
Discovering Relational Domain Features for Probabilistic Planning

Jia-Hong Wu and Robert Givan
Electrical and Computer Engineering, Purdue University, W. Lafayette, IN 47907

{jw, givan}@purdue.edu

Abstract
In sequential decision-making problems formulated as
Markov decision processes, state-value function approxima-
tion using domain features is a critical technique for scaling
up the feasible problem size. We consider the problem of
automatically finding useful domain features in problem do-
mains that exhibit relational structure. Specifically we con-
sider learning compact relational features without input from
human expertise; we use neither expert decisions nor hu-
man domain knowledge beyond the basic domain definition.
We propose a method to learn relational features for a linear
value-function representation—numerically valued features
are selected by their fit to the Bellman residual of the cur-
rent value function and are automatically learned and added
to the representation when needed. Starting with only a triv-
ial feature in the value-function representation, our method
finds useful value functions by combining feature learning
with approximate value iteration. Empirical work presented
here for Tetris and for probabilistic planning competition do-
mains shows that our technique represents the state-of-the-
art for both domain-independent feature learning and for sto-
chastic planning in relational domains.

Introduction
Complex dynamic domains often exhibit regular structure
involving relational properties of the objects in the domain.
Such structure is useful in compactly representing value
functions in such domains, but typically requires human
effort to identify. A common approach which we con-
sider here is to compactly represent the state-value func-
tion using a weighted linear combination of state features.
The usage of features provided by human experts is of-
ten critical to the success of systems using such value-
function approximations (e.g. TD-gammon (Tesauro 1995;
Sutton & Barto 1998)1). Our goal is to derive useful state
features in complex dynamic domains automatically instead
of relying on human experts. In this paper, we propose and
evaluate a relational learning system that finds automatically
features useful for approximate value-function representa-
tion in highly structured dynamic domains.

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The performance of TD-gammon improved to compete with
world-class human players after the introduction of a set of human-
constructed features.

Human-constructed features are typically compactly de-
scribed using a relational language (such as English)
wherein the feature value is determined by the relations be-
tween objects in the domain. For example, the “number of
holes” feature that is used in many Tetris experiments (Bert-
sekas & Tsitsiklis 1996; Driessens, Ramon, & Gärtner 2006)
can be interpreted as counting the number of empty squares
on the board that have some other filled squares above them.
Such numeric features provide a ranking of the states that
correlates (or anti-correlates) usefully but imperfectly with
the true state value. Our method aims to also find compact
features that correlate usefully with true state value.

True state value is intractable to compute directly. Here,
we instead compute the Bellman error relative to the current
approximate value function. Intuitively, this detects regions
of the statespace which appear to be undervalued (or over-
valued) relative to the action choices available. A state with
high Bellman error has a locally inconsistent value function;
for example, a state labelled with a low value which has an
action available that leads only to high value states. Our ap-
proach is to use machine learning to fit relational features to
such regions of local inconsistency in the current value func-
tion, learning a new feature. We can then train an improved
value function, adding the new feature to the available fea-
ture set.

We use Markov decision processes (MDPs) to model the
dynamics of domains. We measure inconsistency in Bell-
man equation caused by using an approximated value func-
tion and use a relational machine-learning approach to create
new features describing regions of high inconsistency. Our
method is novel relative to our previous work (Wu & Givan
2005) due to the following innovations: The method in (Wu
& Givan 2005) created only binary features, leveraging only
the sign, not the magnitude, of the inconsistency in Bellman
equation for states to determine how features are created. In
(Wu & Givan 2005) features are decision trees learned by
using the algorithm C4.5, representing binary-valued func-
tions. Instead, here, we use a beam-search algorithm to find
real-valued features that are relationally represented. The
resulting feature language is much richer, leading to more
compact, effective, and easier to understand learned fea-
tures.

Another previous method, from (Patrascu et al. 2002),
selects features by estimating and minimizing the L1 error

of the value function that results from retraining the weights
with the candidate feature included. L1 error is used in that
work instead of Bellman error because of the difficulty of re-
training the weights to minimize Bellman error. Because our
method focuses on fitting the Bellman error of the current
approximation (without retraining with the new feature), it
avoids this expensive retraining computation during search
and is able to search a much larger feature space effectively.
The results shown in (Wu & Givan 2005) suggest that empir-
ically superior feature selection results from fitting the Bell-
man error of the current approximation, so again here we
choose to work directly on fitting that Bellman error.2

Some other previous methods (Gretton & Thiébaux 2004;
Sanner & Boutilier 2006) find useful features by first iden-
tifying goal regions (or high reward regions), then identi-
fying additional dynamically relevant regions by regressing
through the action definitions from previously identified re-
gions. The principle exploited is that when a given state fea-
ture indicates value in the state, then being able to achieve
that feature in one step should also indicate value in a state.
Regressing a feature definition through the action definitions
yields a definition of the states that can achieve the feature
in one step. Repeated regression can then identify many re-
gions of states that have the possibility of transitioning un-
der some action sequence to a high-reward region. Because
there are exponentially many action sequences relative to
plan length, there can be exponentially many regions discov-
ered in this way, and “optimizations” (in particular, control-
ling or eliminating overlap between regions and dropping re-
gions corresponding to unlikely paths) must be used to con-
trol the number of features considered. Regression-based
approaches to feature discovery are related to our method of
fitting Bellman error in that both exploit the fact that states
that can reach valuable states must themselves be valuable,
i.e. both seek local consistency.

