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Abstract— We consider the congestion-control problem in a commu-
nication network with multiple traffic sources, each modele as a fully-
controllable stream of fluid traffic. The controlled traffic shares a common
bottleneck node with high-priority cross traffic described by a Markov-
modulated fluid (MMF). Each controlled source is assumed to ave a
unique round-trip delay. We wish to maximize a linear combiration of
the throughput, delay, traffic loss rate, and a fairness metic at the bottle-
neck node. We introduce an online sampling-based burst-l&f congestion-
control scheme capable of performing effectively under raly-varying
cross traffic by making explicit use of the provided MMF model of that
variation. The control problem is posed as a finite-horizon Markov decision
process and is solved heuristically using a technique catleHindsight Opti-
mization. We provide a detailed derivation of our congestia-control algo-
rithm based on this technique. The distinguishing feature dour scheme
relative to conventional congestion-control schemes is & we exploit a
stochastic model of the cross traffic. Our empirical study sbws that our
control scheme significantly outperforms the conventionaproportional-
derivative (PD) controller, achieving higher utlization, lower delay, and
lower loss under reasonable fairness. The performance aduwéage of our
scheme over the PD scheme grows as the rate variance of crossffic in-
creases, underscoring the effectiveness of our control sefme under vari-
able cross traffic.

Keywords—Communication networks, congestion control, traffic mod-
els, Markov-modulated fluid, Markov decision processes, dime sampling.

I. INTRODUCTION

volves binary feedback [7] and proportional controller$ [8
for ATM (Asynchronous Transfer Mode) networks and linear-
increase/exponential-decrease controllers for TCP/IRNG
mission Control Protocol/Internet Protocol) networkse(§E5]

for a recent version). Recent rate-based approaches attemp
achieve better performance by incorporating control-tégo
techniques, including proportional-derivative (PD) coiiers

[9], [10], [17], [30], and those using optimal control and-dy
namic game techniques such as linear quadratic (LQ) team,
H*, and noncooperative game controllers [12], [13], [11].

We motivate our work by noticing that most of the above con-
trol schemes are designed for constant or slowly-varyimg se
vice rates (with the exception of the LQ team and ith& con-
trollers, which do consider short-term variation in theveer
rate). These controllers aim to balance throughput, delag,
loss by maintaining queue size to a target value. We calkthes
connection-levetongestion controllers since they assume that
the service-rate variation is caused primarily by the joinof
new connections and the termination of existing ones—as a re
sult, these controllers are typically evaluated by meagupiri-
marily their response to single isolated step changes iricger
rate rather than performance over complex rapidly varyiafy t

We study the rate-based congestion control of traffic in a nd€- However, burstiness in cross traffic in real networkewft
work where a bottleneck node is shared by multiple bestieff@ccurs at small time scales, i.e., from several millisesamlto

traffic sources and other high-priority “cross-traffic” soes.

a second [4]. Fast changes in the service rate, coupledavgh |

We assume that the best-effort sources can be fully coattollPandwidth-delay products, often significantly degradepiée
but that each such source originates at some distance fremfifmance of connection-level controllers. Intuitivelis per-
bottleneck node, and thus has a control delay. The objestiveformance degradation is due in part to the feedback and con-

congestion control is to determine proper and fair transiois
rates for the controlled sources to utilize the bandwid#ilatle
to the best-effort traffic efficiently at the bottleneck nadeile

trol delays—the service rate may change even before the ad-
justment of the traffic transmission rates impacts the bogtk
node, and thus the desired stable queue length may never be ob

at the same time achieving low average queuing delay and a [@}ped. Moreover, all these approaches, assume linedvisftst

traffic loss rate under reasonable fairness. We refer toverg-
ing) bandwidth available for best-effort traffic as dervice rate
of the bottleneck node.

Previous research on best-effort congestion control cati-be

dynamics at the bottleneck node; i.e., the boundaries otyemp
and full queues are ignored. This assumption causes $yabili
problems under some bursty service-rate conditions.

We approach the congestion-control problem using an alter-

vided into rate-based approaches and credit-based appadative paradigm that alleviates these drawbacks. We asaeme

(e.q., [31]).

Here we present a rate-based approach, c8ff Provided with a stochastic model of the cross traffic, and

trolling the rates of the best-effort sources rather thdo- al demonstrate a controller that achieves substantial beriidin

cating credits to those sources.

t Correspondence author.

This researchis supported by DARPA/ITO under contract PB983-C-0051.
The equipment for this work was provided in part by a grantifiatel Corpo-
ration. The views and conclusions contained in this docuraenthose of the
authors and should not be interpreted as representingfibiabpolicies, either
expressed orimplied, of the Defense Advanced Researcbd®adgency or the
U. S. Government.

Early rate-based work gxploiting this model. We call such controlldrarst-levelcon-

gestion controllers. We take a pro-active approach by ptiedj
future service rates using the stochastic model so thataur c
troller can anticipate changes stochastically and acolieéfthe
changes happen.

We model the service rate at the bottleneck node as a Markov-
modulated fluid (MMF). MMF models are commonly used to
model high-priority QoS-sensitive (quality of service siine)
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traffic, mostly comprising voice and video [1], [2], [3], [4]n state spaces. Recent work on rollout algorithms (e.qg.) [36}

our setting, the service rate is the total link bandwidthuesdi vide a means of using simulation to select “good” control ac-
by the portion consumed by the high-priority traffic. Herites tions heuristically, but requires starting with a good lstio
service rate can also be characterized using essentialkatine policy.

MMF models. We use a Markovian model for the following The remainder of the paper is organized as follows. In
reasons. First, Markovian models are very general; in@atrti Section 1l, we describe our network model and define the
lar, long-range dependent traffic can be approximatedrarthit congestion-control problem as an MDP. In Section IIl, wednt
well by a Markovian model, perhaps with a large number afuce the HO technique for heuristic MDP control, and present
states [24]. Second, Markovian models are amenable to powaur gradient-based congestion-control algorithm. Sacti6

ful decision-theoretic analysis, a strength that we expioour presents the simulation results of our controller and the&®b

approach. troller to enable comparison. Section V concludes the paper
We formulate our congestion-control problem as a discrete-
time finite-horizon Markov decision process (MDP) [6]. We |l. SYSTEM MODEL AND PROBLEM DESCRIPTION

formulate a measure of performance over long traces of@®rviA, System Model
rate variation, balancing throughput, delay, loss, anuhéss. At . . .
g ghp Y We consider a network where a single bottleneck node is

the pottleneck T‘Ode' wereceve a po_smve reward by f(_)rwgrd %ruared by multiple rate-controlled traffic sources andrdtigh-
traffic, a negative reward for each time step the traffic spend .” =~ - .
priority “cross-traffic” sources. The controlled sourcemsmit

waiting in buffer for service, a negative reward for traffost at rates specified by a central controller residing at theédyack

due to buffer overflow, and a negative reward for differerines node. Fluid traffic generated by a source has a source-depend

traffic arrivals from different controlled sources. Theetijve _ .
. - - . fixed forward delay to reach the bottleneck node. Contral sig
is to maximize the average net reward over a finite horizon b

