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Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 21 IntrodutionWe onsider the problem of sheduling multilass traÆ with deadlines under a weighted-loss ri-terion. In this problem, a single server reeives paket traÆ in disrete time. Eah paket hasan assoiated deadline, and must be served by the deadline, or it is onsidered lost. Eah paketbelongs to one of a predetermined �nite set of lasses, and eah lass has a real-number weightorresponding to the ost inurred for eah paket lost in that lass. Every paket takes one unit oftime to serve, and any �nite number of pakets an arrive per unit time. At eah time, the servermakes a deision on whih paket to serve based on the pakets pending in the bu�er (i.e., in an \on-line" fashion). The problem of sheduling pakets with deadlines has reeived onsiderable interestin the literature; e.g., [11, 12, 13, 14, 15, 17, 16, 18℄. However, the treatment of on-line shedulingproblems with multiple lasses of traÆ remains relatively inomplete. Our main ontribution inthis paper is the desription of a new family of multilass sheduling poliies, a haraterizationof its properties, and a rigorous analytial omparison of its performane relative to a multilassextension of the earliest-deadline-�rst (EDF) poliy. We also provide substantial empirial resultsdemonstrating signi�ant superiority for the new sheduling poliies over both EDF and the statipriority (SP) poliy|these results suggest that realisti multilass traÆ with deadlines requires apoliy that expliitly onsiders the interplay between lass and deadline (rather than fousing onone dimension and using the other to break ties).The multilass aspet of our problem is motivated by \di�erentiated" paket delivery in high-speed omputer networks. There has been related work by the Internet Engineering Task Fore(IETF) intserv and di�serv ommunities, aiming at extending the best-e�ort servie o�ered by theurrent Internet in order to provide servie di�erentiation beyond the traditional single-lass paketdelivery servie. For example, appliations with layered oding of data, suh as Moving PitureExpert Group (MPEG) video streams, layered Disrete Cosine Transform (DCT), or wavelet odersrequire pakets from \important" layers to be delivered preferably, but an tolerate some losses ofthe pakets from \unimportant" layers. In an MPEG stream, the I frames are onsidered moreimportant than the P or B frames [1℄.Several new approahes have been explored in the networking ommunity to address the problemof servie di�erentiation. One approah is to use a simple FIFO queue for the aggregated traÆand provide servie di�erentiation by applying di�erent dropping preferenes to tagged or untaggedpakets [7℄. Another approah is to distinguish between pakets by assigning to eah paket anassoiated lass and then apply a multilass sheduling algorithm, e.g., stati-priority (SP), whihalways shedules a highest-lass paket in the queue. A third approah is to use \priing" todi�erentiate the servies [4℄. Seletion of the best approah is still on-going [9℄. Generally, eahof these approahes an be handled (to varying degrees of preision) by introduing lass weights.For example, the weight of a lass an be interpreted as the per-paket prie [4℄, per-lass dropping



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 3utility, or a relative paket importane measure.We onsider sheduling poliies that deide whih paket to transmit based solely on the paketsurrently pending in the bu�er. The earliest-deadline-�rst (EDF) poliy, whih at eah time seletsa paket with the earliest deadline among the pakets in the bu�er, is a well-known example of suha poliy. EDF is a throughput optimal (TO) poliy in the sense that it serves as many pakets overany time interval as any other poliy for any traÆ. This TO haraterization of EDF providesa deterministi, traÆ-independent statement of the throughput of EDF. In [15℄, Ling and Shro�desribe a poliy that also ahieves optimal throughput in the above sense, but drops some paketsstritly before their deadlines. The reent work of Hajek and Seri [11, 12℄ provides a rigorousstudy of throughput optimal poliies using a general deterministi, traÆ-independent optimalityframework. Their work also inludes a treatment of the multilass setting under an optimalityriterion alled lex-optimality [12℄.In this paper, we build on the deterministi, traÆ-independent framework of Hajek and Seriby onsidering the multilass riterion of weighted loss. Spei�ally, we are interested in minimizingthe total weight of lost pakets. It turns out that there is no traÆ-independent optimal poliy; i.e.,there is no poliy that has minimum weighted loss for all traÆ sequenes. The same is true evenif we restrit our attention only to the lass of TO poliies|so there is in some sense no \best"TO poliy with respet to weighted loss. Our approah is to onsider a sublass of TO poliies,alled CMTO poliies, that take into aount the weights of pakets in the bu�er aording to a\greedy" sheme alled urrent-minloss sheduling. Spei�ally, a CMTO poliy is a throughputoptimal poliy that selets a paket to serve at eah time onsistent with the goal of minimizing theweighted loss assuming that there are no further arrivals. Minimizing the weighted loss of paketsurrently in the queue is in a sense the best we an hope for, without any assumptions on the futuretraÆ.We haraterize all CMTO poliies by providing a neessary and suÆient ondition on thehoie of paket to serve that suh poliies must make at eah time step. It turns out that thisharaterization suggests a natural two-step implementation of CMTO poliies. In Step 1, thepoliy limits its attention to a subset of pakets in the bu�er (alled an \eligible set"), and inStep 2 the poliy selets a paket from the eligible set in a way that ensures throughput optimality.We present easily implementable algorithms for both steps, yielding simple example instanes ofCMTO poliies.We ompare the CMTO poliy with a simple multilass extension of EDF, alled EDF+ thatuses paket lass only to break deadline ties, revealing the lear advantage of CMTO poliies overEDF+. Spei�ally, we show that a sublass of the CMTO poliies ahieves no more weighted lossthan EDF+ for any traÆ. This result makes a deterministi, traÆ-independent statement aboutthe weighted loss of CMTO poliies in relation to EDF+ for any possible traÆ arrival sequene.We also show that there exist traÆ sequenes suh that any CMTO poliy ahieves a weighted-loss



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 4advantage over EDF+ that is arbitrarily lose to the maximum possible ahievable advantage.We also desribe two extensions of CMTO poliies. The �rst extension involves droppingsome pakets from the bu�er stritly before their deadlines. Suh \sheduling-dropping" poliiesare appealing beause of their smaller bu�er requirements and their ability to provide more timelyfeedbak on whih pakets will not be sheduled. We show that a natural sublass of CMTO poliiesan be extended to sheduling-dropping poliies without hanging the shedule of pakets served,while at the same time minimizing the bu�er usage among all throughput optimal sheduling-dropping poliies. The seond extension involves a redit-based mehanism to inorporate fairlink-sharing into CMTO poliies. The result is a family of lass- and deadline-sensitive shedulingpoliies that expliitly takes into aount link-share alloations for individual alls. Our preliminaryempirial results, presented below, show that these poliies retain the substantial advantages ofCMTO poliies with respet to weighted loss while giving fair link-sharing behavior similar to thatof previously proposed link-sharing shemes (e.g. [10℄).The remainder of this paper is organized as follows. In Setion 2, we introdue our notation andterminology, give a preise problem de�nition, and show the non-existene of an optimal shedulingpoliy. In Setion 3, we desribe the lass of CMTO sheduling poliies. We present a neessaryand suÆient ondition haraterizing all CMTO poliies. We also provide examples of easilyimplementable CMTO poliies, with orretness proofs and algorithmi omplexity analyses. InSetion 4, we analytially ompare CMTO poliies and a multilass extension of the EDF poliy(alled EDF+), illustrating the lear advantage of CMTO over EDF+. We then desribe someextensions of CMTO poliies in Setion 5: CMTO poliies that drop pakets before their deadlines,and poliies based on CMTO that also inorporate link-share fairness. In Setion 6, we illustratethe performane of CMTO poliies via simulations using pratially reasonable traÆ sequenes,omparing the performane of CMTO with EDF+, SP, and an SP-based fair-queueing poliy. Wedraw onlusions in Setion 7 and also provide there some disussion of possible future researhdiretions. Throughout the paper, we relegate tehnially involved proofs to the appendix.2 Multilass Sheduling ProblemIn this setion, we present the notation and terminology that we will use throughout the paper,and demonstrate the non-existene of a poliy that minimizes weighted loss under all traÆ. Ourtreatment follows that of Hajek and Seri [11℄ (although some of our notation and terminology di�ersfrom [11℄).2.1 Framework, terminology, and notationWe assume that time t is slotted, i.e., t 2 f1; 2; : : :g, and that eah paket takes exatly one timeslot to be served. Eah paket p belongs to a partiular lass, denoted by C(p) 2 f1; : : : ;mg, and