However, effective regression requires a compact declar-
ative action model, which is not always available3, and is a
deductive logical technique that can be much more expen-
sive than the measurement of Bellman error by forward ac-
tion simulation. Deductive regression techniques also nat-
urally generate many overlapping features and it is unclear
how to determine which overlap to eliminate by region in-
tersection and which to keep. The most effective regression-
based first-order MDP planner, described in (Sanner &
Boutilier 2006) is only effective when disallowing overlap-
ping features to allow optimizations in the weight computa-
tion, yet clearly most human feature sets in fact have over-
lapping features. Finally, repeated regression of first-order
region definitions typically causes the region description to
grow very large. These issues have yet to be fully resolved
and can lead to memory-intensive and time-intensive re-

2The empirical differences shown in (Wu & Givan 2005) may
also have resulted in part from greedy feature construction methods
in addition to the differences in the scoring criterion discussed here.

3For example, in the Second International Probabilistic Plan-
ning Competition, the regression-based FOALP planner required
human assistance in each domain in providing the needed domain
information even though the standard PDDL model was provided
by the competition and was sufficient for each other planner.

source problems. Our inductive technique avoids these is-
sues by considering only compactly represented features, se-
lecting those which match sampled statewise Bellman error
training data. We provide extensive empirical comparison
to the First-Order Approximate Linear Programming tech-
nique (FOALP) from (Sanner & Boutilier 2006) in our em-
pirical results. We also show empirical results for our plan-
ner on Tetris, where a declarative PDDL action representa-
tion is not available or natural, making FOALP inapplicable.

In (Džeroski, DeRaedt, & Driessens 2001), a relational
reinforcement learning (RRL) system learns logical regres-
sion trees to represent Q-functions of target MDPs. To
date, the empirical results from this line of work have
failed to demonstrate an ability to represent the value func-
tion usefully in more complex domains (e.g., in the full
standard blocksworld rather than a greatly simplified ver-
sion). Thus, these difficulties representing complex rela-
tional value functions persist in extensions to the original
RRL work (Driessens & Džeroski 2002; Driessens, Ramon,
& Gärtner 2006), where again there is only limited applica-
bility to classical planning domains.

In our experiments we start with a constant value func-
tion, and learn new features and weights from automatically
generated sampled state trajectories. We evaluate the perfor-
mance of the policies that select their actions greedily rela-
tive to the learned value functions. We demonstrate that our
learner generates superior value functions in Tetris compar-
ing to best performance in the RRL work (Driessens, Ra-
mon, & Gärtner 2006) and in (Wu & Givan 2005). Our
learner also demonstrates superior ability to learn value
functions in the planning domains comparing to the evalu-
ation in the latest RRL work (Driessens, Ramon, & Gärtner
2006), and shows generally superior performance in success
ratio comparing to state-of-the-art probabilistic planners FF-
Replan (Yoon, Fern, & Givan 2007) and FOALP in the prob-
abilistic planning competition domains.

Background: Markov Decision Process
In this section, we follow the definitions and terminology
from (Wu & Givan 2005). For more detail, see (Bert-
sekas & Tsitsiklis 1996) and (Sutton & Barto 1998). A
Markov decision process (MDP) D is a tuple (S, A, R, T)
with finite state and action spaces S and A, reward function
R : S × A × S → R, and a transition probability func-
tion T : S × A → P(S) that maps (state, action) pairs to
probability distributions over S.

Given discount factor 0 ≤ γ < 1 and policy π : S → A
for an MDP, the value function V π(s) gives the expected dis-
counted reward obtained from state s selecting action π(s)
at each state encountered and discounting future rewards by
a factor of γ per time step. There is at least one optimal
policy π∗ for which V π∗

(s), abbreviated V ∗(s), is no less
than V π(s) at every state s, for any other policy π. The fol-
lowing “Q function” evaluates an action a with respect to a
future-value function V ,

Q(s, a, V) =
∑

s′∈S

T (s, a, s′)[R(s, a, s′) + γV (s′)].

Recursive Bellman equations use Q() to describe V ∗ and

V π as follows. First, V π(s) = Q(s, π(s), V π). Then,
V ∗(s) = maxa∈A Q(s, a, V ∗). Also using Q(), we can
select an action greedily relative to any value function.
The policy Greedy(V) selects, at any state s, the action
arg maxa∈A Q(s, a, V).

Value iteration iterates the operation V ′(s) =
maxa∈A

∑
s′∈S T (s, a, s′)[R(s, a, s′) + γV (s′)], com-

puting the “ Bellman update” V ′ from V , producing a
sequence of value functions converging to V ∗, regardless of
the initial V used.

We define the statewise Bellman error B(V, s) for a value
function V at a state s to be V ′(s) − V (s). We will be
inducing new features based on their correlation to the state-
wise Bellman error. The sup-norm distance of a value func-
tion V from the optimal value function V ∗ can be bounded
using the Bellman error magnitude, which is defined as
maxs∈S |B(V, s)| (e.g., see (Williams & Baird 1993)).

Linear Approximation of Value Functions. We address
very large S and/or A by implicitly representing value func-
tions in terms of state space features f : S → R. Here, we
assume S and A are relationally represented, i.e., that there
is a finite set of objects O, state predicates P , and action
names N used to define S and A as follows. A state fact is an
application p(o1, . . . , on) of an n-argument state predicate p
to arguments objects oi. The state space S is the powerset of
the set of all state facts, with each state containing the true
facts in that state. An action instance a(o1, . . . , on) is an ap-
plication of an n-argument action name to n objects oi. The
action space A is the set of all action instances. Given this
statespace representation, our features f must select a real
value for each set of state facts.

