ,
respectively. The following four theorems show that for each operator, iterating the
operator on an initial value estimate converges to these fixed points. Proofs for
these theorems can be found in the work of Puterman [14].

VIπ VI

Vπ V*

V̄̄ Q v V̄̄∈
v

v v q( )
q Q∈
max=

V̄̄ ⋅
U T:U U→

λ 0 λ 1<≤ Tv Tu– λ v u–≤ u v U

VI:V̄̄ V̄̄→ π Π∈ VIπ:V̄̄ V̄̄→ p Q∈

VI v( ) p( ) R p( ) γ Fpq α( )v q( )
q Q∈
∑+ 

 
α A∈
max=

VIπ v( ) p( ) R p( ) γ Fpq π p( )( )v q( )
q Q∈
∑+=

F VIM π, VIM VIπ VI
F FM

VIM π, :V̄̄ V̄̄→ VIM α, :V̄̄ V̄̄→ p Q∈

VIM π, v( ) p( ) R p( ) γ Fpq
M π p( )( )v q( )

q Q∈
∑+=

VIM α, v( ) p( ) R p( ) γ Fpq
M α( )v q( )

q Q∈
∑+=

V* Vπ

V* p( ) VI V*( ) p( ) and Vπ p( ) VIπ Vπ( ) p( )= =

p Q∈ V* Vπ VI VIπ
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Theorem 1: For any Banach space and contraction mapping ,
there exists a unique in such that ; and for arbitrary in ,
the sequence  defined by  converges to .

Theorem 2:  and  are contraction mappings.

Theorem 1 and Theorem 2 together prove the following fundamental results in the
theory of MDPs.

Theorem 3: There exists a unique satisfying ; further-
more, . Similarly  is the unique fixed-point of .

Theorem 4: For arbitrary , the sequence defined by =
= converges to . Similarly, iterating converges to

.

An important consequence of Theorem 4 is that it provides an algorithm for find-
ing and . In particular, to find we can start from an arbitrary initial value
function in , and repeatedly apply the operator to obtain the sequence

. This algorithm is referred to asvalue iteration. Theorem 4 guarantees the
convergence of value iteration to the optimal value function. Similarly, we can
specify an algorithm calledpolicy evaluationthat finds by repeatedly applying

 starting with an initial .

The following theorem from [12] states a convergence rate of value iteration
and policy evaluation that can be derived using bounds on the precision needed to
represent solutions to a linear program of limited precision (each algorithm can be
viewed somewhat nontrivially as solving a linear program).

Theorem 5: For fixed , value iteration and policy evaluation converge to the
optimal value function in a number of steps polynomial in the number of states,
the number of actions, and the number of bits used to represent the MDP
parameters.

Another important theorem that is used extensively in the proofs of the suc-
ceeding sections results directly from the monotonicity of the operator with
respect to the  and  orderings, together with the above theorems.

Theorem 6: Let be a policy and an MDP. Suppose there exists
for which , then . Likewise

for the orderings  and .

4.  Bounded-parameter Markov Decision Processes

A bounded-parameter MDP(BMDP)is a four tuple where

U T:U U→
v* U Tv* v*= v0 U

vn{ } vn Tvn 1– Tn v0= = v*

VI VIπ

v* V̄̄∈ v* VI v*( )=
v* V*= Vπ VIπ

v0 V̄̄∈ vn{ } vn

VI vn 1–( ) VIn v0( ) V* VIπ
Vπ

V* Vπ V*

v0 V̄̄ VI
vn{ }

Vπ
VIπ v0 V̄̄∈

γ

VIπ
≤dom ≥dom

π Π∈ M
u V̄̄∈ u ≥dom( ) VIM π, u( )≤dom u ≥dom( ) VM π,≤dom

<dom >dom

M↕ Q A F↕ R↕, , ,〈 〉=
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and are defined as for MDPs, and and are analogous to the MDP
and but yield closed real intervals instead of real values. That is, for any action

and states , and are both closed real intervals of the form
for real numbers and with , where in the case of we require

.3 To ensure that admits only well-formed transition functions, we
require that for any action and state , the sum of the lower bounds of
over all states must be less than or equal to while the upper bounds must sum
to a value greater than or equal to . Figure 1 depicts the state-transition diagram
for a simple BMDP with three states and one action. We use a one-action BMDP to
illustrate various concepts in this paper because multi-action systems are awkward
to draw, and one action suffices to illustrate the concepts. Note that a one action
BMDP or MDP has only one policy available (select the only action at all states),
and so represents a trivial control problem.

A BMDP defines a set of exact MDPs that, by abuse of
notation, we also call . For any exact MDP , we have

if , , and for any action and states , is in
the interval and is in the interval . We rely on context to
distinguish between the tuple view of and the set of exact MDPs view of .
In the remaining definitions in this section, the BMDP is implicit. Figure 3
shows an example of an exact MDP belonging to the family described by the
BMDP in Figure 1. We use the convention that thick wavy lines represent interval
valued transition probabilities and thinner straight lines represent exact transition
probabilities.

3. To simplify the remainder of the paper, we assume that the reward bounds are always tight,i.e.,
that for all , for some real , , and we refer to  as . The generalization
of our results to nontrivial bounds on rewards is straightforward.

Figure 1: The state-transition diagram for a simple bounded-parameter Markov
decision process with three states and a single action. The arcs indicate possible
transitions and are labeled by their lower and upper bounds.

0.2 0.5,[ ]

0.89 1.0,[ ]

0.7 0.8,[ ]

0.7 1.0,[ ]

0.1 0.15,[ ]

0.0 0.1,[ ]
Reward = 1

Reward = 9

Reward = 10

1

2

3

Q A F↕ R↕ F
R

α p q, R↕ p( ) F↕ p q, α( )
l u,[ ] l u l u≤ F↕

0 l u 1≤ ≤ ≤ F↕

q Q∈ l R↕ q( ) l l,[ ]= l R q( )

α p F↕ p q, α( )
q 1

1

M↕ Q A F↕ R↕, , ,〈 〉=
M↕ M Q ′ A′ F′ R′, , ,〈 〉=

M M↕∈ Q Q′= A A′= α p q, R′ p( )
R↕ p( ) F′p q, α( ) F↕ p q, α( )

M↕ M↕

M↕
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An interval value function is a mapping from states to closed real inter-
vals. We generally use such functions to indicate that the value of a given state falls
within the selected interval. Interval value functions can be specified for both exact
MDPs and BMDPs. As in the case of (exact) value functions, interval value func-
tions are specified with respect to a fixed policy. Note that in the case of BMDPs a
state can have a range of values depending on how the transition and reward
parameters are instantiated, hence the need for an interval value function.

For each interval valued function (e.g., , and those we define later)
we define two real valued functions that take the same arguments and return the
upper and lower interval bounds, respectively, denoted by the following syntactic
variations: , , for upper bounds, and , , for lower bounds, respec-
tively. So, for example, at any state  we have .

We note that the number of MDPs is in general uncountable. We start
our analysis by showing that there is a finite subset of these MDPs of
particular interest. Given any ordering of all the states in , there is a unique
MDP that minimizes, for every state and action , the expected “posi-
tion in the ordering” of the state reached by taking action in state — in other
words, an MDP that for every stateq and actionα sends as much probability mass
as possible to states early in the orderingO when taking actionα in stateq. For-
mally, we define the following concept:

Definition 1. Let be an ordering of . We define the
order-maximizing MDP  with respect to ordering  as follows.

Let be the index that maximizes the following expression without
letting it exceed 1:

. (9)

The value is the index into the state ordering such that below index
we assign the upper bound, and above index we assign the lower bound, with
the rest of the probability mass from under being assigned to . Formally,
we select  by choosing  for all  as follows:

V↕

F↕ R↕ V↕, ,

F↑ R↑ V↑ F↓ R↓ V↓

q V↕ q( ) V↓ q( ) V↑ q( ),[ ]=

M M↕∈
XM↕

M↕∈
O Q

M M↕∈ q α
α q

O q1 q2 … qk, , ,= Q
MO O

r 1 r k≤ ≤

F↑ p qi, α( )
i 1=

r 1–

∑ F↓ p qi, α( )
i r=

k

∑+

r qi{ } r
r

p α qr
MO M↕∈ Fp q,

M O α( ) q Q∈

Fpqj

M O α( )
F↑ pqi

α( ) if j r<

F↓ pqi
α( ) if j r>

and







=

Fpqr

M O α( ) 1 Fpqi

M O α( ).
i 1= i r≠,

i k=

∑–=
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Figure 2 shows a diagrammatic representation of the order-maximizing MDP at a
particular state for the particular ordering of the state space shown. Figure 3
shows the order-maximizing MDP for the particular BMDP shown in Figure 1
using a particular state order (2 > 3 > 1), as a concrete example.

q1

≥

q1

q2

qr

qk

q2

q3

qk

≥
≥

≥
…

p

Figure 2: An illustration of the transition probabilities in the order-maximizing
MDP at the state for the order shown. The lighter shaded portions of each arc
represent the required lower bound transition probability and the darker shaded
portions represent the fraction of the remaining allowed transition probability
assigned to the arc by .

p

T

p

Figure 3: The order-maximizing MDP for the BMDP shown in Figure 1 using
the state order 2 > 3 > 1.

0.3

0.89

0.7

0.9

0.11

0.1
Reward = 1

Reward = 9

Reward = 10

1

2

3
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Definition 2. Let be the set of order-maximizing MDPs in , one
for each ordering . Note that since there are finitely many orderings of states,

 is finite.

We now show that the set in some sense contains every MDP of interest from
. In particular, we show that for any policy and any MDP in , the value

of  in  is bracketed by values of  in two MDPs in .

Lemma 1: For any MDP ,

(a) For any policy , there are MDPs  and  such
that

. (10)

(b) Also, for any value function , there are MDPs  and
 such that

. (11)

Proof: See Appendix.

Interval Value Functions for Policies. We now define the interval analogue to the
traditional MDP policy-specific value function , and state and prove some of
the properties of this interval value function. The development here requires some
care, as one desired property of the definition is not immediate. We first observe
that we would like an interval-valued function over the state space that satisfies a
Bellman equation like that for traditional MDPs (as given by Equation 2). Unfortu-
nately, stating a Bellman equation requires us to have specific transition probabil-
ity distributions rather than a range of such distributions. Instead of defining
policy value via a Bellman equation, we define the interval value function directly,
at each state, as giving the range of values that could be attained at that state for the
various choices of allowed by the BMDP. We then show that the desired mini-
mum and maximum values can be achieved independent of the state, so that the
upper and lower bound value functions are just the values of the policy in particu-
lar “minimizing” and “maximizing” MDPs in the BMDP. This fact enables the use
of the Bellman equations for the minimizing and maximizing MDPs to give an
iterative algorithm that converges to the desired values, as presented in Section 5

Definition 3. For any policy and state , we define theinterval value
of  at  to be the interval

XM↕
MO M↕

O
XM↕

XM↕

M↕ π M M↕

π M π XM↕

M M↕∈

π Π∈ M1 XM↕
∈ M2 XM↕

∈

VM 1 π, VM π,≤dom VM 2 π,≤dom

v V̄̄∈ M3 XM↕
∈

M4 XM↕
∈

VIM 3 π, v( ) VIM π, v( )≤dom VIM 4 π, v( )≤dom

Vπ

F

F

π q V↕ π q( )
π q
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. (12)

We note that the existence of these minimum and maximum values follows
from Lemma 1 and the finiteness of the set — because Lemma 1 implies
that is the same as the following where the minimization and maximiza-
tion are done over finite sets:

. (13)

In preparation for the discussion in Section 5, we show in Theorem 7 that for any
policy there is at least one specificpolicy-maximizingMDP in that achieves the
upper bound in Definition 3 at all states simultaneously (and likewise a different
specific policy-minimizingMDP that achieves the lower bound at all states
simultaneously). We formally define these terms below.