: 2 n¥ils, periodically generated by the rate controller, fraveach
choosing proper transmission rates for the controlled cgsur )
._controlled source after a fixed source-dependent backweaxrd d

We then extend_ our previously_proposed _Hi_ndsight_ Optimlz%-y. Thus, associated with each source is a fixed round-¢ip d
tion (HO) technique [5] to provide a heuristic solution t@thlaﬁll Witho'utloss of generality, we assume that the rouipiie-

MDP problem. The HO technlque_ h‘?‘s. never prewqusly beFays are distinct from one another. We notate vectors and the
used to address a problem with an infinite control actionepac

. A . . components as follows: for vecta; we writev(?) for the ith
The main contribution of this work is to demonstrate that & . D
; . . component off when that component is scalar, and for that
stochastic model of future service rates can be effectiegly

ploited in congestion control to achieve substantial béenéfi componentwhen itis itself a vector. We also notatejthecom-

throughput, delay, and traffic loss, while maintaining ble ponent of theth component of’ (whenv'is a vector of vectors)
) ’ ; oo T . . asv(®7). Throughout this paper we use the notatiog to de-

fairness. A secondary contributionis to provide a specitans note expectation taken with respect to the random variable

to obtain these benefits using a novel congestion-contnidr P N pec S

work based on online sampling. It remains to be seen WhetWe assume that time is discrete with small time incremeénts

r ; ; .
this specific framework can be realized in practice with eatr %e now describe four essential components of our system: the

technology, but our work provides both a strong motivatiod a controlled traffic sources, the cross traffic, the bottlémsude,

a useful starting point for seeking a practically-realizedges- and the congestion controller.
. g pon ng apre y 9 Controlled Sources. We denote the collection of controlled
tion control scheme incorporating traffic models.

. N~ . sources by the sé&¥ and letNV = |N| be the cardinality olN,
Our controller achieves significant performance improveé-

. . ].e., the number of controlled sources. We assume that In rea
ments over the PD controller when small time-scale bandwid : . .
- Ime the round-trip delay associated with each controltedee
variations are present. Although MMF models have been ex-

. : . is large compared with the time incremensuch that we can
tensively employed in network performance analysis (¢4, express the delay by integral multipleséoin our discrete-time
[3]), our work is the first to exploit such models for rate-bas P y oy 9 b

congestion control. In [12], [13], the authors model crosé-t model with sufficient accuracy. Hence, in discrete time, we d

. . ; note the round-trip delay of sourdeas d ("), a positive inte-
fic by an auto-regressive moving-average process corripted

. ) . o ger. Without loss of generality we index the sources such tha

a sequence of independent and identically distributedaiand (1) (N) :
. . : < d\M) < - < dY). We assume that the sources transmit at
numbers with zero mean and finite variance. Compared wi h

[12], [13], MMF models have more structure, and better gerfa e controller-specified _rates and re_spond to rate commands
X ; stantaneously upon their arrival. This model emulatesrotiat
mance is therefore expected when such models are available

[15], the authors incorporate a long-range dependent intiel ABR (available bit rate) traffic in ATM networks and UDP (User

the design of a linear-increase/exponential-decreaseaten. Datagram Protocol) traffic in IP networks, which are suiabl

. - . . candidates for rate-based congestion-control schemes.
Our MMF model yields to a decision-theoretic analysis, an-me ' : L .
Cross Traffic. High-priority cross traffic represents, for ex-

tioned above, resulting in a controller that is not consedito ample, CBR/VBR traffic in ATM networks, or traffic in IP net-

be linear-increase/exponential-decrease. L : L . :
Previous work on congestion control using MDP formulav-vOrks receiving high-priority service via the CBQ (claszsed

: . . gueuing) scheme [14]. This cross traffic determines thdeerv
tions include [33], [34], [35]. Our work differs from [33]3¢], te that controlled traffic experiences at the bottlenexen

[35] in several ways: 1) Our action space is continuous; EilWe assume that the cross-traffic process can change at any

our reward structure is more general; 3) we develop an On“{]qqscrete) time. For convenience, instead of specifyieaoss-
sampling-based approach to cope with the continuous aatidn ' '



INFOCOM 2001 3

traffic distribution, we specify the “service process,” wlinis the controlled sources are bounded between zero and by a common
difference between the rate of cross traffic @ndthe constant valueC' > 0. We denote the action space by = [0, C]V.
bandwidth of the bottleneck node. We assume that the servidetime & the control action is a vectaf, of the formd, =
process is represented by a Markov chain with state space [u("), ..., «{")]. In ATM networks the lower limit can be set
{1,...,m}, a transition probability matriM : (S x S) — to the minimum cell rate, without significant effect on ouche
[0, 1], and a set of distinct rate values, . . ., v,, (i.e.,m is the niques.
number of the values that the service rate can take) which areState Space. The system state has three components. The
real numbers in the interv@d, C]. By “service rate” we mean first is the state of the service process (during serviceeapté-
the amount of fluid traffic that can be served in one time stegious time step), taking values $ By the method of discretiza-
When in states, the service rate is, (a constant). Under this tion described above, the state of the service processlatieae
assumption, there is a one-to-one correspondence betWeenstep corresponds to the departure rate observed at the@psevi
states and the service rates. Therefore, measuring seat&e time step, and the MMF service model will transition befoee d
suffices to determine the state of the service process. partures occur at the current time step. (This choice mdHels
Bottleneck Node. The bottleneck node has a buffer of finitefact that we cannot know the current cross traffic precisatjl u
size. We assume that the best-effort traffic (from the cdletlo after it has occurred and we have had the opportunity to mea-
sources) is buffered together, independently of any baffer sure it.) The second component is the current queue ldngth
needed for the QoS-sensitive cross traffic. We denote tlee siaking values inL. = [0, B]. The third component consists of
of the buffer by5. As defined above, we denote the bandwidtihe control signals that have been issued in the past butevhos
at the bottleneck node hy. impact has not yet been felt at the bottleneck node due to the
At each discrete time step, the volume of (fluid) traffic that, ng.trip delays. This control history takes values iu®"”
arrives is the sum of the fluid traffic from all of the contrale hereqs™) is the largest among all()'s. For example, if the
sources during the time step—each source contributes fiuid & nro| actions selected over time afg, @, . . . then the con-
rival equal to the control sent to that source at the time Stﬁ%l historv . — (@) (a2
! . : YWy = (&, 7,..., @ )
preceding the current time step by the round-trip delayHat t = N k ) k ) i
source. We assume that the queue length at the bottleneek rféé = dy—; and thusw, " = w, ;. \We note that this con-
is known at each time step. trol history includes unnecessary information in the forfrhis-
Congestion Controller. The controller, residing at the bot-t0rY bey(_)n_d the rOl_md_'tr_'P delay for sources_clos_er thaaydel
tleneck node, makes control decisions at each time step. . This information is included to greatly simplify our nota-

congestion-control problem is to determine a rate commaH@n throughoutthis paper, butis not truly needed in theridied

uff) to relay to source, i = 1,..., N, at timek to achieve model or for ang(]%f our methods. The complete state space is
some overall performance objective. Our objective is tahed¢ X =S x L x U™ .