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 5has a deadline d(p) 2 f1; 2; : : :g. A paket that is not served by its deadline is said to be lost. Morepreisely, if the arrival time for a paket p is t, then p needs to be served at some time betweent and d(p), inlusive, or p is lost. If p is lost, a ost wC(p) > 0, depending only on the lass of p,is inurred. We assume without loss of generality that if C(p) < C(p0), then wC(p) > wC(p0). Wenaturally onsider that high-weight lasses are more important than low-weight ones.An arrival sequene (also alled a traÆ sequene, or a traÆ for simpliity) A is a sequeneA = fAt : t � 1g suh that At is the set of pakets arriving at time t. The sets At are assumedto be disjoint, and d(p) � t for all p 2 At. The laxity of a paket p at time t is de�ned aslt(p) = d(p) � t + 1, i.e., the number of time slots left before the paket's deadline expires and pbeomes lost. An arrival sequene is said to be �nite if there is a �nite T suh that At = ; for allt � T . For onveniene, we also use the notation A to denote the set of pakets [t�1At.Given an arrival sequene A, a shedule is a one-to-one partial mapping t 7! pt where t 2f1; 2; : : :g and, if pt is de�ned, pt 2 A1 [ � � � [ At with t � d(pt). If pt is de�ned, we say that pt issheduled (alternatively, transmitted or served) at time t.A sheduling poliy � is a sequene of maps f�t : t � 1g where �t is a funtion that mapsany nonempty set of pakets P to a single element of P , where we require that the maps f�tg arestationary ; i.e., the funtion �1 must determine �t for all t as follows: for any set of pakets P ,�t(P ) = �1(P 0), where the pakets of P 0 are exatly those of P but with their deadlines dereasedby t�1 time steps (pakets with nonpositive resulting deadlines are removed). A sheduling poliyindues a shedule as follows. Given an arrival sequene A and a poliy �, de�ne the sequene fPtgby P0 = ; and, for all t � 0,Pt+1 = At+1 [ Pt � fp 2 Pt : d(p) = t or p = �t(Pt)g :Note that the sequene fPtg depends on and is ompletely determined by the arrival sequene Aand the poliy �. At eah time t, Pt represents the set of pakets that have arrived at or beforetime t, have not been transmitted before time t, and have not yet missed their deadlines at time t.We refer to pakets in Pt as available or pending in the system. We an also think of Pt as the stateof the queue at time t, in the ase where no pakets are dropped ahead of their deadlines expiring.(We assume that the queue starts out empty: P0 = ;.) The poliy � selets the paket �t(Pt) totransmit at time t. In other words, the sheduling poliy � indues the shedule t 7! �t(Pt). Wesay that � shedules a paket p at time t if �t(Pt) = p. Note that if Pt is empty, �t(Pt) is unde�ned,and no paket is served at time t.A poliy de�ned as above is often referred to as work-onserving or non-idling beause �t(Pt)is de�ned whenever Pt 6= ;, and as ausal beause its seletion of the paket to transmit dependsonly on the urrently pending pakets in the system. Our de�nition of a poliy is more restritivethan the one in [11℄, but suÆes for our purposes (the de�nition in [11℄ allows for paket seletionsthat depend arbitrarily on all past arrivals, not just the pending pakets).
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Figure 1: Graphial illustration of multilass pakets with deadlinesThroughout this paper, we graphially illustrate sets of pakets using retangular arrays, suhas the one shown in Figure 1. The olumns of the array represent laxities, ordered from right toleft in inreasing order, while the rows represent lasses, ordered from top to bottom in inreasingorder (dereasing importane). A blok in an entry of the array represents one or more pakets (aslabeled) with the assoiated laxity and lass|if multiple pakets have the same laxity and lass,we indiate the number of pakets above or below the appropriate blok.We need a few more de�nitions before we an desribe our problem. The next de�nition is takendiretly from [11℄. A sheduling poliy � is throughput optimal (TO) if, for any arrival sequene Aand any t � 1, poliy � shedules at least as many pakets in slots f1; : : : ; tg as any other poliydoes.Denote the set of pakets sheduled by � as S�; i.e., S� = f�t(Pt) : Pt 6= ;; t � 1g. Note thatA� S� is the set of pakets that are not served by � and will eventually miss their deadlines. Theweighted loss inurred by a sheduling poliy � with respet to a �nite arrival sequene A isL�(A) = Xp2A�S� wC(p):We say that a sheduling poliy � dominates �0 over A if L�(A) � L�0(A). If � dominates �0 overall �nite arrival sequenes, then we say that � dominates �0. Note that an equivalent de�nitionof domination an be stated using the notion of weighted throughput, the total weight of paketsserved.A sheduling poliy � is said to be optimal if � dominates any other poliy. If � is TO anddominates any other TO poliy, we say that � is an optimal-TO (OTO) poliy. Note that an OTOpoliy need not be optimal, beause it is required to dominate only other TO poliies.2.2 Nonexistene of optimal poliiesIdeally, our goal in multilass sheduling should be to �nd an optimal poliy as de�ned above.However, it is easy to show that there is no suh poliy.Proposition 1 No optimal sheduling poliy exists if and only if there are at least two lasses.
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Figure 2: Graphial illustration for the proof of Proposition 1Proof: If part: Let i and j be two lasses with wi > wj. Suppose A1 onsists of a lass j paket pwith laxity l1(p) = 1 and a lass i paket p0 with laxity l1(p0) = 2 (see Figure 2). If At = ; for allt > 1, we must serve p at time 1 to dominate all other poliies over A. On the other hand, if A2onsists of a lass i paket with laxity 1, and At = ; for all t > 2, we need to serve p0 at time 1 todominate all other poliies over A. Hene, no optimal poliy exists.Only if part: If all pakets have the same weight, then any TO poliy (e.g., the earliest-deadline-�rst (EDF) poliy) is optimal.Even though there is in general no optimal poliy, we might still hope for an OTO poliy, sinesuh a poliy must only dominate all other TO poliies, not neessarily all other poliies. In theexample (see Figure 2) used in the proof of Proposition 1, we desribed two options in hoosing thepaket to serve suh that the preferable option depends on the future arrivals. However, only oneof those options is onsistent with throughput optimality, so this example does not immediatelyprelude the existene of an OTO poliy.To explore further the existene of OTO poliies, we �rst review a throughput optimalityondition by Hajek and Seri [11℄|this ondition is stated in Theorem 1 below, using the followingnotation. Given a nonempty set of pakets P at time t (with deadlines no less than t) and integerlaxity l � 1, let N lt (P ) be the number of pakets in P having laxity no more than l, and letÆlt(P ) = N lt (P )� l. We say that P is t-saturated if Ælt(P ) � 0 for some l � 1. De�neh(P ) = ( argmaxl Ælt(P ) if P is t-saturatedminfl : N lt (P ) > 0g otherwisewhere argmaxl Ælt(P ) is the smallest l maximizing Ælt(P ). Let �(P ) be the set of pakets in P whoselaxities do not exeed h(P ). We refer to the integer h(P ) as the Hajek-Seri ut for P .Considering the set Pt of pakets pending in the bu�er at time t, the integer Ælt(Pt) is a lowerbound on how many pakets in Pt must miss their deadlines by time t+ l in any shedule of futuretransmissions. Moreover, if Pt is t-saturated and at time t we serve a paket not in �(Pt) (i.e.,one whose laxity exeeds h(Pt)), then the number of pakets in Pt that will de�nitely miss theirdeadlines in the future will inrease. Indeed, Hajek and Seri show that sheduling within �(Pt) isneessary and suÆient for throughput optimality.
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Figure 3: An example where EDF serves more weight than the poliy using SP within �(Pt).Theorem 1 (Hajek-Seri) A poliy � is a TO poliy if and only if for any nonempty set of paketsP , �1(P ) 2 �(P ).Within the lass of TO poliies, we have onsiderable freedom in hoosing whih paket in �(Pt)to serve at eah time t. The earliest-deadline-�rst (EDF) poliy provides suh a hoie. However, ifwe are interested in minimizing weighted loss, we should hoose a paket in �(Pt) based on its lass.A naive lass-based hoie is to selet a paket within �(Pt) using SP (i.e., selet a highest-weightpaket). Suh a poliy is TO and appears always to serve more important pakets than EDF does.Unfortunately, this simple hoie does not in fat dominate EDF. Indeed, onsider the examplegiven in Figure 3. If there are no further arrivals, EDF serves more weight than � for this traÆ.In the next setion, we explore a lass of poliies that make lass-sensitive seletions within �(Pt)with provable bene�ts, inluding dominane of EDF.We now return to the issue of existene of an OTO poliy. The following proposition indiatesthat, unfortunately, there does not exist suh a poliy in general.Proposition 2 No OTO poliy exists if and only if there are at least three lasses.Proof: A simple modi�ation of the proof of Proposition 1 does the job.If part: Let i, j, and k be three lasses with wi > wj > wk. Suppose A1 onsists of a lass ipaket p0 with laxity l1(p0) = 2, a lass j paket p with laxity l1(p) = 1, and two lass k paketswith laxities 1 and 2. (see Figure 4). If At = ; for all t > 1, we must serve p at time 1 to dominateall other TO poliies over A. On the other hand, if A2 onsists of a lass i paket with laxity 1,and At = ; for all t > 2, we need to serve p0 at time 1 to dominate all other TO poliies over A.Hene, no optimal TO poliy exists. (The key di�erene between this example and that in Figure 2is that the presene of the lass k pakets ensures that all hoies of paket to serve at time 1 areonsistent with throughput-optimality.)Only if part: If there is only one lass, then any TO poliy is OTO optimal. If there two lasses,then any TO poliy that serves more lass 1 pakets than any other TO poliy is OTO. Hajek andSeri [11℄ have shown that suh a poliy exists (alled a MOSTO poliy in [11℄).
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kFigure 4: Graphial illustration for the proof of Proposition 23 Current-Minloss Sheduling3.1 Basi desription and haraterizationIn this setion, we desribe a lass of poliies alled urrent-minloss TO (CMTO) poliies. ACMTO poliy is a TO multilass ausal sheduling poliy that shedules a paket at eah timestep onsistent with the goal of minimizing the weighted loss of the urrent pakets in the bu�er.This poliy ahieves the minimum weighted loss assuming that there are no further arrivals. As weshowed in the previous setion, the multilass sheduling problem is unsolvable in general withoutknowledge of future traÆ. Minimizing the weighted loss of pakets urrently in the queue is ina sense the best we an hope for, without any assumptions on the future traÆ (see [3℄ for someof our work on minimizing weighted loss in the presene of stohasti assumptions on the futuretraÆ). We de�ne and haraterize CMTO poliies below. In the next setion, we give examplesof easily implementable CMTO poliies.We begin with some de�nitions. Let P be a set of pakets with deadlines no less than t. At-shedule of P is a one-to-one partial mapping i 7! pi 2 P where i 2 f1; 2; : : :g and, if pi is de�ned,then lt(pi) � 1. A t-shedule indues a shedule of the pakets in P : if pi is de�ned, then pi issheduled at time t+i�1. Note that all pakets in a t-shedule are sheduled at times t or later. Wean think of a t-shedule as an indexed set of pakets fpi : i 2 Dg where D = fi � 1 : pi is de�nedgand lt(pi) � i for all i 2 D. A set of pakets is said to be t-shedulable if there exists a t-shedulethat ontains the set.A maximum-weight t-shedulable subset of Pt is a set Et � Pt suh that the total weight ofpakets in Et is no less than that of any other t-shedulable subset of Pt. We say that A is anempty-future arrival sequene if At = ; for all t > 1|in suh an arrival sequene, all the arrivalshappen at time 1. A poliy � is a urrent-minloss (CM) poliy if, for any empty-future arrivalsequene A, we have L�(A) � L�0(A) for any other poliy �0. A throughput optimal CM poliy isalled a CMTO poliy.The following theorem haraterizes all CMTO poliies. We note that the fous on time step 1exploits the stationarity of the poliies we onsider to e�et all time steps.



