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Abstract. We consider the problem of automatically inferring proper-
ties of programs. Our approach is to explore the application of familiar
type inference principles to a “type system” sufficiently expressive that
the typing problem is effectively the checking of program specifications.
We use familiar syntax-directed type inference rules to give a polynomial-
time procedure for inferring type theorems in this rich type system. We
discuss examples of simple functional programs and the specification in-
formation this procedure automatically infers. The enriched notion of
type allows the definition of any recursively enumerable set as a type,
and includes argument-dependent output types for functions. The infer-
ence procedure is capable for example of automatically inferring that an
insertion sort program always returns a sorted permutation of its input.
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1 Introduction

Many researchers have studied type inference systems for functional program-
ming languages[10, 6, 11, 2]. The typical goal of such research is to allow the
programmer to omit type declarations without losing the benefits they provide.
The types inferred by such systems are typically similar to the primitive types of
a typed programming language with typings for functions added (so that @ — 3
is a type whenever o and 8 are). Many such type inference systems can be
described by sets of locally-acting syntax-directed type inference rules.

More recently, effective type inference systems have been given for more ex-
pressive type systems, e.g., allowing conditional types[l]. The stated motivation
for such increased expressiveness is to be able to infer types for more programs
to ensure type safety. These systems, like most type inference systems, typically
have poor worst-case complexity while retaining practical effectiveness.

We believe that there is a continuum between checking type safety and veri-
fying program correctness. As the language of the types inferred becomes more
expressive, the type inferences can more precisely characterize the outputs of
the programs being analyzed. Rather than inspire our type system from the
types present in programming languages, we suggest we draw inspiration from
the types present in programmers’ analysis of their own programs. Not only do
programmers use a very expressive type language (natural language), but we



observe that they are effective at quickly analyzing their own programs to draw
expressive typing conclusions. For example, a programmer writing an insertion
sort program can typically quickly and easily verify that his program returns a
sorted permutation of its input—we view this as the typing conclusion that the
output of “sort(1)” has the “types” “a sorted list” and “a permutation of 1”.

We take this human capability, along with the above-stated trend in type
inference systems, as evidence that there must exist fast and effective “type
inference” algorithms for very rich type systems. We define in this paper a gen-
eralization of the traditional notion of “type” to a much more expressive notion
of “specification”, or “spec”, and then give a type inference style algorithm for
inferring specifications for functional program expressions. Our algorithm runs
in polynomial-time, and is capable of automatically inferring specifications such
as the fact that insertion sort returns a sorted permutation of its input.

Note that the specifications “a permutation of the input” and “a sorted list”
differ from types in traditional type systems in at least two ways. The first
specification depends on the actual input to the function (not just the input’s
type). Such types are known as dependent types[13, 4], and our system depends
critically on including such types in our “specification” language. Second, the
set of “sorted lists” is not definable by a simple grammar, and so is not a regular
type. [14, 12, 3, 15] Our specification language allows any RE set to be defined
as a program specification. Note that this property allows one program, possibly
very inefficient but simple to understand, to serve as a correctness specification
for another program, more efficient but harder to understand.

We envision an interactive programming system in which programmers write
programs that include information about the specifications the programs are in-
tended to meet, using an expressive specification language. As the program is
written, the system checks that it is well-typed in the sense that no function is
applied to arguments that don’t provably meet the declared argument specifica-
tions for the function. Ideally, the system would be able to infer specifications for
expressions quickly and with human-level competence. Where necessary, the pro-
grammer would switch to a theorem proving mode and prove lemmas necessary
to aid the verification of the well-typedness.

Note that such a system would not require programmers to prove any more
than they desired about the program. By providing more, or less, specification
information to the system, the programmer can control where on the contin-
uum from checking run-time type safety to verifying program specifications the
programming process falls. By adding more specification information, the pro-
grammer can be sure that not only is “plus” receiving only numerical inputs,
but that “merge” is in fact passed two sorted lists, for example. By adding even
more, it may become verifiable that “mergesort” correctly sorts its input.

