
Inferring Program Speci�cations inPolynomial-TimeRobert GivanMassachusetts Institute of Technology,NE43-430, Cambridge, MA 02139, USArlg@ai.mit.edu, http://www.ai.mit.edu/people/rlg/rlg.htmlAbstract. We consider the problem of automatically inferring proper-ties of programs. Our approach is to explore the application of familiartype inference principles to a \type system" su�ciently expressive thatthe typing problem is e�ectively the checking of program speci�cations.We use familiar syntax-directed type inference rules to give a polynomial-time procedure for inferring type theorems in this rich type system. Wediscuss examples of simple functional programs and the speci�cation in-formation this procedure automatically infers. The enriched notion oftype allows the de�nition of any recursively enumerable set as a type,and includes argument-dependent output types for functions. The infer-ence procedure is capable for example of automatically inferring that aninsertion sort program always returns a sorted permutation of its input.Keywords: Functional Programming, Type Inference, Veri�cation, Induction1 IntroductionMany researchers have studied type inference systems for functional program-ming languages[10, 6, 11, 2]. The typical goal of such research is to allow theprogrammer to omit type declarations without losing the bene�ts they provide.The types inferred by such systems are typically similar to the primitive types ofa typed programming language with typings for functions added (so that �! �is a type whenever � and � are). Many such type inference systems can bedescribed by sets of locally-acting syntax-directed type inference rules.More recently, e�ective type inference systems have been given for more ex-pressive type systems, e.g., allowing conditional types[1]. The stated motivationfor such increased expressiveness is to be able to infer types for more programsto ensure type safety. These systems, like most type inference systems, typicallyhave poor worst-case complexity while retaining practical e�ectiveness.We believe that there is a continuum between checking type safety and veri-fying program correctness. As the language of the types inferred becomes moreexpressive, the type inferences can more precisely characterize the outputs ofthe programs being analyzed. Rather than inspire our type system from thetypes present in programming languages, we suggest we draw inspiration fromthe types present in programmers' analysis of their own programs. Not only doprogrammers use a very expressive type language (natural language), but we



observe that they are e�ective at quickly analyzing their own programs to drawexpressive typing conclusions. For example, a programmer writing an insertionsort program can typically quickly and easily verify that his program returns asorted permutation of its input|we view this as the typing conclusion that theoutput of \sort(l)" has the \types" \a sorted list" and \a permutation of l".We take this human capability, along with the above-stated trend in typeinference systems, as evidence that there must exist fast and e�ective \typeinference" algorithms for very rich type systems. We de�ne in this paper a gen-eralization of the traditional notion of \type" to a much more expressive notionof \speci�cation", or \spec", and then give a type inference style algorithm forinferring speci�cations for functional program expressions. Our algorithm runsin polynomial-time, and is capable of automatically inferring speci�cations suchas the fact that insertion sort returns a sorted permutation of its input.Note that the speci�cations \a permutation of the input" and \a sorted list"di�er from types in traditional type systems in at least two ways. The �rstspeci�cation depends on the actual input to the function (not just the input'stype). Such types are known as dependent types[13, 4], and our system dependscritically on including such types in our \speci�cation" language. Second, theset of \sorted lists" is not de�nable by a simple grammar, and so is not a regulartype. [14, 12, 3, 15] Our speci�cation language allows any RE set to be de�nedas a program speci�cation. Note that this property allows one program, possiblyvery ine�cient but simple to understand, to serve as a correctness speci�cationfor another program, more e�cient but harder to understand.We envision an interactive programming system in which programmers writeprograms that include information about the speci�cations the programs are in-tended to meet, using an expressive speci�cation language. As the program iswritten, the system checks that it is well-typed in the sense that no function isapplied to arguments that don't provably meet the declared argument speci�ca-tions for the function. Ideally, the system would be able to infer speci�cations forexpressions quickly and with human-level competence. Where necessary, the pro-grammer would switch to a theorem proving mode and prove lemmas necessaryto aid the veri�cation of the well-typedness.Note that such a system would not require programmers to prove any morethan they desired about the program. By providing more, or less, speci�cationinformation to the system, the programmer can control where on the contin-uum from checking run-time type safety to verifying program speci�cations theprogramming process falls. By adding more speci�cation information, the pro-grammer can be sure that not only is \plus" receiving only numerical inputs,but that \merge" is in fact passed two sorted lists, for example. By adding evenmore, it may become veri�able that \mergesort" correctly sorts its input.Short of achieving human-level speci�cation inference, we believe that thesimplicity of the inference rules de�ning our algorithm makes it possible for aprogrammer to develop the ability to predict what expressions the system willbe able to compute speci�cations for, and where and how it will need help. Thisproperty may make an interactive environment based on this system acceptableto some programmers in spite of below human-level speci�cation inference.



