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Abstract -- We propose a novel approach, called parallel rollout, to solving (partially observable) Markov decision pro-

cesses. Our approach generalizes the rollout algorithm of Bertsekas and Castanon (1999) by rolling out a set of multiple

heuristic policies rather than a single policy. In particular, the parallel rollout approach aims at the class of problems

where we have multiple heuristic policies available such that each policy performs near-optimal for a different set of system

paths. Parallel rollout automatically combines the given multiple policies to create a new policy that adapts to the different

system paths and improves the performance of each policy in the set. We formally prove this claim for two criteria: total

expected reward and infinite horizon discounted reward. The parallel rollout approach also resolves the key issue of select-

ing which policy to roll out among multiple heuristic policies whose performances cannot be predicted in advance. We

present two example problems to illustrate the effectiveness of the parallel rollout approach: a buffer management prob-

lem and a multiclass scheduling problem.

I. INTRODUCTION

Many stochastic optimization problems in various contexts can be modeled as (partially observable)

Markov decision processes (POMDPs). Unfortunately, because of the curse of dimensionality, exact solu-

tion schemes, for example, value iteration and policy iteration, often cannot be applied in practice to solve

POMDP problems. For this reason, in recent years many researchers have developed approximation meth-

ods by analyzing and utilizing structural properties of the given POMDP problem, or by using a "good"

function approximator (see, e.g., Puterman (1994) or Bertsekas and Tsitsiklis (1996)).

Recently, some researchers have focused on the use of sampling to break the curse of dimensionality

and to solve POMDP problems dynamically in the context of "planning". Kearns, Mansour, and Ng (1999,

2000) give an asymptotically unbiased online sampling method to solve POMDPs in such contexts. Unfor-

tunately, to achieve a reasonable approximation of the optimal value, we need to have a prohibitively large

number of samples. On the other hand, the rollout framework proposed by Bertsekas and Castanon (1999)

provides a practically viable sampling-based heuristic policy for any POMDP via Monte-Carlo simulation.

Given a heuristic base policy with enough sampling, the resulting policy is guaranteed to improve on the

given base policy.

We propose a novel approach, called parallel rollout, to solving POMDPs. Our approach generalizes the

rollout algorithm of Bertsekas and Castanon by "rolling out" a set of multiple heuristic policies rather than
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a single policy. In our scheme, the resulting sampling-based policy improves on each of the base policies.

Different base policies may be best for different states, so it is possible that no single base policy can be

rolled out to achieve the improvement guaranteed by parallel rollout. In this respect, the parallel rollout

approach aims at the class of problems where we have multiple heuristic policies available such that each

policy performs well for a different set of system paths. The parallel rollout scheme automatically com-

bines the given multiple policies to create a new policy that adapts to the different system paths and

improves the performance of each policy in the set. We formally prove this claim for two criteria: total

expected reward and infinite horizon discounted reward. The parallel rollout approach also resolves the key

issue of selecting which policy to roll out among multiple heuristic policies whose performances cannot be

predicted in advance.

The parallel rollout approach, like the original rollout approach, uses a sampling technique to compute

a lower-bound estimate of the value of each possible control action (assuming optimal actions thereafter)

— the action taken is then just the one with the highest lower bound. The lower-bound estimate in parallel

rollout is more accurate than that of standard rollout. To compute the lower bound for a given action, a

number of potential future sample paths are generated, and then the action is evaluated against these sam-

ple paths. Each action evaluation involves simulating each of the base policies after taking the candidate

action, and using the maximum of the values obtained as a lower-bound estimate of the value of the action

(if there is only one base policy, this reduces to the original rollout method). These simulations can be done

naturally in parallel, motivating the name "parallel rollout".

Our parallel rollout framework also provides a natural way of incorporating traffic models (stochastic

descriptions of job, customer, or packet arrival processes) to solve controlled queueing process problems

(see, e.g., Kitaeve and Rykov (1995)). Parallel rollout uses the traffic model to predict future packet arriv-

als via sampling, and incorporates the sampled futures into the control of the queueing process. That is,

predictive knowledge of incoming traffic based on a given generative traffic model can be used effectively

within our framework.

To illustrate the effectiveness of parallel rollout, we consider two example controlled queueing process

problems: a buffer management problem and a multiclass scheduling problem. The first problem is a vari-

ant extension of the problem in Kulkarni and Tedijanto (1998), with an important relaxation of partial

observability. The second problem is an extension of the problem in Givan et al. (2001), with the additional

considering of stochastic arrival models. For the buffer management problem, we wish to build an effec-

tive overload controller that manages the queue size of a single finite FIFO buffer via "early dropping" to

minimize the average queueing delay experienced by the packets transmitted, given a constraint on lost

throughput. For the scheduling problem, we wish to schedule a sequence of tasks or packets that arrive

dynamically, and have associated deadlines. The scheduler needs to select which task to serve in order to

minimize the cumulative value of the tasks lost over long time intervals, where each task carries a numeri-
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cal weight indicating its value if served before its deadline.

The remainder of this paper is organized as follows. In Section II, we formally introduce MDPs. Then,

in Section III, we discuss the rollout algorithm of Bertsekas and Castanon, and describe our parallel rollout

approach. In Section IV, we formulate two example problems as POMDPs, and in Section V, we describe

empirical results on those problems, showing the effectiveness of parallel rollout. We conclude this paper

in Section VI and discuss possible future research directions. The appendix contains detailed analyses that

have been relegated there for ease of readability. In particular, in Appendix C, we provide a new character-

ization of the optimal control for the offline buffer management problem, analogous to the characterization

in Peha and Tobagi (1990) for the scheduling problem.

II. MARKOV DECISION PROCESSES

We present here a brief summary (based on the notation and the presentation in Bertsekas (1995)) of the

essentials of the MDP model for a dynamic system. For a more substantial introduction, please see Bertse-

kas (1995) or Puterman (1994). Any POMDP can be transformed into an equivalent MDP by incorporating

an information-state, leading to what is often called an information-state MDP (ISMDP) (Bertsekas

(1995)). So our formulation here encompasses the POMDP model, and we will use the terms MDP and

POMDP interchangeably. Consider a discrete-time dynamic system xt+1 = f (xt, ut, wt), for t in {0, 1, …,

H–1} with large finite horizon H, where the function f and the initial state are given, xt is a random vari-

able ranging over a set X giving the state at time t, ut is the control to be chosen from a finite nonempty sub-

set U(xt) of a given set of available controls C, and wt is a random disturbance uniformly and independently

selected from [0,1], representing the uncertainty in the system (for queueing control problems, this uncer-

tainty usually corresponds to one-step random job arrivals). Note that a probability distribution p(xt+1 |

xt,ut) that stochastically describes a possible next state of the system can be derived from f.

Consider the control of the above system. A nonstationary1 policy π consists of a sequence of functions

π={µ0, µ1, ..., }, where µt: and such that µt(xt) ∈ U(xt). The goal is to find an optimal policy π that

maximizes the reward functional (total expected reward over H) simultaneously for all initial states ,

, (1)

subject to the system equation constraint ut = µt(xt), t = 0, 1, …, H–1, and the real-valued reward function

r : X × C × [0,1] → R. The function f , together with , U, and r make up a Markov decision process

(MDP). We now define

1. A policy π is said to be stationary if µt = µt’ for all t and t’. In this case, we write π(x) for the action µt(x), which is independent of t.

x0

X C→

x0

V
π
H x0( ) E

w0 … wH 1–, ,
r xt µt xt( ) wt, ,[ ]

t 0=

H 1–

∑
 
 
 

=

x0
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(2)

which is the maximally achievable expected reward over the remaining H–i horizon given state xi at time i,

and is called the optimal value of xi for the H–i horizon. Then from standard MDP theory, we can write

recursive optimality equations given by

(3)

where i ∈ {0, ..., H–1}, and for any x. There is one such equation for each state xi and hori-

zon i. We write

(4)

for the Q-value of control u at xi for horizon H–i, giving the value of taking action u at state xi and then act-

ing optimally thereafter to the horizon. To allow various approximations to the future optimal value

obtained, we also write

(5)

for the Q-value of u when the future “optimal” value obtained is given by V. Then, any policy defined by

(6)

is an optimal policy achieving (there may be more than one, owing to ties in the argmax selec-

tion). In particular the control  is an optimal “current” action.

The optimal value function and an optimal policy can be obtained exactly using an algorithm called

‘‘backward induction”, based on dynamic programming. However, because of the curse of dimensionality,

it is often impossible to apply the algorithm in practice.