Short of achieving human-level specification inference, we believe that the
simplicity of the inference rules defining our algorithm makes it possible for a
programmer to develop the ability to predict what expressions the system will
be able to compute specifications for, and where and how it will need help. This
property may make an interactive environment based on this system acceptable
to some programmers in spite of below human-level specification inference.



The remainder of this paper is structured as follows: first, we present several
examples of simple programs and their automatically computed specifications;
second, we present the formal syntax and semantics of our programming and
specification languages; third, we present our inference algorithm, and then re-
visit the examples to demonstrate how it works.

2 Some Examples of Quickly Verifiable Specifications

We begin with an informal discussion of our programming and specification
languages, and examples of simple programs and their automatically computed
specifications. Later sections will contain a more formal treatment.

2.1 Example Programs

The programming language we will use is a simplified, typed first-order variant
of LISP. We call it first-order because it does not include first-class functions;
rather, user functions are introduced only through definitions (possibly recursive)
and used only by being applied to arguments.! We call it typed because every
variable is given at its introduction a user-provided specification (sometimes ab-
breviated spec). These specifications function much like types in a simply typed
programming language, except that they range over our specification language,
which is much more expressive than any familiar type system. Because the spec-
ification language is so expressive, we don’t expect providing specifications for
variables to be a significant burden on programmers, though it will still carry
some of the advantages of simply typed languages.

The programming language includes constructor and selector symbols (e.g.
cons, car, cdr) and has the intended semantics that each program expression
denotes some term in the Herbrand closure of the constructor symbols.?

Unlike LISP, our language syntax has a distinguished formula category, with
formulas of the form e:s meaning “e meets the spec s”. We will discuss the
computation implied by such formulas later. We now discuss computing specs
for three example programs. The user-provided definitions of the specification
functions (e.g. (a-number)) in these examples are shown and explained below.

Our first example program recursively defines + on numbers represented
in unary as lists of the symbol ’a. This program defines + to be a function
that operates on two arguments. Each of the arguments is declared to meet the
spec (a-number). Our system automatically determines that (+ x y) is always
greater than or equal to x and y (i.e., meets the specs (> x) and (> y)).

Our second example program defines insertion sort on a list of numbers, using
functions insert and sort. Our system automatically finds that (insert x 1)

! We omit first-class functions only for simplicity here. We believe this work extends
naturally to higher-order languages.
2 We require recursive definitions to be syntactically terminating.



returns a sorted permutation of (cons x 1), i.e., meets the specs (a-permuta-
tion-of (cons x 1)) and (a-sorted-list) and that (sort 1) always returns
a sorted permutation of the list 1.3

Our third and last example program is a first-order version of LISP’s mapcar.
Here, we map a fixed function £ across a list of numbers. Our system automati-
cally infers the spec (samelength-as 1) from reading the definition of map-£.

(define (+ (x (a-number)) (define (map-f (1 (a-numlist)))
(y (a-number))) (if 1:°nil
(if x:’nil 1
y (cons (f (car 1))
(cons ’a (+ (cdr x) y)))) (map-f (cdr 1)))))
(define (insert (x (a-number)) (define (sort (1 (a-numlist)))
(1 (a-sorted-list))) (if 1:’nil
(if 1:’nil 1
(cons x 1) (insert (car 1)
(if x: (> (car 1)) (sort (cdr 1)))))
(cons (car 1)
(insert x (cdr 1)))
(cons x 1))))

Fig. 1. Example program definitions.

2.2 Example Specifications

The specification language is less familiar. This language is essentially our pro-
gramming language extended by a nondeterministic either combinator.[9, 8]
Expressions in the specification language can take on more than one possible
value. The set of possible values of a specification expression can be viewed as
the type defined by that expression.

The either combinator applied to two expressions yields an expression that
can nondeterministically take on any of the values of either of the two arguments.
For example, the expression (either ’a ’b) can take on either of two the values
’a or ’b, and is our way of representing the type {’a, ’b}. Note that with
recursion, a single nondeterministic expression have an infinity of values.