Thus, we represent value functions using a linear com-
bination of features extracted from s, i.e., as Ṽ (s) =∑l

i=0 wifi(s). Our goal is to find features fi (each map-
ping states to real values) and weights wi so that Ṽ closely
approximates V ∗.

Many methods have been proposed to select weights wi

for linear approximations (Sutton 1988; Widrow & Hoff
1960). Here, we review and use a trajectory-based ap-
proximate value iteration (AVI) approach. Other training
methods can easily be substituted. AVI constructs a fi-
nite sequence of value functions V 1, V 2, . . . , V T , and re-
turns the last one. Each value function is represented as
V β(s) =

∑l
i=0 wβ

i fi(s). To determine weights wβ+1
i from

V β , we draw a set of training states s1, s2, . . . , sn by fol-
lowing policy Greedy(V β) from randomly selected initial
states. We can then compute wβ+1

i from the training states
using wβ+1

i = wβ
i + 1

ni

∑
j αfi(sj)(V

′(sj) − V β(sj)),
where α is the learning rate and ni is the number of states s
in s1, s2, . . . , sn for which fi(s) is non-zero.

Our feature-discovering AVI method is initialized to have
one constant feature with initial weight zero. We then re-
peatedly perform two steps: adjust the weights using AVI
as just described, and then select and add a new feature as
described in the next section.

Feature Construction using Relational
Function-Approximation

The feature construction approach in (Wu & Givan 2005)
selects a Boolean feature attempting to match the sign of the
Bellman error, and builds this feature greedily as a decision-
tree based on Boolean statespace features. Here, we con-
struct numerically valued relational features from relational
statespace structure, attempting to correlate to the actual
Bellman error, not just the sign thereof.

We consider any first-order formula with one free variable
to be a feature. Such a feature is a function from state to nat-
ural numbers which maps each state to the number of objects
in that state that satisfy the formula—we normalize to a real
number between zero and one by dividing the feature value
by the maximum value any such function can map to in a
given problem. We select first-order formulas as candidate
features using a beam search with a beam width W . The
search starts with basic features derived automatically from
the domain description or provided by a human, and repeat-
edly derives new candidate features from the best scoring W
features found so far, adding the new features as candidates
and keeping only the best scoring W features at all times.
After new candidates have been added a fixed number of
times, the best scoring feature found overall is selected to be
added to the value-function representation.

Candidate features are scored for the beam search by their
correlation to the “Bellman error feature,” which we take to
be a function mapping states to their Bellman error. We note
that if we were to simply add the Bellman error feature di-
rectly, and set the corresponding weight to one, the resulting
value function would be the desired Bellman update V ′ of
the current value function V . This would give us a way to
conduct value iteration exactly without enumerating states,
except that the Bellman error feature may have no compact
representation and if such features are added repeatedly, the
resulting value function may in its computation require con-
sidering exponentially many states. We view our feature se-
lection method as an attempt to tractably approximate this
exact value iteration method.

We construct a training set of states by drawing tra-
jectories from the domain using the current greedy policy
Greedy(V), and evaluate the Bellman error feature f ′ for
the training set. Each candidate feature f is scored with its
correlation coefficient to the Bellman error feature f ′ as es-
timated by this training set. The correlation coefficient be-
tween f and f ′ is defined as E{f(s)f ′(s)}−E{f(s)}E{f ′(s)}

σf σf′

.
Instead of using a known distribution to compute this value,
we use the states in the training set and compute a sampled
version instead. Note that our features are non-negative, but
can still be well correlated to the Bellman error (which can
be negative), and that the presence of a constant feature in
our representation allows a non-negative feature to be shifted
automatically as needed.

It remains only to specify a means for automatically con-
structing a basic set of features from a relational domain, and
a means for constructing more complex features from sim-
pler ones for use in the beam search. For basic features, we
first enrich the set of state predicates P by adding for each

binary predicate p a transitive closure form of that predicate
p+ and predicates min-p and max-p identifying minimal and
maximal elements under that predicate. In goal-based do-
mains we also add a version of each predicate p called goal-
p to represent the desired state of the predicate p in the goal,
and a means-ends analysis predicate correct-p to represent
facts that are present in both the current state and the goal.
So, p+(x, y) is true of objects x and y connected by a path in
the binary relation p, goal-p(x,y) is always true if and only
if p(x, y) is true in the goal region, and correctly-p(x,y) is
true if and only if both p(x, y) and goal-p(x,y) are true. The
relation max-p(x) is true if object x is a maximal element
w.r.t. p, i.e., there exists no other object y such that p(x, y)
is true. The relation min-p(x) is true if object x is a minimal
element w.r.t. p, i.e., there exists no other object y such that
p(y, x) is true.

After this enrichment of P , we take as basic features
the one-free-variable existentially quantified applications of
(possibly negated) state predicates to variables4. We assume
throughout that every existential quantifier is automatically
renamed away from every other variable in the system. We
can also take as basic features any human-provided features
that may be available, but we do not add such features in
our experiments in this paper in order to clearly evaluate our
method’s ability to discover domain structure on its own.

At each stage in the beam search we add new candidate
features and retain the W best scoring features. The new
candidate features are created as follows. Any feature in the
beam is combined with any other, or with any basic feature.
The combination is by moving all existential quantification
to the front, conjoining the bodies of the feature formulas,
each possibly negated. The two free variables are either
equated or one is existentially quantified, and then each pair
of quantified variables, chosen one from each contributing
feature, may also be equated. Every such combination fea-
ture is a candidate.