We focus on an alternate paradigm to solve POMDPs online via sampling. We first select a sampling

horizon much shorter than the objective function horizon — the latter horizon is assumed to be very large,

whereas sample processing must be kept brief for a sampling method to be at all practical. As a conse-

quence, all the sampling approaches described here use the method of receding or moving horizon control

(Mayne and Michalska, 1990), which is common in the optimal-control literature. That is, at each time,

each sampling-based approach selects a control action with respect to a much shorter (but still substantial)

horizon than the large objective function horizon. Because this shorter horizon is used at every time step,

so that the controller never approaches the horizon, this method is called “receding horizon” control. We

note that a receding horizon controller is by its nature a stationary policy, where the action selected

depends only on the system state and not on the time or history.

Given a selected sampling horizon, our goal is then to approximate the optimal value with respect to the

V H i–
* xi( ) maxπ V H i–

π xi( )( ),    where=

V H i–
π xi( ) E

wi … wH 1–, ,
r xt µt xt( ) wt, ,[ ]

t i=

H 1–

∑
 
 
 

,=

V H i–
* xi( ) Ewi

r xi u wi, ,[ ] V H i– 1–
* f xi u wi, ,( )( )+{ },

u U xi( )∈
max=

V *
0 x( ) 0=

QH i– xi u,( ) Ewi
r xi u wi, ,[ ] V H i– 1–

* f xi u wi, ,( )( )+{ }=

Q
H i–
V xi u,( ) Ewi

r xi u wi, ,[ ] V f xi u wi, ,( )( )+{ }=

µi
* xi( ) QH i– xi u,( )

u U xi( )∈

argmax=

V∗
H x0( )

u∗ µ0
∗ x0( )=
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horizon. However, computing a true approximation via sampling is also intractable — mainly due to the

need to approximate the value of a nested sequence of alternating expectations over the entire state space

and maximizations over the action choices that represents the “expected trajectory” of the system under

optimal control. See Kearns et al. (1999) for a description of a method for computing such an approxima-

tion using a number of samples independent of the state space size. Kearns derives bounds on the number

of samples needed to give a near-optimal controller; these bounds grow exponentially with the accuracy

desired so that obtaining reasonable approximations of the true value of a control action via this method is

impractical (see Chang et al. (2000) for more details).

III. ROLLOUT AND PARALLEL ROLLOUT

A.  Sampling to Improve a Given Policy by “Rollout”

Bertsekas and Castanon (1997, 1999) used sampling to design a heuristic method of policy improve-

ment called rollout. This method uses sampling to improve a given stationary heuristic policy π in an

online fashion: at each time step, the given policy is simulated using sampling, and the results of the simu-

lation are used to select the (apparently) best current action (which may differ from that prescribed by the

given policy π). The action selected is the action with the highest -value at the current state, as esti-

mated by sampling. It is possible to show that the resulting online policy outperforms the given heuristic

policy (unless that policy is optimal in which case rollout performs optimally as well). Formally, the rollout

policy with a base policy π selects action  at current state x, where

, (7)

and is estimated via sampling. Here is the sampling horizon for receding hori-

zon control.

In many domains, there are many candidate base policies to consider, and it may be unclear which base

policy is best to use as the policy π to roll out. This choice can strongly affect performance. Our parallel

rollout technique described below generalizes simple rollout to allow a set of base policies to be specified

without choosing one ahead of time, retaining the guarantee that the sampling policy will outperform each

(nonoptimal) base policy in the set.

We note that the -values used for action selection by rollout are lower bounds on the true Q-values

that we would ideally like to use. However, for action selection, we only truly care about the ranking of the

Q-values, not their absolute values. If the optimal action always has the highest Q-value estimate, then we

will act optimally, regardless of the accuracy of the estimate. This viewpoint suggests that rollout of a pol-

icy π will perform well when π is equally optimal and/or sub-optimal in the different state space regions

that different actions lead to (so that the lower bound computed will be equally far from optimal for the dif-

QV
π

a argmaxu U x( )∈ Q
Hs

V
π

x u,( )=

QH s

V
π

x u,( ) Ew r x u w, ,[ ] V Hs 1–

π
f x u w, ,( )( )+{ }=

V Hs 1–
π

f x u w, ,( )( ) Hs H«

QV
π
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ferent actions that are to be compared, leaving the best action with the highest lower bound). However,

there is no reason to expect this condition to hold in general, particularly when the policy being improved

by rollout is a very simple policy that is expected to be good in some state space regions and bad in others

(as is often the case for easy-to-compute heuristic policies). Our parallel rollout approach described below

can be viewed as an attempt to address this weakness in situations where it is not known which base poli-

cies are best in which state space regions.

B.  Sampling to Improve a set of Multiple Policies by “Parallel Rollout”

We now present a general method for combining a finite set of policies in an online fashion using sam-

pling, which we call parallel rollout. We note that this method is a novel POMDP control technique that

can be applied to POMDP problems in general. We assume that we have a small set Π of simple “primi-

tive” heuristic stationary policies (which we refer to simply as base policies) {π1, …, πm} that we wish to

combine into an online controller.

The parallel rollout approach relies on the fact that we can approximate the value function for each

π in Π by sampling/simulation (see Kearns et al. (2000) for example). This is the same basic fact exploited

by the Bertsekas-Castanon rollout approach described above. However, the previous rollout approach

exploits only a single base policy, which requires the system designer to select which base policy to roll

out.

We also remark that assuming a small set of base policies allows a natural generalization of our under-

lying MDP model to a coarser timescale by considering these policies to be the candidate “coarse” actions

at the coarse timescale. Once a coarse action (i.e., base policy) is selected, it is used for selecting control at

the fine timescale until the next coarse timescale decision point. Parallel rollout can be used in this fashion,

providing a natural way to use sampling to make decisions when the immediate timescale is too fine to

allow sampling at each time step.

Consider a policy that simply selects the action given by the policy π in Π that has the highest Vπ esti-

mate at the current state, and call this policy ‘‘policy switching”. Formally, at state x, policy switching

selects the initial action  selected by the policy

. (8)

This action can be selected by simulating each policy π in Π from the current state many times to estimate

Vπ and then taking the action prescribed by the policy with the highest estimate. We conjecture informally

that this approach gives a policy that is suboptimal because it gives insufficient emphasis and freedom in

the evaluation to the initial action, which is the only action actually selected and committed to. However,

we also expect that policy switching gives a policy that is much more uniformly reasonable (across the

state space) than any single base policy. These observations, together with the discussion of rollout above,

V H
π

a πps x( )=

πps x( ) maxπ Π∈ V Hs

π
x( )( )arg=
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suggest that we consider combining policy switching with rollout. Rollout gives considerably more atten-

tion and freedom in the analysis to the initial action choice, by computing a Q-value estimate for each pos-

sible first action based on one step lookahead relative to the policy being improved. As discussed above,

rollout relies informally on the base policy being similarly suboptimal throughout the immediately accessi-

ble state space, rather than very good in some regions and poor in others. A first attempt to combine rollout

with policy switching would try improving upon the policy switching policy with the rollout technique

(using policy switching as the base policy). However, because rollout requires computing the base policy

many times (to select control for each time step to the horizon for each sample/simulation trace), a base

policy computed itself by sampling would be prohibitively expensive. Instead of taking that expensive

route, we attempt to get the combined benefits of policy switching and rollout by designing a generaliza-

tion of rollout that explicitly takes as input a set of policies on which to improve.

Recall that rollout selects the action that maximizes the objective function under the assumption that

after one step the remaining value obtained is given by the value function of the base policy being rolled

out. Furthermore, this action selection can be carried out using any value function to describe the value

obtained at the next step; the value function used need not be the value function of any specific policy. Our

goal of rolling out policy switching without actually computing policy switching suggests using the value

function obtained by state-by-state maximization over the value functions of the different base policies. We

are guaranteed that the policy switching policy achieves at least this value function (as proven in Appendix

A) or better, but we may have no particular policy with exactly this value function. This value function can

be easily computed at any state by “rolling out” each of the base policies and combining the resulting val-

ues by maximization.

Formally, the parallel rollout approach selects the action u with the highest value at the current state

x, for V(y) = maxπ∈Π at each y in X. That is, we select action

with  as follows:

. (9)

For a given action u and current state x, this -value can be computed efficiently by generating a number

of potential future traffic traces, and for each trace τ computing an estimate of as follows:

take the action u in x (resolving uncertainty using τ) and for the state y that results use simulation to select

the best base policy πτ,y ∈ Π for control from y when facing the remainder of τ; the desired estimate is

then the immediate reward for taking u in state x (facing τ) plus the value obtained by πτ,y when facing the

remainder of τ from y. We can then average the estimates from the different traces τ to get an estimate

that converges to the true  as large numbers of traces are drawn.

The action with the highest value is then selected and performed. We show pseudocode for the par-

allel rollout approach in Figure 1. The resulting policy (assuming infinite sampling to properly estimate

Qu
V

V H s 1–

π
y( ) πpr x( ) maxu U x( )∈ Qu

V x( )( )arg=

Qu
V

Qu
V x( ) Ew r x u w, ,[ ] maxπ Π∈ V

Hs 1–

π
f x u w, ,( )( )+{ }=

Qu
V

Qu τ,
V x( ) Qu

V x( )

Qu τ,
V

Qu τ,
V

Qu
V

Qu
V
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Vπ) is proven below to return expected value no less than the value returned by any policy in Π.