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 10Theorem 2 A poliy � is a CMTO poliy if and only if for any nonempty set of pakets P , thereexists a maximum-weight 1-shedulable subset E of P suh that �1(P ) 2 �(E).Proof: See Appendix A.1.Similar to Theorem 2, we an state a haraterization of all CM poliies|not neessarily TO|involving a di�erent (more relaxed) restrition of paket hoie. Spei�ally, if Pt is not t-saturated,then a CM poliy an hoose any paket in Pt. However, we will not dwell any further on non-TOCM poliies, and will restrit our attention heneforth to CMTO poliies.3.2 Examples of CMTO poliiesTheorem 2 suggests the following implementation of any CMTO poliy:For eah t, if Pt is not empty, do:Step 1: Find a maximum-weight t-shedulable subset of Pt (alled Et);Step 2: Shedule a paket within �(Et) for servie at time t.We refer to the two-step algorithm above as the CMTO algorithm. Next, we provide twoexamples of CMTO poliies based on the CMTO algorithm. These two examples di�er only intheir implementation of Step 1.3.3 Step 1 of the CMTO algorithmStep 1 of the CMTO algorithm takes a given set of pakets Pt and omputes a maximum-weightt-shedulable subset Et. These are pakets that are \eligible" to be sheduled in the CMTOalgorithm; we therefore refer to Et in Step 1 as the eligible set. The omputation of Et from Ptis a familiar problem in \o�ine" sheduling. Indeed, there are several algorithms desribed inthe literature that an be used for this purpose [14, 17, 16, 18℄. Here, we desribe two new simpleexample algorithms for Step 1. We present these two new algorithms not as superior alternatives toexisting algorithms, but simply to illustrate what is involved in the alulation of Step 1, and showsome of the diversity of approahes that are possible. We note that none of the previous work onsuh \o�ine" algorithms proposes to inorporate suh methods as part of an online sheduler, as wedo (e.g. the algorithms in [16℄ and [17℄ were suggested to provide upper bounds on the ahievableperformane of online sheduling algorithms). We also provide new areful and omplete orretnessproofs for both our new methods in the appendies.



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 113.3.1 Forward AlgorithmOur �rst example algorithm for Step 1 of the CMTO algorithm is alled the Forward Algorithm,desribed as follows. We use the notation Pt(l) = fp 2 Pt : lt(p) = lg (set of pakets in Pt withlaxity l), and M = maxflt(p) : p 2 Ptg (largest laxity of pakets in Pt).Forward Algorithm:1. Input: a set of pakets Pt.2. Initialize: E(0) = ;,3. For l = 1; : : : ;M ,Set E(l) to be the l-most important pakets in Pt(l) [E(l � 1)(or the whole of Pt(l) [E(l � 1) if it has fewer than l pakets).4. Output: the set Et = E(M).In the Forward Algorithm, we grow an initially empty set into suessively larger t-shedulablesubsets of Pt until we have reahed the largest t-shedulable subset of Pt. At eah suessive step wekeep only the most important (highest-weight) pakets that an be sheduled. The worst-ase timeomplexity of the algorithm depends on the data strutures used to represent the sets Pt(l) andthe urrent largest t-shedulable subset (as \grown" by the algorithm). One natural approah is torepresent these sets with linked lists sorted to be in dereasing order by weight, where pakets ofidential weight and laxity are ombined into a single list entry (we assume the list entries ontaina ount of the number of pakets represented). In this ase, the algorithm runs in omplexityO(mM), where M is the largest laxity of pakets in Pt and m is the number of lasses. Notethat the key step of omputing the set E(l) in the algorithm (step 3) an be implemented as amerge operation running in time omplexity O(m) beause eah list involved will be at most m inlength, and this key step will be run at most M times. We note however that if we are to use thisrepresentation for the sets Pt(l) during online sheduling, we must be able to eÆiently omputePt+1 from Pt and At+1, assuming that Pt is already so represented|when using this representationthis omputation (essentially sorting At+1, then merging) has a possibly higher O(jAt+1j log jAt+1j)ost unless we also assume a similar sorted representation for the new arrivals At+1. If we assumea �xed bound on both M and m, then this sorting of arrivals an be arried out in O(jAt+1j) timeusing a buket sort.The pakets in the output Et an be listed as a t-shedule (i.e., Et = fp1; : : : ; pjEtjg withlt(pi) � i), without inreasing the omplexity, as long as we hoose our representation to orderpakets of the same weight by laxity (rather than arbitrarily)|this allows the O(mM) onversionof a length M linked list ordered by weight into a length M list ordered by laxity, with the latterbeing an earliest-deadline-�rst t-shedule.



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 12We are now ready to prove that the Forward Algorithm does indeed produe a maximum-weightt-shedulable subset of Pt.Proposition 3 The Forward Algorithm yields a CMTO poliy.Proof: See Appendix A.2.3.3.2 Bakward AlgorithmOur seond example algorithm for Step 1 of the CMTO algorithm is alled the Bakward Algorithm,desribed as follows.Bakward Algorithm:1. Input: a set of pakets Pt.2. Initialize: pl = AVAIL, l = 1; : : : ;M .3. For  = 1; : : : ;m (from highest to lowest lass),For paket p in lass , from highest to lowest laxity,If �l = maxfj � lt(p) : pj = AVAILg exists, then set p�l = p.4. Output: the set Et = fpl : pl 6= AVAILg.The Bakward Algorithm an be implemented to run in omplexity (essentially)O(min(jPtj;M+m)), assuming that Pt is represented by giving for eah lass a linked list of pakets sorted by laxity.To see this, note that the algorithm shedules at most M pakets and rejets at most m pakets(beause one a paket is rejeted in a given lass, the algorithm an move on to the next lass).The omplexity bound of O(M + m) exploits the Union/Find disjoint-sets algorithm [5℄, whihenables the Bakward Algorithm to shedule or rejet eah paket in essentially onstant time (thebound above omits an inverse Akerman's funtion fator from the Union/Find algorithm).A Union/Find implementation an be used to maintain equivalene lasses on the laxities, asfollows: two laxities are taken to be equivalent if their maximum \shedulable" laxities are thesame. Here, the \maximum shedulable laxity" for a given laxity l is the smallest \available" laxityin the shedule pl not greater than l. Spei�ally, eah time the algorithm sets p�l to be some paket,the equivalene lasses for laxities �l and �l+1 must be merged. The Union/Find algorithm must beimplemented to maintain the smallest equivalene lass member as the lass representative. Giventhis maintenane of equivalene lasses, the seletion of �l in step 3 in the Bakward Algorithm anbe done with a single all to \Find" the equivalene lass representative of lt(p).We note again that reating the required sorted representation of Pt+1 from Pt as arrivals At+1are proessed an be more expensive than the Bakward Algorithm itself if At+1 is originally givenin an unsorted fashion, and that a natural assumption would be that M and m are bounded so



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 13that an O(jAt+1j) buket sort an be used for this purpose. We believe that the algorithms of [16℄and [17℄ an be speialized to similar assumptions as well to ahieve similar runtime omplexity,though that work does not disuss this speialization and instead fouses on ahieving a looserO(jP j log jP j) bound for an unsorted set of pakets P .Proposition 4 The Bakward Algorithm yields a CMTO poliy.Proof: See Appendix A.33.3.3 Consistent seletion of eligible paketsWe say that a CMTO poliy is onsistent if whenever p 2 At and p =2 Et+k for some k � 0, thenp =2 Et+k+i for all i � 0. In other words, a onsistent CMTO poliy has the property that a paketan only be eligible at a time t (i.e., in Et) if it has been eligible at all previous times sine itsarrival. It is straightforward to show that if we use either the Forward Algorithm or BakwardAlgorithm in Step 1 of the CMTO algorithm, then the resulting poliy is onsistent. Note that ina onsistent CMTO poliy, if a paket does not join Et at any time step t after its arrival, we ansimply drop the paket from the bu�er at that time without a�eting the future shedule generatedby the algorithm, regardless of future arrivals; we will have more to say about suh \dropping"poliies in Setion 5.1.3.4 Step 2 of the CMTO algorithmGiven a t-shedule fp1; : : : ; pjEtjg of the eligible set Et from Step 1 of the CMTO algorithm (as anbe obtained from the Forward or Bakward Algorithm), Step 2 of the CMTO algorithm an beomputed using the following algorithm.� Algorithm1. Input: Et = fp1; : : : ; pjEtjg with lt(pi) � i.2. Initialize: i = 1, l = lt(p1), m = lt(p1).3. While i < jEtj and i 6= l,i = i+ 1; l = maxfl; lt(pi)g; m = minfm; lt(pi)g.4. If i = l (i.e. Et is t-saturated),then set �t = fp1; : : : ; pig (i is the Hajek-Seri ut for Et);else set �t = fp 2 Et : lt(p) = mg.5. Output: �t.