Definition 4. For any policy , an MDP is -maximizingif
dominates for any ,i.e., for any , .
Likewise, is -minimizing if it is dominated by all such ,i.e.,
for any , .

Figure 4 shows the interval value function for the only policy available in the (triv-
ial) one-action BMDP shown in Figure 1, along with theπ-maximizing andπ-min-
imizing MDPs for that policy.

We note that Lemma 1 implies that for any single state and any policy we can
select an MDP to maximize (or minimize) by selecting the
MDP in that gives the largest value for at . However, we have not shown
that a single MDP can be chosen to simultaneously maximize (or minimize)

at all states (i.e., that there exist -maximizing and -minimiz-
ing MDPs). In order to show this fact, we show how to compose two MDPs (with
respect to a fixed policy ) to construct a third MDP such that the value of in the
third MDP is not less than the value of in either of the initial two MDPs, at every
state. We can then construct a -maximizing MDP by composing together all the
MDPs that maximize the value of at the different individual states (likewise for

-minimizing MDPs using a similar composition operator). We start by defining
the just mentioned policy-relative composition operators on MDPs:

Definition 5. Let and denote composition operators on MDPs with
respect to a policy , defined as follows:

V↕ π q( ) VM π, q( )
M M↕∈
min VM π, q( )

M M↕∈
max,=

XM↕

V↕ π q( )

V↕ π q( ) VM π, q( )
M XM↕

∈
min VM π, q( )

M XM↕
∈

max,=

M↕

q
q

π M M↕∈ π VM π,
VM ′ π, M ′ M↕∈ M ′ M↕∈ VM π, VM ′ π,≥dom

M M↕∈ π VM ′ π,
M ′ M↕∈ VM π, VM ′ π,≤dom

q π
M M↕∈ VM π, q( )

XM↕
π q

VM π, q( ) q Q∈ π π

π π
π

π
π

π

⊕max
π ⊕min

π

π Π∈
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Figure 4: The interval value function (shown as on the top subfigure),
policy-minimizing MDP with state values (lower left), and policy-maximizing
MDP with state values (lower right) for the one-action BMDP shown in Figure 1
under the only policy. We assume a discount factor of 0.9. Note that the lower-
bound values in the interval value function are the state values under the policy-
minimizing MDP, and the upper-bound values are the state values under the
policy-maximizing MDP. Also, note that the policy-maximizing MDP is the
order-maximizing MDP for the state order 3>2>1 and the policy-minimizing
MDP is the order-maximizing MDP for the order 1>2>3—policy-minimizing
and maximizing MDPs are always order-maximizing for some order (but the
orders need not be reverse to one another as they are in this example).

V↕

0.2

0.9
0.8

0.9

0.1

0.1

Reward = 1

Reward = 9

Reward = 10

1
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3
V 76.7=

V 79.8=

V 85.2=

0.2 0.5,[ ]

0.89 1.0,[ ]
0.7 0.8,[ ]

0.7 1.0,[ ]

0.1 0.15,[ ]

0.0 0.1,[ ]

Reward = 1

Reward = 9

Reward = 10

1

2

3V↕ 66.8 76.7,[ ]=

V↕ 70.1 79.8,[ ]=

V↕ 80.1 85.2,[ ]=

0.7

0.89
0.3

1.0

0.11

0.0

Reward = 1

Reward = 9

Reward = 10

1

2

3
V 66.8=

V 70.1=

V 80.1=

π−minimizing MDP π−maximizing MDP
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If , then  if for all states ,

If , then  if for all states ,

We give as an example in Figure 5 two MDPs from the BMDP of Figure 1, along
with their composition under the operator whereπ is the single available
policy for that one-action BMDP. We now state the property claimed above for this
MDP composition operator:

Lemma 2: Let  be a policy in  and  be MDPs in .

(a) For ,

, and (14)

M1 M2, M↕∈ M3 M1 ⊕max
π M2= p q, Q∈

Fpq
M 3 α( )

Fpq
M 1 α( ) if VM 1 π, p( ) VM 2 π, p( )≥ andα= π p( )

Fpq
M 2 α( ) otherwise







=

M1 M2, M↕∈ M3 M1 ⊕min
π M2= p q, Q∈

Fpq
M 3 α( )

Fpq
M 1 α( ) if VM 1 π, p( ) VM 2 π, p( )≤ andα= π p( )

Fpq
M 2 α( ) otherwise







=

Figure 5: Two MDPsM1 andM2 from the BMDP shown in Figure 1, and their
composition under whereπ is the only available policy in the one-action
BMDP. State transition probabilities for the composition MDP are selected from
the component MDP that achieves the greater value for the source state of the
transition. State values are shown for all three MDPs — note that the
composition MDP achieves higher value at every state, as claimed in Lemma 2.

⊕max
π

0.25

0.9
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0.1
Reward = 1

Reward = 9

Reward = 10
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2

3
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V 79.3=
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0.2

0.89
0.8
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Reward = 1

Reward = 9

Reward = 10

1

2

3
V 76.3=

V 79.4=

V 84.8=

MDP M1

0.2

0.9
0.8

0.9

0.1

0.1

Reward = 1

Reward = 9

Reward = 10

1

2

3
V 76.7=

V 79.8=

V 85.2=

M1 ⊕max
π M2MDP M2

0.1

0.9

0.1

0.9

⊕max
π

π Π M1 M2, M↕

M3 M1 ⊕max
π M2=

VM 3 π, VM 1 π,≥dom andVM 3 π, VM 2 π,≥dom
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(b) for ,

. (15)

Proof: See Appendix.

These MDP composition operators can now be used to show the existence of pol-
icy-maximizing and policy-minimizing MDPs within .

Theorem 7: For any policy , there exist -maximizing and -minimiz-
ing MDPs in .

Proof: Enumerate as a finite sequence of MDPs . Consider
composing these MDPs together to construct the MDP  as follows:

(16)

Note that may depend on the ordering of , but that any ordering
is satisfactory for this proof. It is straightforward to show by induction using
Lemma 2 that for each , and then Lemma 1 implies
that for any . is thus a -maximizing MDP.
Although may not be in , Lemma 1 implies that must be domi-
nated by  for some , which must also be -maximizing.

An identical proof implies the existence of -minimizing MDPs, replacing
each occurrence of “max” with “min” and each  with .

Corollary 1: and where the
minimum and maximum are computed relative to and are well-defined by
Theorem 7.

We give an algorithm in Section 5 that converges to by also converging to a
-minimizing MDP in (similarly for , exchanging -maximizing for -

minimizing).

Optimal Value Functions in BMDPs. We now consider how to define an optimal
value function for a BMDP. First, consider the expression . This
expression is ill-formed because we have not defined how to rank the interval value
functions in order to select a maximum.4 We focus here on two different
ways to order these value functions, yielding two notions of optimal value function
and optimal policy. Other orderings may also yield interesting results.

First, we define two different orderings on closed real intervals:

4. Similar issues arise if we attempt to define the optimal value function using a Bellman style
equation such as Equation 3 because we must compute a maximization over a set of intervals.

M3 M1 ⊕min
π M2=

VM 3 π, VM 1 π,≤dom andVM 3 π, VM 2 π,≤dom

M↕

π Π∈ π π
XM↕

M↕⊆

XM↕
M1 … M k, ,

M

M M1 ⊕max
π M2( ) ⊕max

π …( ) ⊕max
π M k( )=

M M1 … M k, ,

VM π, VM i π,≥dom 1 i k≤ ≤
VM π, VM π,≥dom M ′ M↕∈ M π

M XM↕
VM π,

VM ′ π, M ′ XM↕
∈ π

π
≥dom ≤dom ❏

V↓π minM M↕∈ VM π,( )= V↑π maxM M↕∈ VM π,( )=
≤dom

V↓π
π M↕ V↑π π π

maxπ Π∈ V↕ π( )

V↕ π
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(17)

We extend these orderings to partial orders over interval value functions by relat-
ing two value functions only when for every state

. We can now use either of these orderings to compute , yielding
two definitions of optimal value function and optimal policy. However, since the
orderings are partial (on value functions), we prove first (Theorem 8) that the set of
policies contains a policy that achieves the desired maximum under each ordering
(i.e., a policy whose interval value function is ordered above that of every other
policy).

Definition 6. An optimistically optimal policy is any policy such that
for all policies . Apessimistically optimal policy is any pol-

icy such that  for all policies .

In Theorem 8, we prove that there exist optimistically optimal policies by
induction (an analogous proof holds for pessimistically optimal policies). We
develop this proof in two stages, mirroring the two-stage definition of (first
emphasizing the upper bound and then breaking ties with the lower bound). We
first construct a policy for which the upper bounds of the interval value function

dominate those of any other policy . We then show that the finite set
of such policies (all tied on upper bounds) can be combined to construct a policy

with the same upper bound values and whose lower bounds domi-
nate those of any other policy. Each of these constructions relies on the following
policy composition operator:

Definition 7. Let and denote composition operators on policies,
defined as follows. Consider policies ,

Let  if for all states :

(18)

Let  if for all states :

(19)

l1 u1,[ ] l2 u2,[ ]≤pes( ) l1 l2< or l1= l2 u1 u2≤∧( )( )⇔

l1 u1,[ ] l2 u2,[ ]≤opt( ) u1 u2< or u1= u2 l1 l2≤∧( )( )⇔

V↕ 1 V↕ 2≤opt V↕ 1 q( ) V↕ 2 q( )≤opt

q maxπ Π∈ V↕ π( )

πopt

V↕ πopt
V↕ π≥opt π πpes

V↕ πpes
V↕ π≥pes π

≥opt

π′
V↑π′ V↑π″ π″

πopt V↑πopt
V↓πopt

⊕opt ⊕pes
π1 π2, Π∈

π3 π1 ⊕opt π2= p Q∈

π3 p( )
π1 p( ) if V↕ π1

p( ) V↕ π2
p( )≥opt

π2 p( ) otherwise



=

π3 π1 ⊕pesπ2= p Q∈

π3 p( )
π1 p( ) if V↕ π1

p( ) V↕ π2
p( )≥pes

π2 p( ) otherwise



=
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Our task would be relatively easy if it were necessarily true that

. (20)

(and likewise for the pessimistic case). However, because of the lexicographic
nature of , these statements do not hold (in particular, the lower bound values
for some states may be worse in the composed policy than in either component
even when the upper bounds on those states do not change). For this reason, we
prove a somewhat weaker result that must be used in a two-stage fashion as dem-
onstrated below:

Lemma 3: Given a BMDP , and policies , ,
and ,

(a)  and
(b) If  then  and
(c)  and
(d) If  then  and .