We add two other new combinators to the language to take the intersection
or the set complement of the possible values of their arguments (both and not,

3 As we will exhibit below, the system has no built-in knowledge of permutations.
(a-permutation-of 1) is a spec defined by the user for arbitrary list 1. Once the
user (or a specification library) provides that definition and proves two simple and
natural theorems about it, the system can infer that sort has the desired spec.



respectively). Finally, we add a universal spec (a-thing) that nondeterministi-
cally returns any value at all, and an empty spec L that returns no values.

Note that specs, like programs, can contain variables. Moreover, a specifica-
tion variable can be bound by a program, in which case it refers to the object
that the program variable is eventually instantiated with. This means that specs
can represent dependent types, i.e., types that depend on an argument to the
function being defined. This added expressiveness is an important element of our
system, and the examples described in this section centrally involve dependent
types.

Figure 2 exhibits the definitions for all the specification functions used in the
examples above. Consider, e.g., the definition shown of the function a-number.
Given this definition, (a-number) denotes the set of all flat lists of ’a symbols.

;3 all lists with samelength as 1 (define (a—number)
(define (samelength-as (1 (a-list))) (either ’nil
(if 1:’nil (cons ’a (a—-number))))
1

(define (a-list)
(either ’nil
(cons (a-thing)
(define (a-list-member-of (1 (a-list))) (a-list))))
(if 1:’nil
bottom
(either (car 1)
(a-list-member-of (cdr 1)))))

(cons (a-thing)
(samelength-as (cdr 1)))))

;; any list of numbers
(define (a—numlist)
(either ’nil
(cons (a-number)

;; sorted lists starting with x (a-numlist))))
(define (an-slist-from (x (a—-number)))
(either ’nil ;3 a sorted list of numbers

(cons x (an-slist-from (>= x))))) (define (a-sorted-list)

(an-slist-from (a-number)))
(define (delete (x (a-thing))

(1 (a-list))) ;; the numbers >= x
(if 1:’nil ‘’nil (define (>= (x (a-number)))
(if x:(car 1) (either x
(cdr 1) (cons ’a (>= x))))
(cons (car 1)

(delete x (cdr 1)))))) ;; the numbers > x

(define (a-permutation-of (1 (a-list))) (define (> (x (a-number)))
(if 1:’mil (both (>= x) (not x)))
1
(let ((x (a-list-member-of 1)))
(cons x
(a-permutation-of (delete x 1))))))

Fig. 2. Example Specification Definitions



Finally, we say that a program expression e satisfies a spec s, written e:s,
if the value denoted by e is one of the possible values taken on by s. Abusing
notation, we also say that a spec ¢ satisfies another spec s, written #:s, if every
value of ¢ can be taken by s (analogous to the standard notion of subtype).

As a simple example, consider the spec expression for “non-zero number”,
(cons ’a (a-number)). Every value of this expression is a value of (a-number),
so the expression satisfies the spec (a-number).

In the definition of insert above we used the formula x:(> (car 1)) in
an if test. However, > is a specification function, defined by a nondeterministic
program. As in this case, our nondeterministic expressions often have infinitely
many values, and so cannot be executed. To use the > function in an if test
we must require > to have associated with it a means of computing membership
in the resulting specification, given particular arguments. This implementation
attachment can be written in our programming language, and proven to compute
the desired result with a theorem prover. These steps are straightforward for >.

We choose to write our if tests in this manner because it makes the extraction
of relevant type information from the test as straightforward as possible for the
inference mechanism. In the next section we will discuss the general restriction
we need to place on formulas appearing in programs to ensure that they are
computable. The use of attachment can always be avoided with no loss in clarity
or program effectiveness, all that is lost is those specification inferences that
depend on the type information in the if test in question.

3 A Programming Language with Specifications

Program Ezpressions . The program expressions are a first-order typed LISP
with constructor and selector functions, recursive definitions, let, and if:

ex=z|(letz:eer) | (fer---en)| (ife:s* e1 €3)

where f can be n-ary constructor, selector or n-ary program function-symbol,
and s* must be testable (see below). We often write a quoted symbol as an
abbreviation for the application of a 0-ary constructor.*

Specification Ezpressions . Specification expressions are formed from the same
grammar extended with either, both, not, L, and a-thing:

su=z | (letz:ss1) | (f s1---sn)| (if $1:52 53 54)
| (either S1 32) | (both S1 32) | (not s) | 1 | (a—thing)

where f can now be any n-ary constructor or selector, or n-ary program or
specification function-symbol that is defined or being defined. Note that every
program expression is also a specification expression.®

* A full language would also include boolean operations in the formulas in if tests.
No extra difficulties are presented by this extension.