throughput, delay, loss, and fair service to controlledrses; ~ State Transition. If the state isi¥ = (s,{, @) where@ =

as described formally by the reward function below. When (@ (!, ..., md(“)) denotes the control history, and we apply a
source receives a command, it transmits at the rate spebifieccontrol, the system will make a transition to a new state=

the command until another command is received. The coatrol(s’,!’, '). In the following, we specify how each component of
can use system observations and a model of the service prodésdepends oF andi.

to compute rate commands. The rate command for a source @he service-process state makes a transition froons’ with
any given epoch impacts the bottleneck node arrivals atterea probability P (s, s') given by the(s, s’)th entry in the given ma-
duration equal to one round-trip delay for that source. @hertrix M—this transition is unaffected by the valued @indw.

fore, at each decision-making epoch, the controller needs t The queue-length compondhtdepends o’ as follows. Let
compute an appropriate rate command for each source tlest tak 7) = vazl w@”.) pe the aggregate fluid traffic that ar-
into account the round-trip delays and anticipated semate rives during the transition from staieto statez’ from all con-
variation. The order of event occurrence at the bottlengcite- trolled sources—this traffic is due to rate commands thaewer
cision making, MMF transition, traffic arrival and simuleous issued to these sources in the past which are now recordied in t
traffic forwarding (according to the new service-rate MMBr state componen#. The queue-length component of the state
cess state), and then checking for buffer overflow/underffowchanges according to the following difference equatiom-co
we thus assume that the control decision must be takéore monly called Lindley's equation:

observing the service rate at the current time step; to mbdsel

behavior we note that the MMF state component of the over- " = max{min{l + a(Z) — vy, B},0}.

all system state corresponds to the service rate obserwbe in
previous time step.

at time k is such that

The queue-length componetitdoes not depend ofi due to
non-zero round-trip delays.
B. MDP Problem Formulation Finally, the control history updates as follows:

We formulate the congestion-control problem as a Markovw/(l)
decision process (MDP). An MDP consists of an action space,
a state space, a state-transition structure, and a rewaodtse.  Reward Structure. We define the one-step reward at state
In the following, we describe each component for our probleng by

Action Space. We assume that the transmission rates at the R(Z) = T(¥) — aD(F) — BF(F) — CL(T), (1)

— ﬁ, u—}*/(i-l—l) — u—}»/(i)’
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wherea > 3,0 < g < 1/(N —1),¢ > g, T(Z) is the through- Given a policyr or a fixed sequence of contrals, @y, . . ., we

put received at one time step when the system is in 8taf¥#) denote the (random) state of the system at each&imé, 1, . ..

is the total queuing delay incurred at that time stf) is the by the random variabl&’;, and the (random) state of the service

sum of the absolute pairwise rate differences in arriviaffitt  process at timé by the random variablg,.

from different controlled sources at that time step, @rd) is ) )

the fluid lost at the current time step due to buffer overflofte(a C- Optimal Solution

“checking for buffer overflow”). To describe our approach to the congestion-control problem
The scaling factors, 3, and¢ reflect our tradeoff preferencewe first characterize the optimal congestion-control golior

between throughput, delay, loss, and service fairness.réhea given initial stater, let

strictions ony, 3, and¢ above represent a preference-hierarchy

among the four terms according to the following order: tigtou Vi (Z) = max Vi (7).

put, delay, loss, and fairness. Because maximizing through "

put is typically the first concern in regulating controlledffic Following a standard approach to solving MDPs, we write

sources, with fairness somewhat subordinate, we are ntest in

ested in parameter values satisfying this restriction tiRgisg Qk(Z, 1) = R(Z) + E(Vi_(Z")), k=1,...,H,

the ranges ofy, 3, and¢ as shown above allows the analytical o ) S

selection of a hindsight-optimal control sequence (deflaest) Where the expectation mqthe_ right-hand side is with respect

more easily. We do not consider the more difficult and less iffl1€ nextstate”, andV;"_, (&) is the optimal cumulative reward

portant case of parameter settings that violate this ctism,  OVer thek — 1 time steps starting from the (random) stafe A
The one-step rewartl(#) depends only on the staeand not key result in Markov decision theory [6] then states that

explicitly on the controli because any rate commandwill . o

not have impact on the bottleneck node until at le#st time Vi (¥) = gleaéQH(“f’ a),

units later, due to the non-zero round-trip deldy§. We now ) _ S

provide formal expressions fa¥(z), D(Z), L(Z), andF (z) for andapolicyr™ = {45, u7, ...} is optimal ifit satisfies for alk,

completeness as follows: .o Lo
pi(F) = argmax Q- (¥, ).

T(#) = min{l+ a(¥),vs} (2)
D(#) = max{min{l 4 a(&) — vy, B},0} (3) In particular, for a fixed horizo/, the controki* is an optimal
L@ = max{l+a(@) — vy — B,0} ) “current” action if it satisfies
N N —% * [ = J—
) : ) s @ = py(¥) = argmaxQp (&, ). (6)
PE o= 3 Y [ ) @) qev
i=1 j=1,7>1¢

At each control epoch we apply the “current” control action

wheres’ is the service-rate process state after MMF transitiéh I (6). In other words, each control epoch involves optimiz-
from states. Note that the throughput, delay, and loss tern{89 @ (¥, @) with respect tai for a horizon ofHf intothe future.
of the reward function (and thus the reward itself) are ramdo! NS @Pproach of applying a “moving-horizon” control safut
variables due to their dependence on the random variable 1N an online f_ashlon_|s common in the optimal-control litera,
Optimization Goal.  Based on the MDP model describedOr €xample ireceding-horizon contrdsee, e.g., [19], [20]).
above, we can state the congestion-control problem asafsllo !N practice we do not have explicit knowledge®f;. Stan-
For a given initial statef, we apply a controli, to the system dard techniques can be used to com@ein time polynomial
and receive a reward 6t(,) by serving traffic at the bottlenecki the size of the state space. However, because we have an
node. The system will then make a transition to a new stdfBPlicitly specified state space (specified component bymmm
7, stochastically according to the state-transition stmectwe Nent above), our actual state space is astronomical in &z
then apply a controf;, and so on. After a horizon df steps, result, these standard techniques cannot be applied itigaac

the cumulative reward received (a random variable) is giyen 1Nhus, equation (6) is not directly useful for determining dp-
timal policy. Our MDP problem does not yield to any other

H-1 known analytical solution. Instead, we approach the pralilg
Z R(%), computing an upper-bound estimate@f; (Z, i). In the next
k=0 section, we describe a particular approach to solving otir op

W (ido, ... i5_,)

- . _ mization problem, based on evaluating candidate actioimgus
where/] = i — d"), andii_, is the latest control commandgych ypper-bound estimates®f; (7, ).

