
Model Minimization, Regression, andPropositional STRIPS PlanningRobert Givan and Thomas DeanDepartment of Computer ScienceBrown University, Box 1910, Providence, RI 02912frlg,tldg@cs.brown.edu, http://www.cs.brown.edu/people/AbstractPropositional STRIPS planning problems canbe viewed as �nite state automata (FSAs) rep-resented in a factored form. Automaton min-imization is a well-known technique for reduc-ing the size of an explicit FSA. Recent workin computer-aided veri�cation on model check-ing has extended this technique to provideautomaton minimization algorithms for fac-tored FSAs. In this paper, we consider therelationship between STRIPS problem-solvingtechniques such as regression and the recentlydeveloped automaton minimization techniquesfor factored FSAs. We show that regressioncomputes a partial and approximate minimizedform of the FSA corresponding to the STRIPSproblem. We then de�ne a systematic form ofregression which computes a partial but exactminimized form of the associated FSA. We alsorelate minimization to methods for perform-ing reachability analysis to detect irrelevant u-ents. Finally, we show that exact computationof the minimized automaton is NP-completeunder the assumption that this automaton ispolynomial in size.1 IntroductionIn this paper, classical planning refers to the proposi-tional variant of STRIPS planning [Fikes and Nilsson,1971]. Classical planning is based on a factored represen-tation for describing planning domains in terms of rulesthat specify how the dynamic features of the domain(called uents) change over time. Classical planningproblems can be viewed as �nite state automata wherestates correspond to assignments to uents, the rulescompactly encode the state-transition function, and thetask is to determine if it is possible to reach some statesatisfying the goal from the initial state.There are well-known algorithms for reducing the sizeof explicitly represented FSAs by collapsing groups ofstates that are bisimulation equivalent, i.e., states thatbehave the same1 under every action sequence [Hopcroft,1Two states behave the same under an action sequence

1971; Paige, 1987]. These automaton minimization algo-rithms rely, however, on the explicit representation of theFSA being minimized. Recent work on model checkingin the computer-aided veri�cation community [Burch etal., 1994] has explored the problem of automaton mini-mization for FSAs represented in factored forms.Given a classical planning problem, FSA minimiza-tion techniques compute a (possibly) smaller FSA thatcaptures all the essential information in the problem for-mulation; we call this FSA the minimal model for theplanning problem. The states of the original FSA arepartitioned into blocks which constitute the (aggregate)states of the minimalmodel. This paper explores the rel-evance for classical planning of the recent model checkingwork on automaton minimization for factored FSAs.FSA minimization is in general much more aggressivethan classical planning solution techniques. In minimiza-tion, states are grouped together based on identical be-havior under all sequences of actions. In contrast, inclassical planning solution techniques, we are interestedprimarily in the goal connectivity and distance to thegoal of di�erent states, and are not generally interestedin di�erentiating states based on other variations in be-havior (e.g., two states that di�er only on the basis ofaction sequences that don't involve goal states may beequivalent for the purpose of planning).Nevertheless, the algorithms for minimizing a factoredFSA bear a signi�cant resemblance to the classical plan-ning technique of goal regression.2 The basic step in eachalgorithm is to �nd the preimage of a set of states underan action|that is, those states that can reach the givenset in one step under the given action. This similarity isthe basis for our comparisons.To assist in our comparisons, we de�ne the new con-cepts of partial and approximate minimization. A par-tial minimization of an FSA is a partition of the statesof the FSA which is strictly coarser than the minimalpartition|that is, a partition that can be re�ned intothe minimized FSA partition. An approximate partialminimization is a partial minization except that in placeif they both reach accept states or both reach reject statesunder the sequence.2Goal regression is just backward chaining search from agoal (or subgoal) representing a set of states.