Proof: See Appendix.

Theorem 8: There exists at least one optimistically (pessimistically) optimal
policy.

Proof: Enumerate as a finite sequence of policies . Consider
composing these policies together to construct the policy  as follows:

(21)

Note that may depend on the ordering of , but that any order-
ing is satisfactory for this proof. It is straightforward to show by induction using
Lemma 3 that for each . Now enumerate the subset of

for which the value function upper bounds equal those of ,i.e., enu-
merate as . Consider again composing the
policies  together as above to form the policy :

(22)

It is again straightforward to show using Lemma 3 that for each
. It follows immediately that for every , as

desired. A similar construction using yields a pessimistically optimal pol-
icy .

Theorem 8 justifies the following definition:

V↕ π1 ⊕opt π2( ) V↕ π1
≥opt and V↕ π1 ⊕opt π2( ) V↕ π2

≥opt

≥opt

M↕ π1 π2, Π∈ π3 π1 ⊕opt π2=
π4 π1 ⊕pes π2=

V↑π3
V↑π1

≥dom V↑π3
V↑π2

≥dom

V↑π1
=V↑π2

V↕ π3
V↕ π1

≥opt V↕ π3
V↕ π2

≥opt

V↓π4
V↓π1

≥dom V↓π4
V↓π2

≥dom

V↓π1
=V↓π2

V↕ π3
V↕ π1

≥pes V↕ π3
V↕ π2

≥pes

Π π1 … πk, ,
πopt up,

πopt up, π1 ⊕opt π2( ) ⊕opt …( ) ⊕opt πk( )=

πopt up, π1 … πk, ,

V↑πopt up,
V↑πi

≥dom 1 i k≤ ≤
Π πopt up,

π′ V↑π′ = V↑πopt up,
{ } π1′ … πl ′, ,{ }
πi ′ πopt

πopt π1′ ⊕opt π2′( ) ⊕opt …( ) ⊕opt πk′( )=

V↓πopt
V↓πi ′

≥dom

1 i l≤ ≤ V↕ πopt
V↕ π≥opt π Π∈

⊕pes
πpes ❏
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Definition 8. The optimistic optimal value function and thepessimistic
optimal value function  are given by:

The above two notions of optimal value can be understood in terms of a two player
game in which the first player chooses a policy and then the second player
chooses the MDP in in which to evaluate the policy (see Shapley’s work
[16] for the origins of this viewpoint). The goal for the first player is to get the
highest5 resulting value function . The upper bounds of the optimisti-
cally optimal value function represent the best value function the first player can
obtain in this game if the second player cooperates by selecting an MDP to maxi-
mize (the lower bound corresponds to how badly this optimistic strat-
egy for the first player can misfire if the second player betrays the first player and
selects an MDP to minimize ). The lower bounds of the pessimistically
optimal value function represent the best the first player can do under the assump-
tion that the second player is an adversary, trying to minimize the resulting value
function.

We conclude this section by stating a Bellman equation theorem for the opti-
mal interval value functions just defined. The equations below form the basis for
our iterative algorithm for computing the optimal interval value functions for a
BMDP. We start by stating two definitions that are useful in proving the Bellman
theorem as well as in later sections. It is useful to have notation to denote the set of
actions that maximize the upper bound at each state. For a given value function ,
we write for the function from states to sets of actions such that for each state

,

. (23)

Likewise, for the pessimistic case, we define for the function from states to
sets of actions giving the actions that maximize the lower bound. For each state ,

 is given by

. (24)

Theorem 9: For any BMDP , the following Bellman-like equations hold at
every statep,

5. Value functions are ranked by .

V↕ opt

V↕ pes

V↕ opt maxπ Π∈ V↕ π( ) using to order interval value functions≤opt=

V↕ pes maxπ Π∈ V↕ π( ) using to order interval value functions≤pes=

π
M M↕ π

VM π, V↑opt

≥dom

VM π, V↓opt

VM π, V↓ pes

V
ρV

p

ρV p( ) VIM α, V( ) p( )
M M↕∈
max

α A∈
argmax=

σV
p

σV p( )

σV p( ) VIM α, V( ) p( )
M M↕∈
min

α A∈
argmax=

M↕
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, (25)

and

. (26)

Proof: See Appendix.

5.  Estimating Interval Value Functions

In this section, we describe dynamic programming algorithms that operate on
bounded-parameter MDPs. We first define the interval equivalent of policy evalua-
tion which computes , and then define the variants and
which compute the optimistic and pessimistic optimal value functions.

5.1  Interval Policy Evaluation

In direct analogy to the exact MDP definition of in Section 3, we define a
function (forinterval value iteration) which maps interval value functions to
other interval value functions. We prove that iterating on any initial interval
value function produces a sequence of interval value functions that converges to

 in a polynomial number of steps, given a fixed discount factor .

 is an interval value function, defined for each state  as follows:

(27)

We define and to be the corresponding mappings from value functions
to value functions (note that for input , does not depend on and so can
be viewed as a function from  to  — likewise for  and ).

The algorithm to compute is very similar to the standard MDP computa-
tion of , except that we must now be able to select an MDP from the family

that minimizes (maximizes) the value attained. We select such an MDP by
selecting a transition probability function within the bounds specified by the
component of to minimize (maximize) the value — each possible way of
selecting corresponds to one MDP in . We can select the values of
independently for each and , but the values selected for different states (for
fixed and ) interact: they must sum up to one. We now show how to determine,
for fixed and , the value of for each state so as to minimize (maxi-
mize) the expression . This step constitutes the heart of the

algorithm and the only significant way the algorithm differs from standard

V↕ opt p( ) VIM α, V↓opt( ) p( )
M M↕∈
min VIM α, V↑opt( ) p( )

M M↕∈
max,

α A∈ ≤opt,
max=

V↕ pes p( ) VIM α, V↓ pes( ) p( )
M M↕∈
min VIM α, V↑ pes( ) p( )

M M↕∈
max,

α A∈ ≤pes,
max=

IVI↕ π V↕ π IVI↕ opt IVI↕ pes

VIπ
IVI↕ π

IVI↕ π

V↕ π γ

IVI↕ π V↕( ) p

IVI↕ π V↕( ) p( ) VIM π, V↓( ) p( )
M M↕∈
min VIM π, V↑( ) p( )

M M↕∈
max,=

IVI↓π IVI↑π
V↕ IVI↓π V↑

V̄̄ V̄̄ IVI↑π V↓

IVI↕ π
VI M

M↕

F F↕

M↕

F M↕ Fpq α( )
α p q

α p
α p Fpq α( ) q

Σq Q∈ Fpq α( )V q( )( )
IVI↕ π
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policy evaluation by successive approximation by iterating .

To compute the lower bounds the idea is to sort the possible destination
states into increasing order according to their value, and then choose the
transition probabilities within the intervals specified by so as to send as much
probability mass to the states early in the ordering (upper bounds are computed
similarly, but sorting the states into decreasing order by their value). Let

be such an ordering of — so that for all and if
then (increasing order). We can then show that the

order-maximizing MDP is the MDP that minimizes the desired expression
. The order-maximizing MDP for the decreasing order based

on will maximize the same expression to generate the upper bound in
Equation 27.

Figure 6 illustrates the basic iterative step in the above algorithm, for the upper
bound,i.e.maximizing, case. The states are ordered according to the value esti-
mates in . The transitions from a state to states are defined by the function

such that each transition is equal to its lower bound plus some fraction of the
leftover probability mass. For a more precise account of the algorithm, please refer
to Figure 7 for a pseudocode description of the computation of .

Techniques similar to those in Section 3 can be used to prove that iterating

VIM π,

IVI↓π
q V↓

F↕

V↑

O q1 q2 … qk, , ,= Q i j
1 i j k≤ ≤ ≤ V↓ qi( ) V↓ q j( )≤

MO
Σq Q∈ Fpq

M α( )V q( )( )
V↑

q1

≥

V↑π q1( )

V↑π q2( )

V↑π q3( )

V↑π qk( )

q2

q3

qk

≥
≥

≥
…

p

Figure 6: An illustration of the basic dynamic programming step in
computing an approximate value function for a fixed policy and bounded-
parameter MDP. gives the upper bounds of the current interval estimates
of . The lighter shaded portions of each arc represent the required lower
bound transition probability and the darker shaded portions represent the
fraction of the remaining transition probability to the upper bound assigned to
the arc by .

V↑π
Vπ

F

qi
V↑ p qi

F

IVI↕ π V↕( )
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(or ) converges to (or ). The key theorems, stated below,
assert first that is a contraction mapping, and second that is a fixed-
point of  and are easily proven.

Theorem 10: For any policy ,  and  are contraction mappings.

Figure 7: Pseudocode for one iteration of interval policy evaluation ( )IVI↕

\\we assume that  is represented as:
\\  is a vector of n real numbers giving lower-bounds for states q1 to qn
\\  is a vector of n real numbers giving upper-bounds for states q1 to qn

{ CreateO, a vector ofn states for holding a permutation of the statesq1 to qn

\\first, compute new lower bounds
O = sort_increasing_order(q1,...,qn,<lb); \\ <lb compares state lower-bounds
Update( , π, O);

\\second, compute new upper bounds
O = sort_decreasing_order(q1,...,qn,<ub); \\ <ub compares state upper-bnds
Update( ,π, O)}

=========================================================
\\ Update(v, π, o) updates v using the order-maximizing MDP for o
\\ o is a state ordering—a vector of states (a permutation of q1,...,qn)
\\ v is a value function—a vector of real numbers of length n

Update(v, π, o)
{ CreateF’ , a matrix ofn by n real numbers

\\ the next loop sets F’ to describeπ in the order-maximizing MDP for o
for each statep {

used = ;

remaining = 1 – used;

\\ distribute remaining probability mass to states early in the ordering
for i=1 ton { \\ i is used to index into ordering o

min = ;
desired = ;
if (desired <= remaining)

thenF’ (p,o(i)) = min+desired;
elseF’ (p,o(i)) = min+remaining;

remaining = max(0,remaining-desired)}}

\\ F’ now describesπ in the order-maximizing MDP w/respect to O,
\\ finally, update v using a value iteration-like update based on F’
for each statep

v(p) = R(p) + γ F’(p,q) v(q) }

IVI↕ V↕ π,( )

V↕

V↓

V↑

V↓

V↑

stateq
∑ F↓ p q, π p( )( )

F↓ p o i( ), π p( )( )
F↑ p o i( ), π p( )( )

stateq
∑

IVI↓π IVI↑π V↓π V↑π
IVI↓π V↓π

IVI↓π

π IVI↓π IVI↑π
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Proof: See Appendix.

Theorem 11: For any policy , is a fixed-point of and of
, and therefore  is a fixed-point of .

These theorems, together with Theorem 1 (the Banach fixed-point theorem) imply
that iterating on any initial interval value function converges to , regard-
less of the starting point.