that can impact the bottleneck node within the horizbn

Our choice ofiy, is based ongy; that is, we use a “state- [1l. CONGESTION-CONTROL ALGORITHM USING
feedback” mapur : # — « and applyd; = pr(Z;). The HINDSIGHT OPTIMIZATION
sequence of maps = {yuo, 1, iz, - ..} is called apolicy. Fora gy Hindsight Optimization Technique

given initial stater,, the problem is to find a policy that maxi-
mizes the objective function In this subsection, we outline our solution approach, which

extends a technique calledindsight optimization first de-
Vi (o) = E (Wa (po(Zo), - g (Zg_1))) - scribed in [5]. The overall control architecture is illustid in
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[ Network ] where
H-1
Rate N — —
Command WH—l(ula“'aufj_l) = R(l’k),
(o) (e ) o o k=
J— Candidatt ¥ Estimated andW; (Z, 4) is the hindsight-optimal value for the tratas a
Rat i - —
Senvice rate e cradent result of applying controf at statez.
" races - . - Npo o - H
M Given the estimaté)(Z, @) of Q(Z, @) for each action, the
Rate Calculator hindsight optimization (heuristic) approach is to seleuf ax-
ecute the actiow (a vector) that maximizes this estimate. Pre-
Fig. 1. Congestion-controlarchitecture. vious applications of the hindsight-optimization techrechave

all involved MDP problems with finite action spaces, unlike o
congestion control problem. When the action space is finite,

Figure 1. The controller comprises three parts: a staterebise we can simply compute the estima@eﬁf, i) for each actiort,

a traffic _S|mulator, af“]! arate calculator.q The state Qbses“eand choose the candidate action associated with the langest
responsible for obtaining the system statéy measuring the _ .. .
estimate for execution. Here, however, we have an uncount-

service rate at each time step (as well as observing thenturrgble continuous action space, and cannot compute thisastim
gueue length and storing the recent control history). Weraes ’

for every action. Instead, we extend the hindsight optitiora
that the controller has an accurate MMF model of the cros$s tr?echnique by finding a (locally) optimal action using a gradi

fic, allowing the state observer to infer the MMF state by mea- . .

. ; ent ascent technique. Because we seek to use gradient tiscent

surement (given our assumption that the MMF model state eac : !
Solve this problem, we actually need to analyze traces tdfied

determines a unique service rate). Hence, the system StatSrétdient on(f, ) relative to changes iff (rather than to find

fully observable. SR . o . .
'the traffic simulator takes the observed current sfatnd Q(Z, ¥) itself). We discuss a method for estimating this gradient
gm traces below.

uses it as a starting state to generate a finite number of- og : . A .
g d P>y conclude this subsection, we argue thAtz, i), if ex-

ble service-rate sequences (traces) using our MMF moda. Th tly computed (e.g., by infinite sampling), is an upper lzbun

rate calculator takes these traces and computes a rate camniy © o Letd d ‘e th t d ‘ tate aft
vector#. The calculation of the rate command vector is basé)(ﬁ]Q(x’ u). LetZ; denote the next (random) system state after

on the followingidea. Recall from equation (6) that at anyegi applying controli at stater. Then,Q(#, @) can be expressed

control epoch and any staethe optimal rate command is givenformally as:
by Q7. @) = R(?)+ Es,Es, s, max Wi, (10)
a* = argr_nagQ(f, 1) (7) @1yl
. . . i . W1 = WH_l(Ul,...,ﬁg_l).
(we omit the subscript! in Qg (%, @) for brevity). We rely .
on an estimat@(f’ ii) of the Q(&, @) to carry out the above Note that the sequencd, ..., Zy_1 depends on the controls

—

maximization. This estimate is calculated as follows. Faghe @1, - - 45— @lthough the notation does not reveal this depen-
service-rate trace we compute the cumulative reward by takdence explicitly. Comparing equation (10) with the follogi
ing actiond at stater followed by atrace-optimalsequence of form of Q(#, @),

actionsw, 4, ..., @},_, for the remaining horizon of/ — 1 Q(7,@) = R(f)+Es, max Es, _s,Wa, (11)
time steps. We say that the sequedéei!, . .., @%_, is trace- Vg A
optimal if this sequence achieves the largest possible mu Wo = Wh_i(p(Z1), o opg_(Eg_4)),

tive reward under the assumption that the service rate anes i .
deed vary according to the trace under consideration. We ¢& can see tha(7, @) estimates an upper bound Qf(, «)
any such trace-optimal sequenceiadsight-optimal control se- computed by interchanging expectation and maximizatiateN
quenceand the optimal cumulative reward of any such sequenti@t the “max” in the definition of)(#, @) is over sequences of
the hindsight-optimal valuef the trace—computing such a seactionsdue to the ability (inQ(Z, #)) to apply tailored action
guence and its corresponding value is a deterministic apain sequences to different stochastic futures—in contrasiniae”
tion problem that is often considerably easier than finding tin Q(#, @) occurs outside the expectation, requiring a single
optimal stochastic control for the online problem. We comepupolicy to be selected for all futures. As discussed in [5], the
the average of the hindsight-optimal values over the seigein- (&, @) upper bound o1 (#, ) can be arbitrarily loose. How-
erated traces for the specified initial contisk-this average is ever, these estimates are only used to rank competing Grdid
our estimate),, (Z, @) of Q(Z, @). In other words()(Z, @) and actions, and thus it only matters whether or not these esna
its sampled approximatio@n(f, ii) are given by preserve the relative values at different states. Ourtebalow
give evidence that for congestion control problems the irank
L 1 e L is preserved well enough to mak¥Z, @) useful for selecting
@n(F, 1) = — > Wi ) (8)  an effective control policy. )
t=1

A5 D = R(F)E W . . B. Hindsight-optimal Control Sequences
r,u) = x)+Lbs,, .., max U, U ) .. . . .
Q(F, 1) (@)+Es,, .. 5m @1,y -1 (T i-1) At each decision-making epoch, we wish to determine a rate

(9) vectora* according to (7) using),, (%, @) in place ofQ(Z, ).