Experiments
Tetris We run two different experiments on the Tetris do-
main. We first run feature-discovering AVI on 8 × 8 Tetris
and compare the performance against our previous propo-
sitional method, described in (Wu & Givan 2005). In our
Tetris domain, a reward is received for each full row of
blocks removed, and the next block to fall is chosen uni-
formly at random. We cannot compare this domain to prob-
abilistic planners requiring PDDL input because we have
found no natural PDDL definition for Tetris. We also show
the performance of the greedy policy based on the value
function learned in the smaller 8 × 8 Tetris domain when
executing in the standard 10× 20 size.

We also test a learn-from-small-problems approach by
learning initially from 10×5 Tetris, and increasing the num-
ber of rows from five by adding two new rows for every 10
learned features up to the size of 10 × 9, and finally eval-
uate the performance on the standard 10 × 20 Tetris using

4If the domain distinguishes any objects by naming them with
constants, we allow these constants as arguments to the predicates
here as well.

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Number of Features

L
in

es
 E

ra
se

d

Learned Relational Random Relational
Learned Binary Random Binary
Human

Figure 1: Plot for the average number of lines erased in 10,000
8 × 8 Tetris games for the learned features. All learned/random
features are evaluated by 4 separate trials, averaged together here.
The standard deviation at 29 features for the learned integer fea-
tures is 8.03.

greedy policies with 29 features in Ṽ . We compare the per-
formance in both approaches to results in (Driessens, Ra-
mon, & Gärtner 2006), where 10×20 Tetris is used directly.

We represent Tetris using rows and columns as ob-
jects. We use three primitive predicates: fill(x, y), which
means the square on column x, row y is occupied;
below(x, y), which represents row x is directly below row
y; beside(x, y), which represents column x is directly to the
left of column y. While our representation here uses only
primitive domain predicates, the RRL result we compare to
uses human-specified Tetris-specific functions in the repre-
sentation such as “number of holes” (Driessens, Ramon, &
Gärtner 2006).

Each Tetris feature-learning training set is generated by
drawing trajectories to yield a 20,000 state training set, using
Greedy(Ṽ) from the initial empty grid state and removing
duplicate states. Each AVI training set is generated by draw-
ing 50 trajectories from the empty grid state to the end of
the game. We set the discount factor γ to 0.9. AVI learning
is allowed a total of 1200 iterations each time. The learning
rate α is 1

1+k/100 , where k is the number of AVI iterations
already executed. The only initial feature is the constant
function 0.25.

We plot 8× 8-performance as features are learned in Fig-
ure 1, together with the performance of AVI-trained human
features (taken from (Bertsekas & Tsitsiklis 1996)) and the
result of using the propositional feature learning in (Wu &
Givan 2005). We also compare our result to integer-valued
features randomly selected from the same feature space we
learn in.

We find that the features learned by our technique out-
perform those from the decision-tree learner in (Wu & Gi-
van 2005), even though we learn here from a much smaller
training set. Also the performance for the learned features is
much better comparing to the randomly generated features.

From each of the four 8 × 8 learning trials of our new
method, we take the final learned value function Ṽ and use
it as a value function for greedy policy execution in 10× 20
Tetris, exploiting the relational generalization our represen-
tation enables. The four 10, 000-games averages that re-
sulted were 130, 280, 343, and 573. The four 10, 000-
games averages for the learn-from-smaller-problems ap-
proach were 557, 390, 135, and 235. For comparison, the
best RRL result reported in (Driessens, Ramon, & Gärtner
2006) was around 55. Both of our approaches produce per-
formance far superior to the policy learned by RRL, even
though RRL is using human-engineered Tetris-specific fea-
tures well beyond those in the primitive domain description.

Our performance in 10 × 20 Tetris is still far worse
than that obtained by using the best-known human-selected
features with AVI or temporal difference (TD) learning to
train weights or that obtained by any good human Tetris
player. Our feature learner has still not fully replaced the
value of human engineering in selecting features in this do-
main, though it does produce the best machine-learned pol-
icy known to date that is found without exploiting such hu-
man engineering of the feature set.

Planning Domains: Overview and Setup We evaluate
our method on a range of domains from the first and the sec-
ond international probabilistic planning competitions (IP-
PCs). We have restricted consideration to domains that were
provided in the competitions with problem generators, rather
than simply with a single instance, as our planner requires a
problem generator.

We show results on the goal-oriented (“non-reward”) ver-
sion of blocksworld and boxworld from the first IPPC, as
well as tireworld from the second IPPC. We find that our
planner learns good policies in these domains, and shows
superior or equal performance in success ratio in most of
the problem instances compared to state-of-the-art proba-
bilistic planners FF-Replan (Yoon, Fern, & Givan 2007) and
FOALP (Sanner & Boutilier 2006). In addition, we show
results on zenotravel and exploding blocksworld from the
second IPPC; we compare the result on zenotravel to only
FF-Replan, since FOALP has not demonstrated success on
this domain.

We have also tried our planner in Towers of Hanoi (TOH)
from the first IPPC. Our learner fails to obtain a good policy
that is able to generalize on this domain. In TOH, our learner
is able to achieve success ratio 0.71 and 0.74 over 600 at-
tempts for 3 disc problems for two trials during learning, but
the success ratio drops to zero for 4 disc problems. TOH has
a recursive-policy solution structure that our value-function
feature language is not able to describe. FOALP has also not
demonstrated success on this domain. FF-Replan achieves a
0.37 SR over 30 attempts for the 5 disc problem from the
first IPPC.