5 We include both and not for convenience—they can also be taken to abbreviate
appropriate expressions using let and if, recognized by the inference process.



Programs . We consider a sequence of function-symbols definitions to be a pro-
gram. A function-symbol definition assigns to a new function-symbol either of
(lambda #1: 81, ", 2n : Sp 8) or (fix f #1:81, -, 2y : Sp s) where the body
s must be deterministic (i.e. a program expression) if the symbol being de-
fined is a program function-symbol. The specs s; can reference and depend on
the variables z1,...,z;_1. Note that we differentiate between defined program
function-symbols and defined specification function-symbols.

We must restrict recursive definitions to ensure that every fix expression
accepted has a well-defined least fixed point. For this language it suffices to pro-
hibit recursive calls in positions that are not syntactically monotone—we exclude
recursive calls inside the test of an if, inside an odd number of not expressions,
or inside the type specifications of the parameters of the definition. In addition
to this restriction, we require definitions of function symbols to be used in pro-
gram expressions to be syntactically terminating. Checking termination is a deep
problem itself[7], but here we simply require that there be some argument to the
function whose Herbrand size is reduced in each recursive call.

Semantics . Our semantic domain is the Herbrand closure over the constructor
functions, with an error () element adjoined. When a function is applied to
objects outside its domain (as indicated by the specs on its formal parameters)
it returns e. Each program expression denotes either a Herbrand term or the
error element. Each specification expression denotes a subset of the domain.
Assigning meanings to the various expressions compositionally is routine; we
discuss only the unusual cases in specification meaning. Because a specification
denotes a set of objects, the meaning of function application may not be obvious:
to apply a function f to sets aj,...,a,, choose objects z1,...,z, from the a;
respectively, and compute f(z1,...,2,). The function application will denote
the set of values that can be obtained in this manner. Viewed as a nondeter-
ministic computation, we first nondeterministically compute arguments for the
function, and then apply the function, with many possible results. The s1:s2
test of an if expression is true exactly when s1 denotes a subset of s2’s denota-
tion. (a-thing) denotes the set of all domain objects, and L denotes the empty
set. Either, both, and not are computed with union, intersection, and set com-
plement relative to the domain, respectively. Any time a program expression is
used as a specification, it’s denotation is the set containing the object it denotes.
Note that in both specifications and program expressions, £ix and lambda
expressions have only one meaning (not nondeterministically many): in each case
it is a relation over the domain, a functional relation for program expressions.

Implementation Attachments We require the user to attach verified program ex-
pressions to any specification function used in a way requiring it to be computed
(in this language, in the test of an if). We also place sufficient restrictions on
the use of specifications in programs to ensure that the programs can be run.
A spec s* is testable if it is either a program expression or the application
of a computable specification function to program expressions.® A specification

& The application of a specification function to a non-program expression is not directly



function is computable if it has been given a proven program implementation.

As an example, consider the if test x:(> (car 1)) in insert. Our lan-
guage forces us to write this uncomputable test rather than the more familiar (>
x (car 1)). However, to avoid this restriction we can just write the program
for the predicate form of > returning ’true or ’false, and then use ’true:
(> x (car 1)). Doing this will lose the advantages our system gains from ex-
tracting type information about the formal parameter # from the if test.

To retain these advantages, our user must take the same predicate definition
(call it >-imp), shown in Fig. 3 and prove the attachment theorems shown. Our
system recognizes theorems of this form and will then allow the implemented
specification function to appear in program expressions, as in insert.

(define (>-imp (x (a-number)) forall y:(a-number) x:(> y)
(y (a-number))) (>-imp x y):’true
(if x:’nil
’false
(if y:’nil
’true
(>-imp (cdr x) (cdr PN

forall y:(a-number) x:(not (> y))
(>-imp x y):’false

Fig. 3. The implementation of the function > and the associated attachment theorems.