INFOCOM 2001 6

For a given¥, we wish to maximize@n(f, @) with respect tai.  for the number of sourcessuch that: > d ). The following
Because the argumeiitis a vector of continuous variables, weproposition gives the means to compute the unique hindsight
can use a search algorithm based on the gradief},¢%, #) optimal control sequence analytically.

with respect taz, which we denote by ; Q.. (#, @). Proposition 1: Given system stat&; = (s, lo, @), action
Note that from equation (8), we can writg; Qn(f’ i) as iy, and a trace of future service rates, . . ., vs, the sequence
{at, k = 1,...,H — 1} with (u},){?) for sourcei specified as
A 1 < .. below is the unique hindsight-optimal control sequence.
VaQn(Z, d) = gZV@Wt*(x,u), )
t=1 a)fi) = 0 i whenl; ¢, >0,
. . . - t H
whereV; Wy (Z, %) is the gradient of¥V; (Z, @) with respect to —liyap1/Nepa  otherwise,

i. Therefore, the calculation 6F ; Q.. (%, @) reduces to calcu-
lating the gradients on a per-trace basis, i.e., the gresligh W
theW; (#, @) (hindsight-optimal values). It turns out that these
gradients can be computed analytically, as we will showr.lat(?u
Our gradient estimate above is akin to the ide@nifiitesimal
perturbation analysi$27]. C. Search Algorithm
Recall thatd") is the smallest round-trip delay among all
d's. We note that ifi*) > H — 1, then no matter what con- __ ) T
trol sequence we apply, by the end of the horizbnno action "0 that yields the largest estimat®(#o, do). We use z_a;eqarch
will have impact on the bottleneck node. Therefore, we atersi 2/90rithm that uses only the gradient@f Let Vi Q.. (%o, o)
only the nontrivial case whefe< d(Y) < H — 1. represent the gradient &f, (Zy, do) (with respect to the control
Suppose that the current time is zero and the current stat@g§0nto). The search algorithm s of the form (see, e.g., [16])
Zo = (_S,f’ lo, Wy). We wisAh Eo silect as the currgnt contr_ol the @k + 1) = d(k) + (k) Va Qn(i"o, k), (12)
action«; that maximizes)(Zy, i}). In the following, we first
describe how we compute a hindsight-optimal control seceierwhere (k) is a positive step size, and the iteraték) is
for a given service-process trace. Baseduosuch sequences,an estimate ofif; (more sophisticated algorithms are possible,
we then show how to obtain the gradient@,t(fo, dp), which but appear unnecessary for our purposes). From equatipn (8)
together with a search algorithm forms our congestion+obntV ; Qn(fo, dp) is given by
algorithm. We now assume that we have generated a specific Lo
service-process trace= {vg,, ..., Us, }- LA (R o)+ LU (R
Givenpthe initial statij’oland acﬁgna’o, define the trace- Vi @n (%o, ) = n ;v“ W (o, )
relative committed aggregate arrival rate (from all colia -
sources due to rate commands in the control history as iteticawhere Vg Wy (Zo, o) is the gradient of the hindsight-optimal

7t _ It =\ : =
herel; . ;) 11 = {4041 (o) is afunction ofiy.

A correctness argument for Proposition 1 can be found in the
[l version of this paper at: dynamo.ecn.purdue.&ahgji/).

At each time step, we wish to determine the control action

in thet, component of:y) at timesk = 0, ..., H — 1 forinitial ~ value for the trace.
control i, by There are points where the trace-relative hindsight-cgdtim
value is not differentiable. The use of gradient ascent pdh
. N (@O ki) with functions that are not everywhere differentiable haerb
aj (o) = Y Ii(k)w; Y, wherel; = 15 40y studied before (e.g., [32]). In practice, we have found that
i=1 non-differentiable points in our objective function do nig-

pact the efficacy of the gradient ascent algorithm. In facgur

ne® to bed,. Defi - _. ! _
where we defineri, © to bedo. Define the trace-relative queuenirica| study the gradient ascent algorithm never eniesn

length sequencglj, & = 0,...,H} (and the queue lengthese non-differentiable points. Hence, we do not delvenéur
{li 1, k=1,..., H} before “checking for underflow”) for ini- jnto this issue.
tial controld, by The result of Proposition 2 below can be used to compute

the gradientV; W} (Zy, 4y). Combining this result with the
! algorithm (12), we have an iterative procedure to compijte
Lizi (@) = min{l} (@) + aj(do) — veyyr, B}, In practice, we terminate the algorithm (12) when the gradie
_ . ) Va Qn (%o, d(k)) is sufficiently close td). Specifically, we stop
with {5 (o) = Iy the current queue size. when ||V Q. (Zo, 4(k))|| < e, wheree > 0 is a prespecified
Noticeu((f) is the control decision we are going to make at thgarameter and we us|| to denote the “sup norm” given by
current time and has not been determined yet; however, in tigx; |v(!)|. Note that we also need a val@g(0) to initialize
following proposition,u((f) is assumed given because we wilthe algorithm. For the step size sequefigék)}, a typical and
assign candidate values to determine the associ@tedlues. simple choice is to sef(k) to be a small positive constant.
For a service-rate tra¢e= {v,,,...,vs, }, we wishto compute ~We summarize the search procedure in the following routine.
a hindsight-optimal control sequeng@g, . . ., @%_.. Inchoosing Let Tr be a given set of future bandwidth traces,= |Tr|
such a control sequence, we will need notation for the numiibe cardinality ofTr as defined before, and; W (o, d(k))
of sources that can affect a given time (i.e., sources suathitie the gradient of the hindsight-optimal value for trdde Tr, as
round-trip delay is less than the specified time)—we wife given by Proposition 2. Lef be a vector whoséh entry isd ().

Iy (o) = wmax{l} (i),0}, and
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grad-search Tr, d) Proposition 2: Given stater,, candidate initial controfiy,
1. Initialize #(0). and service-rate trage= {v;,, ..., v;s, }, the source compo-
2. Fork=1,2,...,do nent (for anyi) of V; W= (Zy, dp) is given by the weighted sum
Vi Qn(Zo, @(k)) = (1/n) S0, Va Wi (#o, d(k)) of the following four terms (with the weights, —«, — 3, and
ik +1) = d@(k) +~v(k)Va Qn(fo’ ii(k)) —(, respectively), representing the throughput, delaynéss,
until | Vg Qy (2o, @(k))| < . and loss components of the change in total reward:

3. Outputd(k).

_T o - (Z) .
Va T (%o, 1) 0 otherwise

@ Dz, @) = ki q®

B { 1 if i = 1andk)" (i) = dV)
The set of traceq'r and delay parameter vectdrare listed

as arguments of the routine because both are needed in the
culation of V; W (£, t(k)). Note that the above algorithm

assumes that the staftg is given. Va F(@o, i) = NL(ul) = N (ul) 4+ va P
The search algorithm is in fact only a local-search method; ' 1 if Rbt < gt
- i iti Va L(Z, @)Y = 1 ¢
the solution obtained depends on the initial condition, aray @ 0, Uo 0 otherwise

not be globally optimal. To search for a globally optimalwsol

tion, we could employ other familiar search techniques sagh
simulated annealing, but we have found satisfactory eogliri where
results using only this local search.

0 ifi=1
D. The Gradient of the Hindsight-optimal Value v, 7l _ i—1 else iflj(,)+1'> 0
This section summarizes our efficient means of computing the ol i+ Ni(r)—N(r) elseifr < Uof) ’
gradientV; W*(Zy, tig) (a more technical account, including a —i+ Ni(r) = Ni(r) elseifr > u(()Z)
correctness argument of the gradient, can be found in the ful
version of this paper at: dynamo.ecn.purdue.gdgl/). r = —ZZ(,)H(uEf))/(i —1).