of the partition of the state space there is a set of pos-sibly overlapping sets which cover the state space. Re-gression computes an approximate partial minimizationof the planning problem. We also de�ne a systematic re-gression which computes an exact partial minimizationof the planning problem.Both partial and approximate partial minimizationscompute partitions that are less re�ned than the trueminimal partition. The approximate partial partitioncomputed by regression makes only those distinctionsneeded in determining whether the searched action se-quences can solve the planning problem. We say thatsuch partitions \capture solvability" for the action se-quences considered|a concept we formalize later on.We also discuss variations of minimization that computepartitions which are more re�ned than the true minimalpartition. These variations can be useful when the re-sulting partition is easier to compute than the minimalpartition, since any computation on the resulting FSAstill mimics the original FSA (the drawback being thatthe size reduction achieved by the minimization may bemuch smaller than that produced by true minimization).We show how a simple reachability analysis to determinewhich uents are irrelevant can also be viewed as an vari-ant of minimization.Finally, it is of interest to consider the class of clas-sical planning problems for which the minimized modelis polynomial in the size of the input. In general, theproblem of �nding a solution to a STRIPS planningproblem is PSPACE-complete [Bylander, 1994]. How-ever, the class of solvable STRIPS planning instanceswith polynomial-sized models is in NP, as one can sim-ply guess the polynomial-sized model. We have shownthat �nding the minimal model is NP-complete underthe assumption that it is polynomial in the size of theoriginal STRIPS description.2 Classical PlanningA classical planning problem is a tuple hX ;A; q0;Giwhere X is a set of uents (which for simplicity in exposi-tion we assume to be boolean state variables), A is a setof actions, q0 is a boolean formula representing the ini-tial state, and G is a boolean formula representing the setof goal states. If there are m uents, then there are 2mstates corresponding to the set of all possible assignmentsto the m uents. We represent individual states and setsof states using boolean formulas, e.g., if X = fA;B;Cg,then, depending on the context, A ^ B ^ C representsthe state in which A, B, and C are assigned true or theset consisting of the same state.Each action � de�nes a mapping f� from states tostates and is represented as a set of rules of the form# ! ' where the precondition # and the postcondition' are conjunctions of negated and unnegated uents.The preconditions in an action's set of rules must bemutually exclusive, and variables not determined by therules remain unchanged. For example, if X = fA;B;Cgand � = fA ^ :B ! B ^ C;A ^B ! :Cg, then f�(A^
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α2Figure 1: Model for the case in which there are threeuents X = fA;B;Cg and four actions: �1 = f:B !Bg, �2 = fB ! Ag, �3 = f:A ^B ^C ! :Cg, and�4 = f:A ^B ^:C ! Cg.:B^C) = (A^B^C), f�(A^B^C) = (A^B^:C), andf�(:A^B^C) = (:A^B^C). In the remainder of thispaper, we restrict our attention to actions represented bya single rule, but our methods apply to the more generalcase3. We de�ne the preimage f�1� (S) of � with respectto a set of states S asf�1� (S) = fqjf�(q) 2 SgFor simplicity here, we consider only the problem of �nd-ing any path from the initial state to the goal block. Sim-ilar issues exist when considering the problem of �ndingthe shortest such path. We consider a planning problemsolvable if there exists a path q0; �1; q1; : : : ; �n; qn suchthat f�i(qi�1) = qi for each i, and the goal formula G istrue of qn.If # and ' are a boolean expressions representing setsof states (possibly the same set) and # = f�1� ('), then# is said to be a regression of ' with respect to �, and# is said to be a subgoal of '. Since two di�erent for-mulas can represent the same set, there may be morethan one regression for given goal and action. We notethat for �1 6= �2 the sets corresponding to f�1�1 (') andf�1�2 (') could be equal, disjoint, or di�erent but over-lapping. In the following, regression step refers to com-puting the regression of some formula with respect tosome action, and regression search refers to any searchalgorithm that proceeds by performing regression stepson previously computed regression formulas. The termregression graph refers to the graph with nodes corre-sponding to regression formulas and arcs to the regres-sion steps (and their associated actions) produced by re-gression search; we refer to the set of root to leaf pathsin this graph as the set of action sequences considered byregression search.3 Factored Automaton MinimizationIn this paper, a state-transition diagram is a graph inwhich the nodes are sets of states, the arcs are directed,and each arc is labeled with an action. For any given3Simple regression for the more general case requires themanipulation of general boolean formulas, and thus the sys-tematic regression we introduce later may compare more fa-vorably to simple regression when the actions are complex inthis way.