We take a “learning from small problems” approach and
run our method in small problems until it performs well,
increasing problem size whenever performance measures
(success rate and average plan length for randomly gener-
ated problems of the current size) exceed thresholds that we
provide as domain parameters. Learning initially in small

Trial #1
of features 0 1 2 3 3 4 4
of blocks 3 3 3 3 4 4 5
Success ratio 1 1 1 1 0.94 1 1
Plan length 83 51 52 20 117 17 35
20 blocks SR 0 0 0 0 0 0.98 0.98
20 blocks length – – – – – 753 744
of features 4 4 4 5 4 5 5
of blocks 10 15 17 17 18 18 18
Success ratio 1 0.97 0.90 0.90 0.86 0.83 0.86
Plan length 166 385 473 471 490 497 505
20 blocks SR 0.99 0.98 0.98 1.00 0.98 0.99 0.98
20 blocks length 752 765 768 790 805 773 738

Trial #2
of features 0 1 2 3 3 4 4
of blocks 3 3 3 3 4 4 5
Success ratio 1 1 1 1 0.94 1 1
Plan length 90 54 53 18 124 18 34
20 blocks SR 0 0 0 0 0 0.98 0.99
20 blocks length – – – – – 742 749
of features 4 4 4 5 6 7
of blocks 10 15 18 18 18 18
Success ratio 1.00 0.97 0.85 0.84 0.87 0.88
Plan length 179 388 502 522 525 500
20 blocks SR 0.98 0.99 0.98 0.98 0.98 0.99
20 blocks length 764 751 743 786 757 743

Figure 2: Blocksworld performance (averaged over 600 problems).
We add one feature per column until SR > 0.9 and average suc-
cessful plan length is less than 40(n−2), for n blocks. Plan lengths
shown are successful trials only. We omit columns where problem
size repeatedly increases with no feature learning, for space rea-
sons and ease of reading. 20 blocks SR uses a longer length cutoff
as discussed in the text.

problems (Martin & Geffner 2000; Yoon, Fern, & Givan
2002) is more effective due to the smaller state space and
the ability to obtain positive feedback (i.e., reach the goal)
in a smaller number of steps. We find that once a good value
function is learned in a small problem, it tends to generalize
well enough to large problems to enable additional learning
directly in large problems.

In modeling a given planning instance as an MDP, the
only relevant feedback to the agent is the non-zero reward
when a goal is reached (a reward of 1 is received and a zero-
reward absorbing state is entered), or when the agent has
no legal action (a reward of -1 is received before a zero-
reward absorbing state). The standard PPDDL (Younes et
al. 2005) domain descriptions for these domains provide the
state predicates P needed for our representation.

We have added several mechanisms that empirically ap-
pear to help guide AVI to good value functions. Features
with weights very close to zero are dropped after AVI. AVI
can sometimes severely degrade policy performance and get
lost, never restoring it. For this reason, we monitor the per-
formance of the greedy policy as weights are adjusted. If this
performance degrades and does not improve we restore the
last good weights and lock the magnitude and/or the sign
of one or more weights to prevent the weight change that
caused the degradation.

We draw feature-learning training sets by generating

Trial #1
of features 0 1 2 2 2 2 2 2 2
of boxes, 5 cities 1 1 1 2 3 5 10 15 17
Success ratio 0.97 1 1 1 1 1 1 1 1
Plan length 241 82 24 36 43 57 77 92 97
(15 BX,5 CI) SR 0.98 1 1 1 1 1 1 1 1
(15 BX,5 CI) len. 1078 359 91 91 90 92 90 90 92
(10 BX,10 CI) SR 0.23 0.88 0.96 0.97 0.96 0.97 0.97 0.97 0.98
(10 BX,10 CI) len. 1636 1031 242 244 244 239 237 233 228

Trial #2
of features 0 1 2 2 2 2 2 2 2
of boxes, 5 cities 1 1 1 2 3 5 10 15 17
Success ratio 0.97 1 1 1 1 1 1 1 1
Plan length 229 82 25 35 43 55 76 91 97
(15 BX,5 CI) SR 0.98 1 1 1 1 1 1 1 1
(15 BX,5 CI) len. 1086 362 91 92 91 92 91 90 91
(10 BX,10 CI) SR 0.22 0.91 0.97 0.97 0.98 0.97 0.97 0.96 0.97
(10 BX,10 CI) len. 1657 1020 239 237 234 233 236 239 235

Figure 3: Boxworld performance (averaged over 600 problems).
We add one feature per column until SR > 0.9 and average suc-
cessful plan length is less than 30n, for n boxes. Plan lengths
shown are successful trials only. We omit columns where problem
size repeatedly increases with no feature learning, for space rea-
sons and ease of reading.

20, 000 states (5000 in zenotravel) via trajectories of up to
1000 steps drawn using Greedy(Ṽ) on random problems of
the current size and removing duplicate states. Training sets
for AVI are drawn using 30 trajectories of up to 1000 steps
(fewer if a goal is reached), and AVI is allowed to run at most
1000 iterations, stopping if converged. The learning rate α
is 4

1+k/100 , where k is the number of AVI iterations already
executed. Random exploration is introduced from the 6th to
100th iterations of AVI—action selection by Greedy(Ṽ) has
a chance of being replaced by a uniformly randomly selected
one, with the probability being set at 10% and decreases
when problem size increases without introducing new fea-
tures. We use a discount factor γ of 1/(1 + (0.1/(n))),
where n is the total number of objects (including constants)
in a problem. The single initial feature is 0.5. As feature-
learning continues, the problem size increases, and we show
success ratio and plan length on random problems of that
size. We also show these measurements for random prob-
lems of a selected large problem size to show how general-
ization to that size is developing.