The remainder of this paper is structured as follows: �rst, we present severalexamples of simple programs and their automatically computed speci�cations;second, we present the formal syntax and semantics of our programming andspeci�cation languages; third, we present our inference algorithm, and then re-visit the examples to demonstrate how it works.2 Some Examples of Quickly Veri�able Speci�cationsWe begin with an informal discussion of our programming and speci�cationlanguages, and examples of simple programs and their automatically computedspeci�cations. Later sections will contain a more formal treatment.2.1 Example ProgramsThe programming language we will use is a simpli�ed, typed �rst-order variantof LISP. We call it �rst-order because it does not include �rst-class functions;rather, user functions are introduced only through de�nitions (possibly recursive)and used only by being applied to arguments.1 We call it typed because everyvariable is given at its introduction a user-provided speci�cation (sometimes ab-breviated spec). These speci�cations function much like types in a simply typedprogramming language, except that they range over our speci�cation language,which is much more expressive than any familiar type system. Because the spec-i�cation language is so expressive, we don't expect providing speci�cations forvariables to be a signi�cant burden on programmers, though it will still carrysome of the advantages of simply typed languages.The programming language includes constructor and selector symbols (e.g.cons, car, cdr) and has the intended semantics that each program expressiondenotes some term in the Herbrand closure of the constructor symbols.2Unlike LISP, our language syntax has a distinguished formula category, withformulas of the form e:s meaning \e meets the spec s". We will discuss thecomputation implied by such formulas later. We now discuss computing specsfor three example programs. The user-provided de�nitions of the speci�cationfunctions (e.g. (a-number)) in these examples are shown and explained below.Our �rst example program recursively de�nes + on numbers representedin unary as lists of the symbol 'a. This program de�nes + to be a functionthat operates on two arguments. Each of the arguments is declared to meet thespec (a-number). Our system automatically determines that (+ x y) is alwaysgreater than or equal to x and y (i.e., meets the specs (� x) and (� y)).Our second example program de�nes insertion sort on a list of numbers, usingfunctions insert and sort. Our system automatically �nds that (insert x l)1 We omit �rst-class functions only for simplicity here. We believe this work extendsnaturally to higher-order languages.2 We require recursive de�nitions to be syntactically terminating.



returns a sorted permutation of (cons x l), i.e., meets the specs (a-permuta-tion-of (cons x l)) and (a-sorted-list)and that (sort l) always returnsa sorted permutation of the list l.3Our third and last example program is a �rst-order version of LISP's mapcar.Here, we map a �xed function f across a list of numbers. Our system automati-cally infers the spec (samelength-as l) from reading the de�nition of map-f.(define (+ (x (a-number))(y (a-number)))(if x:'nily(cons 'a (+ (cdr x) y))))(define (insert (x (a-number))(l (a-sorted-list)))(if l:'nil(cons x l)(if x:(> (car l))(cons (car l)(insert x (cdr l)))(cons x l))))
(define (map-f (l (a-numlist)))(if l:'nill(cons (f (car l))(map-f (cdr l)))))(define (sort (l (a-numlist)))(if l:'nill(insert (car l)(sort (cdr l)))))Fig. 1. Example program de�nitions.2.2 Example Speci�cationsThe speci�cation language is less familiar. This language is essentially our pro-gramming language extended by a nondeterministic either combinator.[9, 8]Expressions in the speci�cation language can take on more than one possiblevalue. The set of possible values of a speci�cation expression can be viewed asthe type de�ned by that expression.The either combinator applied to two expressions yields an expression thatcan nondeterministically take on any of the values of either of the two arguments.For example, the expression (either 'a 'b) can take on either of two the values'a or 'b, and is our way of representing the type f'a; 'bg. Note that withrecursion, a single nondeterministic expression have an in�nity of values.We add two other new combinators to the language to take the intersectionor the set complement of the possible values of their arguments (both and not,3 As we will exhibit below, the system has no built-in knowledge of permutations.(a-permutation-of l) is a spec de�ned by the user for arbitrary list l. Once theuser (or a speci�cation library) provides that de�nition and proves two simple andnatural theorems about it, the system can infer that sort has the desired spec.