node and action label, there can be only one arc fromthat node with that action label. Note that such a di-agram describes a deterministic �nite state automaton.We use the term \model" for a state transition diagramthat captures the dynamics of a planning problem:De�nition 1 We say that a state-transition diagram isa model for a classical planning problem if1. the nodes form a partition of the planning statespace, and2. for any state q, node v1 containing q, node v2, andaction �,(a) f�(q) is in v2 if there is an arc from v1 to v2labelled �, and(b) f�(q) is in v2 only if there is an arc from v1 tov2 labelled �.If conditions 1 and 2(a) hold without condition 2(b) wesay that the diagram is a partial model. If condition1 is additionally relaxed to merely require the nodes tocover the state space (but perhaps overlap), we say thatthe diagram is an approximate partial model (sometimesabbreviated \approximate model").Note that there can be more than one model for a givenplanning problem, corresponding to di�erent partitionsof the domain, though in general most partitions can-not be used to de�ne a model. Every model of a prob-lem contains all the information in the original problem:models smaller than the original problem can be viewedas compact forms of the original problem. It is a theoremthat for every problem there exists a minimal model|amodel with a partition P such that every other modeluses a re�nement of P . Figure 1 depicts the model fora particular planning instance with a degenerate parti-tion consisting of singleton blocks, and Figure 2(a) showsthe minimal model for the same problem. Reachabilityqueries on the minimal model have the same answers asthose on the original model.We note that every model is associated with a par-tition of the state space|that partition formed by thenodes of the model. Similarly, any partition induces atmost one model (some partitions cannot be used to formmodels). We will be somewhat free in referring to modelsas partitions. We also use a particular partial order onpartitions (and hence on models): we say that a parti-tion P1 is coarser than a partition P2 if P1 can be re�nedinto P2|and we say that P2 is �ner than P1.A partial model is a diagram in which every arc is \cor-rect" (i.e., corresponds correctly to the planning prob-lem) but may have missing arcs as well as blocks whichneed to be re�ned. We call a partial model generic for aplanning problem if it is coarser than the minimalmodelfor that problem, so that further re�nement could gen-erate the full minimal model. The minimization pro-cess described below computes a series of generic partialmodels leading eventually to the minimal model. Anapproximate partial model is additionally allowed to beundecided about which block certain states will fall into(by having blocks overlap). An approximate model can