Let the trace-relative projected queue-size trajectofigs _ _
k=0,.. Hyand{l! ,, k = 1,...,H} be as defined pre- E. The Congestion-control Algorithm
viously. Letk"?(i,) be the first buffer-underflow or buffer-full  We conclude this section by summarizing the congestion-

time afterd ) — 1 when encountering tra¢awith no additional control algorithm as follows. At each control epoch, we parf
flow requested aftet,, given by these steps:
i . . 1. Observe current system staig
tig— _ . t _ (%) _
ky'(do) = mm{k : (lk+1 =0andd™ <k <H 1) 2. Generate a sér of future service-rate traces;
ork = H — 1}’ 3. Comput_ea’;; = grad-search Tr, d);
4. Transmit rate command; to sources.
i) = mindk: (1L, = B andd®) -1)
k' (@) mm{k ' (lk“ Bandd™ < k< H—1 IV. EMPIRICAL RESULTS
ork=H — 1}, and A. Evaluation Setup
k”(ﬁ ) = min{kt,i k“} We use the network simulatars version 2 as the basis of
0 o e our simulation environment. We have modifigsto implement

. . . . our congestion-control algorithm over UDPristo emulate an
DefineN; to be t?? set of all sourcgsin N with round-trip ATM network. Accordingly, we set the packet size to be 53
delays greater thah'*’). By our ordering of the sources we hav% L ¥
ytes, the size of a standard ATM cell.

Ni={j¢ N J > i} We now introduce notation that divides Figure 2 illustrates our simulated network configuratione T
the sources iiN; according to whether they have arrival rates ?Faffic sent from four sources, indexed byo 3, shares a com-
timed thqt are higher or_Ipwer than any particular ratéor mon bottleneck node, and hz;s a common déstination node. All
E?S?czgfrﬁ SVONél\:\t/)esgg'gltﬁ? g:uej ;ellx?r)o fagggr?j?:o'tlgtagw links between the sources and the bottleneck node have band-
the arrival rates from tho:e sources ;t tim’{@ com agr]e to the width of 155 Mbps, while the bottleneck link is of only 55 Mbps
rater. as follows: P The size of the buffer at the bottleneck node is 150 cellsr&ou

' ' 0 represents the source for high-priority cross traffic. $esir

N (") = {jeN,: (dD_q® j) <} 1, 2, and3 are controlled best-effort traffic sources, which send
< R " traffic at the rates determined by the controller residinthat
Ne(r) = INL(r)], bottleneck node. These three sources are associated witt-ro
; @ g i i i
NL(r) = {jeN;: w(()d a9j) r}, and ]Eiré%;jeelays of 20, 30, and 40 ms, respectively, as shown in the
Né(r) = |Ni>(7°)|~ Our empirical study consists of two parts. In the first part,

source( is composed of ten identical connections, each gen-

The gradient; W* (), uo), at points where it exists, is NoW g ating fluid traffic according to a two-state ON-OFF MMF

given as follows.
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Source 0 does not aim to maintain a fixed queue size. Thus, we do not
evaluate the HO controller's ability to maintain a partécithr-

Source 1 % get queue size.
30 ms
N\

ez O O C. Impact of Cross-traffic Variance
Source 3 Wottleneck Destination - - - |
- - In this subsection, we change the variance of the crossctraffi

rate by varying the transmission rates corresponding t@tke
and OFF states but still keep the same mean rate. We inviestiga
how the variance impacts the performance of the HO and the PD
model. In our experiments, we will be varying the two transontrollers.
mission rates corresponding to the ON and the OFF states, reéPD-type congestion controllers have been shown to be gen-
spectively, to let the aggregated cross traffic rate haverdiiit erally effective [9], [10], [17], [30]. PD controllers adjtithe
variances (ranging frora to 72.6 Mbps’) but the same mean transmission rate based on the deviation of the queue length
(22 Mbps). This allows us to study the impact of the variandeom a target value. We tested the PD controller with diffitre
of the cross-traffic rate on system performance. In the tiates target queue sizes. The target queue size reflects the hetdror
MMF model, the expected lengths of the ON and the OFF pefMnistrator's tradeoff among utilization, delay, and tedis rate.
ods are 400 and 600 ms, respectively; these values wererchdsdarger queue size indicates the desire for higher utiireat
to reflect realistic voice connections, which is the focushef the expense of higher delay and cell loss rate. To maintain fa
second part of our empirical study. ness, the PD controller issues the same rate command to every

In the second part, sourc¢econsists of one thousand inde<controlled source at every decision-making epoch.
pendent and identically distributed voice connectionfiece We chose the values of the parameters (gains) of the PD con-
ing a typical scenario arising in networks with mixed voicela troller by first following the design procedure provided Bj [
data traffic. While most data traffic receives only best+ffer- and then by fine tuning manually to obtain the best response
vice, commercial telecommunication companies have begunpossible for a constant cross traffic with rate of 22 Mbps,alvhi
carry voice connections, which require real-time guareshtaer- is the mean rate of the cross traffic with which we will be car-
vice, over packet-switched networks. The dynamics of voigging out our tests. The queue-length responses achievedrby
connections are well captured by MMF models [2], [18]. Wehoice of gains are very similar to those of [10]. Our experes
model a single voice connection by a two-state ON-OFF MMWith the PD controller suggests that tuning the gains of &-ig
model, with the expected ON and OFF periods being 400 aatfler PD controller is nontrivial (the order is determingctte
600 ms, respectively. Since a standard voice connection ctargest round-trip delay; for example, in our experimehesRD
sumes 64 Kbps bandwidth, we set the rate of each voice ceéantroller is of order 43). The stability and quality of thestem
nection in our simulation to 70.667 Kbps by considering thagsponse depend on many factors, such as the values of gains,
the actual payload in a 53-byte ATM cell is only 48 bytes.  the length of the control update interval, and initial cdiutis.

For the HO controller, we use = 200; i.e., at each decision

B. Comparison Metrics epoch we generate 200 service-rate traces using the cedfis-t

We compare the performance of the controller described fdel. Each trace is of lengtH = 50 time intervals. We
this paper, called the “HO controller” hereafter, with thellw chose the duratiofi of each time interval to be 1 ms. The value
known PD controller (with various values of the target queu® ¢ was chosen on the one hand to be small enough to cap-
size). Our metrics for comparison are utilization, averqgeu- ture the fast variation in service rate and on the other hary|
ing delay, cell loss rate, and fairness. Utilization is thetigh- enough for affordable computation. In addition, 1 ms is ai®al
put normalized by the total available service “volume” (tuen of § small enough to express typical round-trip delays as iategr
of the service rates) over the simulation period at the bogtk Multiples ofé.
node. The average queuing delay is the total amount of timeWith a value ofé = 1 ms, the computational burden still
that all the cells spend waiting in the queue at the bottlenegeems nontrivial. Fortunately, many of the computatior per
node divided by the total number of cells forwarded. The cdffrmed by the HO controller can be carried out in parallelr Fo
loss rate is defined as the number of cells (from the conttoll@x@mple, the calculation of the components in the gradient a
sources) lost due to buffer overflow divided by the total nembindependent of each other, and thus these components can be
of cells (from the controlled sources) that arrive at thetlbet reéadily computed in parallel. The trace generation can laéso
neck node over the simulation period. To define fairnesgj;let carried outin parallel. Bearing this in mind and considgtine
denote the total number of cells that arrive from sourcghen, Pace of progress in computation speeds, we believe that real
fairness is defined as the sum of the mutual absolute difiesentime implementation of our control algorithm is feasible.
between the} (i = 1,2, 3) values, normalized by the product We seta = 1000, 3 = 1/3, and¢ = 1/2. These values
of the number of source pairs (3 in our case) and the suf,of sgtisfy the r_estrictions on the valuesmf3, and( that we have
i = 1,2,3. In order words, our fairness metric is the the averagéven in defining our objective function, in equation (1).
pairwise arrival difference per unit arrival. Figure 3 shows the utilization values achieved by the compet