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 14The � Algorithm runs in omplexity O(jEtj). Beause jEtj �M , where M is the largest laxityof pakets in Pt, the entire CMTO algorithm an be implemented in O(M). Although Hajek andSeri do not provide an expliit algorithm in [11℄ for alulating the set �(Et), they do note thatthe set an be omputed in omplexity O(M) if the input is sorted aording to laxities. The �Algorithm above requires only an input in the form of a t-shedule, not neessarily sorted aordingto laxities. (In addition, any t-shedulable set sorted by laxities is a t-shedule, and is thus suitablefor input to the � Algorithm).Proposition 5 Given a t-shedule of the set of pakets Et, the � Algorithm generates the set�(Et).Proof: See Appendix A.4.4 Comparison of CMTO and Multilass EDFWe now provide an analytial omparison between CMTO poliies and the earliest-deadline-�rst(EDF) poliy, illustrating the lear advantage of CMTO over EDF. To be more spei�, we assumethat the EDF poliy breaks ties in favor of higher-lass pakets. To emphasize that this version ofEDF extends the usual EDF by making it lass-sensitive, we will all this poliy EDF+.We show the following two results. First, a sublass of CMTO poliies, alled CMTOEDF+poliies, dominates EDF+; i.e., any CMTOEDF+ poliy ahieves no more weighted loss than EDF+for any traÆ. Seond, there exist traÆ sequenes suh that any CMTO poliy ahieves a weighted-loss advantage over EDF+ that is arbitrarily lose to the maximum possible ahievable advantage.We �rst show the easier of the two results above|that any CMTO poliy an arbitrarily out-perform EDF+ for some traÆ sequene. We state our result in terms of the \average weightedthroughput," whih we de�ne as follows. For any �nite arrival sequene A, let T (A) be the maximumnumber of pakets in A that an be served (i.e., the number of pakets served by any TO poliy).Let W (S�(A)) the total weight of pakets served by �, and de�ne �W �(A) = W (S�(A))=T (A) asthe average weighted throughput of poliy � for arrival sequene A. Note that for a TO poliy �,�W �(A) is exatly the average weight of pakets served by �.Reall that we have m lasses, with w1 and wm being the largest and smallest weights, respe-tively. It is lear that for any TO poliy � and any �nite arrival sequene A, �W �(A) is boundedabove by w1 and bounded below by wm. Therefore, any TO poliy an outperform any other TOpoliy (in terms of average weighted throughput) by at most w1 � wm. We show that any CMTOpoliy omes arbitrarily lose to ahieving this maximum performane advantage over EDF+ forsome traÆ sequene.Proposition 6 For any � > 0, there exists a �nite arrival sequene A suh that �W �(A) ��WEDF+(A) � w1 � wm � � for any CMTO poliy �.
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Figure 5: Pakets in proof of Proposition 6Proof: Fix � > 0 and hoose T � (w1 � wm)=�. Let A be an empty-future arrival sequene suhthat A1 onsists of T lass-1 pakets with laxity T , and T � 1 lass m pakets p1; : : : ; pT�1 withlaxity T �1; see Figure 5. For this arrival sequene A, any CMTO poliy � serves T lass-1 pakets.In ontrast, EDF+ serves T �1 lass-m pakets and one lass-1 paket. Hene, �W �(A) = w1, while�WEDF+(A) = 1T ((T � 1)wm + w1) � 1T ((T � 1)wm + wm + T�) = wm + �;whih ompletes the proof.We now show that a partiular sublass of CMTO, alled CMTOEDF+, dominates EDF+. Thisresult gives us a traÆ-independent preferene for CMTOEDF+ poliies over EDF+; i.e., no matterwhat traÆ arrives, EDF+ will not outperform any CMTOEDF+ poliy with respet to weightedthroughput.A CMTOEDF+ poliy is any CMTO poliy that uses EDF+ to selet the paket to be servedfrom �(Et) (Step 2 in the CMTO algorithm). Note that a CMTOEDF+ poliy need not atuallyperform Step 2, beause applying EDF+ to �(Et) is equivalent to applying EDF+ diretly tothe eligible set Et, making the alulation of �(Et) unneessary. The ritial di�erene betweenCMTOEDF+ poliies and EDF+ is the inlusion of Step 1, the alulation of Et at eah time step,in CMTOEDF+.For onveniene, we assume that eah paket p has an assoiated ID number, denoted ID(p),whih distinguishes it from all other pakets (inluding those of the same deadline and lass). Wesay that a paket p1 is earlier than p2 (or that p2 is later than p1) if one of the following onditionshold:1. d(p1) < d(p2); or2. d(p1) = d(p2) and C(p1) < C(p2); or3. d(p1) = d(p2), C(p1) = C(p2), and ID(p1) < ID(p2).The above de�nition indues a total ordering on pakets, based primarily on their deadlines. Weassume throughout that the EDF+ poliy serves the earliest paket preisely aording to this



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 16ordering. Similarly, at time t, CMTOEDF+ serves the earliest paket in Et in the above sense. Notethat the earliest paket among a set of pakets is unique.In the remainder of the setion, we onsider only CMTOEDF+ poliies. Our main result inomparing CMTO poliies and EDF+ is the following strong statement on onsistent CMTOEDF+poliies.Theorem 3 Any onsistent CMTOEDF+ poliy dominates EDF+.The above theorem establishes that any onsistent CMTOEDF+ poliy ahieves no moreweighted loss than EDF+ for any traÆ sequene. This result makes a strong statement aboutonsistent CMTOEDF+ poliies relative to EDF+, beause these di�erent poliies an lead to sig-ni�antly di�erent queue states over time, and this statement implies that no arrival sequene andrive these di�erent poliies to di�erent states so as to favor EDF+ overall. Our proof of thisstatement is rather involved, requiring speial onstruts that an be used to ompare CMTOEDF+poliies and EDF+ over time even as their bu�er states diverge. In the remainder of this setion,we desribe the struture of the proof by stating key de�nitions and lemmas, relegating the rathertehnial proofs of most lemmas to the appendix.For the remainder of this disussion, we �x a partiular arbitrary �nite arrival sequene A andan arbitrary onsistent CMTOEDF+ poliy that we will simply all CMTOEDF+ (a slight abuseof notation). We argue that the poliy CMTOEDF+ ahieves no higher weighted loss on A thanEDF+. Throughout this disussion, the sets Pt and Et refer to the evolution of the system underarrivals given by A and servie determined by poliy CMTOEDF+.To prove the theorem, we need to ompare the weights of pakets served by CMTOEDF+ andby EDF+. The main issue that ompliates this omparison is that the state of the bu�er at eahtime in general will be di�erent for both poliies, beause as soon as they serve di�erent pakets,the evolution of their bu�ers will take di�erent paths. The key idea in our proof is to identify andharaterize oupling times in their evolutions|these are points in time when the bu�er states areidential for the two poliies. It remains then to show that the total weight of pakets served byCMTOEDF+ in between these oupling times is at least that of EDF+.Lemma 1 (Time-dominane) At any time while sheduling the arrival sequene A, the paketserved by CMTOEDF+ is no earlier than the paket served by EDF+.Proof: See Appendix B.1.We say that time t is busy if Pt (under CMTOEDF+) is t-saturated. If all times in the interval[s; t℄ are busy, we say that [s; t℄ is busy. The basi idea is that we say t is busy when hoosing to beidle at time t would neessarily result in additional loss in the future, regardless of further arrivals;in other words, any shedule of Pt that does not serve a paket at time t will serve fewer pakets



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 17than a shedule of Pt that serves the maximum number of pakets. Note that t is busy if and onlyif Et is t-saturated.The following series of de�nitions allow us to haraterize a partiular oupling time that isritial to our proof. We say that d is a t-saturation time of the set Et if Æd�t+1t (Et) = 0; i.e., Etontains exatly d� t+ 1 pakets with deadlines in [t; d℄. If d is a t-saturation time of Et, we alsosay that Et is t-saturated at d. Note that if d is a t-saturation time of Et or Pt, then [t; d℄ is busy.De�ne the \inuene" during interval [s; t℄ to beI[s;t℄ = maxfd(p) : p 2 �(Et0); t0 2 [s; t℄g:The \inuene" I[s;t℄ is the largest deadline of any paket in the set �(Et0) (in Step 2) at any timet0 during the interval [s; t℄. If t is busy, then the laxity I[t;t℄ � t+ 1 is simply the Hajek-Seri ut onEt; i.e., I[t;t℄ is the smallest t-saturation time of Et.Lemma 2 For busy [s; t℄, there is a t-saturation time of Et no less than I[s;t℄.Proof: See Appendix B.2.Given a busy interval [s; t℄, Lemma 2 justi�es de�ning �[s;t℄ to be the smallest t-saturation timeno less than I[s;t℄. We have the following lemma.Lemma 3 (Time-restrition) During a busy interval [s; t℄, CMTOEDF+ does not serve any paketwith deadline exeeding �[s;t℄.Proof: For any t0 2 [s; t℄, the deadline of any paket in �(Et0) does not exeed �[s;t℄ (by de�nitionof �[s;t℄). But any paket that CMTOEDF+ serves during the interval [s; t℄ is an element of suh a�(Et0). The result follows.Lemma 4 For any t, if �[1;t℄ = t then t+ 1 is a oupling time.Proof: That CMTOEDF+ has the desired property follows diretly from the time-restrition lemma(Lemma 3). The same property then follows for EDF+ by using the time-dominane lemma(Lemma 1).We are now ready to identify the oupling times mentioned before, signifying key times when thebu�er states for CMTOEDF+ and for EDF+ are equal. Assume that time 1 is busy (for otherwise,the �rst busy time an be de�ned to be time 1 sine CMTOEDF+ and EDF+ perform identiallyuntil the �rst busy time).Let  � 1 be suh that +1 is the �rst non-busy time|this time must exist beause A is a �nitearrival sequene. It follows that [1; ℄ is a busy interval. We an now show that �[1;℄ = , implyingthat + 1 is a oupling time. To see this, suppose not for ontradition, i.e. that �[1;℄ 6= . This