Theorem 12: For fixed , interval policy evaluation converges to the
desired interval value function in a number of steps polynomial in the number
of states, the number of actions, and the number of bits used to represent the
BMDP parameters.

Proof: (sketch) We provide only the key ideas behind this proof.

(a) By Theorem 10, is a contraction by on both the upper and lower
bound value functions, and thus the successive estimates of produced
converge exponentially to the unique fixed-point.

(b) By Theorem 11, the unique fixed-point is the desired value function.

(c) The upper bound and lower bound value functions making up the true
are the value functions of in particular MDPs ( -maximizing and

-minimizing MDPs, respectively) in .

(d) The parameters for the MDPs in can be specified with a number of
bits polynomial in the number of bits used to specify the BMDP parame-
ters.

(e) The value function for a policy in an MDP can be written as the solution
to a linear program. The precision of any such solution can be bounded in
terms of the number of bits used to specify the linear program. This preci-
sion bound allows the definition of a stopping condition for when
adequate precision is obtained.

 (Theorem 12).

5.2  Interval Value Iteration

As in the case of altering to obtain , it is straightforward to modify
so that it computes optimal policy value intervals by adding a maximization step
over the different action choices in each state. However, unlike standard value iter-
ation, the quantities being compared in the maximization step are closed real inter-
vals, so the resulting algorithm varies according to how we choose to compare real
intervals. We define two variations of interval value iteration — other variations
are possible.

π V↓π IVI↓π V↑π
IVI↑π V↕ π IVI↕ π

IVI↕ π V↕ π

γ 1<

IVI↕ π γ
V↕ π

V↕ π π π
π XM↕

XM↕

IVI↕ π

❏

VIπ VI IVI↕ π



Bounded-parameter Markov Decision Processes,May 22, 2000 23

(28)

(29)

The added maximization step introduces no new difficulties in implementing the
algorithm—for more details we provide pseudocode for in Figure 8. We
discuss convergence for — the convergence results for are similar.
We first summarize our approach and then cover the same ground in more detail.

We write for the upper bound returned by , and we consider
a function from to because depends only on due to the

way compares intervals primarily based on their upper bound. can
easily be shown to be a contraction mapping, and it can be shown that is a
fixed point of . It then follows that converges to (and we can
argue as for that this convergence occurs in polynomially many steps for
fixed ). The analogous results for are somewhat more problematic.
Because the action selection is done according to , which focuses primarily on
the interval upper bounds, is not properly a mapping from to , as the
action choice for depends on both and . In particular, for each
state, the action that maximizes the lower bound is chosen from among the subset
of actions that (equally) maximize the upper bound.

To deal with this complication, we observe that if we fix the upper bound value
function , we can view as a function from to carrying the lower
bounds of the input value function to the lower bounds of the output. To formalize
this idea, we introduce some new notation. First, given two value functions and

we define the interval value function to be the function from states
to intervals (this notation is essentially the inverse of the↓ and↑
notation which extracts lower and upper bound functions from interval functions).
Using this new notation, we define a family of functions from to

, indexed by a value function . For each value function , we define
to be the function from to that maps to .

(Analogously, we define to map to ). We note
that  has the following relationships to :

(30)

In analyzing , we also use the notation defined in Section 4 for the set of
actions that maximize the upper bound at each state. We restate the relevant defini-
tion here for convenience. For a given value function , we write for the func-

IVI↕ opt V↕( ) p( ) VIM α, V↓( ) p( )
M M↕∈
min VIM α, V↑( ) p( )

M M↕∈
max,

α A∈ ≤opt,
max=

IVI↕ pes V↕( ) p( ) VIM α, V↓( ) p( )
M M↕∈
min VIM α, V↑( ) p( )

M M↕∈
max,

α A∈ ≤pes,

max=

IVI↕ opt
IVI↕ opt IVI↕ pes

IVI↑opt IVI↕ opt
IVI↑opt V̄̄ V̄̄ IVI↑opt V↕( ) V↑

≤opt IVI↑opt
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tion from states to sets of actions such that for each state ,

(31)

Figure 8: Pseudocode: an iteration of optimistic interval value iteration ( )IVI↕ opt

\\we assume that  is represented as:
\\  is a vector of n real numbers giving lower-bounds for states q1 to qn
\\  is a vector of n real numbers giving upper-bounds for states q1 to qn

{ CreateO, a vector ofn states for holding a permutation of the statesq1 to qn

\\first, compute new lower bounds
O = sort_increasing_order(q1,...,qn,<lb); \\ <lb compares state lower-bounds
VI-Update( ,O);

\\second, compute new upper bounds
O = sort_decreasing_order(q1,...,qn,<ub); \\ <ub compares state upper-bnds
VI-Update( ,O)}

=========================================================
\\ VI-Update(v, o) updates v using the order-maximizing MDP for o
\\ o is a state ordering—a vector of states (a permutation of q1,...,qn)
\\ v is a value function—a vector of real numbers of length n

VI-Update(v, o)
{ CreateFa, a matrix ofn by n real numbers for each actiona

\\ the next loop sets each Fa to describe a in the order-maximizing MDP for o
for each statep and actiona {

used = ;

remaining = 1 – used;

\\ distribute remaining probability mass to states earlier in ordering
for i=1 ton { \\ i is used to index into ordering o

min = ;
desired = ;
if (desired <= remaining)

thenFa(p,o(i)) = min+desired;
elseFa(p,o(i)) = min+remaining;

remaining = max(0,remaining-desired)}}

\\ Fa now describes a in the order-maximizing MDP w/respect to O,
\\ finally, update v using a value iteration-like update based on F’
for each statep

v(p) = [R(p) + γ Fa(p,q) v(q) } ]

IVI↕ opt V↕( )

V↕

V↓

V↑

V↓

V↑

stateq
∑ F↓ p q, a( )

F↓ p o i( ), a( )
F↑ p o i( ), a( )

a A∈
max

stateq
∑

p

ρV p( ) VIM α, V( ) p( )
M M↕∈
max

α A∈
argmax=
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Likewise, for the pessimistic case, we defined  in Section 4.

Given the definition of , it is straightforward to show the following lemma.

Lemma 4: For any value functions  and state ,

(32)

Proof: By inspection of the definitions of  and .

 (Lemma 4).

We now show that for each , is a contraction mapping relative to the
sup norm, and thus converges to a unique fixed point, as desired. Theorem 9 then
implies that is the unique fixed-point found. ( in the case of ). We
then show at that at any point after polynomially many iterations of , the
resulting interval value function has upper bounds that have converged to a
fixed point of , and thus further iteration of is equivalent to iterating

and together in parallel to generate the upper and lower bounds,
respectively. We can also show that for any , polynomially many iterations of

suffice for convergence to a fixed point. Similar results hold for .
We now give the details of these results.

Theorem 13:

(a)  and  are contraction mappings.

(b) For any value function and associated action set selection function
and ,  and  are contraction mappings.

Proof: See Appendix.

Theorem 14: For fixed , polynomially many iterations of can be used
to find , and polynomially many iterations of can be used to find

, with both polynomials defined relative to the problem size including the
number of bits used in specifying the parameters.

Proof: (sketch)

The argument here is exactly as in Theorem 12, relying on Theorems 9 and 13,
except that the iterations must be taken to convergence in two stages. Consider-
ing , we must first iterate until the upper bound has converged, with the
polynomial-time bound on iterations deriving by a similar argument to the

σV

≤opt
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α σV p( )∈
max=

IVI↕ opt IVI↕ pes

❏

V IVI↓opt V,

V↕ opt V↕ pes IVI↕ pes
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V
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V ρV
σV IVI↓opt V, IVI↑pes V,

γ IVI↕ opt
V↕ opt IVI↕ pes
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proof of Theorem 12; then once the upper bounds have converged we must then
iterate until the lower bounds have converged, again in polynomially many iter-
ations by another argument similar to that in the proof of Theorem 12.

More precisely, let , , , be a sequence of interval value functions found
by iterating , so that for each greater or equal to we have
equal to . Then an argument similar to the proof of Theorem 12
guarantees that for some polynomial in the size of the problem, must have
upper bounds that are equal to the true fixed point upper bound values, up to the
maximum precision of the true fixed point. We then know that truncating the
upper value bounds in to that precision (to get an interval value function

) gives the true fixed point upper bound values. We can then iterate
starting on to get another sequence of value functions where the upper
bounds are unchanging and the lower bounds are converging to the correct fixed
point values in the same manner.

A similar argument shows polynomial convergence for .

 (Theorem 14).

6.  Policy Selection

In this section, we consider the problem of selecting a policy based on the value
bounds computed by our IVI algorithms. This section is not intended as an addi-
tional research contribution as much as a discussion of issues that arise in solving
BMDP problems and of alternative approaches to policy selection (other than the
optimistic and pessimistic approaches we take here). We begin by reemphasizing
some ideas introduced earlier regarding the selection of policies. To begin with, it
is important that we are clear on the status of the bounds in a bounded-parameter
MDP. A bounded-parameter MDP specifies upper and lower bounds on individual
parameters; the assumption is that we have no additional information regarding
individual exact MDPs whose parameters fall with those bounds. In particular, we
have no prior over the exact MDPs in the family of MDPs defined by a bounded-
parameter MDP. We note again that in many applications it is possible to compute
prior probabilities over these parameters, but that these computations are prohibi-
tively expensive in our motivating application (solving large state-space problems
by approximate state-space aggregation).

Despite the fact that a BMDP does not specify which particular MDP we are
facing, we may have to choose a policy. In such a situation, it is natural to consider
that the actual MDP,i.e., the one in which we ultimately have to carry out the pol-
icy, is decided by some outside process. That process might choose so as to help or
hinder us, or it might be entirely indifferent. To maximize potential performance,
we might assume that the outside process cooperates by choosing the MDP in
order to help us; we can then select the policy that performs as well as possible

V↕ 1 V↕ 2 …
IVI↕ opt i 1 V↕ i 1+

IVI↕ opt V↕ i( )
j V↕ j

V↕ j
V↕ 1′ IVI↕ opt

V↕ 1′

IVI↕ pes

❏



Bounded-parameter Markov Decision Processes,May 22, 2000 27

given that assumption. In contrast, we might minimize the risk of performing
poorly by thinking in adversarial terms: we can select the policy that performs as
well as possible under the assumption that an adversary chooses the MDP so that
we perform as poorly as possible (in each case we assume that the MDP is chosen
from the BMDP family of MDPsafter the policy has been selected in order to min-
imize/maximize the value of that policy).

These choices correspond to optimistic and pessimistic optimal policies as
defined above. We have discussed in the last section how to compute interval value
functions for such policies — such value functions can then be used in a straight-
forward manner to extract policies that achieve those values.

We note that it may seem unnatural to be required to take an optimistic or a
pessimistic approach in order to select a policy — certainly this is not analogous to
policy selection for standard MDPs. This requirement grows out of our model
assumption that we have no prior probabilities on the model parameters, and we
have argued that this assumption is in fact natural at very least in our motivating
domain of approximate state-space aggregation. The same assumption is also natu-
ral in performing sensitivity analysis, as described in the next section. We also note
that there is precedent in the related MDP literature for considering optimistic and
pessimistic approaches to policy selection in the face of uncertainty about the
model; see, for example, the work of Satia and Lave in [15].