C.  Analysis of Parallel Rollout

Here we show that parallel rollout combines base policies to create new policies that perform at least as

well as any of the base policies when evaluated at the sampling horizon Hs. For this result to hold, we must

consider the nonstationary form of parallel rollout rather than the receding horizon form. In particular, we

assume that the parallel rollout policy πpr is given by a sequence { , …, } of different state-action

mappings, where each µt is selected by the parallel rollout method given above for horizon Hs–t. For nota-

tional simplicity, throughout this section we assume that the sampling horizon Hs is equal to the horizon H.

Theorem 1: Let Π be a nonempty finite set of policies. For πpr defined on Π, for

all x ∈ X.

Proof: We will use induction on i, backwards from i = H down to i = 0, showing for each i that for every

state x, . For the base case i = 0 we have by definition that =

 = 0 for all x in X and for any π in Π. Assume for induction that

Inputs: Hs, Ms;  /* sampling horizon and width*/

x; /* current state */

r(), f (); /* reward and next state functions for the MDP */

double w[Ms][Hs];  /* sampled random number sequences, init each entry randomly in [0,1] */

state x[Hs]; /* a vector of states for temporarily storing a trajectory through the statespace */

double EstimateQ[];  /* cumulative estimate of QV for action u, init to zero everywhere */

double EstimateV[]; /* for each policy, the estimated value on current random trajectory */

for each action u in U(x) do

for i = 1 to Ms do

for each π in Π do

x[0] = x; u[0] = u; EstimateV[π] = 0;

for t = 1 to Hs do

EstimateV[π] = EstimateV[π] + r(x[t–1], u[t–1], w[i][t–1]);

x[t] = f (x[t–1], u[t–1], w[i][t–1]);

u[t] = π(x[t]);

endfor

endfor

EstimateQ[u] = EstimateQ[u] + argmaxπ∈Π(EstimateV[π]);

endfor

endfor

take action argmaxu∈U(x) EstimateQ[u];

Figure 1: Pseudocode for the parallel rollout policy using common random disturbances.

µ0
pr µHs 1–

pr

V H

πpr x( ) maxπ Π∈ V
H

π
x( )≥

V H i–

πpr x( ) maxπ Π∈ V
H i–

π
x( )≥ V 0

π x( )

V 0

πpr x( )
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 for all x. (10)

Consider an arbitrary state x. From standard MDP theory (see, e.g., Bertsekas (1995)), we have that

. (11)

Using our inductive assumption, Equation (11) becomes

. (12)

We have by the definition of

the parallel rollout policy. It follows that

(13)

where  is any arbitrary member of Π.

Therefore, , which completes the proof. Q.E.D.

For completeness, we include in Appendix B the extension of these results to the infinite-horizon dis-

counted reward objective function — that result requires a substantially different proof technique.

D.  Common Random Numbers

Various techniques (e.g., importance sampling (Ross, 1997)) can reduce the variance of control utility

estimates produced by sampling, if desired. Using the same sampled random disturbance sequences across

competing controls for calculating the utility estimates to be compared reduces the error variance among

the estimates. This technique has the same flavor as common random numbers simulation in discrete event

systems (Ho and Cao, 1991) and also resembles differential training for the rollout algorithm mentioned

above (Bertsekas, 1997). We have found that using the same random disturbance sequences when measur-

ing control utilities that are to be compared in control selection is critical to obtaining effective perfor-

mance in our experiments for (parallel) rollout.

IV. EXAMPLE PROBLEMS

We now study two example POMDP problems to illustrate the effectiveness of parallel rollout. We con-

sider two controlled queueing process problems in a discrete-time domain, where each problem is associ-

ated with a controller that needs to control an incoming traffic of jobs, customers, or packets. (these terms

V H i 1+( )–

πpr x( ) maxπ Π∈ V
H i 1+( )–

π
x( )≥

V H i–

πpr x( ) Ew r x µi
pr x( ) w, ,[ ] V H i 1+( )–

πpr f x µi
pr x( ) w, ,( )( )+{ }=

V H i–

πpr x( ) Ew r x µi
pr x( ) w, ,[ ] maxπ Π∈ V

H i 1+( )–

π
f x µi

pr x( ) w, ,( )( )+{ }≥

µi
pr x( ) maxu U x( )∈ Ew r x u w, ,[ ] maxπ Π∈ V

H i 1+( )–

π
f x u w, ,( )( )+{ }( )arg=

V H i–

πpr x( ) Ew r x µi
pr x( ) w, ,[ ] maxπ Π∈ V

H i 1+( )–

π
f x µi

pr x( ) w, ,( )( )+{ }≥

maxu U x( )∈ E
w

r x u w, ,[ ] maxπ Π∈ V
H i 1+( )–

π
f x u w, ,( )( )+{ }=

maxu U x( )∈ Ew r x u w, ,[ ] V H i 1+( )–
π′

f x u w, ,( )( )+{ }≥

Ew r x π′ x( ) w, ,[ ] V H i 1+( )–
π′

f x π′ x( ) w, ,( )( )+{ }≥

V H i–
π′

x( )=

π′

V H i–

πpr
x( ) maxπ Π∈ V H i–

πpr
x( )≥
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will be used interchangeably) with respect to the problem setting for a given objective function. The first

problem is a buffer management problem (also known as a customer rejection vs. acceptance problem) and

the second one is a multiclass scheduling problem. The first problem is a variant extension of the problem

in Kulkarni and Tedijanto (1998), with an important relaxation of partial observability. Kulkarni and Tedi-

janto considered a multiclass admission control problem with the goal of maximizing the weighted

throughput with the assumption that the controller fully observes the environment of the system. The sec-

ond problem is an extension of the problem in Givan et al. (2001), with the additional considering of sto-

chastic arrival models.

The main points that we would like to make in this paper by studying these examples are twofold. First,

the parallel rollout effectively combines the given set of base policies and improves the performance of

each policy in the set. Second, parallel rollout resolves the key issue of selecting which policy to rollout

such that the performance of parallel rollout with the set of policies is (subject to sampling errors) no worse

than the performance of each rollout with the base policy in the set.

For the buffer management problem, a controller needs to manage the queue size in a finite buffer with

a single server. A finite number of packets of a fixed length arrive into the buffer at each (discrete) time

according to a known stochastic model. The buffer can hold at most N packets at once. At each time step,

the server may drop some packets before it transmits one packet — any excess over N packets must be

dropped before service. We wish to determine how many packets need to be dropped at each time to mini-

mize the average queueing delay experienced by the packets transmitted, given a constraint on lost

throughput.

The advantage of controlling queue size via such early dropping can be seen even in the simple situa-

tion where arrivals occur at a constant rate higher than the service rate (in our setting, this means more than

one packet arrives per time step, constantly). Without early dropping the queue will fill up, and then every

packet arrival but one (for service) will be dropped at each time step due to buffer overflow. This results in

the maximum achievable throughput but also in unnecessary queueing delay for those packets that are

transmitted because the queue is kept full all the time by the heavy arrivals. A queue management policy

that recognizes this situation and responds by keeping only the single packet to be served next and drop-

ping all other arrivals achieves the same throughput but no queueing delay at all. Of course, if the constant

traffic were to fall off suddenly, this queue management policy would suffer a loss in throughput because

there would be no queued packets to serve — thus, any queue management strategy involving early drop-

ping must base its dropping decisions on (implicit or explicit) expectations about the future traffic. For a

detailed discussion of related work, see, e.g., Chang (2001).

The next example problem we consider concerns scheduling a sequence of tasks or packets where the

tasks are not all known to the scheduler at once, but rather arrive in an online fashion as scheduling pro-

ceeds. In this problem, we are interested in selecting which task to serve in order to minimize the cumula-
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tive value of the tasks lost over long time intervals, where each task carries a numerical weight indicating

its value if served before its deadline. We make several simplifying assumptions for this problem. First, we

assume that there are a finite number of different classes of tasks such that the cost associated with sched-

uling a task before its deadline is determined by the class into which it falls. These classes can be thought

of as differing priorities (or pricing) of service. In our problem setting, there are no precedence constraints

among the tasks, so that any task may be scheduled regardless of what other tasks have been scheduled. We

assume that every task takes the same unit of time to process, and finally, we assume that every task arrives

with the same latency to its deadline: i.e., there is some fixed time interval d between the arrival time and

deadline time that applies to every task.

Before we formulate these problems into POMDPs or equivalently ISMDPs, we first describe the sto-

chastic model that describes a random future arrival sequence of jobs or customers for our problem set-

tings.