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 18implies �[1;℄ > , and thus that E has a -saturation time greater than . The de�nition of �,the -shedulability of E, and our hoie of paket to serve at time  from �(E) then imply that+1 is busy, ontraditing our hoie of . The oupling at +1 allows us to fous on the interval[1; ℄ and show dominane there|we an then iterate the same proof by indution on later busyintervals (CMTOEDF+ and EDF+ perform identially from time  + 1 until the next busy time).We now fous on showing dominane in the busy interval [1; ℄.Given a busy interval [s; t℄, de�ne	[s;t℄ = fp 2 Et : d(p) � �[s;t℄g:The set 	[s;t℄ is always t-saturated (by the de�nition of �[s;t℄) and t-shedulable (by the de�nitionof Et). Note that we always have �(Et) � 	[s;t℄. The following properties of the set 	[s;t℄ allow usto establish the dominane of CMTOEDF+ over EDF+.We use the notation min(P ) to denote the smallest weight of any paket in P . Our key lemmaasserts that if we �x s, as we inrease t the set 	[s;t℄ is in a well-spei�ed sense getting \no lessimportant." Sine at eah time t � s the poliy CMTOEDF+ will be serving a paket in 	[s;t℄, thislemma gives us a useful lower bound on the weight of that paket that will be ritial in provingour main theorem.Lemma 5 (	-monotoniity) Given a busy interval [s; t℄, if �[s;t℄ > t, then min(	[s;t℄) �min(	[s;t+1℄).Proof: See Appendix B.3.Let e1; : : : ; e be the pakets served by EDF+ in [1; : : : ; ℄, in order, and m1; : : : ;m likewisethe pakets served by CMTOEDF+. For any time s in [1; ℄, let �s be the least time t � s forwhih �[s;t℄ = t. We proved above that �[1;℄ = , whih with the de�nition of � implies that �sis always in [1; ℄. Let �s be the number of times in the interval [s; �s℄ that EDF+ serves a paketnever served by CMTOEDF+. The monotoniity property just shown for 	 enables us to prove thefollowing result.Lemma 6 For any time s in [1; ℄, every paket served by CMTOEDF+ in the interval [s; �s℄ hasweight no less than min(�(Es))Proof: The weight min(�(Es)) is less than or equal to the weight of every paket in 	[s;s℄ andthus less than or equal to the weight of every paket in 	[s;t0℄ for any t0 suh that s � t0 � �s (using	-monotoniity repeatedly). But every paket served by CMTOEDF+ in the interval [s; �s℄ is inone suh 	[s;t0℄ (i.e., every ms; : : : ;m�s is in its orresponding 	[s;s℄; : : : ;	[s;�s℄), so every paket inms; : : : ;m�s is as important as min(�(Es)).



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 19Lemma 7 For time s suh that paket es is not in fm1; : : : ;mg, CMTOEDF+ serves �s paketsduring [s; �s℄ never served by EDF+ that are no less important than es.Proof: The paket es annot be in Es, or it would be served by CMTOEDF+ at time s and thenwould be ms (so that s would not be as assumed). Beause es is not in Es, it must be no moreimportant than min(�(Es)), or Es would not be the maximum-weight s-shedulable subset of Ps.The lemma then follows by a simple ounting argument given the preeding lemma one werealize EDF+ annot serve any of ms; : : : ;m�s outside the interval [s; �s℄. These pakets annotbe served by EDF+ after time �s beause they will have expired, given the de�nition of �s. Theyannot be served by EDF+ at any time t before s beause, given the onsisteny of CMTOEDF+,they must be eligible at any earlier time after their arrival, and thus must be later than the paketserved by CMTOEDF+ at time t|but the Lemma 1 states that EDF+ always serves a paket nolater than that served by CMTOEDF+.The above lemma allows an easy proof of the following lemma, ompleting the proof of Theo-rem 3.Lemma 8 The total weight of pakets served by CMTOEDF+ in [1; ℄ is at least that of the paketsserved by EDF+ in that interval.Proof: Let i1 > i2 > � � � > in be the n di�erent times when EDF+ serves a paket eij not inm1; : : : ;m (and thus never served by CMTOEDF+). We onstrut a mapping from the pakets eijto pakets inm1; : : : ;m that are never served by EDF+, suh that the mapping always maintains orinreases lass weight. Note that EDF+ must lose at leastm pakets among m1; : : : ;m by a ount-ing argument|m1; : : : ;m are  pakets with deadlines not exeeding  by the time-deompositionlemma (Lemma 4), and EDF+ spends m times steps in [1; : : : ; ℄ serving other pakets). So ourmain onern in onstruting the mapping above is maintaining or inreasing lass weight.For k = 1 to n, we simply selet a paket pk served by CMTOEDF+ but not by EDF+ that isno less important than eik , ensuring that pk is not in fp1; : : : ; pk�1g using Lemma 7. The pairsf(ei1 ; p1); : : : ; (eik ; pk)g onstitute a mapping from the pakets served by EDF+ but not CMTOEDF+to those served by CMTOEDF+ but not EDF+ suh that the image of any paket eil is no lessimportant than eil . Beause all other pakets in e1; : : : ; e are served by both poliies, this mappingimplies the desired result.Rede�ning the �rst busy time after time  to be time 1, and then seleting a new time , wean repeatedly apply the above lemmas to new busy intervals (we need apply this argument onlya �nite number of times beause A is a �nite arrival sequene). This then establishes that thetotal weight of pakets served by CMTOEDF+ is at least that of EDF+, ompleting the proof ofTheorem 3.



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 205 Extensions of CMTO Poliies5.1 Sheduling-dropping CMTO poliiesReall that in a onsistent CMTO poliy, any paket in Pt that is not in the eligible set Et an bedropped from the bu�er at time t without a�eting the shedule of pakets served by the algorithm.This possibility motivates the onsideration of poliies that deide not only whih pakets to serve,but also whih pakets to drop. Suh \sheduling-dropping" poliies are appealing beause of theirsmaller bu�er requirements and their ability to provide more timely feedbak on whih pakets willnot be sheduled.We de�ne a sheduling-dropping poliy �� as a sequene of pairs f(�t; rt) : t � 1g, where � = f�tgis a poliy and rt is a funtion that maps any nonempty set of pakets Pt to a nonempty subset ofPt (representing those pakets that �� \retains" in the bu�er)|where, as for sheduling poliies, werequire that the maps involved be stationary, in the same sense as de�ned there (so that �1 and r1determine �t and rt for any t). Given an arrival sequene A and a sheduling-dropping poliy ��,the sequene Pt of pakets in the bu�er is given by P0 = ; and, for all t � 0,Pt+1 = At+1 [ rt(Pt)� fp 2 rt(Pt) : d(p) = t or p = �t(rt(Pt))g :We say that a paket p is dropped at time t if p 2 Pt � rt(Pt).The notion of throughput optimality applies similarly to sheduling-dropping poliies. It is learthat a TO sheduling-dropping poliy maintains a smaller bu�er in general than a TO poliy thatdoes not drop pakets. We say that a sheduling-dropping poliy is TO-bu�er-optimal (TOBO) ifthe poliy is TO and, for any arrival sequene A and any t � 1, the poliy minimizes jrt(Pt)j overall TO sheduling-dropping poliies. In other words, a TOBO poliy keeps only those pakets thatare neessary to preserve throughput optimality.Hajek and Seri [11℄ provide the following haraterization of TOBO poliies, allowing an easyproof that onsistent CMTO poliies are naturally bu�er optimal when extended to drop as de-sribed above. Let Q be a subset of Pt. Following the notation of [11℄, we write Q �t Pt if theardinality of the largest t-shedulable subset of Pt is equal to that of Q. We note that the fouson time step 1 exploits the stationarity of the poliies we onsider to e�et all time steps.Theorem 4 (Hajek-Seri) A sheduling-dropping poliy �� is TOBO if and only if for any nonempty�nite set of pakets P , we have that r1(P ) �1 P , r1(P ) is 1-shedulable, and �1(r1(P )) 2 �(r1(P )).We say that a sheduling-dropping poliy �� = f(�t; rt)g is a CMTO-dropping (CMTOD) poliyif � = f�tg is a CMTO poliy and rt(Pt) = Et, where Et is the eligible set assoiated with �.Any onsistent CMTO poliy an be made into a CMTOD poliy without a�eting the sheduleof pakets served, by dropping pakets not in Et at eah time t|we also refer to suh CMTODpoliies as onsistent. So, for example, onverting a onsistent CMTOEDF+ poliy into a CMTOD