respectively). Finally, we add a universal spec (a-thing) that nondeterministi-cally returns any value at all, and an empty spec ? that returns no values.Note that specs, like programs, can contain variables. Moreover, a speci�ca-tion variable can be bound by a program, in which case it refers to the objectthat the program variable is eventually instantiated with. This means that specscan represent dependent types, i.e., types that depend on an argument to thefunction being de�ned. This added expressiveness is an important element of oursystem, and the examples described in this section centrally involve dependenttypes.Figure 2 exhibits the de�nitions for all the speci�cation functions used in theexamples above. Consider, e.g., the de�nition shown of the function a-number.Given this de�nition, (a-number) denotes the set of all 
at lists of 'a symbols.;; all lists with samelength as l(define (samelength-as (l (a-list)))(if l:'nill(cons (a-thing)(samelength-as (cdr l)))))(define (a-list-member-of (l (a-list)))(if l:'nilbottom(either (car l)(a-list-member-of (cdr l)))));; sorted lists starting with x(define (an-slist-from (x (a-number)))(either 'nil(cons x (an-slist-from (>= x)))))(define (delete (x (a-thing))(l (a-list)))(if l:'nil 'nil(if x:(car l)(cdr l)(cons (car l)(delete x (cdr l))))))(define (a-permutation-of (l (a-list)))(if l:'nill(let ((x (a-list-member-of l)))(cons x(a-permutation-of (delete x l))))))

(define (a-number)(either 'nil(cons 'a (a-number))))(define (a-list)(either 'nil(cons (a-thing)(a-list))));; any list of numbers(define (a-numlist)(either 'nil(cons (a-number)(a-numlist))));; a sorted list of numbers(define (a-sorted-list)(an-slist-from (a-number)));; the numbers >= x(define (>= (x (a-number)))(either x(cons 'a (>= x))));; the numbers > x(define (> (x (a-number)))(both (>= x) (not x)))Fig. 2. Example Speci�cation De�nitions



Finally, we say that a program expression e satis�es a spec s, written e:s,if the value denoted by e is one of the possible values taken on by s. Abusingnotation, we also say that a spec t satis�es another spec s, written t:s, if everyvalue of t can be taken by s (analogous to the standard notion of subtype).As a simple example, consider the spec expression for \non-zero number",(cons 'a (a-number)). Every value of this expression is a value of (a-number),so the expression satis�es the spec (a-number).In the de�nition of insert above we used the formula x:(> (car l)) inan if test. However, > is a speci�cation function, de�ned by a nondeterministicprogram. As in this case, our nondeterministic expressions often have in�nitelymany values, and so cannot be executed. To use the > function in an if testwe must require > to have associated with it a means of computing membershipin the resulting speci�cation, given particular arguments. This implementationattachment can be written in our programming language, and proven to computethe desired result with a theorem prover. These steps are straightforward for >.We choose to write our if tests in this manner because it makes the extractionof relevant type information from the test as straightforward as possible for theinference mechanism. In the next section we will discuss the general restrictionwe need to place on formulas appearing in programs to ensure that they arecomputable. The use of attachment can always be avoided with no loss in clarityor program e�ectiveness, all that is lost is those speci�cation inferences thatdepend on the type information in the if test in question.3 A Programming Language with Speci�cationsProgram Expressions . The program expressions are a �rst-order typed LISPwith constructor and selector functions, recursive de�nitions, let, and if:e ::= x j (let x :e e1) j (f e1 � � � en)j (if e : s� e1 e2)where f can be n-ary constructor, selector or n-ary program function-symbol,and s� must be testable (see below). We often write a quoted symbol as anabbreviation for the application of a 0-ary constructor.4Speci�cation Expressions . Speci�cation expressions are formed from the samegrammar extended with either, both, not, ?, and a-thing:s ::= x j (let x :s s1) j (f s1 � � �sn)j (if s1 :s2 s3 s4)j (either s1 s2) j (both s1 s2) j (not s) j ? j (a-thing)where f can now be any n-ary constructor or selector, or n-ary program orspeci�cation function-symbol that is de�ned or being de�ned. Note that everyprogram expression is also a speci�cation expression.54 A full language would also include boolean operations in the formulas in if tests.No extra di�culties are presented by this extension.5 We include both and not for convenience|they can also be taken to abbreviateappropriate expressions using let and if, recognized by the inference process.