A.  Traffic Modeling

We use hidden Markov models (HMMs), or equivalently, discrete-time Markovian Arrival Processes

(MAPs), as traffic models. It is well-known that MAPs can capture a variety of interesting traffic and can

approximate “self-similar” traffic arbitrarily well (see, for example, Fischer and Meier-Hellstern (1992),

Blondia (1993), Anderson et al. (1995,1997), and Misra and Gong (1998)). The term “hidden” is empha-

sized because in our problem settings, a controller cannot observe the underlying traffic generation states.

Time t is discrete, i.e., t ∈ {0, 1, 2, …}, and each packet takes exactly one time step to be served. Sup-

pose we have M traffic sources where each source generates at most K packets per time step according to

an HMM. The HMM for source i has a finite set of states ∆i, where each state s in ∆i is associated with a

packet-generation probability distribution Gi
s over {0, …, K} and a next state transition probability distri-

bution Fi
s over ∆i — a state s in ∆i generates k packets with probability Gi

s(k) and then makes a transition

to state s’ ∈ ∆i with probability Fi
s(s’). Then, two numbers wt,1 and wt,2 each uniformly selected from [0,1]

can be taken to determine both the number of packets arriving from each source during the time interval (t–

1, t), using the distribution Gi
s, and the new HMM state from ∆i using the distribution Fi

s. The random dis-

turbance wt in our MDP model above can be taken to determine both wt,1 and wt,2.

B.  The Buffer Management Problem as an ISMDP

Because the state of each traffic source is hidden from the controller, which can only observe the traffic

generated, the dynamic system for the buffer management problem is partially observable. In our case the

controller can maintain a probability distribution (information-state) over the possible hidden state assign-

ments describing the traffic sources, where this distribution can be updated using Bayes’ rule each time

new arrivals are observed. An information-state represents the controller’s expectations about future traffic,
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and is a partial summary of the history of the system, and can be viewed as an online updatable estimate of

the current traffic state in the HMM.

We take our state space to be the product space of possible queue states and the possible traffic model

information-states. Transition probabilities between states can be calculated (as just mentioned) using

Bayes’ rule based on the known arrival models Gi
s and transition models Fi

s for the individual sources, as

shown below.

Let Πi,t–1 be a probability distribution over the states in ∆i at time t–1, giving the probability that each

state is in fact the traffic source i’s state at time t–1. Given ki packet arrivals from the source i at time t, we

can update the distribution Πi,t–1 by applying a form of Bayes rule given by

, (14)

where α is a normalizing factor selected so that the Πi,t(s) values sum to one over all s in ∆i.

Let bt be the number of packets in the system immediately prior to the t’th arrival instant and immedi-

ately after one packet is served at time t–1, if any packets are present. The number of packet arrivals during

(t–1, t) is denoted by at. The state xt of our problem then has two components: the set of probability vectors

Πi,t for i in {1, …, M} and lt=at+bt, where Πi,t is our state estimate for the traffic source i, and lt is the num-

ber of packets in the queue at time t before service or dropping occur. The initial values a0, b0, and l0 are all

taken to be zero, and the initial information-state Πi,0 is assumed to be given as part of the problem. Values

of at for t > 0 are determined by the random disturbance wt and the HMM traffic models as described

above. Values of bt and lt for t > 0 are given by

(15)

where is the control selected at time t–1 based on the state xt–1. Note that controls for this

problem, as described below, are numbers giving the quantity of packets to drop. We also note that the pro-

cess just described has the Markov property — given the state at time t, the future trajectory of states is

independent of any previous state.

The admissible control set U(xt) for xt contains the number of packets that could be dropped before the

server transmits one packet. We are forced to drop packets if there is buffer overflow, and we can drop any

additional packet currently pending in the buffer, leaving one to be served. That is, recalling that the buffer

is of size N, we take U(xt) = {lt – N, …, lt – 1} if lt > N, {0,...,lt – 1} if , and {0} if lt = 0. (i.e., the

buffer is empty).

Maximizing throughput and minimizing average delay are conflicting objectives. So we formulate a

reward function that rewards throughput and penalizes delay according to a tradeoff parameter λ > 0. Spe-

cifically, we consider maximizing Tavg – λ Lavg, where Tavg is the average throughput over a long finite

horizon H, and Lavg is the average queue length over H. To maximize Tavg – λ Lavg, we define the one-step

Πi t, s( ) α Gi

s′
ki( )F i

s ′
s( )Πi t 1–, s′( )

s ′ ∆ i∈
∑=

bt max 0 l t 1– u t 1–– 1–,( )=

l t a t bt+=

u t 1– U x t 1–( )∈

0 lt N≤<
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reward of taking control ut at state xt to be 1– λ(lt–ut) if lt – ut > 0 and 0 otherwise. This

reward function has the following property: the total reward at horizon H is equal to the difference between

the total throughput and the total queue length weighted by λ (here, the total queue length is the sum of the

queue lengths before service at each time step, and is an easier-to-compute standin for the total delay expe-

rienced). Note that using queue length as a measure of delay corresponds to the assumption that all packet

dropping is done at admission to the queue — however, in our setting we allow packets to be dropped at

later time steps as well. Nevertheless, particularly when we always drop the most recently arrived packets,

we have found that this reward function accurately guides the controller to achieve low queuing delay

given throughput constraints, as shown in our empirical results. Furthermore, the value of the tradeoff

parameter λ can be roughly mapped to a bound on the fraction of the optimal throughput achieved such

that the higher/lower value of corresponds to the looser/tighter bound from the optimal throughput.

C.  The Multiclass Scheduling Problem as an ISMDP

We begin by a formal description of the online scheduling problem we consider. Time t is discrete, i.e.,

t ∈{0,1,2,...}, and each task takes exactly one time step to be served. We assume there are M > 1 different

classes of tasks, with positive real reward λi > 0 associated with each class i ∈{1, ..., M}. We assume with-

out loss of generality that for i < j, λi > λj, i.e., that the classes are arranged in order of descending reward.

Note that for simplicity we do not allow multiple tasks in the same class to arrive at the same time, and

tasks arriving at different times or in different classes are assumed distinct from one another. Every task is

assumed to have a “built-in” arrival time, and the same deadline d relative to its arrival time—i.e., task pi,t

must be served/scheduled at a time t’ in the range t ≤ t’ < (t + d) or it is considered lost. We refer to the lat-

est time a task pi,t can be scheduled (t+d–1) as the deadline for the task. Task pi,t is said to be live for times

in this range only. Our approach to modeling distributions over arrival patterns is similar to the previous

case (the buffer management problem). That is, we use an HMM to describe the arrival process. We now

formulate the scheduling problem as an ISMDP.

The state space X of this problem is X = Θ1 × Θ2 × ... × ΘM × {0,1}m× d, where Θi is the probability dis-

tribution over the HMM states for the class i (we assume that each class has an associated HMM), and the

last factor represents the currently unserved tasks, indexed by class and time remaining to deadline—given

a particular state, this component of the state is called the buffer. The set of actions is A = {1, ..., M}, where

action a = i means that we serve the earliest live unserved task in class i. The state transition function P is

defined in the obvious manner representing underlying stochastic transitions in each of the arrival HMMs,

and the change in the buffer by adding new tasks generated stochastically by the arrival HMMs as well as

the expiry of unserved tasks and the removal of the task served by the action selected. The cost function R

is defined as R(x,a) = λa.

r xt ut wt, ,( )
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V. EMPIRICAL RESULTS

A.  Buffer Management Problem

Our focus in the simulation study is to show to what extent the throughput provided by parallel rollout

is close to the optimal throughput provided by Droptail (the buffer-N policy), but at the same time parallel

rollout gives a lower average queueing delay compared with the rollout approach and a well-known non-

sampling policy. For our simulation, the buffer size N is 25, and each time maximally 7 packets can arrive

into the system.

1) Simulation Test Traffic Model

A key problem in evaluating our work is selecting appropriate traffic models for evaluation. Here, we

limit ourselves to synthetic traffic designed to have both varying levels of “burstiness” and “multi-times-

cale” behavior, motivated from the context of network traffic control. Both are key features that have been

observed in the real network traffic. See for example Sen et al. (1989) for a discussion of the burstiness

typically evident in the transmission of video sequences that use variable-bit-rate coding schemes, and

Anderson et al. (1997), Duffield and Whitt (1998), and Misra and Gong (1998) for discussions of the mul-

tiple-timescale nature of internet traffic. The problem of selecting an appropriate Markovian traffic model

for a trace of real internet traffic is a substantial research problem beyond the immediate scope of this

work, but relevant to the underlying direction of the research. See, for example, Asmussen et al. (1996),

and Turin (1996) for work on using an Expectation-Maximization (EM) approach to this problem.