always be converted into a partial model by disambiguat-ing the overlaps|i.e., shrinking blocks until they aredisjoint. If an approximate model can be so convertedinto a generic partial model, we also call the approximatemodel generic.The Model Minimization Algorithm. Let B andC be blocks of partition P and let � be any action. Wede�ne the SPLIT operation as followsSPLIT(B;C; P; �) = P 0where P 0 is P with C replaced by4 C 0 and C00 de�nedby C0 = C \ f�1� (B) and C00 = C � C0Lee and Yannakakis [1992] describe a model minimiza-tion algorithm which uses the SPLIT operation to com-pute the minimal model for an FSA in factored form. Inits application to planning, the algorithm begins with aninitial partition P0 consisting of two blocks, those statesthat satisfy the goal and those that don't. The algorithmthen repeatedly chooses some B, C, and � and computesa re�ned partition Pi+1 = SPLIT(B;C; Pi; �). When noadditional re�nement is possible, the resulting partitioninduces the minimal model of the problem. This algo-rithm calls SPLIT polynomially many times in the size(number of blocks) of the �nal partition. If we want tocompute the most compact representation of each blockin the partitition, then SPLIT is NP-hard.Several variations on model minimization are rele-vant for this work. First, Lee and Yannakakis de-scribe a variant we will call reachable model minimiza-tion which computes a model that is minimal for thestates reachable from the initial state, but arbitraryfor other states|space precludes making this notionmore formal here. Second, it is possible to replace theSPLIT operation with operations that do more split-ting than SPLIT5. We call a block-splitting operationSPLIT0(B;C; P; �) adequate if it produces a partitionof C that re�nes SPLIT(B;C; P; �). Performing modelminimization with an adequate splitting operation pro-duces a (possibly reduced) model which is not necessarilyminimal. Figure 2(b) shows a reduced model generatedusing an adequate but nonoptimal splitting operation,FSPLIT, which we de�ne later.Complexity of Minimization. There are planningproblems for which the shortest solution is exponentiallylong in the length of the problem description [Bylander,1994]. This fact directly implies that there are problemswith exponentially large minimal models, and thereforethat minimization must take at least exponential time.However, one might hope that in those cases where theminimal model is \small", minimization could �nd itquickly. Unfortunately, by a reduction from SAT, weare able to show that even when the minimal model ispolynomial in size, minimization is NP-hard.4If either C 0 or C 00 is empty, then SPLIT(B;C;P;�) = P .5Such operations may be more e�cient, as we discuss be-low, which is why we would do this.
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α2Figure 2: Reduced models for case in which the goal isA: (a) minimal model for a general representation and(b) minimal model for uentwise representation.Theorem 1 Given a bound and a planning problemwhose minimal model is polynomial in size, the problemof determining whether there exists a model of size nomore than the bound is NP-complete.4 RegressionIn this section, we argue that classical regression com-putes an approximate partial model of the planningproblem. But regression doesn't compute just any par-tial model|it computes a partial model capturing cer-tain useful information6. We say that a partial modelcaptures solvability for an action sequence if every paththat achieves the goal with that action sequence is rep-resented in the model:De�nition 2 A partial model captures solvability foraction sequence �1 � � ��k if every path q1�1 � � ��k�1qksuch that qk achieves the goal has a corresponding pathv1�1 � � ��k�1vk in the model such that each qi is in blockvi.We say that an approximate partial model captures solv-ability for an action sequence if it can be disambiguatedinto a partial model which does. We also refer to cap-turing solvability for a set of action sequences, meaningcapturing solvability for each sequence in the set.The key to understanding regression as minimizationlies in thinking of the subgoals generated by regression asrepresenting sets of states (those states that satisfy thesubgoal). Each such set of states shares a simple prop-erty: it is the set of all states which can reach the goalunder a particular action sequence (the reverse of thesequence of actions under which the goal was regressedto get that subgoal). A regression search tries di�erentaction sequences, for each one generating a subgoal cor-responding to the set of states which achieve the goalunder that sequence. Each new subgoal/set of statesis generated by a regression step from a previous sub-goal/set of states. If a subgoal is ever true of the initialstate, then the search terminates.Note that di�erent subgoals could be true of the samesingle state|i.e., the sets of states described could over-6Every planning problem admits the trivial partial modelbuilt from the trivial partition into singleton sets with noarcs, as well as the trivial partial model built from thegoal/non-goal partition, again with no arcs.