Alternative approaches to selecting a policy are possible, but some approaches
that seem natural at first run into trouble. For instance, we might consider placing a
uniform prior probability on each model parameter within its specified interval.
Unfortunately, the model parameters cannot in general be selected independently
(because they must together represent a well-formed probability distribution after
selection), and there may not even be any joint prior distribution over the parame-
ters which marginalizes to the uniform distribution over the provided intervals
when marginalized to each parameter. Therefore, the uniform distribution over the
provided intervals does not enjoy any distinguished status — it may not even cor-
respond to a well-formed prior over the underlying MDPs in the BMDP family.

There are other well-formed choices corresponding to other means of totally
ordering real closed intervals (other than and ). For instance, we might
order intervals by their midpoints, asserting a preference for states where the high-
est and lowest value possible in the underlying MDP family have a high mean. It is
not clear when this choice might be prefered; however, we believe our methods can
be naturally adapted to compute optimal policy values for other interval orderings,
if desired.

A natural goal would be to find a policy whose average performance over all
MDPs in the family is as good as or better than the average performance of any
other policy. This notion of average is potentially problematic, however, as it
essentially assumes a uniform prior over exact MDPs and, as stated earlier, the

≤opt ≤pes
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bounds do not imply any particular prior. Moreover, it is not at all clear how to find
such a policy — our methods do not appear to generalize in this direction. As
noted just above, this goal doesnot correspond to assuming a uniform prior over
the model parameters, but rather a more complex joint distribution over the param-
eters. Also, this average case solution would not in general provide useful informa-
tion in our motivating application of state-space aggregation: we would have no
guarantee that the uniform prior over MDP models consistent with the BMDP had
any useful correlation with the original large MDP that aggregated to the BMDP.
In contrast, as discussed below, the optimistic and pessimistic bounds we compute
apply directly to any MDP when the BMDP analyzed is formed by state-space
aggregation of that MDP. Nevertheless, the question of how to compute the opti-
mal average case policy for a BMDP appears to be a useful direction for future
research.

7.  Prototype Implementation Results and Potential Applications

In this section we discuss our intended applications for the new BMDP algorithms,
and present empirical results from a prototype implementation of the algorithms
for use in state-space aggregation. We note that no particular difficulties were
encountered in implementing the new BMDP algorithms — implementation is
more demanding than that of standard MDP algorithms, but only by the addition of
a sorting algorithm.

Sensitivity Analysis. One way in which bounded-parameter MDPs might be useful
in planning under uncertainty might begin with a particular exact MDP (say, the
MDP with parameters whose values reflect the best guess according to a given
domain expert). If we were to compute the optimal policy for this exact MDP, we
might wonder about the degree to which this policy is sensitive to the numbers
supplied by the expert.

To assess this possible sensitivity to the parameters, we might perturb the MDP
parameters and evaluate the policy with respect to the perturbed MDP. Alterna-
tively, we could use BMDPs to perform this sort of sensitivity analysis on a whole
family of MDPs by converting the point estimates for the parameters to confidence
intervals and then computing bounds on the value function for the fixed policy via
interval policy evaluation.

Aggregation. Another use of BMDPs involves a different interpretation altogether.
Instead of viewing the states of the bounded-parameter MDP as individual primi-
tive states, we view each state of the BMDP as representing a set oraggregateof
states of some other, larger MDP. We note that this use provides our original moti-
vation for developing BMDPs, and therefore it is this use that we give prototype
empirical results for below.

In the state-aggregate interpretation of a BMDP, states are aggregated together
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because they behave approximately the same with respect to possible state transi-
tions. A little more precisely, suppose that the set of states of the BMDP corre-
sponds to the set ofblocks such that the constitutes the
partition of another MDP with a much larger state space.

Now we interpret the bounds as follows; for any two blocks and , let
represent the interval value for the transition from to on action

defined as follows:

(33)

Intuitively, this means that all states in a block behave approximately the same
(assuming the lower and upper bounds are close to each other) in terms of transi-
tions to other blocks even though they may differ widely with regard to transitions
to individual states.

In Deanet. al. [10] we discuss methods for using an implicit representation of
a exact MDP with a large number of states to construct an explicit BMDP with a
possibly much smaller number of states based on an aggregation method. We then
show that policies computed for this BMDP can be extended to the original large
implicitly-described MDP. Note that the original implicit MDP is not even a mem-
ber of the family of MDPs for the reduced BMDP (it has a different state space, for
instance). Nevertheless, it is a theorem that the policies and value bounds of the
BMDP can be soundly applied in the original MDP (using the aggregation map-
ping to connect the state spaces). In particular, the lower interval bounds computed
on a given state block by give lower bounds on the optimal value for states
in that block in the original MDP; likewise, the upper interval bounds computed by

 give upper bounds on the optimal value in the original MDP.

Empirical Results. We constructed a prototype implementation of our BMDP
algorithms, interval value iteration and interval policy evaluation. We then used
this implementation in conjunction with implementations of our previously pre-
sented approximate state-space aggregation algorithms [10] in order to compute
lower and upper bounds on the values of individual states in large MDP problems.

The MDP problems used were derived by partially modelling air campaign
planning problems using implicit MDP representations. These problems involve
selecting tasks for a variety of military aircraft over time in order to maximize the
utility of their actions, and require modeling many aspects of the aircraft capabili-
ties, resources, crew, and tasks. Modeling the full problem as an MDP is still out of
reach — the MDP models used in these experiments were constructed by repre-
senting the problem at varying degrees of (extremely coarse) abstraction so that the
resulting problem would be within reach of our prototype implementation.

We show in Table 15 the original problem state-space size, the state-space size
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F↕ BiB j
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α( ) Fpq α( )
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∑

p Bi∈
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p Bi∈
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of the BMDP that results from our aggregation algorithm, and the quality of the
resulting state-value bounds for several different sized MDP problems. Each row
in the table corresponds to a specific explicit MDP that we solved (approximately
and/or exactly) using state-space aggregation. We note that one parameter (ε) of
our aggregation method is the degree of approximation tolerated in transition prob-
ability — this corresponds to the interval width in the BMDP parameter intervals.
As this parameter is given larger and larger values across the columns of the table,
the aggregate BMDP model has fewer and fewer states — in return, the value
bounds obtained are less and less tight. The quality of the resulting state-value
bounds is given by showing “IVI Inaccuracy” — this percentage is the average
width of the value intervals computed as a percentage of the difference between
the lowest possible state value and the highest possible state value (these are
defined by assuming a repeated occurence of the lowest/highest reward available
for an infinite time period and computing the total discounted reward obtained).
Our prototype aggregation code was incapable of handling the exact and near-
exact analysis of the largest models tried, and those entries in the table are there-
fore missing.

We note that IVI inaccuracies of much greater than 25% may not represent
very useful bounds on state value (we have not yet conducted experiments to eval-
uate this question). For this reason, the last three columns of the table are shown
primarily for completeness and to satisfy curiosity. However, an inaccuracy of
10% can be expected to yield useful information in selecting between different
control actions — we can think of this level of inaccuracy as allowing us to rate
each state on a scale of one to ten as to how good its value is. Such ratings should
be very useful in designing control policies.

We note that our prototype code is not optimized in its handling of either space
or time. Similar prototype code for explicit MDP problems can handle no more
than a few hundred states. Production versions of explicit MDP code today can
handle as many as a million or so states. Our aggregation and BMDP algorithms,
even in this unoptimized form, are able to obtain nontrivial bounds on state value
for state-space sizes involving thousands of states. We believe that a production

Table 15: Model Size after Approximate Minimization

#State
Vars # States ε = 0 ε = 0.01 ε = 0.1 ε = 0.3 ε = 0.5 ε = 0.8

9 512 114 114 72 24 11 8

10 1024 131 122 85 55 21 21

13 8192 347 347 272 148 66 63

14 16384 442 153 67 63

15 32768 520 152 88 69

IVI Inaccuracy: 0% 0.2% 10% 40% 58% 62%
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version of these algorithms could derive near-optimal policies for MDP planning
problems involving hundreds of millions of states.

8.  Related Work and Conclusions

Our definition for bounded-parameter MDPs is related to a number of other ideas
appearing in the literature on Markov decision processes; in the following, we
mention just a few of the closest such ideas. First, BMDPs specialize the MDPs
with imprecisely known parameters (MDPIPs) described and analyzed in the oper-
ations research literature by White and Eldeib [17], [18], and Satia and Lave [15].
The more general MDPIPs described in these papers require more general and
expensive algorithms for solution. For example, [17] allows an arbitrary linear pro-
gram to define the bounds on the transition probabilities (and allows no impreci-
sion in the reward parameters) — as a result, the solution technique presented
appeals to linear programming at each iteration of the solution algorithm rather
than exploit the specific structure available in a BMDP as we do here. [15] men-
tions the restriction to BMDPs but gives no special algorithms to exploit this
restriction. Their general MDPIP algorithm is very different from our algorithm
and involves two nested phases of policy iteration — the outer phase selecting a
traditional policy and the inner phase selecting a “policy” for “nature”,i.e., a
choice of the transition parameters to minimize or maximize value (depending on
whether optimistic or pessimistic assumptions prevail). Our work, while originally
developed independently of the MDPIP literature, follows similar lines to [15] in
defining optimistic and pessimistic optimal policies. In summary, when uncer-
tainty about MDP parameters is such that a BMDP model is appropriate, the
MDPIP literature does not provide an approach that exploits the restricted structure
to achieve an efficient method (we note appealing to linear programming at each
iteration can be very expensive).

Shapley [16] introduced the notion ofstochastic gamesto describe two-person
games in which the transition probabilites are controlled by the two players.
MDPIPs, and therefore BMDPs, are a special case ofalternatingstochastic games
in which the first player is the decision-making agent and the second player, often
considered as either an adversary or advocate, makes its move by choosing from
the set of possible MDPs consistent with having seen the agent’s move.

Bertsekas and Castañon [3] use the notion of aggregated Markov chains and
consider grouping together states with approximately the same residuals. Methods
for bounding value functions are frequently used in approximate algorithms for
solving MDPs; Lovejoy [13] describes their use in solving partially observable
MDPs. Puterman [14] provides an excellent introduction to Markov decision pro-
cesses and techniques involving bounding value functions.

Boutilier, Dean and Hanks [5] provide a careful treatment of MDP-related
methods demonstrating how they provide a unifying framework for modeling a
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wide range of problems in AI involving planning under uncertainty. This paper
also describes such related issues as state space aggregation, decomposition and
abstraction as these ideas pertain to work in AI. We encourage the reader unfamil-
iar with the connection between classical planning methods in AI and Markov
decision processes to refer to this paper.