To minimize the ad-hoc nature of selecting a synthetic traffic model, but still provide the key features

just discussed, we have designed a distribution over a large number of traffic models having those features,

and then tested our techniques on four different traffic models drawn at random from that distribution. We

note that four sampled traffic models do not constitute a statistically significant sample from such a broad

distribution; we give the distribution only to assure the reader that the models selected for our tests were

not hand-designed to affect the results in any deliberate way beyond the features of the model distribution

described below. We now describe the broad but ad-hoc distribution over traffic models that we designed to

provide a large variety of different traffic behaviors while ensuring both burstiness and multi-timescale

behavior.

To allow for complex traffic while still maintaining a tractable problem, we have selected arbitrarily to

use 40-state traffic models. In order to provide multiple timescales of traffic behavior, we divide the 40

states into four ten-state regions of different traffic loads, where transitions between regions can happen at

any state, with a randomly selected probability that is restricted to be lower than 2 percent — transitions

within each region are typically much more likely than this, giving us at least two timescales of arrival pro-

cess behavior. Within each ten-state region, we have organized the states into a single looping chain, where
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each state can transition either back to itself or to the next state in the loop, with the probability on the self

transition determined uniformly at random from the interval [0,1]. This circular structure allows for period-

icity in each region and enjoys the similar advantages to those found in the cyclic HMM model of Chen

and Rieders (1996). For example, typical video traffic’s autocovariance function of arrival rates shows

some periodicity, making a cyclic HMM model suitable to match video traffic. Each state in each region is

initially set to generate a specific number of packets selected uniformly at random from the integers in the

interval [0,7], but we then tune each of the four regions to provide traffic at a desired region load by decre-

menting/incrementing (as appropriate) these traffic-generation numbers at random within the region until

the desired load is reached. Again, to provide multiple timescale bursty behavior, we have selected differ-

ent traffic loads for each region, arbitrarily choosing 2.0, 0.9, 0.3, and 0.1 as the region loads. After ran-

domly selecting a model according to the above protocol, the overall load of the model is then tuned to be

0.75 packet arrivals per time step to create reasonable overall traffic for a single network node; this last tun-

ing is again done by incrementing and/or decrementing (as appropriate) the traffic arrival called for by ran-

domly selected states until the overall load desired is achieved (note that this may change the region loads,

but in practice we have found that the region loads of the resulting model are very close to those specified

above).

2) Random Early Detection

We select our competing non-sampling policy from the networking literature to be a method called

Random Early Detection (RED) . The key reason to select this policy is that the method is general in that it

contains four main control parameters that can be set to create various interesting non-model-based queue

management policies, including (instantaneous queue-size based) threshold policies, even though it was

designed specifically for the closed-loop “transmission control protocol” control of network traffic. Its

algorithmic functionality of estimating the future traffic without explicit knowledge of the traffic model

and deciding packet drops is sound enough that we believe this policy to be a fairly good competitor with

sampling-based approaches.

We briefly review the RED buffer management scheme for reference. At each packet arrival instant t,

RED calculates a new average queue size estimate qt using , where wq is an

exponential weighted moving average (EWMA) weight parameter, and lt is the instantaneous queue size at

time t. RED determines the dropping probability for each new packet arrival at time t from a function

D: . The function D is defined by three parameters minth, maxth, and maxp as follows: D(q)=0

if q < minth, D(q)=1 if , and D(q)=(maxth–minth)–1(q–minth)maxp otherwise, as shown in Fig-

ure 2. We now discuss the impact of the parameters briefly (see Floyd and Jacobson (1993) for a detailed

discussion).

• wq : the EWMA parameter wq controls the degree of emphasis on instantaneous queue size. Large wq

qt 1 wq–( )qt 1– wqlt+←

qt 0 1,[ ]→

q maxth≥
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forces RED to react to changing traffic quickly and in the limit, its dropping decision at each time

depends only on the instantaneous queue size. On the other hand, small wq makes RED unresponsive

to changing traffic conditions. One should consider setting the value of wq so that the estimated aver-

age queue size reflects changes in the actual queue size well — finding such a setting is generally very

difficult and traffic dependent (Floyd and Jacobson, 1993).

• minth and maxth : the values of the two thresholds reflect bounds on the desired average queue size —

we can view the maxth and minth parameters as playing roles in providing a tradeoff between through-

put and delay. In particular, the value of maxth is closely related with the maximum tolerable average

delay.

• maxp: the maximum dropping probability determines the degree of aggressiveness of dropping packets

when congestion occurs.

Note that possible RED parameter settings include familiar fixed threshold dropping policies (e.g.,

Early Packet Discard (Romanov and Floyd, 1995) and Early Random Drop (Hashem, 1989)) by letting

wq=1 and controlling minth, maxth, and maxp. In particular, if minth = k, maxth = k, and wq=1, we refer to

the resulting policy as the buffer-k policy.

3) Simulation Results for Buffer management problem

We first remark that we have found a very compact means of presenting our results, so that literally hun-

dreds of simulation runs conducted over several weeks are summarized effectively with a small number of

plots in this section. Our general methodology was to run each candidate controller many times on each of

the four test traffics, once for each of a wide variety of parameter settings for that controller. We then plot

only the best performing parameter settings for the runs that meet each throughput constraint, showing the

average delay achieved as a function of the throughput loss. This methodology reflects an assumption that

the system designer can select the controller parameters ahead of time to embody the intended throughput

constraint and achieve the best control performance (i.e., lowest average delay) given that intended

throughput constraint. This assumption of good tuning by the system designer favors the non-model-based

Figure 2:  Dropping function of the RED buffer management

0 minth maxth N

1

q

maxp

D(q)
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RED approach relative to our model-based approaches because RED is well-known to be very difficult to

tune and to have optimal settings that depend on the traffic to be encountered, whereas our techniques are

much more natural to tune and depend only on a single naturally motivated parameter quantifying the

desired tradeoff between throughput and delay. As a result of our methodology here, the plots shown

reflect only a fraction of the many simulation runs we conducted (i.e., those corresponding to the most suc-

cessful parameter tunings). We also note that the many RED parameter settings considered include settings

that yield the buffer-k policy for each k as well as the settings recommended by RED’s original designers in

Floyd and Jacobson (1993).

Each simulation run lasted 62,500 time steps where one time step corresponds to the time needed to

serve one fixed-length packet, which is 0.0016 seconds in our experiment. In Figure 3 and Figure 4, we

summarize hundreds of simulation runs by plotting each approach’s performance for each randomly

selected traffic (one from each of the four different test models selected as discussed above). The horizon-

tal axis of each figure shows the percentage of the optimal throughput of the buffer-25 policy that is toler-

ated as loss, and the vertical axis of each figure shows the average queueing delay (in seconds) achieved by

the best parameter setting that met the given throughput loss constraint. For each sampling-based

approach, the λ-values plotted range from zero to 0.09 (higher λ values make no difference, favoring delay

so heavily as to drop all traffic but the packet to be served, whereas a λ value of zero yields the droptail pol-

icy, i.e., buffer-25).

The results shown in Figure 3 demonstrate that parallel rollout significantly reduces the average queue-

ing delay encountered for a fixed loss constraint when compared to any RED policy based on parameters

optimized for the traffic encountered. Parallel rollout provides a 30% to 50% reduction in queueing delay

over a wide range of loss tolerances — this advantage disappears at the extremes where there is no loss tol-

erance or very high loss tolerance, as in these regions there is no interesting tradeoff and a trivial policy can

achieve the desired goal. The figure further shows a theoretical bound computed for the specific traffic

trace using our methods presented in Appendix C — we note that this is only a bound on the optimal

expected performance, and may not in fact be achievable by any policy that does not know the traffic

sequence ahead of time (but only knows the model). In Appendix C, we study the problem of selecting the

optimal dropping sequence when the precise traffic is known ahead of time. We provide a new character-

ization of the optimal control sequence in this case, along with an efficient algorithm for computing this

sequence, with time complexity O(H log H) for traffic of length H . This algorithm can be used to find the

theoretical upper-bound on the performance achievable on a given traffic sequence by an online controller

(as was done for multiclass scheduling problem by Peha and Tobagi, (1990)). Our results here show that

parallel rollout approaches this bound closely on each traffic for loose throughput constraints, but falls

away from this bound as the throughput constraint tightens in each case. One likely possibility is that the

bound is in fact itself quite loose in situations with tight throughput constraints (i.e., no policy achieves
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expected value close to the offline optimal value), because the bound is based on offline analysis which can

prescribe dropping at no risk of loss; in contrast, online policies can rarely drop without risk of throughput

loss as the system state determines the future traffic only stochastically.