4 Program Analysis: Inferring Specifications

For each new user definition our system extracts type lemmas which are then
used in the analysis of future definitions. Our algorithm thus operates in the
context of a library of previously derived knowledge. This library is just a set of
known universally quantified specification formulas forall zi1:81---Zn:Sn . S:t.
We call such formulas type theorems. The general problem that the algorithm in
this section attacks we call the specification inference problem. Given a library
L of type theorems (about already processed definitions) and a new definition
assigning some lambda or fix expression e to some new function symbol g,
analyze e to generate new type theorems about g to add to the library £. We
present the algorithm and then discuss its application to the examples above.

4.1 An Inference Algorithm

There are three parts to our central analysis algorithm. First, a forward-chaining
inference closure intended as a notion of “obvious consequence” (I.); second, a
syntax-directed, type-inference inspired inference relation (i~.) that manages
the application of t-.; and third, a preprocessing stage which prepares the new
definition for analysis by I=,. Our solution to the specification inference problem
is to add to £ those theorems inferred when t, is applied to the definitions
generated by preprocessing.

computable even if all the functions involved have attachments.



The Forward-Chaining Inference Relation |-, We now define a polynomial-time
computable inference relation I, where e is the lambda or £ix expression being
analyzed. Given a premise set X of formulas (e.g. s:t), we say that ¥ F, s:¢
for specs s and ¢t whenever s:¢ is in the closure over X of the inference rules
given below. Note that in addition to reasoning about specification formulas,
the inference rules draw (and use) conclusions of the form Dom (s) for specifica-
tion expression s. These domain analysis conclusions have no intended semantic
meaning and are used by the algorithm to limit the scope of the reasoning to re-
main within polynomial time. We will prove that there are at most polynomially
many conclusions Dom (s) inferred. The intended intuition is that the inference
process reasons only about expressions in this polynomial-sized “domain”. |-, is
defined by the inference rules given in Fig. 4.

Sym  Trans Not-Sym Eitherl Either2 Under-Both
s Dom (d) r:(either s t) siT, tir Dom (both s t)
piq st d:(not €) r:(not s) Dom (either s t) s, it
q:p it e:(not d) it (either s t):r r:(both s t)
Basic-Either Basic-Both Always Selectorsl
Dom (either s t) Dom (both s t) Dom (s) Dom (cons p q)
s:(either s t) (both s t):s sis, Lis p:(car (cons p q))
t:(either s t) (both s t):t s:(a-thing) g:(cdr (cons p q))
Selectors2 Strictness Monotonicity Constructors
Dom (r) sl:tl...sn:itn Dom (cl sl...sn)
r:(cons s t) Dom (f sl...sn) d:(f sl ...sn) Dom (c2 tl...tm)
_ si: L Dom (f t1...tn) cl #c2
(car r):s
(edr r):t (fsl...sn): L d:(f t1...tn) (cl sl...sn) : (not (c2 tl...tm))
Dom-Always Dom-Subexp Univ-Dom Univ-Inst
Dom (r) forall z:s &
s a subexzp of r forall z:s ¢ p:s, p appears in e
Dom (a-thing) Dom (s) Dom (s) [p/z] @
Dom (1), Dom (e) Dom ([p/z] &)

Fig.4. Basic Inference Rules for .. p and q must be program ezpressions.r, s
and t can be any specification expressions. f can be any function symbol, constructor
or selector. c is any constructor. The selector rules are shown for cons/car/cdr. In the
rule Univ-Inst, the notation [r/z]s denotes s with each free occurrence of z replaced
by r.

Let X be a premise set of type theorems. Let A be the set of all expressions
s such that Dom (s) is inferred by forward-chaining the above rules from X. We
observe the following two complexity bounds:



1. A has at most polynomially many members in the size of X, and
2. The forward-chaining can be computed in polynomial-time in the size of A.

The first bound follows from the observation (provable by induction on the
length of derivation) that every spec in A is either L, (a-thing), a subexpression
of e, or a subexpression of a universal formula forall z;:51...2,:5, € in X
with its variables replaced by subexpressions of e. The last case forces us to limit
the quantification depth of formulas in X' to some constant—then there are only
polynomially many instances of universal formulas in ¥ on subexpressions of e.”