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 21poliy results in a poliy that dominates EDF+, by Theorem 3. The following result establishesthat our onversion of a onsistent CMTO poliy into a CMTOD poliy in fat results in bu�eroptimality.Proposition 7 Any onsistent CMTOD poliy is a TOBO poliy.Proof: Beause Et is a maximum-weight t-shedulable set, rt(Pt) = Et �t Pt and rt(Pt)�Et is t-shedulable. By de�nition, a CMTOD poliy serves a paket in �(rt(Pt)) at eah time t. Therefore,by Theorem 4, the desired result holds.5.2 Inorporation of fair link-sharing in CMTO poliiesIn this setion, we explore the inorporation of \fairness" into CMTO poliies. We adopt thefollowing standard framework for fair link-sharing (see, e.g., [10℄). Every paket arriving at thequeue is assoiated with one of a �nite number of alls. We think of these alls as sharing the\bandwidth" of the server (also alled the link). Eah all is targeted to reeive a prealloatedfration of the overall bandwidth of the link, expressed as follows. Fix a number TF representingthe interval of time over whih we wish to enfore fairness in the link-sharing. The disrete time-lineis then divided into intervals of length TF . Assoiated with eah all i is a number fi representingthe number of time slots that the server should alloate to all i during eah interval of length TF(for onveniene, we will use the term \TF -interval" for suh an interval). We all fi the link-sharealloation of all i. Naturally, we assume that the link-share alloations for the alls sum to avalue less than or equal to TF . A sheduling poliy is onsidered to provide fair link-sharing if itserves eah all approximately aording to the prespei�ed link-share alloations. Note that it isimpossible for any ausal poliy to shedule pakets to guarantee the link-share alloations exatly,even when suh shedules exist. Without expliitly addressing link-sharing fairness, lass-sensitivepoliies|inluding CMTO poliies|an be grossly unfair in the sense that high-lass pakets anoupy all the server's resoures at the expense of starving lower lasses of servie.Existing link-sharing shemes in the literature inlude weighted-fair queueing (WFQ), weighted-round-robin (WRR), and lass-based queueing (CBQ) (see [6℄ and [10℄). In [10℄, Floyd and Jaobsondesribe a sheme for fair link-sharing based on CBQ. Their sheme onsiders the lass of pakets(alled \priorities" in [10℄), and distributes \exess" time slots aording to these priorities. Theexisting shemes do not expliitly take into aount the interplay between multiple lasses anddeadlines. Here, we desribe a sheme to provide fair link-sharing in the presene of both multiplelasses and deadlines based on CMTO poliies.Our link-sharing sheme, alled CMFQ (CMTO Fair Queueing), is based on a simple ideaextending CMTO poliies: we onsider modifying the CMTO step 1 seletion of the \eligible set"with a onstrained seletion|instead of seleting the maximumweight t-shedulable subsetEt � Pt,



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 22we selet the maximum weight t-shedulable subset Et � Pt that an be served without ausingany lass to exeed its link share alloation in the urrent TF -interval. In order to provide \exessbandwidth" ontrol, we then modify this basi algorithm so that if the seleted set Et an be servedentirely without serving any member at the urrent time, then the urrent time is deemed exessbandwidth and is sheduled using an unonstrained CMTO poliy (without regard to fairness). Wenow give a pseudoode outline for the lass of CMFQ poliies, as follows:CMFQ AlgorithmWhenever t = kTF for some integer k, set Cri = fi (initial \redit").If Pt is not empty, do:1. Find a maximum-weight t-shedulable subset of Pt (alled Et) suh that the number of all-ipakets in Et does not exeed Cri;2. Let k be the smallest integer suh that kTF is no less than t;If Et is t-saturated or jEtj � kTF � t+ 1, then2a. Shedule a paket p within �(Et).2b. Set Crall(p) = Crall(p) � 1, where all(p) is the all index of paket p.else (\exess bandwidth" exists)2. Find a maximum-weight t-shedulable subset of Pt (alled Et, as usual);2d. Shedule a paket within �(Et).The CMFQ algorithm shedules pakets similar to CMTO but takes into aount the \remainingredits" for eah lass (Cri). If there is \exess bandwidth," the algorithm proeeds exatly as in thestandard CMTO algorithm. We determine the presene of exess bandwidth by heking whetherthe \redit-limited" eligible set Et an be served within the urrent TF -interval even if no memberis served at time t. This an be done if and only if both of the onditions heked in line 2 arefalse: Et must not be t-saturated, and the number of pakets in Et must be small enough to serveby the start of the next TF -interval without servie at the urrent time.One natural assumption regarding the relationship between alls and lasses is that for everyall, all pakets of that all belong to the same lass. Under this assumption, the omputation ofEt an be aomplished using a simple modi�ation of the Bakward Algorithm:1. Input: Pt, Cri for all alls i.2. Let Pt be the subset of Pt obtained as follows: for eah all i, retain only the Cri-largestlaxity pakets of all i.
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3Figure 6: An example that illustrates the weakness of SPFQ.3. Let Et be the result of applying the Bakward Algorithm to Pt.4. Output: Et.The orretness of this algorithm rests on the following laim, whih the reader an verify: forany \redit-limited" shedule involving pakets dropped in step 2, there is an equivalent-weight\redit-limited" shedule not involving suh pakets (in this shedule, eah suh paket is replaedby a paket from the same all retained in step 2).In the Setion 6, we evaluate the performane of (an instane of) CMFQ to illustrate its link-sharing fairness. We also ompare the poliy to the sheme of Floyd and Jaobson [10℄ as well asa simple redit-based extension of SP, whih we all SPFQ. Spei�ally, SPFQ shedules a paketaording to SP among all pakets that are in alls with positive redit, where the redits areupdated in a similar fashion to CMFQ|the all-i redit value is deremented whenever a all-ipaket is sheduled. Our empirial results indiate that while all three shemes above providefair link-sharing, the weighted-loss inurred by CMFQ poliies is signi�antly smaller than theweighted-losses of the other two shemes.We onlude this setion by desribing a simple example that gives insight into the superiorityof the CMFQ approah over SPFQ. Consider Figure 6. Currently six pakets are in the queues andonly two more lass-3 pakets will arrive in the future. Suppose that fair link-sharing needs to beprovided by serving at least two pakets of eah lass over eight time slots (here, lasses and allsoinide). On the one hand, any CMFQ poliy will serve all of the pakets urrently in the queueover six time slots, and the inoming lass-3 pakets over the next two time slots (by sheduling the\exess bandwidth" using CMTO). On the other hand, SPFQ will lose the pending lass-3 pakets.Even though both poliies ahieve the goal of fair link-sharing by serving two pakets for eah lass,CMFQ poliies inur a smaller weighted loss than SPFQ.



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 246 Empirial Results6.1 Weighted-loss omparisons with EDF+ and SPIn this setion, we provide quantitative results illustrating the performane of a partiularCMTOEDF+ poliy|whih uses the bakward algorithm for Step 1|in omparison with EDF+and SP, and with a theoretial lower bound obtained from applying the optimal o�ine shedule tothe arriving pakets. For onveniene, in the remainder of this setion we refer to this partiularCMTOEDF+ poliy simply as the CMTOEDF+ poliy. Our results show that the CMTOEDF+ poliyahieves weighted-loss values that are lose to the theoretial lower bound, and outperforms EDF+and SP by up to an order of magnitude.Our experimental setting was designed to evaluate the above sheduling poliies faing pra-tially realisti video traÆ with heavy-tailed session durations, under varying overall loads andburstiness. The servie rate of the server is adjusted by varying the number of time slots perseond|the larger the number of time slots per seond, the higher the servie rate|by varying theservie rate we impliitly vary the burstiness of the traÆ, beause higher servie rates orrespondto more aggregation of video alls and onsequently smoother traÆ for a given load. We showbelow how performane depends on burstiness by varying the servie rate.We simulate seven lasses of video traÆ, onsisting of video sessions arriving over time withrandom session durations. At eah time slot, eah lass generates a video session aording to a�xed probability, whih we all the session-arrival probability. The session-arrival probability isthe same for all lasses, and is varied to set the desired load of the overall traÆ|we show belowhow performane is a�eted by varying this load. The duration of the sessions follows a Paretodistribution, desribed below, to simulate heavy-tailed sessions observed in typial network traÆ[8℄. All pakets in a session have the same lass. All the pakets in a given session have the sameinitial laxity at arrival, and is set randomly for the session aording to a uniform distribution over[16; 80℄ mse.Within eah session, pakets are generated aording to a real MPEG video trae. The videotrae we used was adapted from an MPEG enoding of the Star Wars movie provided by [2℄.Spei�ally, the trae provided by [2℄ divides eah frame of the Star Wars MPEG into 200-bytepakets, and these pakets are evenly spaed over approximately 20 milliseonds.The duration of eah session is sampled from a Pareto distribution funtion F (x) = 1� (b=x)a,where a and b are �xed parameters (often alled the shape and sale parameters, respetively).We hose the parameters a = 2 and b = 625 so that the mean duration of eah session is 2 se,reeting typial sessions found in pratie. We seleted this duration to model typial internettraÆ, giving a 1% hane that a session lasts longer than 10 seonds, so that the overall traÆpattern has notieable long-range dependene over timesales in minutes. (Note that this patternof session duration is not hosen to represent typial MPEG videos, but typial internet sessions,