Next, we illustrate in Figure 4 the success of individual rollout policies at reducing delay, and the ability

of parallel rollout to combine the effects of rolling out different base policies without knowing ahead of

time which base policy is better. The figure compares advantages of the parallel rollout policy in compari-

son with rollout policies constructed from individual buffer-k policies for various values of k, showing that

parallel rollout performs as well as the best of the individual rollout policies, thus achieving the intent of

Figure 3: Comparison of parallel rollout of buffer-k policies with RED and a theoretical bound.
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relieving the system designer of a possibly difficult choice. It turns out that for the buffer management

problem, rollout of buffer-25 dominates the other individual rollout policies for all traffics and throughput

constraints — it remains to be seen how parallel rollout performs when combining base policies that lead

to incomparable individual rollout policies, which is the case for the scheduling problem.

In sum, our results show that rollout provides a sampling-based control approach that can exploit a pro-

vided traffic model to improve significantly on simple non-model-based controllers (e.g., RED/buffer-k

policies), reducing the queueing delay achievable for a fixed loss constraint by nearly a factor of two when

the loss constraint is not extremely tight (little dropping is possible without some risk of loss of through-

put). Moreover, our results indicate that our new parallel rollout technique successfully combines simple

Figure 4: Comparison of parallel rollout of buffer-k policies with individual rollout of various buffer-k policies.
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buffer management policies, relieving the system designer of the need to select which base policy to roll

out (a choice that may be traffic dependent). Furthermore, for non-strict loss constraints, we can see that

the parallel rollout approach often reduces queueing delay very nearly to the theoretical limit provided by

our new offline algorithm given in Appendix C.

B.  Multiclass Scheduling Problem

We first describe three basic online scheduling policies that use no information about the distribution of

arrival patterns to provide a baseline for comparison with sampling-based approaches. The first is static

priority (SP), which serves the highest-cost class that has a task unscheduled that is live at each time

(breaking ties by serving the earlier arriving task). The second is earliest deadline first (EDF) where the

policy EDF serves the class with the earliest-expiring task unscheduled that is live at each time (breaking

ties by serving the higher class task). The last is current minloss (CM) policy, which first generates the set

of the tasks such that serving all of the tasks in the set gives the maximum weighted throughput provided

that there is no future task arrivals, and then selects a task in the set such that the CM policy maximizes the

unweighted throughput over any finite interval. It has been shown that the CM policy is a good greedy pol-

icy over many interesting traffics and is provably no worse than EDF for any traffic. See Givan et al.

(2001)’s work for the substantial discussion on this policy.

As before, we are faced with the problem of selecting a test traffic. In scheduling, this problem mani-

fests itself in the form of arrival patterns that are easily scheduled for virtually no loss, and arrival patterns

that are apparently impossible to schedule without heavy weighted loss (in both cases, it is typical that

blindly serving the highest class available performs as well as possible). Difficult scheduling problems are

typified by arrival patterns that are “close” to being schedulable with no weighted loss, but that must expe-

rience some substantial weighted loss. As before, we have conducted experiments by selecting at random

HMM models for the arrival distributions from a guided ad-hoc but reasonable single distribution over

HMMs. The study of relationship between HMM models and schedulability would be a good future topic.

All of the problems we consider involve seven classes (1 through 7) of tasks. We set the weights of the

seven classes such that class i has a weight of wi-1. By decreasing the parameter w in [0,1], we accentuate

the disparity in importance between classes, making the scheduling problem more class-sensitive. We

show below how performance depends on w. Note that at the one extreme of w=0, SP is optimal, and at the

other extreme of w=1, EDF/CM is optimal. We select an HMM for each class, chosen from the same distri-

bution. We selected the HMM state space of size 3 (arbitrarily) for these examples, resulting in a total hid-

den state space of 37 states. We deliberately arrange the states in a directed cycle to ensure that there is

interesting dynamic structure to be modeled by the POMDP information-state update (we do this by setting

the non-cyclic transition probabilities to zero). Similarly, we select the self-transition probability for each

state uniformly in the interval [0.9, 1.0] in order that state transitions are seldom enough that observations
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as to what state is active can accumulate. The arrival generation probability at each state is selected such

that one state is “low traffic” (uniform in [0, 0.01]), one state is “medium traffic” (uniform in [0.2, 0.5]),

and one state is “high traffic” (in [0.7, 1.0]). Finally, after randomly selecting the HMMs for each of the

seven classes from the distribution, we used the stationary distribution obtained over the HMM states to

normalize the arrival generation probabilities for each class so that arrivals are (roughly) equally likely in

high-reward (classes 1 and 2), medium-reward (classes 3 and 4), and low-reward (classes 5–7), and to

make a randomly generated traffic from the HMM have overall arrivals at about 1 task per time unit to cre-

ate a scheduling problem that is suitably saturated to be difficult. Even with these assumptions, a very

broad range of arrival pattern HMMs can be generated. Without some assumptions like those we made

here, we have found (in a very limited survey) that the arrival characterization given by the HMMs gener-

ated is typically too weak to allow any effective inference based on projection into the future. As a result,

CM typically performs just as well, and SP often performs nearly as well.

Given the selected distribution over HMMs, we have tested the rollout algorithm with CM as the base

policy, rollout with SP as the base policy, parallel rollout with CM and SP as base policies (EDF is not used

because CM dominates EDF for any traffic), and the CM algorithm, along with SP and EDF, against four

different specific HMM arrival descriptions drawn from the distribution. For each such arrival description,

we ran each scheduling policy for 62,500 time steps and measured the competitive ratio achieved by each

policy. The “competitive ratio” is the ratio between the performance of an online algorithm and the optimal

offline performance for the same traffic, which can be obtained from Peha and Tobagi (1990). Here, we use

weighted loss as the measure of performance, and compute the optimal offline performance as just

described.

Examination of the competitive ratio in Figure 5 first reveals that the basic CM policy dramatically out-

performed EDF and SP on all the arrival patterns over almost all values of w. For the values of w that are

very close to zero, SP starts to dominate CM, which is not surprising owing to the very high accentuation

of the disparity among classes. This shows that CM is evidently a good heuristic policy that can be used for

the (parallel) rollout algorithm. However, this does not necessarily mean that the rollout algorithm with

CM performs well even though we can expect that it will improve CM. Furthermore, it is very difficult to

predict in advance the performance that will be achieved by rollout with SP, even though SP is not compet-

ing with CM very well.

Overall, all sampling-based approaches improved the performance of CM. This is more noticeable in

the region of medium to low w values because as we increase the value of w, the performance of CM gets

closer to the optimal performance and there is not enough theoretical margin for improvements. It is quite

interesting that the rollout of SP performs quite well (even though SP itself is not competing well), which

shows that the ranking of Q-values guided by rolling out SP is well-preserved. As we expected, there is a

cross point between the rollout of SP and the rollout of CM for each traffic showing that for different class-
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disparity measures, the performances of the rollout depend on the base policy selected. From the figure, we

can see that the parallel rollout policy in comparison with rollout policies constructed from CM and SP

policies performs no worse than the best of the individual rollout policies for almost all w values, thus

again achieving the intent of relieving the system designer of a possibly difficult choice. For some w val-

ues, it even improves both rollout approaches by 10-20% for the rollout of SP and by 10-45% for the roll-

out of CM. Furthermore, at w no bigger than 0.3, it improved CM about 30-60%, let alone improved SP. In

particular at w very near zero, it improved CM and/or SP in one order of magnitude. Note that as the value

of w decreases from 1 (but not too close to 0), the complexity of the scheduling problem gets more diffi-

Figure 5: Empirical competitive ratio plots for four different traffics from four different traffic models. ROCM is

rollout with CM as the base policy, ROSP is rollout with SP as the base policy, and PARA is parallel rollout with

CM and SP as the base policies. For this competitive ratio, the offline optimization solution algorithm by Peha

and Tobagi (1990) was used to obtain the theoretical bound.
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cult. This result is quite expected because SP is the right choice for traffic patterns with heavy bursts of

important class packets, whereas CM is the right choice for the other traffic patterns, roughly speaking.

Rolling out these policies at the same time makes the resulting parallel rollout approach adapt well to the

right traffic pattern automatically.

We believe these results advocate our main points for parallel rollout and indicate that sampling to com-

pute the Q-function via parallel rollout is a reasonable heuristic for online scheduling. We expect that it

will continue to be difficult to find any distributions where CM outperforms parallel rollout—these would

be distributions where the estimated Q-function was actually misleading. It is not surprising that for some

HMM distributions, both CM and parallel rollout perform very similarly, as the state inference problem for

some HMMs can be very difficult—parallel rollout will perform poorly if the computed information-state

represents significant uncertainty about the true state, giving a poor estimate of the future arrivals.

VI. CONCLUSION

In this paper, we proposed a practically viable new approach, parallel rollout, to solving (partially

observable) Markov decision processes via online Monte-Carlo simulation. The approach generalizes the

rollout algorithm of Bertsekas and Castanon by rolling out a set of multiple heuristic policies rather than a

single policy, and resolves the key issue of selecting which policy to roll out among multiple heuristic pol-

icies whose performances cannot be predicted in advance, and improves on each of the base policies by

adapting to the different system paths.