Programs . We consider a sequence of function-symbols de�nitions to be a pro-gram. A function-symbol de�nition assigns to a new function-symbol either of(lambda x1 : s1; � � � ; xn : sn s) or (fix f x1 : s1; � � � ; xn : sn s) where the bodys must be deterministic (i.e. a program expression) if the symbol being de-�ned is a program function-symbol. The specs sj can reference and depend onthe variables x1; : : : ; xj�1. Note that we di�erentiate between de�ned programfunction-symbols and de�ned speci�cation function-symbols.We must restrict recursive de�nitions to ensure that every fix expressionaccepted has a well-de�ned least �xed point. For this language it su�ces to pro-hibit recursive calls in positions that are not syntactically monotone|we excluderecursive calls inside the test of an if, inside an odd number of not expressions,or inside the type speci�cations of the parameters of the de�nition. In additionto this restriction, we require de�nitions of function symbols to be used in pro-gram expressions to be syntactically terminating. Checking termination is a deepproblem itself[7], but here we simply require that there be some argument to thefunction whose Herbrand size is reduced in each recursive call.Semantics . Our semantic domain is the Herbrand closure over the constructorfunctions, with an error (�) element adjoined. When a function is applied toobjects outside its domain (as indicated by the specs on its formal parameters)it returns �. Each program expression denotes either a Herbrand term or theerror element. Each speci�cation expression denotes a subset of the domain.Assigning meanings to the various expressions compositionally is routine; wediscuss only the unusual cases in speci�cation meaning. Because a speci�cationdenotes a set of objects, the meaning of function application may not be obvious:to apply a function f to sets �1; : : : ; �n, choose objects x1; : : : ; xn from the �irespectively, and compute f(x1; : : : ; xn). The function application will denotethe set of values that can be obtained in this manner. Viewed as a nondeter-ministic computation, we �rst nondeterministically compute arguments for thefunction, and then apply the function, with many possible results. The s1:s2test of an if expression is true exactly when s1 denotes a subset of s2's denota-tion. (a-thing) denotes the set of all domain objects, and ? denotes the emptyset. Either, both, and not are computed with union, intersection, and set com-plement relative to the domain, respectively. Any time a program expression isused as a speci�cation, it's denotation is the set containing the object it denotes.Note that in both speci�cations and program expressions, fix and lambdaexpressions have only one meaning (not nondeterministically many): in each caseit is a relation over the domain, a functional relation for program expressions.Implementation Attachments We require the user to attach veri�ed program ex-pressions to any speci�cation function used in a way requiring it to be computed(in this language, in the test of an if). We also place su�cient restrictions onthe use of speci�cations in programs to ensure that the programs can be run.A spec s� is testable if it is either a program expression or the applicationof a computable speci�cation function to program expressions.6 A speci�cation6 The application of a speci�cation function to a non-program expression is not directly



function is computable if it has been given a proven program implementation.As an example, consider the if test x:(> (car l)) in insert. Our lan-guage forces us to write this uncomputable test rather than the more familiar (>x (car l)). However, to avoid this restriction we can just write the programfor the predicate form of > returning 'true or 'false, and then use 'true:(> x (car l)). Doing this will lose the advantages our system gains from ex-tracting type information about the formal parameter x from the if test.To retain these advantages, our user must take the same predicate de�nition(call it >-imp), shown in Fig. 3 and prove the attachment theorems shown. Oursystem recognizes theorems of this form and will then allow the implementedspeci�cation function to appear in program expressions, as in insert.(define (>-imp (x (a-number))(y (a-number)))(if x:'nil'false(if y:'nil'true(>-imp (cdr x) (cdr y)))))forall y:(a-number) x:(> y)(>-imp x y):'trueforall y:(a-number) x:(not (> y))(>-imp x y):'falseFig. 