lap. The sets of states corresponding to the subgoals canbe viewed as nodes in an approximate partial model,where the regression steps which generated the statescorrespond to arcs in the model. Because the subgoalsmay overlap, the partial model is approximate, but eachregression step locally preserves the fact that the dia-gram being constructed is a generic partial model whichcaptures solvability for the action sequences which havebeen regressed. The following theorem can be proven byinduction on the number of regression steps taken.Theorem 2 At any point, the regression graph is ageneric approximate partial model which captures solv-ability for the action sequences considered by the regres-sion search to that point.The model minimization algorithm described in theprevious section also takes simple local steps (analogousto regression steps) using the SPLIT operation to con-struct sets of states which behave uniformly under se-lected action sequences. At the completion of minimiza-tion, the blocks of the resulting partition correspond tosets of states which behave the same under all actionsequences. But along the way, the partition constructedat each step forms a partial model in which states in thesame block behave the same only for selected action se-quences. Just as regression search involves a search strat-egy to select which regression to do next, model mini-mizationmust also select which SPLIT step to do next|in each case extending the set of action sequences whichhave been explored. Minimization strategies which al-ways split the block containing the initial state corre-spond closely to regression strategies.7The central distinction between simple regression andminimization is that minimization constructs a series ofgeneric partial models whereas regression constructs aseries of generic approximate partial models. The regres-sion subgoals may overlap considerably, whereas mini-mization at all times maintains a partition. For someproblems, this di�erence illuminates a potential ine�-ciency in regression|the same state can be \regressed"many times under the aegis of di�erent but overlappingsubgoals. We introduce a variant of regression which wecall systematic regression to eliminate this di�erence.In systematic regression, each subgoal must be disjointfrom all previous subgoals. In order to achieve this, theregression search must maintain a boolean formula de-scribing the set of states which have not yet been coveredby a subgoal8. Each new subgoal must be conjoined withthis boolean formula to ensure its disjointness with previ-ous subgoals. Just as in simple regression, a search strat-egy controls the order of the regression steps taken|7The reachable model minimization algorithm referred toin the previous section does exactly this|in its e�orts toconstruct a minimized reachable model it will split only theblock containing the initial state.8This set of states corresponds to the block containingthe initial state during minimization, and can also be viewedas the set of states which have not yet been found goal-connected by regression.



B B¬ A∧

A

A B C∧∧

B¬

α2 α1

α3
B A∧

A B C¬∧∧

α1
α4

B

A

B¬

α2

α1

(a) (b)

α2Figure 3: Two trees of regressed formulas for the prob-lem shown in Figure 1: (a) computed using systematicregression and (b) computed using standard regression.systematic regression di�ers from simple regression onlyin that the individual regression steps are modi�ed tomaintain the disjointness of the subgoals generated. Fig-ure 3 shows the regression graphs generated by both sys-tematic and simple regression for the example problemshown in earlier �gures.Theorem 3 The regression graph generated by system-atic regression at any point is a generic partial modelwhich captures solvability for the action sequences con-sidered by the regression search to that point.If the boolean formula for a subgoal is unsatis�able,systematic regression must stop searching below thatsubgoal|it is this pruning that reduces the number ofsubgoals generated compared to simple regression. Forsome problems, systematic regression will generate ex-ponentially fewer subgoals than simple regression, dueto the elimination of overlap. For an example of thisphenomenon, consider a planning problem with n stageswhere at each stage there are two choices of action se-quence which result in the same state in the next stage(via di�erent paths). Minimization will construct O(n)blocks on such a problem, but regression will constructO(2n) subgoals. Unfortunately, systematic regressiondepends on an unsatis�ability test at each node which isNP-hard; in practice the usefulness of systematic regres-sion will be limited to those cases where there is sub-stantial overlap between subgoals (i.e., many di�erentaction sequences have similar e�ects) and will dependon the growing e�ciency of the best known satis�abilitytesters [Selman et al., 1992].Theorem 4 Unlike simple regression, systematic re-gression never generates more subgoals than there areblocks in the minimal model.5 Reachability AnalysisComputing the minimal model for a planning problemrelies critically on the SPLIT operation, which we've in-dicated can have exponential cost. One way around thisproblem is to compute instead a re�nement of the min-imal model by using a variant of SPLIT which is lessexpensive and does at least as much block splitting.99Allowing excess splitting can be cheaper because it re-lieves the splitting operation of the task of deciding whether