To see the second bound, observe that by induction on the length of derivation
every spec in any new conclusion is of the form: s, (not s), (car s), or (cdr
s) for some s in A. There are only polynomially many such conclusions and for
any not yet closed premise set we can find a new conclusion in polynomial time.

We wish to point out that, although there are a large number of rules given
above, they are clearly not designed for the specific examples we’ve exhibited.
Each rule is a natural and simple local rule capturing a small piece of the mean-
ing of one language construct. The important thing about these rules is that
they capture a large polynomial time fragment of the quantifier-free inference
problem. For any new language features, we can always capture some polynomial-
time portion of the possible new inferences in similar forward-chaining rules. The
examples serve to demonstrate the power this kind of simple rule set can wield.

The Syntaz-Directed Inference Relation >, We now use the I, relation just de-
fined to define a stronger I, relation that handles let, if, lambda, and fix by
adding the sequent inference rules shown below. These rules are roughly analo-
gous to typical type inference rules: they are syntax directed, so that typing of
any expression can be done in a linear number of |, closures. The Analyze-
Fix, Analyze-Lambda, and Beta-Abstract-e rules are shown for one-argument
expressions, but the analogous rules for arbitrary arity are intended. We use the
expression THMS5; . (s) to abbreviate the set of all specification formulas of the
form s:t¢ provable from X using Fe..

The analyze-if rule does a simple case analysis on the if test. Because our
e inference rules reason only about positive specification formulas, we negate
formulas with the meta-function Neg, which takes as input a formula s:t and
returns s:(not t) if s is a program expression, and s:(a-thing) otherwise.
Analyze-let is implicitly doing universal generalization when r is not a program
expression. Analyze-Nondet-App provides rudimentary reasoning about nonde-
terministic applications. The Analyze-Lambda, Analyze-Fix, and Beta-Abstract-
e rules are needed only at the top level of function symbol definitions.

It remains to specify how induction hypotheses for the rule Analyze-Fix are
selected. Space allows only the following concise description: we compute a se-
quence of hypotheses 1o, 77 --- where each 1; is a set of specifications which
is a subset of T;_;. This sequence eventually reaches the desired fixed point

7 For lemmas that were derived by the system, the bound on quantification depth can
derive from bounds on the arity of functions and the depth of Let nesting within
analyzed definitions.



Analyze-If Analyze-Let

I'=% U THMSs,.(r) U THMSx5 . (s) I'=% U THMSx . (r)
I, s o ul:t I', xir Fo. sit
I', Neg(r:s) o, u2:t xnotin I'ort
X bo. (if ris ul u2):t Y to. (let xir s):t
Analyze-Nondet-App Beta-Abstract-e
X bo. (let x1:sl...xmsn (f x1...xn)):t e is (lambda z:s B)

No &; in ¥ or t, some s; non-program
X to. forall z:s B:(e z)

X bo. (fsl...sn):t

Analyze-Lambda Analyze-Fix
I' =Y U THMSx% . (r) I' =Y U THMSx% . (r)
Forall z; :7
I z:r o, B:t r z:r ko, B: 1T
' ' (f ®1):[z1/a] 1’
z and ¢, not in I’y ; not in B z and ¢, not in I’y ; not in B

Forall zq:7
((fix f ¢:v B) @1):[z1 /2] ]

Forall z; :7

¥ bee ((lambda z:r B) =z ):[z1 /=]t

X Fo.

Fig.5. Sequent Rules for o.. Neg is discussed in the text. r, s, t, u, I, and B are
any specification expressions.

hypothesis. The sequence is defined as follows:

Forall z1:81...%p:8n
Y=<t fo. B:t
7(T) { ‘LU{ (gz1...24) : B(Y) } }

To=T(HL})
T =T(H)NT:

where B(T") is the both expression intersecting all the members of 1"

Definition Preprocessing Suppose we are presented with a new definition to an-
alyze, defining the symbol f to be a function with arguments z; ...z, of types
$1...5yn and (possibly recursive) body B. Rather than simply apply the I~ rela-
tion directly to f, we begin by factoring the definition of f into a set of definitions
f1,..., fn such that f is semantically the same function as one that nondeter-
ministically picks one of the f; and applies it. Our purposes in factoring are
twofold: it enables the easy statement of some useful theorems; and it supports
some limited case analysis in reasoning about applications of the function.