3. The implementation of the function > and the associated attachment theorems.4 Program Analysis: Inferring Speci�cationsFor each new user de�nition our system extracts type lemmas which are thenused in the analysis of future de�nitions. Our algorithm thus operates in thecontext of a library of previously derived knowledge. This library is just a set ofknown universally quanti�ed speci�cation formulas forall x1:s1 � � �xn:sn . s : t.We call such formulas type theorems. The general problem that the algorithm inthis section attacks we call the speci�cation inference problem. Given a libraryL of type theorems (about already processed de�nitions) and a new de�nitionassigning some lambda or fix expression e to some new function symbol g,analyze e to generate new type theorems about g to add to the library L. Wepresent the algorithm and then discuss its application to the examples above.4.1 An Inference AlgorithmThere are three parts to our central analysis algorithm. First, a forward-chaininginference closure intended as a notion of \obvious consequence" (`e); second, asyntax-directed, type-inference inspired inference relation ( �̀e) that managesthe application of `e; and third, a preprocessing stage which prepares the newde�nition for analysis by �̀e. Our solution to the speci�cation inference problemis to add to L those theorems inferred when �̀e is applied to the de�nitionsgenerated by preprocessing.computable even if all the functions involved have attachments.



The Forward-Chaining Inference Relation `e We now de�ne a polynomial-timecomputable inference relation `e, where e is the lambda or fix expression beinganalyzed. Given a premise set � of formulas (e.g. s : t), we say that � `e s : tfor specs s and t whenever s : t is in the closure over � of the inference rulesgiven below. Note that in addition to reasoning about speci�cation formulas,the inference rules draw (and use) conclusions of the form Dom (s) for speci�ca-tion expression s. These domain analysis conclusions have no intended semanticmeaning and are used by the algorithm to limit the scope of the reasoning to re-main within polynomial time. We will prove that there are at most polynomiallymany conclusions Dom (s) inferred. The intended intuition is that the inferenceprocess reasons only about expressions in this polynomial-sized \domain". `e isde�ned by the inference rules given in Fig. 4.Symp:qq:p Transr:ss:tr:t Not-SymDom (d)d:(not e)e:(not d) Either1r:(either s t)r:(not s)r:t Either2s:r, t:rDom (either s t)(either s t):r Under-BothDom (both s t)r:s, r:tr:(both s t)Basic-EitherDom (either s t)s:(either s t)t:(either s t) Basic-BothDom (both s t)(both s t):s(both s t):t AlwaysDom (s)s:s, ?:ss:(a-thing) Selectors1Dom (cons p q)p:(car (cons p q))q:(cdr (cons p q))Selectors2Dom (r)r:(cons s t)(car r):s(cdr r):t StrictnessDom (f s1: : : sn)si:?(f s1: : : sn) :? Monotonicitys1:t1: : : sn:tnd:(f s1 : : : sn)Dom (f t1: : : tn)d:(f t1 : : : tn) ConstructorsDom (c1 s1: : : sn)Dom (c2 t1: : : tm)c1 6= c2(c1 s1...sn) : (not (c2 t1...tm))Dom-AlwaysDom (a-thing)Dom (?), Dom (e) Dom-SubexpDom (r)s a subexp of rDom (s) Univ-Domforall x:s �Dom (s) Univ-Instforall x:s �p:s, p appears in e[p/x]�Dom ([p/x]�)Fig. 4. Basic Inference Rules for `e. p and q must be program expressions. r, sand t can be any speci�cation expressions. f can be any function symbol, constructoror selector. c is any constructor. The selector rules are shown for cons/car/cdr. In therule Univ-Inst, the notation [r=x] s denotes s with each free occurrence of x replacedby r.Let � be a premise set of type theorems. Let A be the set of all expressionss such that Dom (s) is inferred by forward-chaining the above rules from �. Weobserve the following two complexity bounds:



1. A has at most polynomially many members in the size of �, and2. The forward-chaining can be computed in polynomial-time in the size of A.The �rst bound follows from the observation (provable by induction on thelength of derivation) that every spec inA is either ?, (a-thing), a subexpressionof e, or a subexpression of a universal formula forall x1 : s1: : :xn : sn � in �with its variables replaced by subexpressions of e. The last case forces us to limitthe quanti�cation depth of formulas in � to some constant|then there are onlypolynomiallymany instances of universal formulas in � on subexpressions of e.7To see the second bound, observe that by induction on the length of derivationevery spec in any new conclusion is of the form: s, (not s), (car s), or (cdrs) for some s in A. There are only polynomially