The results for two complete trials are shown in Figs. 2
thru 6. To interpret these tables, focus first on the two rows
labeled “# of features” and “# of blocks” (or other prob-
lem size indicator for other domains). These rows show
the progress of the trial. Each column in the figures rep-
resents the result in the indicated problem size using the in-
dicated number of learned features. When success ratio (SR)
and plan length meet the preset quality thresholds, the prob-
lem size will increase. Otherwise, a new feature is added
and the number of features will increase. As the trial pro-
gresses, SR generally increases with number of features but
decreases with problem size. In some tables, each trial wraps
around to a second set of rows with the same labels. Over-
all progress on a fixed large problem size can be tracked in

Trial #1
of features 0 1 2 2 3 3 3 3 3 3 3
of nodes 4 4 4 5 5 6 10 20 30 40 50
Success ratio .52 .78 .87 .80 .9 .89 .87 .87 .9 .90 .93
Plan length 4 3 3 4 3 3 3 5 6 7 7
30 nodes SR .14 .53 .80 .80 .91 .88 .91 .89 .91 .91 .90
30 nodes len. 7 4 9 9 6 6 6 6 6 6 6

Trial #2
of features 0 1 2 2 3 3 3 3 3 3 3
of nodes 4 4 4 6 6 7 10 20 30 40 50
Success ratio .53 .80 .86 .84 .90 .90 .88 .87 .90 .90 .91
Plan length 4 3 3 3 3 3 3 5 5 7 7
30 nodes SR .14 .51 .78 .80 .88 .90 .91 .88 .91 .91 .89
30 nodes len. 7 4 9 9 6 6 6 5 6 6 5

Figure 4: Tireworld performance (averaged over 600 problems).
We add one feature per column until SR > 0.85 and average suc-
cessful plan length is less than 4n, for n nodes. Plan lengths shown
are successful trials only. We omit columns where problem size re-
peatedly increases with no feature learning, for space reasons and
ease of reading.

the row with a large problem size label5. A low plan-length
cutoff is used for the SR evaluations during learning in or-
der to speed learning. A longer plan-length cutoff of 2100
steps is used for the comparison to other planners below in
Fig. 8 and in the large problem measurements shown during
learning.

Blocksworld results are shown in Fig. 2. Our learner con-
sistently finds value functions with perfect or near-perfect
success ratio up to 16 blocks. This performance compares
very favorably to the recent RRL (Driessens, Ramon, &
Gärtner 2006) results in the blocks world, where goals are
severely restricted in a deterministic environment, for in-
stance to single ON atoms, and the success ratio perfor-
mance of around 0.9 for three to ten blocks (for the single
ON goal) is still lower than that achieved here. Our results
in blocksworld show the average plan length is far from
optimal—we believe this is due to plateaus in the learned
value function, statespace regions where all the selected fea-
tures do not vary. Future work is planned to identify and
address such plateaus explicitly in the algorithm.

The evaluation on 20 block problems shows that a good
set of features/weights that is found in small problem size
can be generalized to form a good greedy policy in far larger
problem size without the need of further training, an asset
of using relational learning structure here. In boxworld and
tireworld experiments we have similar observations, show-
ing that such ability to generalize is not limited to a single
domain.

Boxworld results are shown in Fig. 3. Only 2 features
are required to have good performance in problems we
have tested. The features learned in boxworld appear to be
straightforward and can be easily interpreted in English. The
first feature counts how many boxes are correctly at their tar-
get city. The second feature counts how many boxes are on

5For domains with multi-dimensional problem sizes, it remains
an open research problem on how to change problem size in differ-
ent dimensions automatically during learning. Here in boxworld
and zenotravel, we hand-design how the problem size is changed.

Trial #1
of features 0 1 2 3 4 4 5
of CI,PR,AT 3,1,1 3,1,1 3,1,1 3,1,1 3,1,1 3,2,2 3,2,2
Success ratio 0.78 0.80 0.87 0.86 0.98 0.68 0.59
Plan length 252 231 261 248 187 328 241
(10,2,2) SR 0.06 0.10 0.16 0.26 0.61 0.59 0.40
(10,2,2) len. 765 1204 1123 1304 1175 1113 867
of features 6 6 7 8 9 10
of CI,PR,AT 3,2,2 4,2,2 4,2,2 4,2,2 4,2,2 4,2,2
Success ratio 0.92 0.60 0.45 0.49 0.48 0.61
Plan length 246 247 218 226 209 266
(10,2,2) SR 0.87 0.60 0.31 0.33 0.44 0.59
(10,2,2) len. 762 644 852 750 638 651

Trial #2
of features 0 1 2 3 4 4 5 6
of CI,PR,AT 3,1,1 3,1,1 3,1,1 3,1,1 3,1,1 3,2,2 3,2,2 3,2,2
Success ratio 0.81 0.79 0.87 0.85 0.98 0.68 0.86 0.97
Plan length 248 288 249 253 174 312 362 258
(10,2,2) SR 0.03 0.10 0.13 0.25 0.65 0.58 0.76 0.96
(10,2,2) len. 760 1169 1129 1237 1193 1164 1085 812
of features 6 6 6 7 8 8 8
of CI,PR,AT 4,2,2 5,2,2 6,2,2 6,2,2 6,2,2 7,2,2 8,2,2
Success ratio 0.94 0.92 0.88 0.87 0.90 0.92 0.87
Plan length 324 395 432 432 417 439 473
(10,2,2) SR 0.98 0.98 0.98 0.97 0.98 0.96 0.97
(10,2,2) len. 758 752 765 772 736 659 672