We first factor the definition of f into the set of definitions f, fi, ..., fx where
fi,..., fr are all definitions that can be produced from f by the rewrite rules
in figure 6 but cannot be further rewritten (if two definitions differ only in the
ordering of their formal parameters, we include only one of them in the f;). We
note that the size of fi,..., fx is linear in the size of f.



Either-Def Let-Def
(define (f...) (either B1 B2)) (define (f x1:si...xn:sn) (let x:s B))

(define (f...) Bi), i=1 or 2 (define (f x1:si1...xn:sn x:s) B)
If-Def

(define (f x1:si...xn:sn) (if xi:s B1 B2))
yil:tl...yn:tn is a suitable reordering of the xi:si

(define (f yi:ti...yi:(both s ti) yn:tn) B1)
(define (f yi:ti...yi:(both (not s) ti) yn:tn) B2)

Fig. 6. Rewrite Rules for Definition Factoring. In the If-Def rule, a reordering
is suitable if it yields an output definition with no free variables.

To try and convey some intuition about the f; defined by this rewrite process,
consider an f; with arguments y; ...y, of types ¢1...1,, and body B;. The y;
are made up of the (possibly reordered) original formal parameters of f (the z;)
and the let variables in scope around B; in B. The t; restrict the y; to exactly
those values that those variables can take in B; during an evaluation of f. Thus,
(fi t1...tym) can take on exactly the values that B; contributes to f. We call
this the output type of f;.

Now consider an application of f, (fs}---sl,). We seek to characterize the
contribution of B; to the values of this application. We will write ¢, ; for
the type spec of the variable z; in the parameter list of f;. We claim that
[(both tg,,i 81)/te,,i] - -[(both te, i 85)/te,,i] (fi t1...tm) is the characteriza-
tion we seek. We call this expression the output type of f; when restricted to
the s'.. The either expression unioning the output types of the f; restricted to
the s’ is equivalent to (fs7 ---s,). We called this union expression the factored
application of f to the s;.

Finally, we eliminate f entirely from the bodies of the f; by replacing each
application of f with its factored form, to get new definitions f1,..., fi, and
redefine f to be the union (either) of the f/. We use the I~ relation from the
previous section to analyze the mutually recursive f/, and then f, and add the
resulting theorems to our library L.

The combination of definition factoring with the e-rule Beta-Abstract-e
yields many useful theorems which we call factoring theorems. Several examples
of these are shown in Fig. 7. Factoring also enhances the conditional analysis
done by the recursive descent algorithm.

4.2 Inferring the Specifications in Our Examples

We now return to our example programs and discuss their analysis
The theorems shown in Fig. 7 are among those generated automatically when
reading the specification definitions shown in Sect. 2. These and others like them



are used in calculating the specifications cited for the example programs.

(1) forall 1:(both (a-1list) (mot ’nil))
(cons (a-thing) (samelength-as (cdr 1))) : (samelength-as 1)

(2) forall 1:(both (a-list) (not ’nil))
z: (not (car 1))
(cons (car 1) (delete z (cdr 1))) : (delete z 1)

(3) forall 1:(both (a-list) (mot ’nil))
z: (a-list-member-of 1)
(cons z (a-permutation-of (delete z 1))) : (a-permutation-of 1)

(4) forall 1:(both (a-list) (not ’nil)) (cdr 1):(delete (car 1) 1)
(5) forall 1:(both (a-list) (not ’nil)) (car 1):(a-list-member—of 1)
(6) forall x:(a-number) (either x (cons ’a (>=x))) : (>= x)

(7) forall x:(a-number) (> x):(both (>= x) (not x))

(8) (a—numlist): (a-list)

(9) (a—numlist): (either ’nil (cons (a-number) (a-numlist)))

(A) (either ’nil (cons (a-number) (a-list))):(a-numlist)

Fig. 7. Some automatically generated theorems used in the examples. All but (8) and
(9) are generated by factoring analysis of specification definitions. (8) and (9) are
generated by the inferential closure analysis of a-numlist.