many such conclusions and forany not yet closed premise set we can �nd a new conclusion in polynomial time.We wish to point out that, although there are a large number of rules givenabove, they are clearly not designed for the speci�c examples we've exhibited.Each rule is a natural and simple local rule capturing a small piece of the mean-ing of one language construct. The important thing about these rules is thatthey capture a large polynomial time fragment of the quanti�er-free inferenceproblem. For any new language features, we can always capture some polynomial-time portion of the possible new inferences in similar forward-chaining rules. Theexamples serve to demonstrate the power this kind of simple rule set can wield.The Syntax-Directed Inference Relation �̀e We now use the `e relation just de-�ned to de�ne a stronger �̀e relation that handles let, if, lambda, and fix byadding the sequent inference rules shown below. These rules are roughly analo-gous to typical type inference rules: they are syntax directed, so that typing ofany expression can be done in a linear number of `e closures. The Analyze-Fix, Analyze-Lambda, and Beta-Abstract-e rules are shown for one-argumentexpressions, but the analogous rules for arbitrary arity are intended. We use theexpression THMS�;e (s) to abbreviate the set of all speci�cation formulas of theform s : t provable from � using �̀e.The analyze-if rule does a simple case analysis on the if test. Because our`e inference rules reason only about positive speci�cation formulas, we negateformulas with the meta-function Neg, which takes as input a formula s:t andreturns s:(not t) if s is a program expression, and s:(a-thing) otherwise.Analyze-let is implicitly doing universal generalization when r is not a programexpression. Analyze-Nondet-App provides rudimentary reasoning about nonde-terministic applications. The Analyze-Lambda, Analyze-Fix, and Beta-Abstract-e rules are needed only at the top level of function symbol de�nitions.It remains to specify how induction hypotheses for the rule Analyze-Fix areselected. Space allows only the following concise description: we compute a se-quence of hypotheses �0; �1 � � � where each �i is a set of speci�cations whichis a subset of �i�1. This sequence eventually reaches the desired �xed point7 For lemmas that were derived by the system, the bound on quanti�cation depth canderive from bounds on the arity of functions and the depth of Let nesting withinanalyzed de�nitions.



Analyze-If� = � [ THMS�;e (r) [ THMS�;e (s)�; r:s �̀e u1:t�; Neg(r:s) �̀e u2:t� �̀e (if r:s u1 u2):t Analyze-Let� = � [ THMS�;e (r)� , x:r �̀e s:tx not in � or t� �̀e (let x:r s):tAnalyze-Nondet-App� �̀e (let x1:s1: : : xn:sn (f x1: : : xn)) : tNo xi in � or t, some si non-program� �̀e (f s1: : : sn) : t Beta-Abstract-ee is (lambda x:s B)� �̀e forall x :s B:(e x)Analyze-Lambda� = � [ THMS�;e (r)�; x :r �̀e B : tx and x1 not in � , x1 not in B� �̀e Forall x1 :r((lambda x :r B) x1):[x1=x] t Analyze-Fix� = � [ THMS�;e (r)� , Forall x1 :r(f x1) : [x1=x] I , x :r �̀e B : Ix and x1 not in � , x1 not in B� �̀e Forall x1:r((�x f x :r B) x1): [x1=x] IFig. 5. Sequent Rules for �̀e. Neg is discussed in the text. r, s, t, u, I, and B areany speci�cation expressions.hypothesis. The sequence is de�ned as follows:T (� ) = � t ����L[�Forall x1 :s1 : : :xn :sn(g x1 : : :xn) : B(� ) � �̀e B : t ��0 = T (f?g)�i+1 = T (�i) \ �iwhere B(� ) is the both expression intersecting all the members of �De�nition Preprocessing Suppose we are presented with a new de�nition to an-alyze, de�ning the symbol f to be a function with arguments x1 : : :xn of typess1 : : : sn and (possibly recursive) body B. Rather than simply apply the �̀ rela-tion directly to f , we begin by factoring the de�nition of f into a set of de�nitionsf1; : : : ; fn such that f is semantically the same function as one that nondeter-ministically picks one of the fi and applies it. Our purposes in factoring aretwofold: it enables the easy statement of some useful theorems; and it supportssome limited case analysis in reasoning about applications of the function.We �rst factor the de�nition of f into the set of de�nitions f; f1; : : : ; fk wheref1; : : : ; fk are all de�nitions that can be produced from f by the rewrite rulesin �gure 6 but cannot be further rewritten (if two de�nitions di�er only in theordering of their formal parameters, we include only one of them in the fi). Wenote that the size of f1; : : : ; fk is linear in the size of f .