Our parallel rollout framework also gives a natural way of incorporating given traffic models to solve

controlled queueing process problems. It uses the traffic model to predict future arrivals by sampling and

incorporates the sampled futures into the control of queueing process. We considered two example con-

trolled queueing process problems, a buffer management problem and a multiclass scheduling problem,

showing the effectiveness of parallel rollout.

We believe that the applicability of the proposed approach is very wide and in particular, is very effec-

tive in the domain of problems where multiple base policies are available such that each policy performs

near-optimal for a different set of system paths. In this respect, the approach is quite naturally connected

with state-aggregation approach to reduce the complexity of solving various POMDP problems.
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APPENDIX  A: Policy Switching Analysis for Total Reward

We assume that the policy switching policy πps is given by a sequence { , …, } of different

state-action mappings, where each µt is selected by the policy switching method given Equation (8) for

horizon Hs–t.

Theorem 2: Let Π be a nonempty finite set of policies. For πps defined on Π,

for all .

Proof: To prove the theorem, we will use induction on i, backwards from i = H down to i = 0, showing for

each i that for every state x, . As the base case, for i = H, we have

= = 0 for all x in X and for any π in Π by definition. Assume for induction that

for all x. Consider an arbitrary state x. From standard MDP the-

ory, we have

. (16)

Using our inductive assumption and then interchanging the expectation and the maximization,

Equation (16) becomes:

(17)

By definition, is the action selected by the policy Ew{ +

}, i.e. by the policy . It follows that there exists a policy

 in Π that achieves this argmax; i.e., such that

 and . (18)

Now observe that the definition of “max” implies that

. (19)

Therefore, ,

which completes the proof. Q.E.D.

APPENDIX  B: Parallel Rollout and Policy Switching Analysis for Infinite Horizon Discounted Reward

Here we extend our analytical results for parallel rollout and policy switching to the infinite-horizon

discounted-reward case. In this case, we focus only on stationary policies, as there is always an optimal
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policy that is stationary. Given an initial state x0, we define the expected discounted reward over infinite

horizon of a stationary policy π with a discounting factor γ in (0,1) by

 where xt+1 is given by f (xt,π(xt),wt) . (20)

Note that this definition is an extension of the total expected reward over a finite horizon H we defined ear-

lier by letting and providing a discount factor to ensure convergence to a finite value. We now

prove that given a set of base stationary policies, Π = {π1, …, πm}, the expected discounted rewards over

infinite horizon of both policy switching and parallel rollout policy on Π are no less than that of any policy

in Π.

Let denote the set of functions from X to (the “value functions”). Define for each , an oper-

ator VIπ:    such that for a value function  on each ,

 where . (21)

From the standard MDP theory, it is well known that VIπ is a contraction mapping in a complete normed

linear space, or Banach space, that there exists a unique fixed point satisfying VIπ(v) = v, that this

fixed point is equal to Vπ, and that iterative VIπ on any initial value function converges monotonically to

this fixed point. We first state a key lemma, which will be used to prove our claim.

Lemma: Suppose there exists for which for all , then for

all .

The above lemma can be easily proven by the monotonicity property of the operator VIπ and the conver-

gence to the unique fixed point of Vπ from successive applications of the operator. We can now state and

prove our infinite horizon results.

Theorem 3: Let Π be a nonempty finite set of stationary policies. For πps defined on Π,

 for all .

Proof: Define for all . We show that for all ,

and then by the above lemma the result follows. Pick an arbitrary x. By definition,

. Therefore, there exists a policy such that for all

 and . It follows that

(22)
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By the lemma above, the claim is proved. Q.E.D.

Theorem 4: Let Π be a nonempty finite set of stationary policies. For πpr defined on Π,

 for all .

Proof: Define for all . We show that for all

so that the result follows by the lemma above. Fix an arbitrary state x. By definition,

. Then, for any ,

(23)

Therefore, . By the lemma above, the claim is proved. Q.E.D.

APPENDIX  C: Offline Buffer Management

For the buffer management problem, the offline performance analysis corresponds to finding the opti-

mal dropping plan for any given traffic arrival sequence (with respect to the objective function given in

Section IV.B in formalizing buffer management). In this section we give a novel characterization of the

optimal dropping plan, provide a new algorithm for computing this optimal plan, and prove the correctness

and claimed time complexity for that algorithm.

A.  Defining and Characterizing the Optimal Plan

Throughout this section, we focus on a fixed arrival sequence at, t ∈ {0, .., Hs–1}, where Hs is our sam-

pling horizon, and discuss how to find an optimal dropping plan for that sequence. All the definitions

below are relative to this fixed arrival sequence.

We begin by formally defining the problem. A dropping plan is a sequence of nonnegative integers d =

[d0, d1, …, ] giving the number of packets dt to drop at each time t. We refer to the empty dropping

plan [0, …, 0] as φ. Given a dropping plan d, the unbounded queue-length trajectory lt(d) under that plan is

given by the following evolutionary equations:

(24)

Note that there is no limit on buffer size incorporated here. The plan d is said to meet buffer constraint k if

V
πpr

x( ) maxπ Π∈ V
π

x( )≥ x X∈

ψ x( ) maxπ Π∈ V
π

x( )= x X∈ V Iπpr
ψ( ) x( ) ψ x( )≥ x X∈

πpr x( ) maxu U x( )∈ r x u,[ ] γ p y x u,( )ψ y( )
y X∈
∑+ 

 arg= π Π∈

VIπpr
ψ( ) x( ) r x πpr x( ),[ ] γ p y x πpr x( ),( )ψ y( )

y X∈
∑+=

r x π x( ),[ ] γ p y x π x( ),( )ψ y( ) by def. of πpr and def. of argmax

y X∈
∑+≥

r x π x( ),[ ] γ p y x π x( ),( )V
π

y( ) by def. of ψ
y X∈
∑+≥

V
π

x( ).=

V Iπpr
ψ( ) x( ) maxπ Π∈ V

π
x( )≥ ψ x( )=

dH s 1–

l0 d( ) a0 d0–=

li 1+ d( ) min 0 li d( ) 1–,( ) ai 1+ d i 1+–+=



28

lt(d) is does not exceed k for any t. The cumulative reward associated with a dropping plan is given by

, (25)

and we say that a dropping plan is optimal if it meets buffer constraint N and achieves cumulative reward

on the given arrival sequence at no less than any other plan meeting constraint N.

We now define an optimal plan δ and prove its optimality. The intuition behind this plan is that our

reward function R(d) is such that we prefer to drop any packet that must wait 1/λ time steps for service. It

follows that we must do just enough dropping to ensure no packet must wait 1/λ time steps — moreover,

we must drop any packet that will be dropped (either for the reason just given or for buffer overflow) the

moment it arrives, in order to minimize queue length. Likewise, we must avoid dropping any packet when

an earlier-arriving packet has yet to be served; instead, dropping the earlier arriving packet. We now for-

malize these ideas.

Given a dropping plan d, the next empty time at time t, denoted n(d, t), is the least time t’ ≥ t such that

lt’ ≤ 1. This is the first time not before t at which the queue will be empty after service if we follow plan d,

ignoring the limit on buffer size. We say that a dropping plan d is acceptable at time t if the next empty

time at time t, n(d, t) is less than min(t + (1/λ), Hs–1), and the queue trajectory lt’(d) is less than or equal to

the buffer size N for all times t’ in the interval [t, n(d, t)]. We note that acceptability is monotone relative to

increased dropping: if d is acceptable at time t, than any plan d’ that drops no less than d at each time step

is also acceptable at t. Also, this definition ensures that an acceptable trajectory leaves the queue empty at

the horizon, after the last service interval.

In the definition below, we treat a partial dropping plan [d0, ..., dt] for some as a full dropping

plan by assuming that dt’ is zero for all t’ in the interval (t,Hs]. Note that under this interpretation, [] is the

empty dropping plan (drops no packets).

Definition 1: The dropping plan δ = is defined recursively as follows: for all i ≥ 0, δi = the

smallest x such that the time i is acceptable relative to the dropping plan [δ0, ..., δi–1, x].

We now establish that the plan δ is an optimal dropping plan.

Theorem 5: δ is an optimal dropping plan for the fixed arrival sequence used to define it.

Proof: It is not difficult to show that each of the following “helpful” local transformations on a dropping

plan d = [d0, d1, …, ] results in a dropping plan d’ = [d’0 , d’1 , …, d’ ] that is no worse than d.

Here, “no worse” means that the sequence yields at least as much cumulative reward.

• [Helpful Transformation 1] The sequence d’ agrees with d at all times except that at one time t we

have d’t  = dt – 1 and d’ is acceptable at t.

R d( ) lt d( )( )sgn λ lt d( )( )–

t 0=

Hs 1–
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t Hs≤

δ0 … δHs 1–, ,[ ]

dHs 1– Hs 1–
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• [Helpful Transformation 2] The sequence d’ agrees with d at all times except that at one time t, we

have d’t  = dt + 1 and d is not acceptable at t.