Boutilier and Dearden [6] and Boutilieret. al.[8] describe methods for solving
implicitly described MDPs using dynamic aggregation — in their methods the
state space aggregates vary over the iterations of the dynamic programming algo-
rithm. This work can be viewed as using a compact representation of both policies
and value functions in terms of state aggregates to perform the familiar dynamic
programming algorithms. Dean and Givan [9] reinterpret this work in terms of
computing explicitly described MDPs with aggregate states corresponding to the
aggregates that the above compactly represented value functions use when they
have converged. Dean, Givan, and Leach [10] discuss relaxing these aggregation
techniques to construct approximate aggregations — it is from this work that the
notion of BMDP emerged in order to represent the resulting aggregate models.

Bounded-parameter MDPs allow us to represent uncertainty about or variation
in the parameters of a Markov decision process. Interval value functions capture
the resulting variation in policy values. In this paper, we have defined both
bounded-parameter MDP and interval value function, and given algorithms for
computing interval value functions, and selecting and evaluating policies.
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11.  Appendix — Proofs Omitted Above for Readability

Lemma 1: For any policy , MDP , and value function ,

(a) there are MDPs  and  such that

. (34)

(b) Also, there are MDPs  and  such that

. (35)

Proof: To show the existence of , let be an ordering on
states such that for all and if then
(increasing order). Note that ties in state values permit different orderings; for
the proof, it is sufficient to chose one ordering arbitrarily. Consider ,
the order-maximizing MDP of . is constructed so as to send as much
probability mass as possible to states earlier in the ordering , i.e. to those
states  with lower value . It follows that for any state ,

(36)

Thus, for any state ,

(37)

(38)

(39)

By Theorem 6, these lines imply , as desired.

The existence of can be shown in the same except that is chosen to order
the states by increasing value. Thus  is constructed so that

. (40)
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Part (b) is shown in the same manner as part (a) except that we replace each
occurrence of with and each occurrence of
with .

(Lemma 1)

Lemma 2: Let  be a policy in  and  be MDPs in .

(a) For ,

, and (41)

(b) for ,

. (42)

Proof: Part (a): We construct a value function such that ,
, and , as follows. For each , let

(43)

Note that this implies and . We now show using
Theorem 6 that . By Theorem 6 it suffices to prove that

, which we now do by showing for arbi-
trary .

Case 1.We suppose .

From Equation 43 we then have that . By the definition of
, we know when as in

this case. This fact, together with the definitions of , , , and
allow the following chain of equations to conclude the proof of case 1:

(44)

Case 2:Suppose .

VM π, p( ) VIM π, v( ) p( ) VM π, q( )
v q( )

❏

π Π M1 M2, M↕

M3 M1 ⊕max
π M2=

VM 3 π, VM 1 π,≥dom andVM 3 π, VM 2 π,≥dom

M3 M1 ⊕min
π M2=

VM 3 π, VM 1 π,≤dom andVM 3 π, VM 2 π,≤dom

v v VM 1 π,≥dom

v VM 2 π,≥dom v VM 3 π,≤dom p Q∈

v p( ) max VM 1 π, p( ) VM 2 π, p( ),( )=

v VM 1 π,≥dom v VM 2 π,≥dom

v VM 3 π,≤dom

v VIM 3 π, v( )≤dom v p( ) VIM 3 π, v( ) p( )≤
p Q∈

VM 1 π, p( ) VM 2 π, p( )≥

v p( ) VM 1 π, p( )=
⊕max

π Fpq
M 3 π p( )( ) Fpq

M 1 π p( )( )= VM 1 π, p( ) VM 2 π, p( )≥
VI VM 1 π, ⊕max

π v

v p( ) VM 1 π, p( )=

R p( ) γ Fpq
M 1 π p( )( )VM 1 π, q( )

q Q∈
∑+=

R p( ) γ Fpq
M 1 π p( )( )v q( )

q Q∈
∑+≤

R p( ) γ Fpq
M 3 π p( )( )v q( )

q Q∈
∑+=

VIM 3 π, v( ) p( )=

VM 1 π, p( ) VM 2 π, p( )<
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We then have by the definition of , and
by the definition of , and Equation 44 holds with replaced

by , as desired, concluding the proof of part (a).

Part (b): The proof is exactly dual to part (a) by replacing “max” with “min,
 with  (and vice versa), and < with >.

 (Lemma 2).

Lemma 3: Given a BMDP , and policies , , and
,

(a)  and
(b)  If  then  and
(c)  and
(d)  If  then  and .

Proof: Part (a): We prove part (a) of the lemma by constructing a value func-
tion such that and . We then show that
using Theorem 6. We construct as follows. Let =
for each .

This construction implies that and . We now show
by giving an MDP for which . Using Theorem 6

it suffices to show that .

Let be a -maximizing MDP, and be a -maximizing
MDP. Note that this implies that  and .

We now construct  as follows:  for each ,

It remains to show that for all . Now fix an arbi-
trary .

Case 1: Suppose .

Then by the definition of , . Also, by the definition of ,

, and so is true, and by the definition of

, . The following inequations thus hold:

(45)

Fpq
M 3 π p( )( ) Fpq

M 2 π p( )( )= ⊕max
π

v p( ) VM 1 π,= v M1
M2

≤ ≥

❏

M↕ π1 π2, Π∈ π3 π1 ⊕opt π2=
π4 π1 ⊕pes π2=

V↑π3
V↑π1

≥dom V↑π3
V↑π2

≥dom

V↑π1
=V↑π2

V↕ π3
V↕ π1

≥opt V↕ π3
V↕ π2

≥opt

V↓π4
V↓π1

≥dom V↓π4
V↓π2

≥dom

V↓π1
=V↓π2

V↕ π4
V↕ π1

≥pes V↕ π4
V↕ π2

≥pes

v v V↑π1
≥dom v V↑π2

≥dom v V↑π3
≤dom

v v p( ) max V↑π1
p( ) V↑π2

p( ),( )
p Q∈

v V↑π1
≥dom v V↑π2

≥dom

v V↑π3
≤dom M3 VM 3 π3, v≥dom

VIM 3 π3, v( ) v≥dom

M1 M↕∈ π1 M2 M↕∈ π2
V↑π1

VM 1 π1,= V↑π2
VM 2 π2,=

M3 M↕∈ p q α, ,

Fpq
M 3 α( )

Fpq
M 1 α( ) if V↕ π1

p( ) V↕ π2
p( )≥opt

Fpq
M 2 α( ) otherwise







=

VIM 3 π3, v( ) p( ) v p( )≥ p Q∈
p Q∈

V↕ π1
p( ) V↕ π2

p( )≥opt

⊕opt π3 p( ) π1 p( )= ≥opt

V↑π1
p( ) V↑π2

p( )≥ v p( ) VM 1 π1, p( )=

M3 Fpq
M 3 π3 p( )( ) Fpq

M 1 π3 p( )( )=

v p( )) V↑π1
p( )=
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(46)

(47)

(48)

(49)

Case 2:Suppose .

Then by the definition of , . Also, by the definition of ,

, and so is true, and by the definition of

, . Then Equation 45 thru Equation 49 hold with

and in place of and respectively, yielding again that

, as desired.

Case 1 and Case 2 together imply that for all ,
which with Theorem 6 implies part (a) of the lemma.

Proof: Part (b): Supposing that , we show and
. From part (a) of the theorem, we know that and
. It suffices to prove in addition that and
. We show both by defining for

each state , observing that and , and then showing
that .

We can show by showing that for arbitrary , .
By Theorem 6 it suffices to show that for arbitrary state ,

. We divide now into two cases:

Case 1:Suppose .
With the part (b) assumption ( ), this implies .
Then by the definition of , . Also by definition in this case

. Let be a -minimizing MDP. The following inequation
chain gives the desired conclusion:

(50)

(51)

R p( ) γ Fpq
M 1 π1 p( )( )V↑π1

q( )( )
q Q∈
∑+=

R p( ) γ Fpq
M 3 π3 p( )( )V↑π1

q( )( )
q Q∈
∑+=

R p( ) γ Fpq
M 3 π3 p( )( )v q( )( )

q Q∈
∑+≤

VIM 3 π3, v( ) p( )=

V↕ π1
p( ) V↕ π2

p( )<opt

⊕opt π3 p( ) π2 p( )= ≥opt

V↑π1
p( ) V↑π2

p( )≤ v p( ) VM 2 π2, p( )=

M3 Fpq
M 3 π3 p( )( ) Fpq

M 2 π3 p( )( )=

M2 π2 M1 π1

v p( ) VIM 3 π3, v( ) p( )≤

v p( ) VIM 3 π3, v( ) p( )≤ p Q∈

V↑π1
V↑π2

= V↕ π3
V↕ π1

≥opt

V↕ π3
V↕ π2

≥opt V↑π3
V↑π1

≥dom

V↑π3
V↑π2

≥dom V↓π3
V↓π1

≥dom

V↓π3
V↓π2

≥dom v p( ) max V↓π1
p( ) V↓π2

p( ),( )=
p Q∈ v V↓π1

≥dom v V↓π2
≥dom

V↓π3
v≥dom

V↓π3
v≥dom M M↕∈ VM π3, v≥dom

p Q∈ VIM π3, v( ) p( )
≥ v

V↓π1
p( ) V↓π2

p( )≥
V↑π1

V↑π2
= V↕ π1

p( ) V↕ π2
p( )≥opt

⊕opt π3 p( ) π1 p( )=
v p( ) V↓π1

p( )= M1 π1

v p( ) V↓π1
p( )=

R p( ) γ Fpq
M1 π1 p( )( )V↓π1

q( )
q Q∈
∑+=
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(52)

(53)

(54)

Line 52 requires some justification. Consider an MDP defined to agree
with everywhere except that for every . If Line 52 did
not hold, we would have and then Theorem 6 could be
used to show that , contradicting the definition of .

Case 2:Suppose .
With the part (b) assumption this implies that .
Then by the definition of , . Also . Let
be a -minimizing MDP. Equations 50 through 54 now hold with and
replaced by  and , respectively.

We have now shown in both cases that , as desired, con-
cluding the proof of part (b) of the theorem.

Proof: Part (c): We prove part (c) of the lemma by constructing a value func-
tion such that and . We then show that
using Theorem 6. We construct as follows. Let =
for each . This implies and . We now show

by showing that for arbitrary , . Using
Theorem 6 it suffices to show that .

Let be a -minimizing MDP, and be a -minimizing
MDP. Note that this implies that  and .

Now fix an arbitrary , and show that .

Case 1: Suppose .

Then by the definition of , . Also, by the definition of ,

, and so is true. Equations 50 through 54

now hold with  in place of , giving the desired result.

Case 2:Suppose .

Then by the definition of , . Also, by the definition of ,

, and so is true. Then Equations 50

through 54 hold with , , and in place of , , and , respec-

tively, yielding again that , as desired.