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 25even though our partiular sessions are in fat MPEG video sessions, apart from their durations).We set the weights of the seven lasses (1 through 7) suh that lass i has a weight of !i�1.By dereasing the parameter !, we aentuate the disparity in importane between lasses, makingthe sheduling problem more lass-sensitive. We show below how performane depends on !.We evaluate various online sheduling algorithms relative to the o�ine optimal weighted loss,a theoretial lower bound on the weighted loss whih we omputed by applying an optimal o�inenon-ausal sheduling algorithm on the pakets involved in the simulation. Spei�ally, we usedthe algorithm of [3℄, although those of [14, 17, 16, 18℄ would also serve the same purpose. Ourresults below show that the CMTOEDF+ poliy ahieves weighted loss values that are very lose tothe lower bound, indiating that the CMTOEDF+ poliy is essentially optimal for this partiulartype of traÆ.We begin exploring the performane of the CMTOEDF+ poliy by measuring the ompetitiveratio ahieved by this poliy in omparison to that ahieved by the simpler EDF+ and SP poliies.The \ompetitive ratio" is the ratio between the performane of an online algorithm and the optimalo�ine performane for the same traÆ. Here, we use weighted loss as the measure of performane,and ompute the optimal o�-line performane as just desribed. Figure 7 shows the ompetitiveratio between the weighted loss ahieved by eah algorithm and the optimal o�ine weighted loss(from the theoretial bound mentioned above), as a funtion of the servie rate (number of timeslots per seond). We vary the servie rate while holding the load onstant (as desribed above) tovary the smoothness of the resulting traÆ. Eah point on the algorithm-evaluation plots representsa simulation of the assoiated poliy over 1,125,000 time slots. For these plots, we set ! = 0:6 and�xed the overall load to be 0:7 (the load is the ratio of the number of pakets generated to thetotal number of time slots), inreasing the arrival rate of alls to maintain this load as the servierate inreases. For ompleteness, we also show an alternative perspetive on the same data inFigure 7 by showing the weighted loss ahieved for the CMTOEDF+ poliy versus that ahieved bythe EDF+ and SP poliies as a funtion of the servie rate, in omparison to the theoretial boundon performane omputed by o�ine omputation.Beause the servie rate is inreasing as we move to the right, the session-arrival rate is alsoorrespondingly inreasing, to maintain the �xed load. Therefore, the number of simultaneoussessions in the system is inreasing as we move to the right, whih orresponds to inreasinglysmoother traÆ. For this reason, we an see that the weighted loss dereases for all poliies as theservie rate inreases, in spite of the �xed load. On the other hand, as the servie rate dereases,the variation in traÆ over time is more bursty and hene the weighted loss inreases.It is lear from Figure 7 that CMTOEDF+ outperforms both EDF+ and SP over the entire rangeof servie rates onsidered, quite substantially at some servie rates. At the low end of the rangeof servie rates, the traÆ is bursty and involves intermittent periods of heavy traÆ loads. Underthese irumstanes, SP performs well by preferentially serving the highest-weight pakets at eah
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Figure 7: Competitive ratio and log weighted loss over varying servie rates with ! = 0:6 and �xedload 0:7. The traÆ is getting smoother as we move to the right.time. On the other hand, at the high end of the range of servie rates, the traÆ is smooth andtherefore throughput-optimal poliies suh as EDF+ (and CMTOEDF+) provide the appropriatemehanism for good weighted-loss performane, serving nearly all the traÆ. The CMTOEDF+poliy has a lear weighted-loss advantage over the entire range of servie rate values, tailoring itsservie style automatially to the appropriate traÆ ondition.The higher servie rates shown in Figure 7 (near and above where SP and EDF+ performidentially) are traÆs that we believe show an interesting interplay between lass-sensitivity anddeadline-sensitivity. For very bursty traÆ, the deadline element is less important, as reetedby the reasonable performane of SP on the left extreme of the �gure. For very smooth traÆ,lass beomes less important, at least at this load of 0.7. To further explore the interplay betweendeadline and lass, we hoose a �xed arrival rate in this region (7500) and show plots in whih wevary either the load (i.e. the session arrival rate) or the multi-lass nature of the problem (i.e. thelass weight parameter !).In Figure 8, we show a plot of the weighted loss of CMTOEDF+ EDF+, and SP as a funtion of!, with a �xed servie rate of 7500 and a �xed load of 0:7. For values of ! lose to 1, all lasses areapproximately equivalent in weight, and hene any throughput optimal poliy|inluding EDF+and CMTOEDF+|is lose to weighted-loss optimal. On the other hand, for values of ! lose to 0,only lass-1 pakets ontribute to the weighted-loss, and hene SP approahes optimal performane.We an see that CMTOEDF+ outperforms both EDF+ and SP over the entire range of ! values,
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Theoretical BoundFigure 8: Log weighted loss for varying ! with servie rate 7500 and load 0:7.performing like SP for small values of ! and like EDF+ for large values of !.Figure 9 shows a plot of the ompetitive ratio for CMTOEDF+ EDF+, and SP as a funtion ofthe load, with ! = 0:6 and a �xed servie rate of 7500, alongside the alternative weighted loss viewof the same data. For these plots, we are using the same aggregated heavy-tailed MPEG trae traÆas for the previous plots, but holding the servie rate onstant and varying load (rather than �xingload and varying either servie rate or !). At low loads, it is possible to serve almost all paketswithout missing their deadlines, and hene the throughput optimality of EDF+ and CMTOEDF+lead to weighted-loss values lose to the optimum (as indiated by weighted-loss values approahingthe theoretial bound)|in the �gure, we only show loads down to 0.6, where CMTOEDF+ stillshows a substantial advantage over EDF+. As the load inreases, the abundane of lass-1 paketsmakes serving only lass-1 pakets the appropriate way of minimizing the weighted loss. Hene,at high loads, SP signi�antly outperforms EDF+ and begins to approah the theoretial bound.As we an see, CMTOEDF+ outperforms both SP and EDF+ over the entire range of load values,indiating the ability of CMTOEDF+ to tailor its hoie of paket to serve based on the load, andto suessfully manage the interplay of lass and deadline in hoosing a paket to serve.6.2 Bu�er oupanyIn Figure 10, we illustrate the straightforward advantage in average bu�er oupany that resultsfrom the early dropping of pakets in the CMTOD poliy (here, CMTOEDF+ with the droppingextension added) as ompared to the EDF+ and SP poliies, whih do not perform any dropping
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Figure 9: Log weighted loss and ompetitive ratio for varying load (! = 0:6, servie rate= 7500).until pakets miss their deadlines. We show average bu�er oupany for eah poliy when faedwith the same traÆ used for Figure 9 (aggregated heavy-tailed MPEG traÆ with the servie rate�xed at 7500 and ! �xed at 0.6, with the arrival rate varied to vary the overall load).The SP poliy atually uses less bu�er spae than CMTOD at low loads, beause SP servesfar fewer pakets than CMTOD by fousing exlusively on the top lasses|this fous results infar higher dropping in lower lasses, resulting in lower bu�er oupany. But at higher loads,as expeted, CMTOD is able to limit the bu�er oupany needed for exellent weighted lossperformane, whereas SP and EDF+ both have bu�er oupanies that grow severely with growingload. Although we do not explore the issue here, we expet that similar advantages for CMTODare seen at low loads in highly bursty traÆ, whih behaves loally like high load traÆ duringbursts.6.3 Weighted loss and fairnessFigures 11 and 12 shows a preliminary omparison of the weighted-loss performane of CMFQrelative to SPFQ, CBQ, and CMTOSP. We defer a full omparison to future work|here we testthese methods only against very simple traÆ rather than using the MPEG aggregation traÆdisussed above. Here, we implement a CMFQ poliy by using the modi�ed bakward algorithmas desribed in Setion 5 for step 1, and SP for step 2 (breaking ties in favor of lower laxitypakets). For this experiment, we alloate a 10% link share to eah of seven lasses (leaving 30%\exess bandwidth"), and take the traÆ in eah lass to be single pakets generated with a �xed
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Figure 12: Link-sharing fairness for the same traÆ shown in Figure 11 for the same algorithms.



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 31probability at eah time step. The probability of paket generation is the same for all seven lasses,and is varied to vary the load in the system for the plots shown. CMFQ enfores fairness over a TF -interval of 600 time steps. The CMTOSP poliy shown in the �gures uses the bakward algorithmfor step 1 of the CMTO algorithm, and then stati priority for step 2.At low load values, all poliies ahieve fairness quite well, with the CM-based poliies yieldingexess bandwidth bene�ts to the lowest lasses; however, the weighted-loss advantage of CMFQover SPFQ and CBQ learly manifests itself with an advantage of orders of magnitude at load0.7. At low loads, CMFQ behaves like CMTOSP beause all lasses ahieve their desired link-sharealloations even in CMTOSP. However, as the load inreases, some weighted-loss performane mustbe sari�ed to provide fairness. At high loads, while CMTOSP ahieves a lower weighted loss thanthe other poliies, it does not provide fairness (i.e., it does not maintain the required link-sharealloations)|Figure 12 shows that the CMTOSP poliy begins to starve the lower lasses at load1.4. On the other hand, CMFQ, SPFQ, and CBQ all ontinue to provide fairness even at high loads.At loads exeeding 1, the requirement to maintain the link-share alloations dominates the need tominimize the weighted loss, and hene CMFQ performs similarly to SPFQ and CBQ in weightedloss. However, we an see from Figure 11 that at load values lose to 1, CMFQ provides superiorweighted-loss performane while at the same time preserving fairness as shown in Figure 12. Theseresults show that CMFQ suessfully ombines the fairness behavior desired in link sharing withthe low weighted loss shown by CMTOSP, inurring higher weighted loss only when the link-sharingrequirements essentially require suh loss.7 ConlusionsWe have shown that no sheduling poliy dominates all others over all traÆ sequenes for ourmultilass setting with deadlines. Moreover, the standard EDF+ and SP poliies appear to havepoor weighted-loss performane over pratially reasonable traÆ sequenes. We have introdued asimple lass of CMTO (greedy) poliies, whih ahieves a weighted-loss performane that provablydominates the EDF+ poliy. Our examples of CMTO poliies illustrate their ease of implemen-tation. These examples|the Forward and Bakward Algorithms|also yield onsistent poliies,whih implies that dropping non-eligible pakets at eah time step does not hange the sheduledpakets, but redues the bu�er usage to the minimum required to maintain throughput optimality.We have also desribed a redit-based mehanism based on CMTO to provide fair link-sharing. Ourempirial results indiate that a partiular instane of a CMTO poliy outperforms both EDF+and SP under pratially realisti traÆ, with weighted-loss gains of up to an order of magnitude.We assumed a �xed paket size in this paper. A natural generalization of CMTO poliies to thease of variable paket sizes involves assuming that: 1) paket sizes are bounded by deadlines; and2) the ost inurred for eah paket dropped is equal to the paket's length multiplied by its lass