• [Helpful Transformation 3] The sequence d’ agrees with d at all times except two times t and t’

such that t < t’, d’t = dt + 1, d’t’ = dt’ – 1, where d and d’ are acceptable at both t and t’, and

n(d,t) ≥ t’. (This transformation can be applied whenever there is a drop called for in the presence

of earlier-arriving packets in order to drop those instead.)

Using these transformations, we can argue that the following fact holds:

(*) For any i in the interval [0, Hs–2], for any dropping sequence d such that dt = δt for all t in the inter-

val [0, i], there exists a dropping sequence d’ such that d’t = δ t for all t in the interval [0, i+1] and

d’ is no worse than d.

The optimality of δ then follows by induction because the fact (*) just shown implies that given any

plan we can find one no worse that follows δ initially for more time steps. Applying this fact at most Hs

times shows that δ is no worse than any arbitrary plan. Q.E.D.

B.  A Method for Computing the Optimal plan

In Figure 7 we give pseudocode for an O(Hs log Hs) algorithm for computing the plan δ described in the

previous subsection (δ is called plan[] in the pseudocode), and we explain the design of this code here.

The algorithm assumes we have already computed the unbounded queue-length trajectory lt([]) for no

dropping and stored the trajectory in traj[t], for each t — this is easy to do in O(Hs) time. The main loop of

the algorithm scans this trajectory using a time-valued index variable looktime. A second time index vari-

able droptime also moves through the time interval [0, Hs) in a monotonically increasing fashion, marking

the location in plan[] that is currently being updated. As droptime is increased, the variable offset is main-

tained to summarize the relevant effect of the dropping actions selected for time indices 0 through

droptime–1 — specifically, the difference between the no-dropping trajectory lt([]) and the trajectory

under the dropping policy given by the current plan[], where the difference computed applies at any time t

between droptime and the next empty time under plan[], which is no earlier than looktime.

The variable droptime does not have to take on every value in [0, Hs–1] due to the following property.

Given dropping action δi from the plan δ, the definitions of acceptability and of the plan δ imply that the

actions δj for all j in the interval (i, m] for m = n([δ0, …, δi], i) are all zero. This fact justifies updating

droptime to the next empty time plus one after each dropping action is selected.

During the looktime scan (i.e., in the body of the main for loop), the following computations are per-

formed to select dropping actions. Whenever looktime encounters an overflow, or reaches a point at least 1/

λ steps ahead of droptime without finding the next empty time, it is necessary to add to the amount of drop-

ping done at droptime in order to make plan[] acceptable at droptime. The amount of dropping added is
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selected (in the lines using “argmin” and “min” to set dropamt) to ensure that either the buffer overflow is

prevented, or that a queue-empty time occurs between droptime and looktime (the latter is required if look-

time is at 1/λ steps ahead of droptime).

If the amount of dropping added results in an empty queue between droptime and looktime, then drop-

time is advanced to one more than this empty time. Likewise, if the looktime scan encounters a point at

which the trajectory is empty under plan[], then droptime is advanced beyond this point.

int plan[Hs]; /* storage for result, init to zero everywhere */

int traj[Hs]; /* init traj[t] to unbounded queue size lt([]) */

droptime = offset = 0;

for looktime = 0 to Hs–1 do

if ( traj[looktime] – offset == 0 ) then

/* lt[plan[]] is 0 for t=looktime so offset decreases and no further dropping

until after looktime */

if ( offset > 0 ) then offset = offset – 1; endif

droptime = looktime + 1;

else

/* check/resolve if droptime arrivals wait too long */

if ( looktime ≥ droptime + 1/λ) then

mintime = argmin{t ∈ [droptime,looktime]} traj[t];

dropamt = traj[mintime] – offset – 1;

plan[droptime] = plan[droptime] + dropamt;

offset = offset + dropamt;

droptime = mintime + 1;

endif

/* check/resolve any buffer overflow at looktime */

if (looktime == Hs–1)

then bufsize=1; else bufsize = N; endif

excess = traj[looktime] – offset – bufsize;

while ( excess > 0 ) do

mintime = argmin{t ∈ [droptime,looktime]} traj[t];

dropamt = min{excess, traj[mintime] – offset – 1};

plan[droptime] = plan[droptime] + dropamt;

excess = excess – dropamt;

offset = offset + dropamt;

/* if lmintime(plan[]) ≤ 1 then no further dropping until after mintime */

if ( traj[mintime] – offset == 1 )

then droptime = mintime + 1; endif

endwhile

if ( traj[looktime] – offset == 1)

then droptime = looktime + 1; endif

endif

endfor

Figure 7: Pseudocode for an offline optimizing algorithm for buffer management. The argmin lines must break ties

to prefer later times.
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The operation “argmin” is used in the pseudocode shown in two places, in each case to select the mini-

mum amount of dropping to add to the plan at time droptime in order to cause the next empty time under

the resulting plan to be earlier than looktime. This use of “argmin” ensures that we drop only the minimum

number of packets at droptime to either avoid buffer overflow at looktime or ensure a next empty time

before looktime. Specifically, “argmin” is used to compute the lowest point in the unbounded dropping-

free trajectory between droptime and looktime (breaking ties in favor of the latest time) — it follows that

dropping (at droptime) all but one packet in the current trajectory at that time is the least additional drop at

droptime that results in an empty time in the interval [droptime, looktime]. We then drop that amount if an

empty time is sought (i.e., after the first use of “argmin” in the pseudocode) or possibly less than that

amount if we are only seeking to avoid buffer overflow (i.e., after the second use of “argmin”).

A final point worth remarking on is the handling of the queue at the horizon. Because the optimal drop-

ping sequence must leave the queue empty after the last service (in order that all unserved packets are

dropped as early as possible), we must have the line of code that sets bufsize to 1 when looktime reaches

the horizon. This line, together with the final if statement updating droptime ensure that droptime equals

Hs on termination, and that the resulting plan leaves the buffer empty at time Hs.

We next discuss the correctness of the code shown.

C.  Correctness and Time Complexity

We argue below that the pseudocode shown in Figure 7 actually computes the desired plan δ, and does

so in O(Hs log Hs) time. Note that once we find the optimal plan, computing R(d) as needed for hindsight

optimization is straightforward.

Theorem 6: The code in Fig. 7 computes the plan δ.

Proof: The following invariants can be proven together by induction to hold of the code in Fig. 7.

• The variables offset and droptime are maintained so that the variable offset takes the value lt([]) –

lt(plan) on each entry to the for loop body, for any t in the interval [droptime, looktime] (the difference

does not depend on t in this interval).

• The variable droptime is always less than or equal to looktime on entry to the for loop body.

• plan[t] = δt for all t < droptime.

• plan[t] = 0 for all t > droptime.

• plan[t] ≤ δt for t = droptime.

• traj[droptime]–offset > 1 on entry to the main if statement, unless droptime = looktime.

• On entry to the for loop, the unbounded queue-length trajectory for the dropping specified in plan[]

shows neither buffer overload nor a queue of size 0 or 1 in the time interval [droptime, looktime).

• The variable looktime is never greater than droptime+1/λ when the for loop is entered.
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These invariants, together with the easily proven fact that droptime = Hs on termination establish that

plan[t] = δt for all t when the algorithm terminates. Q.E.D.

We now discuss the time complexity of the algorithm.

Theorem 7: The code in Fig. 7 runs in O(Hs log Hs) time.

Proof: The two argmin operations can be supported by a priority queue implemented as a heap in O(log

Hs) time per invocation.

The number of iterations of the main loop is clearly Hs. Each operation in the body of this loop, exclud-

ing the while loop, takes at most log(Hs) time, so the amount of time spent in the main for loop altogether

(excluding the inner while loop) is O(Hs log Hs).

To conclude, we must argue that the total time spent in the while loop is at most O(Hs log Hs). We first

observe that the while loop body takes at most log Hs time for a single iteration, and then argue that over

the entire algorithm at most Hs iterations occur. We divide such iterations into two groups: terminal itera-

tions and continuing iterations, where a “terminal iteration” is one after which the while loop terminates,

and a “continuing iteration” is followed by yet another iteration of the loop. We note that there can be at

most O(Hs) terminal iterations of the while loop because such iterations are followed inevitably by the end

of an iteration of the for loop. But it is easy to show that continuing iterations occur only when dropamt =

traj[mintime] – offset – 1 (i.e., dropamt is less than excess due to the min{...} application), and that drop-

time is increased at every such iteration. It is also possible to show that droptime starts at 0, never

decreases, and is never greater than Hs. Therefore there can be at most O(Hs) increases in droptime and as

a result at most O(Hs) continuing iterations. We conclude that the while loop iterates at most O(Hs) times.

Q.E.D.