R p( ) γ Fpq
M π1 p( )( )V↓π1

q( )
q Q∈
∑+≤

R p( ) γ Fpq
M π3 p( )( )v q( )

q Q∈
∑+≤

VIM π3, v( ) p( )≤

M1
′

M1 Fpq
M 1

′
Fpq

M= q Q∈
VIM 1′ π1, V↓π1

( ) V↓π1
<dom

VM 1
′ π1, V↓π1

<dom V↓π1

V↓π1
p( ) V↓π2

p( )<
V↕ π1

p( ) V↕ π2
p( )<opt

⊕opt π3 p( ) π2 p( )= v p( ) V↓π2
p( )= M2

π2 M1 π1
M2 π2

v p( ) VIM π3, v( ) p( )≤

v v V↓π1
≥dom v V↓π2

≥dom v V↓π4
≤dom

v v p( ) max V↓π1
p( ) V↓π2

p( ),( )=
p Q∈ v V↓π1

≥dom v V↓π2
≥dom

v V↓π4
≤dom M M↕∈ VM π4, v≥dom

VIM π4, v( ) v≥dom

M1 M↕∈ π1 M2 M↕∈ π2
V↓π1

VM 1 π1,= V↓π2
VM 2 π,=

p Q∈ VIM π4, v( ) p( ) v p( )≥

V↕ π1
p( ) V↕ π2

p( )≥pes

⊕pes π4 p( ) π1 p( )= ≥pes

V↓π1
p( ) V↓π2

p( )≥ v p( ) VM 1 π1, p( )=

π4 π3

V↕ π1
p( ) V↕ π2

p( )<pes

⊕pes π4 p( ) π2 p( )= ≥pes

V↓π1
p( ) V↓π2

p( )≤ v p( ) VM 2 π2, p( )=

M2 π2 π4 M1 π1 π3

v p( ) VIM π4, v( ) p( )≤
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Case 1 and Case 2 together imply that for all ,
which with Theorem 6 implies part (c) of the theorem.

Proof: Part (d): Supposing that , we show and
. From part (c) of the theorem, we know that and
. It suffices to prove in addition that and
. We show both by defining for

each state , observing that and , and then showing
that by giving an MDP for which . Using
Theorem 6 it suffices to show that .

Let be a -maximizing MDP, and be a -maximizing
MDP. Note that this implies that  and .

We now construct  as follows: for each ,

It remains to show that for all . Now fix an arbi-
trary .

Case 1: Suppose .
With the part (d) assumption this implies that .
Then by the definition of , . Also by definition in this case

. Also, by the definition of , .
Equations 45 through 49 with and replaced by and complete the
argument.

Case 2:Suppose .
With the part (d) assumption this implies that .
Then by definition . Also . Equations 45
through 49 now hold with , , and replaced by , , and ,
respectively.

We have now shown in both cases that , as desired, con-
cluding the proof of part (d) of the theorem.

 (Lemma 3).

Theorem 9:For any BMDP , at every state ,

, (55)

v p( ) VIM π4, v( ) p( )≤ p Q∈

V↓π1
V↓π2

= V↕ π4
V↕ π1

≥pes

V↕ π4
V↕ π2

≥pes V↓π4
V↓π1

≥dom

V↓π4
V↓π2

≥dom V↑π4
V↑π1

≥dom

V↑π4
V↑π2

≥dom v p( ) max V↑π1
p( ) V↑π2

p( ),( )=
p Q∈ v V↑π1

≥dom v V↑π1
≥dom

V↑π4
v≥dom M4 VM 4 π4, v≥dom

VIM 4 π4, v( ) v≥dom

M1 M↕∈ π1 M2 M↕∈ π2
V↑π1

VM 1 π1,= V↑π2
VM 2 π2,=

M4 M↕∈ p q α, ,

Fpq
M 4 α( )

Fpq
M 1 α( ) if V↕ π1

p( ) V↕ π2
p( )≥pes

Fpq
M 2 α( ) otherwise







=

VIM 4 π4, v( ) p( ) v p( )≥ p Q∈
p Q∈

V↑π1
p( ) V↑π2

p( )≥pes

V↕ π1
p( ) V↕ π2

p( )≥pes

⊕pes π4 p( ) π1 p( )=
v p( ) V↑π1

p( )= M4 Fpq
M 4 π4 p( )( ) Fpq

M 1 π4 p( )( )=
π3 M3 π4 M4

V↑π1
p( ) V↑π2

p( )<
V↕ π1

p( ) V↕ π2
p( )<opt

π4 p( ) π2 p( )= v p( ) V↑π2
p( )=

M1 π1 π3 M2 π2 π4

v p( ) VIM 4 π4, v( ) p( )≤

❏

M↕ p

V↕ opt p( ) VIM α, V↓opt( ) p( )
M M↕∈
min VIM α, V↑opt( ) p( )

M M↕∈
max,

α A∈ ≤opt,
max=
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and

. (56)

Proof: We consider the version only. Throughout this proof we assume
is an optimistically optimal policy for , which exists by Theorem 8. We

suppose Equation 55 is false and show a contradiction. We have two cases:

Case 1:Suppose the upper bounds are not equal at some state :

. (57)

There are two ways this can happen:

Subcase 1a:Suppose there exist some MDP and action such
that

(58)

We show how to construct a policy whose interval value dominates
under , contradicting the definition of . Define to be the same as

except that . By the definition of , there must exist
such that . From the theory of exact MDPs,

we then have that:

. (59)

Our subcase assumption implies

. (60)

Consider the MDP with the same parameters as except at state
where the parameters are given by . More formally,

(61)

This construction of , together with Equation 59 and Equation 60, guaran-
tees the following property of :

(62)

V↕ pes p( ) VIM α, V↓ pes( ) p( )
M M↕∈
min VIM α, V↑ pes( ) p( )

M M↕∈
max,

α A∈ ≤pes,
max=

V↕ opt

πopt M↕

p

V↑opt p( ) VIM α, V↑opt( ) p( )
M M↕∈
max

α A∈
max≠

M M↕∈ α A∈

V↑opt p( ) VIM α, V↑opt( ) p( )<

π V↕ π V↕ opt

≤opt V↕ opt π
πopt π p( ) α= V↕ πopt

M ′ M↕∈ V↑opt V↑πopt
VM ′ πopt,= =

V↑opt VM ′ πopt, VIM ′ πopt, VM ′ πopt,( ) VIM ′ πopt, V↑opt( )= = =

V↑opt p( ) VIM π, V↑opt( ) p( )<

M3 M↕∈ M ′ p
M

Fp′q′
M 3

Fp′q′
M

when p′ = p

Fp′q′
M ′

otherwise






=

M3
V↑opt

V↑opt VIM 3 π, V↑opt( )<dom
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Equation 62 along with Theorem 6 implies that and thus that
, contradicting the definition of  and concluding Subcase 1a.

Subcase 1b.Suppose that for every choice of  and

. (63)

We obtain a contradiction directly by exhibiting and in violation of
this supposition. Let be . Let be a -maximizing MDP in ,
which exists by Theorem 7. Our selection of guarantees that ,
and our choice of guarantees that . Equations 7 and 8 from
the theory of exact MDPs then ensure that , con-
cluding case 1.

Case 2.Suppose at every state the upper bounds are equal but at some state
the lower bounds are not equal:

(64)

Note that the action selection in the second line of Equation 64 is restricted to
range over those actions in because those are the only actions that can
be selected in Equation 55 due to the emphasis of on upper bounds (the
upper bounds achievable by an action primarily determine whether it is selected
by the outer maximization in Equation 55, and only if the action is tied for the
maximum upper bound,i.e. in , does its lower bound affect the maximi-
zation).

Again, there are two ways the second line of Equation 64 can hold.

Subcase 2a.Suppose is too small,i.e., there exists some action
 such that for every MDP , we have

. (65)

We show a contradiction by giving a policy whose interval value function is
greater than under the ordering. Define to be the same as
except that . By the definition of , there must exist
such that . As in Subcase 1a, we then have that:

. (66)

From Equation 64  and  it follows that for some ,

, (67)

VM 3 π, V↑opt>dom

V↕ π V↕ opt>opt V↕ opt

α A∈ M M↕∈

V↑opt p( ) VIM α, V↑opt( ) p( )>

α M M↕∈
α πopt p( ) M πopt M↕

πopt V↑πopt
V↑opt=

M VM πopt, V↑πopt
=
V↑opt p( ) VIM α, V↑opt( ) p( )=

q p

for all q, V↑opt q( ) VIM α, V↑opt( ) q( ),  and
M M↕∈
max

α A∈
max=

V↓opt p( ) VIM α, V↓opt( ) p( )
M M↕∈
min

α ρV↑opt
p( )∈

max≠

ρV↑opt
p( )

≤opt

ρV↑opt
p( )

V↓opt p( )
α ρV↑opt

p( )∈ M M↕∈

V↓opt p( ) VIM α, V↓opt( ) p( )<

π
V↕ opt ≤opt π πopt

π p( ) α= V↕ πopt
M ′ M↕∈

V↑opt V↑πopt
VM ′ πopt,= =

V↑opt VM ′ πopt, VIM ′ πopt, VM ′ πopt,( ) VIM ′ πopt, V↑opt( )= = =

α ρV↑opt
p( )∈ M M↕∈

V↑opt p( ) VIM α, V↑opt( ) p( )=
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and thus for defined as in Subcase 1a to be equal to everywhere
except at state  where  is equal to , we have

. (68)

Therefore , and by the definitions of and , we then have
that , and so is equal to . We must
now show that to conclude Subcase 2a. We show this by show-
ing that for every MDP , and using
Theorem 6 to conclude  and thus  as desired.

To conclude Subcase 2a, then, we must show . We
show this by contradiction. Suppose this is false — then either

, which our Subcase 2a assumption rules out at state , or
there must be some state for which . Again our
Subcase assumption rules this out for state , so we know that is not equal to

, and therefore by our choice of we have that , and thus that
. We can now derive a contradiction by combining

at state with a -minimizing MDP at all other states to get an
MDP for which strictly dominates , showing that

(by Theorem 6) contradicting the fact that .
(The combination of and to get is analogous to the construction in
Line 61 above).

Subcase 2b.Suppose is “too big” in Line 64,i.e., for every action
there is some MDP such that .

Consider . The definition of “optimistically optimal” along with the
theory of exact MDPs guarantees us that there is some MDP  such that

(69)

By our case 2 assumption,

, (70)

and this, together with Line 69 and  implies

, (71)

and therefore that

, (72)

M3 M↕∈ M ′
p M3 M

V↑opt VIM 3 π, V↑opt( )=

VM 3 π, V↑opt= V↕ opt V↑π
V↑opt V↑π VM 3 π,≥dom≥dom V↑opt= V↑π V↑opt

V↓π V↓opt>dom

M4 M↕∈ V↓opt VIM 4 π, V↓opt( )<dom

VM 4 π, V↓opt>dom V↓π V↓opt>dom

V↓opt VIM 4 π, V↓opt( )<dom

V↓opt VIM 4 π, V↓opt( )= p
q V↓opt q( ) VIM 4 π, V↓opt( ) q( )>

p q
p π π q( ) πopt q( )=
V↓opt q( ) VIM 4 πopt, V↓opt( ) q( )>
M4 q πopt M5

M6 M↕∈ V↓opt VIM 6 πopt, V↓opt( )
V↓opt VM 6 πopt,>dom V↓πopt

V↓opt=
M4 M5 M6

V↓opt p( )
α ρV↑opt

p( )∈ Mα M↕∈ VIM α α, V↓opt( ) p( ) V↓opt p( )<

α πopt p( )=
M

V↑opt V↑πopt
VM πopt, VIM πopt, VM πopt,( ) VIM πopt, V↑opt( )= = = =

V↑opt p( ) VIM α, V↑opt( ) p( )
M M↕∈
max

α A∈
max=

α πopt p( )=

VIM πopt, V↑opt( ) p( ) VIM α, V↑opt( ) p( )
M M↕∈
max

α A∈
max=

πopt p( ) VIM α, V↑opt( ) p( )
M M↕∈
max

α A∈
argmax∈
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which implies that . We can then use our subcase
assumption that there must be an MDP such that

.