Either-Def(define (f: : : ) (either B1 B2))(define (f: : : ) Bi), i=1 or 2 Let-Def(define (f x1:s1: : : xn:sn) (let x:s B))(define (f x1:s1: : : xn:sn x:s) B)If-Def(define (f x1:s1: : :xn:sn) (if xi:s B1 B2))y1:t1: : : yn:tn is a suitable reordering of the xi:si(define (f y1:t1: : :yi:(both s ti) yn:tn) B1)(define (f y1:t1: : :yi:(both (not s) ti) yn:tn) B2)Fig. 6. Rewrite Rules for De�nition Factoring. In the If-Def rule, a reorderingis suitable if it yields an output de�nition with no free variables.To try and convey some intuition about the fi de�ned by this rewrite process,consider an fi with arguments y1 : : : ym of types t1 : : : tm and body Bi. The yjare made up of the (possibly reordered) original formal parameters of f (the xj)and the let variables in scope around Bi in B. The tj restrict the yj to exactlythose values that those variables can take in Bi during an evaluation of f . Thus,(fi t1: : : tm) can take on exactly the values that Bi contributes to f . We callthis the output type of fi.Now consider an application of f , (fs01 � � � s0n). We seek to characterize thecontribution of Bi to the values of this application. We will write txj;i forthe type spec of the variable xj in the parameter list of fi. We claim that[(both tx1;i s01)=tx1;i] � � � [(both txn;i s0n)=txn;i] (fi t1 : : : tm) is the characteriza-tion we seek. We call this expression the output type of fi when restricted tothe s0j . The either expression unioning the output types of the fi restricted tothe s0j is equivalent to (fs01 � � �s0n). We called this union expression the factoredapplication of f to the s0j .Finally, we eliminate f entirely from the bodies of the fi by replacing eachapplication of f with its factored form, to get new de�nitions f 01; : : : ; f 0k, andrede�ne f to be the union (either) of the f 0i . We use the �̀ relation from theprevious section to analyze the mutually recursive f 0i , and then f , and add theresulting theorems to our library L.The combination of de�nition factoring with the �̀-rule Beta-Abstract-eyields many useful theorems which we call factoring theorems. Several examplesof these are shown in Fig. 7. Factoring also enhances the conditional analysisdone by the recursive descent algorithm.4.2 Inferring the Speci�cations in Our ExamplesWe now return to our example programs and discuss their analysisThe theorems shown in Fig. 7 are among those generated automatically whenreading the speci�cation de�nitions shown in Sect. 2. These and others like them



are used in calculating the speci�cations cited for the example programs.(1) forall l:(both (a-list) (not 'nil))(cons (a-thing) (samelength-as (cdr l))) : (samelength-as l)(2) forall l:(both (a-list) (not 'nil))z:(not (car l))(cons (car l) (delete z (cdr l))) : (delete z l)(3) forall l:(both (a-list) (not 'nil))z:(a-list-member-of l)(cons z (a-permutation-of (delete z l))) : (a-permutation-of l)(4) forall l:(both (a-list) (not 'nil)) (cdr l):(delete (car l) l)(5) forall l:(both (a-list) (not 'nil)) (car l):(a-list-member-of l)(6) forall x:(a-number) (either x (cons 'a (>= x))) : (>= x)(7) forall x:(a-number) (> x):(both (>= x) (not x))(8) (a-numlist):(a-list)(9) (a-numlist):(either 'nil (cons (a-number) (a-numlist)))(A) (either 'nil (cons (a-number) (a-list))):(a-numlist)Fig. 7. Some automatically generated theorems used in the examples. All but (8) and(9) are generated by factoring analysis of speci�cation de�nitions. (8) and (9) aregenerated by the inferential closure analysis of a-numlist.Each example requires the presence