Figure 5: Zenotravel performance (averaged over 600 problems).
The problem sizes shown in this table correspond to varying num-
ber of cities, people, and aircraft. We add one feature per column
until SR > 0.9. Plan lengths shown are successful trials only. (10
cities, 2 people, 2 aircraft) SR uses a longer length cutoff as dis-
cussed in the text.

trucks.
Tireworld results are shown in Fig. 4. In tireworld, our

learner is able to find features that generalize well to large
problems. Only 3 learned features achieve a success ratio
of around 0.9 in 30 node problems. Our learner is unable to
achieve a SR on 30 node problems higher than about 0.9; this
limitation also applies to both comparison planners, FOALP
and FF-Replan. We note that the plan length results can be
misleading in this domain because the goal of minimizing
plan length is directly opposed to maximizing SR.

Zenotravel results are shown in Fig. 5. Our learner is able
to find features that improve the performance of the planner,
but only in one trial the results are well enough to expand be-
yond 4 cities. The learned policies in the second trial gener-
alize well to larger problems; on the other hand, the learned
policies in the first trial generalize well to larger problems
at one point, but are not able to maintain such performance.
Improving performance in this domain is an interesting re-
search challenge.

Exploding blocksworld results are shown in Fig. 6.
Again, here, minimizing plan length is opposed to maximiz-
ing SR. Our planner is critically affected by a domain-design
choice in which the goal state is described as tower frag-
ments, where fragments are not generally required to be on
the table. Our feature language is limited in its ability to de-
scribe the properties of a good state relative to this goal. We
are considering several general-purpose extensions to our

Trial #1
of features 0 1 2 3 4 5 5 6 7 8 9 10
of blocks 3 3 3 3 3 3 4 4 4 4 4 4
Success ratio .57 .56 .56 .62 .59 .73 .42 .41 .47 .41 .45 .44
Plan length 2 2 1 2 1 2 4 4 4 4 4 5
5 blocks SR .13 .13 .12 .22 .16 .33 .33 .32 .34 .33 .32 .28
5 blocks len. 4 4 4 5 3 6 6 6 6 6 6 5

Trial #2
of features 0 1 2 3 4 5 5 6 7 8 9 10
of blocks 3 3 3 3 3 3 4 4 4 4 4 4
Success ratio .56 .55 .52 .63 .57 .74 .43 .44 .41 .38 .42 .39
Plan length 2 1 2 2 1 2 5 5 4 4 4 4
5 blocks SR .11 .12 .16 .24 .19 .33 .35 .30 .32 .37 .33 .28
5 blocks len. 4 5 4 5 4 5 5 5 6 5 6 5

Figure 6: Exploding blocksworld performance (averaged over 600
problems). We add one feature per column until SR > 0.72. Plan
lengths shown are successful trials only.

BW (15,5)Box (10,10)Box Tire Zeno EX-BW
SR 0 0.99 0.47 0.31 0.01 0.18
Length – 771 1455 6 0 4

Figure 7: Random features performance averaged over three trials.

KR inspired by the shortcoming as future research. As a
result, our planner’s performance in this difficult domain is
weaker than in other domains, but still exhibits useful adap-
tation to the domain and generalization to larger problems.

In order to show that our performance is not simply due to
the number of features, but to the feature-selection criterion,
we generate three greedy policies in each domain using ten
random features, alternating AVI training and feature gen-
eration as before, and evaluate the average large-problem
performance in each domain using the large problem sizes
shown for each domain above. The results are shown in Fig-
ure 7. In no domain does random feature generation on av-
erage approach the performance our technique shows.

Comparison to FF-Replan and FOALP We compare
the performance of our learned policies to FF-Replan and
FOALP in blocksworld, boxworld, tireworld, zenotravel,
and exploding blocks, in multiple problem sizes. We use the
problem generators provided by the planning competitions
to generate 30 problems for each tested problem size, and
evaluate the performance of each planner 30 times for each
problem. We report the results in Fig. 8, where we show
the success ratio of each planner in each problem size (av-
eraged over a total of 900 attempts). Our policies, learned
from two independent trials, are indicated as RFAVI #1 and
RFAVI #2. Each planner has 30 minutes time limit for each
attempt, but this time limit is only significant for FF-Replan
in blocksworld.

In blocksworld, our planner has higher success ratio than
both FF-Replan and FOALP. Although the successful plan
length tends to be longer comparing to these two planners,
our planner is able to find the goal more often. The longer
plan length may be due to plateaus as discussed above. FF-
Replan fails to scale above 20 blocks. Our improved scal-
ing is likely due to our first-order value function represen-
tation as compared to FF-Replan’s propositional representa-

15 blocks BW 20 blocks BW 25 blocks BW 30 blocks BW 20 nodes Tire 30 nodes Tire 40 nodes Tire
RFAVI #1 1 (474) 1 (578) 0.86 (1096) 0.77 (1242) 0.87 (4) 0.83 (7) 0.97 (6)
RFAVI #2 1.00 (477) 1.00 (585) 0.87 (1114) 0.78 (1250) 0.85 (5) 0.86 (7) 0.97 (6)
FF-Replan 0.93 (52) 0.91 (71) 0.7 (96) 0.23 (117) 0.79 (2) 0.71 (3) 0.84 (3)
FOALP 1 (56) 0.73 (73) 0.2 (96) 0.07 (119) 0.92 (4) 0.90 (5) 0.91 (5)