Each example requires the presence of some additional simple and natural
theorems, shown in Fig. 8. We intend either that the user have proven these
theorems using a theorem prover or that he is using a specification library con-
taining the definitions and theorems. Each theorem captures a basic property of
the definitions, rather than a property targeted to any of our examples.® Most of
the theorems can be proven automatically by a simple inductive theorem prover.

To conclude our discussion of these examples, we show some of the critical
inference steps involved in drawing one of the tougher conclusions. To determine
that (insert x 1) has the specification (a-permutation-of (cons x 1)), the
system must first choose that specification as an inductive hypothesis. This hap-
pens because it is a specification of the base case (cons x 1), by the theorem
that any list is a permutation of itself—and a simple inference chain that demon-
strates that (cons x 1):(a-list). Once we have (a-permutation-of (cons
x 1)) as an inductive hypothesis, the analysis of the recursive case of the if
body goes as shown in Fig. 9. Similar chains of reasoning are involved in auto-
matically drawing the other specification conclusions cited above.

8 An exception to this is the second lemma on the right, which mitigates a weakness
in our reasoning about nondeterminism. Stronger polynomial-time reasoning about
non-determinism is possible and is addressed in the full paper[5].



forall 1:(a-list) forall 1:(both (a-sorted-list) (not ’nil))

1: (samelength-as 1) 1: (an-slist-from (car 1))
forall 1:(a-list) forall n: (a-number)
1: (a-permutation-of 1) 1:(both (an-slist-from (>= n))
(not ’nil))

forall x:(a-number)
y:(not (> x))
x:(>=y) forall 1:(a-list)
(a-permutation-of (a-permutation-of 1)):
(a-permutation-of 1)

(car 1):(>=n)

forall n: (a-number)
= (>=n)):(>=n)
forall n:(a-number) (cons ’a (>= n)):(>= (cons ’a n))

Fig. 8. The theorems needed from the user or the specification library.

(cons x (cdr 1lst))
by theorem (4) above is under (cons x (delete (car lst) 1lst))
by selectors rule is under (cons (car (cons x lst))
(delete (car 1lst)
(cdr (coms x 1st))))
by theorem (2) is under (delete (car 1st) (cons x 1lst)) (*)

(cons (car 1lst) (insert x (cdr 1lst)))
by ind hyp is under (cons (car 1lst)
(a-permutation-of (cons x (cdr 1lst))))
by (*) is under (cons (car lst)
(a-permutation-of
(delete (car 1lst) (cons x 1lst))))
by theorem (3) is (a-permutation-of (cons x 1lst)) as desired.

Fig.9. The main inference chain involved in analyzing insert. First, (cons x (cdr
1st)) is analyzed to get the result labelled (*). This result is used to analyze the re-
cursive branch of insert. The inductive hypothesis puts (insert x (cdr 1st)) under
(a-permutation-of (cons x (cdr 1lst))). Not every inference rule used is cited.

5 Conclusion

We presented a polynomial-time type inference inspired algorithm for inferring
properties, viewed as types, of functional programs. We also gave an expressive
language for defining new types to extend the “type system” of the algorithm.
Several extensions to this work are addressed in the full version[5].

An important remaining task is developing a better understanding of what
properties this algorithm and related algorithms can infer. This algorithm is ca-
pable for example of checking the correctness of merge-sort much like it checks
insertion sort. In contrast, difficulties arise in a naive attempt to check quick-
sort. It remains an open problem to cleanly characterize the set of checkable
properties.

There are many natural specification theorems that this algorithm will not



infer. Exploration of such examples will suggest many ways of enriching the set
of checkable properties while remaining within polynomial time. One of the dif-
ficulties in working in an area where completeness is out of reach lies in knowing
when you’ve done enough, or whether there is such a point.

An interesting area for future research is the question of how to identify for
the programmer the place where a proof is failing. When a forward-chaining
process fails to generate a desired formula, it is not clear where to place the
blame. Explaining failure may require backward chaining from the goal.
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