Such a re�ned model has many of the same advantagesof the minimal model: reachability in the re�ned modelstill captures reachability in the original problem, for in-stance. The disadvantage to computing an overly re�nedmodel is that the model may have many more statesthan the truly minimal model, giving up the advantageof reduced size that was originally sought. Neverthe-less, there are problems for which a signi�cant problemsize reduction can be gained using an adequate but non-optimal split operation.To guarantee that the resulting model is a re�nementof the minimal model, the splitting operation used mustbe adequate: it must do at least as much splitting asSPLIT would have done. The option to do extra split-ting allows us to consider using a representation for par-titions which cannot represent every partition: if a splitis called for which we cannot represent, we can alwaysperform additional splitting to get a representable parti-tion (the representation must have at least this property,though). One such partition representation is what wecall a uentwise partition representation. Given a setof uents X1, consider the partition of the state spacewhere two states are in the same block exactly whenthey agree on the values of the variables in X1. We callany partition which can be represented in this mannera uentwise partition. Note that most partitions of thestate space are not uentwise partitions.We now de�ne an adequate split operation FSPLITfor manipulating uentwise partitions. Given uentwisepartition P , blocks B and C from P , and action �,we de�ne FSPLIT(B;C; P; �) to be the coarsest uen-twise re�nement of SPLIT(B;C; P; �). FSPLIT is easilycomputed in time linear in the size of its inputs. UsingFSPLIT in place of SPLIT, the model minimizationalgo-rithm can �nd a (possibly) reduced model which re�nesthe minimal model in time polynomial in the originalproblem size.10 The model found may of course haveexponentially more states the minimal model. A modelfound by FSPLIT minimization is given in Figure 2(b).FSPLIT minimization is a minimization-oriented de-scription of a familiar and simple reachability analysiswhich can be used to simplify propositional planningproblems. Speci�cally, a simple transitive closure can de-termine the set of uents relevant to the problem, whichis the least set P of uents containing every uent whichappears in the goal description and every uent whichappears in the precondition for some action rule whosepostcondition contains a uent in P . The set of rele-vant uents can easily be computed in polynomial time.Once this set is computed, the problem can be reducedby removing the irrelevant uents along with any actionswhose rules mention them. The resulting state spaceis exactly the blocks of the partition found by FSPLITto split|the most trivial variant of SPLIT would just splitfully into a partition of singleton sets.10Note that the uentwise partition representation is animplicit representation; the �nal partition can have exponen-tially many blocks but can still be constructed in polynomialtime.



minimization.6 Related WorkBurch et al. [1994] is the standard reference on sym-bolic model checking for computer-aided design. Ouralgorithms and analyses were primarily motivated bythe work of Lee and Yannakakis [1992] and Bouajjani etal. [1992]. B�ackstr�om and Klein [1991], Bylander [1994],and Gupta and Nau [1991] provide basic results con-cerning the complexity of STRIPS planning and specialcases. Etzioni [1993] describes a particular algorithmfor reachability analysis and provides a survey of relatedtechniques.In [Dean and Givan, 1997] we show how model min-imization can be used to solve implicit (or factored)Markov decision processes (MDPs) with very large statespaces, and prove that our model minimization based al-gorithms are asymptotically equivalent to existing meth-ods (e.g., [Boutilier et al., 1995]) that operate on implicitMDPs. In [Dean et al., 1997] we show how model reduc-tion techniques can be used to trade time for space incomputing approximately optimal solutions to Markovdecision processes. Finally, in the longer version of thispaper, we show how the methods of this paper can beused to understand the advantages of the explanation-based reinforcement learning algorithm developed by Di-etterich and Flann [1995].7 ConclusionsIn this paper, we demonstrate how traditional meth-ods for solving propositional STRIPS planning prob-lems can be viewed in terms of �nite automata (model)minimization. Given a �nite automaton whose state-transition function is de�ned by a set of STRIPS rules,we show how regression search and simple reachabilityanalysis can be viewed as methods for constructing a�nite automaton of reduced size. We also show howexisting model minimization methods can be appliedto solve propositional planning problems and determinethat solving such problems in the case in which the min-imal model is polynomial in the size of the input is NP-complete.It should be noted that there are potential pitfalls inextrapolating from recent success in computer aided ver-i�cation using model minimization techniques to possi-ble gains in tackling STRIPS problems. The veri�cationproblems were rendered easier in part due to symme-tries in hardware and software that result in signi�cantaggregation in the state space. Similar sorts of symme-try may exist in some factory domains but whether ornot the resulting reductions are enough to render theproblems tractable remains to be seen.References[B�ackstr�om and Klein, 1991] B�ackstr�om, C. and Klein, I.1991. Parallel non-binary planning in polynomial time.In Proceedings IJCAI 12. IJCAII. 268{273.
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