(10BX,5CI)Box (10BX,10CI)Box (10BX,15CI)Box (15BX,5CI)Box (10CI,2PR,2AT)Zeno 5 blocks EX-BW
RFAVI #1 1 (73) 0.97 (225) 0.93 (452) 1 (91) 0.87 (803) 0.23 (8)
RFAVI #2 1 (75) 0.97 (221) 0.93 (455) 1 (90) 0.95 (855) 0.20 (10)
FF-Replan 1 (71) 0.98 (245) 0.94 (487) 1 (88) 1 (101) 0.90 (7)
FOALP 1 (35) 0.70 (257) 0.28 (395) 0.99 (56) N/A N/A

Figure 8: Comparison of our planner (RFAVI) against FF-Replan and FOALP. Success ratio for a total of 900 attempts for each problem size
is reported, followed by the average successful plan length in parentheses. The two rows for RFAVI map to two learning trials shown in the
paper.

tion. FOALP has good performance for 15-blocks problems,
but the success ratio drops fast when the number of blocks
increases. Although FOALP uses first-order structure in fea-
ture representation, the learned features are aimed at satisfy-
ing goal predicates individually, not as a whole. We believe
that the goal-decomposition technique works well in small
problems but does not scale well to large problems.

In boxworld, our planner performs similarly to FF-
Replan overall, and FOALP again shows a weaker perfor-
mance. Boxworld is similar to the deterministic logistics,
where FF is provably polynomial and very fast and effective.
Interestingly our planner is able to find the goal as often by
using only two learned features.

In tireworld, both first-order approaches perform well,
outpacing the propositional FF-Replan.

In zenotravel, FF-Replan has a perfect SR as its deter-
minizing technique leads it (somewhat coincidentally) to the
optimal policy. FOALP, in contrast, cannot yet plan in this
domain. Our results approach but do not equal those of FF-
Replan, and are state-of-the-art for first-order approaches.
The results shown are for ten cities, two people, and two air-
craft. Our planner does not scale much beyond that size, and
FF-Replan does.

Our planner does not perform as well as FF-Replan on
the exploding blocksworld, for reasons discussed above.
FOALP has not yet been able to learn a policy directly in
the exploding blocks domain, so we do not compare our re-
sult to FOALP in that domain.

Overall, in blocksworld, boxworld, and tireworld, our
planner has better performance than FOALP and FF-Replan
in two out of three domains each, and performs similarly
or closely for all problem sizes in the third domain. Our
learner shows state-of-the-art performance in these domains,
but various research problems remain as discussed in this pa-
per.

Because FF-Replan uses a very different approach, deter-
minizing the problem rather than working with probabilities,
it can be expected to perform incomparably to our approach
at this stage, as it does. We dominate FF-Replan across sev-
eral domains, but the reverse holds in zenotravel, exploding
blocksworld, and TOH at this time. It is an important topic
for future research to try to combine the benefits obtained by
these very different planners across all domains.

In these comparisons, it should also be noted that FOALP

does not read PPDDL domain descriptions directly, but re-
quires human-written domain axioms for its learning, unlike
our completely automatic technique (requiring only a few
numeric parameters characterizing the domain).

References
Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic Pro-
gramming. Athena Scientific.
Driessens, K., and Džeroski, S. 2002. Integrating experimentation
and guidance in relational reinforcement learning. In ICML.
Driessens, K.; Ramon, J.; and Gärtner, T. 2006. Graph kernels
and gaussian processes for relational reinforcement learning. MLJ
64:91–119.
Džeroski, S.; DeRaedt, L.; and Driessens, K. 2001. Relational
reinforcement learning. MLJ 43:7–52.
Gretton, C., and Thiébaux, S. 2004. Exploiting first-order regres-
sion in inductive policy selection. In UAI.
Martin, M., and Geffner, H. 2000. Learning generalized policies
in planning domains using concept languages. In KRR.
Patrascu, R.; Poupart, P.; Schuurmans, D.; Boutilier, C.; and
Guestrin, C. 2002. Greedy linear value-approximation for fac-
tored markov decision processes. In AAAI.
Sanner, S., and Boutilier, C. 2006. Practical linear value-
approximation techniques for first-order mdps. In UAI.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learning.
MIT Press.
Sutton, R. S. 1988. Learning to predict by the methods of tempo-
ral differences. MLJ 3:9–44.
Tesauro, G. 1995. Temporal difference learning and td-gammon.
Comm. ACM 38(3):58–68.
Widrow, B., and Hoff, Jr, M. E. 1960. Adaptive switching circuits.
IRE WESCON Convention Record 96–104.
Williams, R. J., and Baird, L. C. 1993. Tight performance bounds
on greedy policies based on imperfect value functions. Technical
report, Northeastern University.
Wu, J., and Givan, R. 2005. Feature-discovering approximate
value iteration methods. In SARA.
Yoon, S.; Fern, A.; and Givan, R. 2002. Inductive policy selection
for first-order MDPs. In UAI.
Yoon, S.; Fern, A.; and Givan, R. 2007. FF-Replan: A baseline
for probabilistic planning. In ICAPS.
Younes, H.; Littman, M.; Weissman, D.; and Asmuth, J. 2005.
The first probabilistic track of the international planning compe-
tition. JAIR 24:851–887.