Let be a -minimizing MDP, as per Theorem 7. Then =
by expanding definitions. So . We can now create

a new MDP by copying at every state except , where copies
, following the construction used to define in Subcase 1a. By construc-

tion we then have

, (73)

which by Theorem 6 implies , contradicting our choice of
and concluding Subcase 2b, Case 2, and the proof of Theorem 9.

 (Theorem 9).

Theorem 10:For any policy ,  and  are contraction mappings.

Proof: We first show that is a contraction mapping on , the space of
value functions. Strictly speaking, is a mapping from an interval value
function to a value function . However, the specific values only
depend on the upper bounds of . Therefore, the mapping is isomor-
phic to a function that maps value functions to value functions and with some
abuse of terminology, we can consider to be such a mapping. The same is
true for , which depends only on the lower bounds .

Let and be interval value functions, fix , and assume that
. Let be an MDP that maximizes the

expression (Lemma 1 implies that there is such an MDP in the
finite set , guaranteeing the existence of in spite of the infinite cardinal-
ity of ).

Then,

(74)

(75)

(76)

(77)

α = πopt p( ) ρV↑opt
p( )∈

M α M↕∈
VIM α πopt, V↓opt( ) p( ) V↓opt p( )<

M7 πopt VM 7 πopt, V↓πopt
=

V↓opt VIM 7 πopt, V↓opt( ) V↓opt=
M8 M7 p M8

M α M3

VIM 8 πopt, V↓opt( ) V↓opt<dom

V↓πopt
V↓opt<dom πopt

❏

π IVI↓π IVI↑π

IVI↑π V̄̄
IVI↑π

V↕ V V p( )
V↑ V↕ IVI↑π

IVI↑π
IVI↓π V↓

û v̂ p Q∈
IVI↑π v̂( ) p( ) IVI↑π û( ) p( )≥ M M M↕∈

VIM π, v↑( ) p( )
XM↕

M
M↕

0 IVI↑π v̂( ) p( ) IVI↑π û( ) p( )–≤

VIM π, v↑( ) p( )
M M↕∈
max VIM π, u↑( ) p( )

M M↕∈
max–=

R p( ) γ Fpq
M π p( )( )v↑ q( )

q Q∈
∑ 

  R p( ) γ Fpq
M π p( )( )u↑ q( )

q Q∈
∑ 

 ––+≤

γ Fpq
M π p( )( ) v↑ q( ) u↑ q( )–[ ]

q Q∈
∑ 

 =
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(78)

. (79)

Line 75 expands the definition of . Line 76 follows by expanding the defi-
nition of and from the fact that maximizes by definition.
In Line 77, we simplify the expression by cancelling the immediate reward
terms and factoring out the coefficients . In Line 78, we introduce an ine-
quality by replacing the term with the maximum difference over
all states, which by definition is the sup norm. The final step Line 79 follows
from the fact that is a probability distribution that sums to and
does not depend on .

Repeating this argument interchanging the roles of and in the case that
 implies

(80)

for all . Taking the maximum over in the above expression gives the
result.

The proof that is a contraction mapping is very similar, replacing
with throughout, replacing maximization with minimization in Line 74,
and selecting MDP to minimize the expression when

.

 (Theorem 10).

Theorem 11:For any policy , is a fixed-point of and of ,
and therefore  is a fixed-point of .

Proof: We prove the theorem for ; the proof for is similar. We
show

(a) , and

(b) ,

from which we conclude that . Throughout both cases we
take to be a -minimizing MDP, so that . By Theorem 7
must exist.

We first prove (a). From Theorem 3, we know that is a fixed point of
. Thus, for any state ,

. (81)

γ Fpq
M π p( )( ) v↑ u↑–

q Q∈
∑ 

 ≤

γ v↑ u↑–=

IVI↑π
VI M VIM π, v↑( ) p( )

Fpq
M

v↑ q( ) u↑ q( )–

F 1 v↑ u↑–
q

û \hatv
IVI↑π v̂( ) p( ) IVI↑π û( ) p( )≤

IVI↑π v̂( ) p( ) IVI↑π û( ) p( )– γ v↑ u↑–≤

p Q∈ p

IVI↓π IVI↑π
IVI↓π

M VIM π, u↑( ) p( )
IVI↓π v̂( ) p( ) IVI↓π û( ) p( )≥

❏

π V↓π IVI↓π V↑π IVI↑π
V↕ π IVI↕ π

IVI↓π IVI↑π

IVI↓π V↕ π( ) V↓π≤dom

IVI↓π V↕ π( ) V↓π≥dom

IVI↓π V↕ π( ) V↓π=
M * π V↓π V

M* π,
= M *

VM * π,
VIM * π, q Q∈

V↓π q( ) VM * π, q( ) VIM * π, VM * π,( ) q( ) VIM * π, V↓π( ) q( )= = =
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Using this fact and expanding the definition of , we have, at every state ,

(82)

This implies that  as desired.

To prove (b), suppose for sake of contradiction that for some state ,
. Let be an MDP that minimizes6 the expres-

sion .

Then, substituting  into the definition of ,

. (83)

We can then construct an MDP by copying at every state except ,
where copies (see the proof of Theorem 9, Case 1a for the details of a
similar construction). Because is a copy of at every state but ,
Equation 81 must hold with replacing at every state but . Because

is a copy of at state , Equation 83 with replacing must hold
at state . These two facts together imply

(84)

Then by Theorem 6 , contradicting the definition of .

 (Theorem 11).

Theorem 13:

(a)  and  are contraction mappings.

(b) For any value function and associated action set selection function
and ,  and  are contraction mappings.

Proof: We first prove (a). The proof that is a contraction mapping is an
extension of the proof of Theorem 10. Let and be interval value functions,
fix , and assume that . Select and

to maximize the expression (again, Lemma 1 implies that

6. Such an MDP exists by Lemma 1, which implies that there must be such an MDP in the finite set
.

IVI↓π q

IVI↓π V↕ π( ) q( ) VIM π, V↓π( ) q( )
M M↕∈
min=

VIM * π, V↓π( ) q( )≤

V↓π q( ).=

IVI↓π V↕ π( ) V↓π≤dom

p
IVI↓π V↕ π( ) p( ) V↓π p( )< M1 M↕∈

XM↕
M↕⊆

VIM π, V↓π( ) p( )

M1 IVI↓π

IVI↓π V↕ π( ) p( ) VIM 1 π, V↓π( ) p( ) V↓π p( )<=

M2 M * p
M2 M1

M2 M * p
M2 M * p

M2 M1 p M2 M1
p

VIM 2 π, V↓π( ) V↓π<dom

VM 2 π, V↓π<dom V↓π

❏

IVI↑opt IVI↓pes

V ρV
σV IVI↓opt V, IVI↑pes V,

IVI↑opt
û v̂

p Q∈ IVI↑opt v̂( ) p( ) IVI↑opt û( ) p( )≥ M M↕∈
α A∈ VIM α, v↑( ) p( )
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there is such an MDP in the finite set , guaranteeing the existence of in
spite of the infinite cardinality of ).

Then,

(85)

(86)

(87)

. (88)

Line 86 expands the definition of , noting that maximizing using
selects interval upper bounds based only on the upper bounds of the input inter-
vals. Line 87 follows from our choice of and to maximize .
Line 88 follows from Line 87 in the same manner that Line 79 followed from
Line 76 in the proof of Theorem 10, and the desired result for for part
(a) of the theorem also follow in the same manner as the remainder of
Theorem 10 followed from Line 79.

To prove that is a contraction mapping, we again fix a state and
assume . We then use to choose an action
that maximizes and to choose an MDP that
minimizes (again, Lemma 1 implies that there is such an MDP
in the finite set , guaranteeing the existence of ). Using and as
defined above, we have

(89)

(90)

(91)

(92)

Line 90 expands the definition of , using the fact that maximizing over
selects lower bounds based only on the lower bounds of the intervals

being maximized over. Line 91 substitutes the action , which introduces the
inequality since  was chosen to guarantee

XM↕
M

M↕

0 IVI↑opt v̂( ) p( ) IVI↑opt û( ) p( )–≤

VIM α, v↑( ) p( )
M M↕∈
max

α A∈
max VIM α, u↑( ) p( )

M M↕∈
max

α A∈
max–=

R p( ) γ Fpq
M α( )v↑ q( )

q Q∈
∑ 

  R p( ) γ Fpq
M α( )u↑ q( )

q Q∈
∑ 

 ––+≤

γ v↑ u↑–≤

IVI↑opt ≤opt

M α VIM α, v↑( ) p( )

IVI↕ opt

IVI↓pes p
IVI↓pes v̂( ) p( ) IVI↓pes û( ) p( )≥ v↓ α

minM M↕∈ VIM α, v↓( ) p( )( ) u↓ M
VIM α, u↓( ) p( )

XM↕
M α M

0 IVI↓pes v̂( ) p( ) IVI↓pes û( ) p( )–≤

VIM α, v↓( ) p( )
M M↕∈
min

α A∈
max VIM α, u↓( ) p( )

M M↕∈
min

α A∈
max–=

VIM α, v↓( ) p( )
M M↕∈
min VIM α, u↓( ) p( )

M M↕∈
min–≤

VIM α, v↓( ) p( ) VIM α, u↓( ) p( )–≤

IVI↓pes
≤pes

α
α
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, (93)

and the meaning of maximization guarantees that

. (94)

Line 92 follows similarly because  was chosen to guarantee

, (95)

and the meaning of minimization guarantees that

. (96)

The desired result for in part (a) of the theorem then follows directly
from Line 92 in the same manner as the result for followed from
Line 86, concluding the proof of part (a) of the theorem.

For part (b), the proof for follows exactly as the proof for ,
except that the set of actions considered in the maximization over actions at
each state is restricted to . Likewise, proving is the same as
proving  where the set of actions is restricted to .

 (Theorem 13).

VIM α, v↓( ) p( )
M M↕∈
min VIM α, v↓( ) p( )

M M↕∈
min

α A∈
max=

VIM α, u↓( ) p( )
M M↕∈
min VIM α, u↓( ) p( )

M M↕∈
min

α A∈
max≤

M

VIM α, u↓( ) p( ) VIM α, u↓( ) p( )
M M↕∈
min=

VIM α, v↓( ) p( ) VIM α, v↓( ) p( )
M M↕∈
min≥

IVI↕ pes
IVI↕ opt

IVI↓opt V, IVI↓pes

p ρV p( ) IVI↑pes V,
IVI↑opt σV p( )

❏