In most previous papers on rate-based congestion contiag controllers. The PD controller with a target queue size o
e.g., [9], [10], the test metric is the controller's abilioymain- 50 cells is denoted by PD-50; similarly, PD-10 and PD-1 rep-
tain a target queue size. However, by design the HO controlfgSent PD controllers with target queue sizes of 10 and 1, re-

Fig. 2. Network configuration for empirical study.
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Fig. 3. Plots of utilizations achieved by the HO controlled&D controllers Fig. 4. Plots of average delays.

with different target queue sizes versus the variance aiet@ffic rate. The
symbol PD-50 stands for the PD controller with a target qusre of 50

cells, etc. —— HO
-»- PD-50

0.05({ -=-- PD-10 -

* PD-1 o

o
o
=

spectively. The horizontal axis is the rate variance of tloss
traffic. We see that all controllers achieve high utilizatiowwhen
constant-rate cross traffic is present (i.e., when ratanes is
zero in the figure). As the cross traffic becomes more variable

Cell loss rate
o
o
w

o
<3
]

g

the utilization values achieved by the PD controllers deseeat oot //
rates much faster than that of the HO controller. The reason i o = 5 - .
that when the cross traffic is highly variable, the PD corers| Variance (Mbps?)

cannot maintain a stable queue size to ensure satisfactiery u
lization. In contrast, the HO controller can stochasticéin-
ticipate” changes in service rate and can in turn respon:eet
changes beforehand. Figure 3 demonstrates the effecivene Figure 6 shows plots of the fairness metric. We see that the
of the HO controller in an environment with a highly-variabl HO controller is less fair than the PD controllers. The figure
service rate, a condition which is often found in practical-n shows that in the most variable service rate case, the averag
works. We note that at very low variance the HO controllgfifference between tw;'s is less thar% of the total arrival,

is outperformed by the most utilization-aggressive (higigét while for the PD's, the unfairness value is negligibly small
queue size) PD controllers, but that this disadvantag@gesas The reason that the PD controllers are more fair is that they
quickly with increasing variance. We note that even forvew are “hardwired” to issue to all the controlled sources thaesa
variance traffic this disadvantage is not without a corrasiity rate command at decision-making epochs, while the HO con-
benefit—in the next plot we will see that utilization-aggige troller does not have this restriction. Instead, the HO iaiter

PD controller suffer a significant penalty in average delay umakes decisions based on balancing the throughput, dessy, |
der these same conditions. The only PD controller that céenp@nd fairness in the reward function (with fairness beingdsiv
with HO in average delay is the PD-1 controller, which shows priority), and thus the controller may sacrifice fairnéss

no utilization advantage over the HO controller, even witlv | throughput. For example, in the most variable service rasec
variance in the service rate. HO gains3% more throughput than PD-50 with much less delay

Figure 4 shows plots of the average queuing delays. The H@d cell loss rate.
controller achieves much smaller queuing delays than thbse Moreover, as expected, the HO controller achieves the kighe
PD-50 and PD-10. PD-1 has queuing delays close to thosecgiulative reward in all the experiments we conducted. How-
HO; however, it does so at the significant cost of much smallgyer, we do not show any figure here due to space limiataion.
utilizations (see Figure 3). Compared with HO, PD-50 hasimuc
larger delay and less utilization; it has more than twiceddlay
and 8% less utilization in the most variable service rate case,
i.e., the right-most point in the figures shown. Figures 4 and
3 suggest that the HO controller can achieve higher utitmat
with smaller delay compared with the PD controllers withdixe
target queue sizes.

Figure 5 shows plots of cell loss rates (CLRs). The CLR for
the HO controller is the smallest for all the experiments ae ¢
ried out due to the fact that the implicit goal of a hindsight-
optimal control sequence is to keep a zero queue length, and 0 SV &
hence it leaves most of the buffer ready to absorb bursts-of in
coming traffic. The PD-50 controller, which achieves theseki Fig. 6. Plots of fairess metric.
utilization values to HO among the PD controllers, has a CLR
that is at least seven times that of HO in all our experiments.

Fig. 5. Plots of cell loss rates.
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D. Voice Connections As Cross Traffic [9] L. Benmohamed and S. M. Meerkov, “Feedback control ofgesiion

. . . . . . in packet switching networks: The case of a single congestate,”
In this subsection, cross traffic consists of 1000 identical |[EEE/ACM Trans. Networkingol. 1, no. 6, pp. 693-707, Dec. 1993.

voice connections. Each voice connection generates flaiictr [10] A. Kolarov and G. Ramamurthy, “A control-theoretic apach to the de-

. . sign of an explicit rate controller for ABR servicd EEE/ACM Trans. Net-
according to a two-state MMF model whose parameters are aS,orking vol. 7, no. 5, pp. 741-753, Oct. 1999.

given in the last subsection. The parameters of the HO and {hg E. Aitman and T. Basar, “Multiuser rate-based flow cohtrlEEE Trans.
PD controllers also stay the same. Table 1 summarizes the per Commun.vol. 46, no. 7, Jul. 1998.
formance comparison between the HO and the PD controllé% gl E. Altman, T. Basar, and R. Stikant, "Robust rate corfoo ABR ser-

‘ ; p . e *vices,” inProc. IEEE INFOCOM Mar. 1998, pp. 166-173.
In this experiment, the rate variance of the cross traffierials [13] z. Pan, E. Altman, and T. Basar, “Robust adaptive flowtairin high
(1.2 Mbp@), and therefore the PD controllers achieve gOOd uti- speedtelecommunicationsnetworks,Piroc. 35th IEEE Conf. on Decision

L. . . e and Contro] Dec. 1996, pp. 1341-1346.
lizations. However, the HO controller, while maintainif®t (14 s Fioyd and V. Jacobson, “Link-sharing and resourcaagament mod-

highest utilization value among the competing controllers els for packet networks,”|EEE/ACM Trans. Networkingvol. 3, no. 4,
i i pp. 365-386, Aug. 1995.
joysa much smaller queuing delay and cell loss rate. [15] T. Tuan and K. Park, “Multiple time scale congestion tohfor self-
. ; ; ; similar network traffic,” to appear iRerformance Evaluatiqri999.
Table 1: Performan.ce comparison us_lng 1000 voice [16] E.K.P.ChongandS. H. Zalkn Introduction to OptimizatiorJohn Wiley
Controller| Util Delay (ms) CLR UF [17] S. C. Liew and D. C. Tse, “A control-theoretic approachadapting
HO 0988 0.078 0.00 0.0089 VBR compressed video for transport over a CBR communicatiamnel,”
IEEE/ACM Trans. Networkingol. 6, no. 1, pp. 42-55, Feb. 1998.
PD-50 0.976 0.828 2.3%9e-3  0.0013 [18] I. Rubin and K. D. Lin, “A burst-level adaptive inputieflow control
PD-10 | 0.949 0.238 2.82e-4 0.0013 scheme for ATM networks,” inProc. IEEE INFOCOM 1993, vol. 2,
PD-1 0.896 0.087 6.22e-5 0.0013 pp. 386-394.