of some additional simple and naturaltheorems, shown in Fig. 8. We intend either that the user have proven thesetheorems using a theorem prover or that he is using a speci�cation library con-taining the de�nitions and theorems. Each theorem captures a basic property ofthe de�nitions, rather than a property targeted to any of our examples.8 Most ofthe theorems can be proven automatically by a simple inductive theorem prover.To conclude our discussion of these examples, we show some of the criticalinference steps involved in drawing one of the tougher conclusions. To determinethat (insert x l) has the speci�cation (a-permutation-of (cons x l)), thesystem must �rst choose that speci�cation as an inductive hypothesis. This hap-pens because it is a speci�cation of the base case (cons x l), by the theoremthat any list is a permutation of itself|and a simple inference chain that demon-strates that (cons x l):(a-list). Once we have (a-permutation-of (consx l)) as an inductive hypothesis, the analysis of the recursive case of the ifbody goes as shown in Fig. 9. Similar chains of reasoning are involved in auto-matically drawing the other speci�cation conclusions cited above.8 An exception to this is the second lemma on the right, which mitigates a weaknessin our reasoning about nondeterminism. Stronger polynomial-time reasoning aboutnon-determinism is possible and is addressed in the full paper[5].



forall l:(a-list)l:(samelength-as l)forall l:(a-list)l:(a-permutation-of l)forall x:(a-number)y:(not (> x))x:(>= y)forall n:(a-number)(>= (>= n)):(>= n)forall n:(a-number) (cons 'a (>= n)):(>= (cons 'a n))forall l:(both (a-sorted-list) (not 'nil))l:(an-slist-from (car l))forall n:(a-number)l:(both (an-slist-from (>= n))(not 'nil))(car l):(>= n)forall l:(a-list)(a-permutation-of (a-permutation-of l)):(a-permutation-of l)Fig. 8. The theorems needed from the user or the speci�cation library.(cons x (cdr lst))by theorem (4) above is under (cons x (delete (car lst) lst))by selectors rule is under (cons (car (cons x lst))(delete (car lst)(cdr (cons x lst))))by theorem (2) is under (delete (car lst) (cons x lst)) (*)(cons (car lst) (insert x (cdr lst)))by ind hyp is under (cons (car lst)(a-permutation-of (cons x (cdr lst))))by (*) is under (cons (car lst)(a-permutation-of(delete (car lst) (cons x lst))))by theorem (3) is (a-permutation-of (cons x lst)) as desired.Fig. 9. The main inference chain involved in analyzing insert. First, (cons x (cdrlst)) is analyzed to get the result labelled (*). This result is used to analyze the re-cursive branch of insert. The inductive hypothesis puts (insert x (cdr lst)) under(a-permutation-of (cons x (cdr lst))). Not every inference rule used is cited.5 ConclusionWe presented a polynomial-time type inference inspired algorithm for inferringproperties, viewed as types, of functional programs. We also gave an expressivelanguage for de�ning new types to extend the \type system" of the algorithm.Several extensions to this work are addressed in the full version[5].An important remaining task is developing a better understanding of whatproperties this algorithm and related algorithms can infer. This algorithm is ca-pable for example of checking the correctness of merge-sort much like it checksinsertion sort. In contrast, di�culties arise in a naive attempt to check quick-sort. It remains an open problem to cleanly characterize the set of checkableproperties.There are many natural speci�cation theorems that this algorithm will not
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