— — — - [19] D. Q. Mayne and H. Michalska, “Receding horizon contsbhonlinear
util = Utilization  CLR = Cell Loss Rate UF = Unfairness ™ sy tems,IEEE Trans. Auto. Contrvol. 35, no. 7, pp. 814-824, Jul. 1990.

[20] J. B. Rawlings and K. R. Muske, “The stability of constied receding

V. CONCLUSIONS horizon control,"IEEE Trans. Auto. Contrvol. 38, no. 10, pp. 1512-1516,
) ) ) _ Oct. 1993.
We have introduced an online sampling-based congestien J. M. Jaffe, “Bottleneck flow control”IEEE Trans. Communvol. 29,
controller to regulate best-effort traffic to achieve higiwork no. 7, pp. 954-962, Jul. 1981.
ffici We h d trated that loitinath f [22] F. Bonomiand K. Fendick, “The rate-based flow contrahfiework for the
€ 'Cl_ency' € have demons ra_e . a _eXp ol |_ng € Available Bit Rate ATM service,"IEEE Networkvol. 9, no. 2, pp. 25-39,
service-rate models can result in significantly improvetivoek Mar./Apr. 1995.
performance. [23] K. Bharath-Kumar and J. M. Jaffe, “A new approach to parfance-

. . . . oriented flow,” IEEE Trans. Communyol. 29, no. 4, pp. 427-435, Apr.
While the proposed control scheme is promising, two main ;gg7. : PP P

issues remain to be addressed: [24] V. M. Misra and W. B. Gong, “A hierarchical model for téfaffic,” in

1) Our hindsight-optimization framework is founded on a crisp_. Pro¢. 37th IEEE Conf. Decision and Contya98, vol. 2, pp. 1674-1679.
. . . . . 5] R. Jain, “Congestion control in computer networks:ukss and trends,
and powerful decision-theoretic formulation, but litteetinder- IEEE Networkvol. 4, no. 3, pp. 24-30, May 1990.

stood on conditions under which the technique works well. [26] R. Pazhyannur and R. Agrawal, “Feedback based flow obimtrATM

2) To incorporate a long-range-dependence traffic model into ng\e’so:/ﬁ V;“gg“;gggggopagaﬂon delays,” inProc. IEEE INFOCOM
our control scheme is an interesting direction worth purgui [27] Y.-C. Ho and X.-R. CaoPerturbation Analysis of Discrete Event Dynamic

Such a model can be made Markovian but with a potentially SystemsKiuwer Academic Publishers, Boston, 1991. _
large state space. Managing the size of the state space'lbut@%] L. R. Rabiner, A tutorial on hidden Markov models andestéd applica-

. L. tions in speech recognitiof®roc. of the IEEEvol. 77, no. 2, pp. 257-285,
capturing the long-range dependence is important for our ap Feh. 1989.

proach to apply in this case. [29] M. L. Littman, Algorithms for Sequential Decision Makinigh.D. Thesis,
Department of Computer Science, Brown University, 1996.
REFERENCES [30] I. Lengliz and F. Kamoun “A rate-based flow control medhfor ABR

service in ATM networks,” Computer Networksvol. 34, no. 1, pp. 129—
[1] A. Anick, D. Mitra, and M. Sondhi, “Stochastic theory oftata handling 138, Jul. 2000. _ _ _ _
system with multiple sources,Bell System Technical,Jvol. 61, no. 8, [31] D. Mitra and J. B. Seery, “Dynamic adaptive windows fagthspeed data

pp. 1871-1894,1982. networks with multiple paths and propagation delagnmputer Networks
[2] N. B. Shroff and M. Schwartz, “Improved loss calculatioat an ATM and ISDN Systemsol. 25, no. 6, pp. 663-679, Jan. 1993.
multiplexer,” IEEE/ACM Trans. Networkingvol. 6, no. 4, pp. 411-421, [32] E. K. P. Chong, S. Hui, and S. ak, “An Analysis of a Class of Neural
Aug. 1998. Networks for Solving Linear Programming Problem$ZEE Trans. Auto.
[38] L. A. Kulkarniand S.-Q. Li, “ Performance analysis of aeeased feed- Contr, vol. 44, no. 11, pp. 1995-2006, Nov. 1999.
back control schemelEEE/ACM Trans. Networkingol. 6, no. 6, pp. 797— [33] P. Kermaniand L. Kleinrock, “Dynamic flow control in sesand-forward
810, Dec. 1998. computer networks,JEEE Trans. Communvol. COM-28, no. 2, pp. 263—
[4] R. Pazhyannur and R. Agrawal, “Feedback-based flow obrmtf B- 271, Feb. 1980.
ISDN/ATM networks,” IEEE J. Select. Areas Communol. 13, no. 7, [34] E. Altman and P. Nain, “Closed-loop control with delayieformation,”
pp. 1252-1266, Sep. 1995. Performance Evaluation Reviewol. 20, no. 1, pp. 193—-204, Jun. 1992.
[5] E.K.P.Chong,R. L. Givan, and H. S. Chang, “A frameworkdgonulation- [35] J. Kuri and A. Kumar, “Optimal control of arrivals to ques with de-
based network control via Hindsight Optimization39th IEEE Conf. on layed queue length informationlEEE Trans. Auto. Contr.vol. 40, no. 8,
Decision and ContrgiDec. 2000. pp. 1444-1450, Aug. 1995.
[6] D. P. BertsekasDynamic Programming and Optimal Control, Volumes 1[36] D. P. Bertsekas and D. A. Castanon, “Rollout algorittforsstochastic
and 2 Athena Scientific, 1995. scheduling problems J. of Heuristics vol. 5,pp. 89-108, 1999.

[7] K. Ramakrishnan and R. Jain, “A binary feedback schemectmges-
tion avoidance in computer networksfCM Trans. Comput. Systol. 8,
pp. 158-181, 1990.

[8] L. Roberts, “Enhanced proportional rate control algun (PRCA),” in
ATM Forum/9494-0735R1, Aug. 1994.