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 32weight. In this ase, we an simply follow the two-step CMTO algorithm as before|the eligible set(in Step 1 of the CMTO algorithm) an be obtained by applying Sahni's algorithm [18℄. However,that haraterization of suh poliies involves extending the de�nitions of throughput optimalityand the urrent-minloss property.As we have shown, there is no poliy that dominates all other poliies over all traÆ sequenes,unless we have aess to some knowledge of future traÆ. Aess to a probabilisti model of futuretraÆ should aid in sheduling deisions and therefore enable the design of higher-performaneshedulers. The analysis of shedulers that inorporate of suh a traÆ model entails hangingthe notion of optimality from \traÆ-independent" optimality to \probabilisti" optimality (e.g.,in terms of the expeted total weighted loss over a �nite horizon). Preliminary results along theselines are reported in [3℄.



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 33A Proofs for Setion 2A.1 Proof of Theorem 2Proof: If part: Let � be a poliy and assume that for any nonempty set of pakets P , there existsa maximum-weight 1-shedulable subset E of P suh that �1(P ) 2 �(E).We �rst show that � is TO. By Theorem 1, it suÆes to show that for any nonempty set ofpakets P , �1(P ) 2 �(P ), i.e., �1(P ) has laxity not exeeding h(P ). Let P be a nonempty setof pakets and E a maximum-weight 1-shedulable subset of P suh that �1(P ) 2 �(E). If P isnot 1-saturated, then E = P , and so �1(P ) 2 �(E) = �(P ) as desired. So suppose that P is1-saturated. We show that h(E) � h(P ) (from whih �(E) � �(P ) and thus �1(P ) 2 �(P ) followsimmediately). Let l� = h(P ) = argmaxl Æl1(P ). Hene, for any k, Æk1 (P ) � Æl�1 (P ). Note that inpartiular for all k > l� � 1,Æk1 (P )� Æl�1 (P ) = Nk1 (P )� k � (N l�1 (P )� l�) = (Nk1 (P1)�N l�1 (P ))� (k � l�):and Nk1 (P )�N l�1 (P ) is the number of pakets in P with laxities between l� + 1 and k. Similarly,Æk1 (E)� Æl�1 (E) = (Nk1 (E)�N l�1 (E))� (k � l�):Hene, beause E � P , Æk1 (E)� Æl�1 (E) � Æk1 (P )� Æl�1 (P )for all k > l� � 1, from whih it follows thatÆk1 (E) � Æl�1 (E):Thus, argmaxl Æl1(E) � l�, whih means that h(E) � h(P ), as desired.Next, we show that � is a CM poliy. Let A be an empty-future arrival sequene, and foreah time t let Pt the pending pakets at time t on serving A using �. For eah t, let Et be amaximum-weight t-shedulable subset of Pt suh that �t(Pt) 2 Et. Assume that A1 is nonempty,for otherwise the result holds trivially. We use the following notation:� w�t = the weight of p�t = �t(Pt);� W (A1) = total weight of pakets in A1;� W (Et) = the total weight of pakets in Et;� T = the maximum deadline of any paket in A.We laim that W (Et+1) = W (Et)� w�t for all 1 � t < T . To see this, note that Et+1 [ fp�t g isa t-shedulable subset of Pt. By de�nition of Et, we have W (Et) � W (Et+1) + w�t , whih implies



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 34that W (Et+1) � W (Et) � w�t . On the other hand, note that Et � fp�t g is a (t + 1)-shedulablesubset of Pt+1 beause p�t 2 �(Et). Hene, by de�nition of Et+1, we have W (Et+1) �W (Et)�w�t .By the above laim, we dedue that W (ET ) = W (E1) �PT�1t=1 w�t . But W (ET ) = w�T . Com-bining the above two equations we obtain PTt=1 w�t =W (E1). Hene,L�(A) =W (A1)� TXt=1 w�t =W (A1)�W (E1):By de�nition of E1, we have W (P1)�W (E1) � L�0(A) for any poliy �0. Hene, L�(A) � L�0(A)for any poliy �0, whih ompletes the proof.Only if part: We use ontraposition. Consider a poliy � suh that for some nonempty set ofpakets P , �1(P ) is not in �(E) for any maximum-weight 1-shedulable subset E of P . Let A be anempty-future arrival sequene. Without loss of generality, we assume that t = 1 and that A1 = Pis nonempty.We onsider two ases. First, if P is not 1-saturated, then E = P is a maximum 1-shedulablesubset of P . But �1(P ) 62 �(E) = �(P ) by assumption. Hene, by Theorem 1, � is not TO.If P is 1-saturated, we laim that the set of pakets P 0 sheduled by � when enountering Ado not onstitute a maximum-weight 1-shedulable subset of A = P , and hene that L�(A) isgreater than L�0(A) for some poliy �0 that shedules suh a maximum-weight subset of P . Tosee this, suppose not: i.e., that P 0 is a maximum-weight 1-shedulable subset of P|then beause�1(P ) 62 �(P 0) by assumption, there is a paket in �(P 0) that is not sheduled by � at any timet > 1, ontraditing the assumption that � shedules all pakets in P 0. Hene, L�(A) is not minimal,and so � is not a CM poliy, by de�nition.A.2 Proof of Proposition 3To prove Proposition 3, we will use two lemmas. The �rst lemma provides the following usefulharaterization of t-shedulability.Lemma 9 A set of pakets P (with deadlines no less than t) is t-shedulable if and only if Ælt(P ) � 0for all l � 1.Proof: If part: We use indution on l to show that if Æit(P ) � 0 for all i = 1; : : : ; l, then the paketsin P with laxity not exeeding l an all be served by time t+N lt (P )� 1. For l = 1, if Æ1t (P ) � 0,then there is at most 1 paket in P with laxity 1, whih (if it exists) an learly be served at time t.Now assume the desired result for l� 1. Suppose that Æit(P ) � 0 for i = 1; : : : ; l. Then, all paketsin P with laxity not exeeding l � 1 an be served by time t + N l�1t (P ) � 1. (by the indutionhypothesis). Beause Ælt(P ) = N lt (P ) � l � 0, we dedue that number of pakets in P with laxityl is N lt (P ) � N l�1t (P ) � l � N l�1t (P ). But the number of time instanes from t + N l�1t (P ) to



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 35t + N lt (P ) � 1 (inlusive) is N lt (P ) � N l�1t (P ) � l � N l�1t (P ), and t + N lt (P ) � 1 � l. Hene, allN lt (P ) � N l�1t (P ) pakets with laxity l an be served before their deadlines in the time intervalfrom t+N l�1t (P ) to t+N lt (P )� 1, ompleting the indution argument.Only if part: Suppose Ælt(Pt) > 0 for some l. Then, N lt (P ) > l. But in the time intervalft; : : : ; t + l � 1g, only l pakets an be served. Therefore, some paket in P annot be served byits deadline, whih implies that P is not t-shedulable.The seond lemma that we will use to prove Proposition 3 is the following.Lemma 10 If Et is a maximum-weight t-shedulable subset of Pt, and E0t is any other t-shedulablesubset of Pt, then(a) jEtj � jE0tj; and(b) The jE0tj-highest-weight pakets in Et have total weight no less than that of E0t.Proof: (a) Suppose jEtj < jE0tj. Let k � 1 be the largest integer suh that Nk�1t (Et) = Nk�1t (E0t)(denote N0t (Et) = N0t (E0t) = 0). Thus, N lt (Et) < N lt (E0t) for all l � k, and so there is a p 2 E0t�Etwith lt(p) � k. Also, Ælt(Et) < Ælt(E0t) for all l � k. Beause E0t is t-shedulable, we have Ælt(E0t) � 0(by Lemma 9), and hene Ælt(Et) < 0 for all l � k. Thus, Æt(Et [ fpg) � 0 for all l � 1, whihimplies (again by Lemma 9) that Et [ fpg is t-shedulable. Thus, Et is not a maximum-weightt-shedulable subset of Pt.(b) We use the notation w(p) for the weight of paket p, and W (Et) for the total weight ofpakets in Et (similarly, W (E0t), et.).Let n = jE0t � Etj. Beause jEt � E0tj = jE0t � Etj + jEtj � jE0tj and jEtj � jE0tj by part (a),there are at least n pakets in jEt � E0tj. Let Dt be the n-smallest-laxity pakets in Et � E0t, andlet E00t = (Et \E0t) [Dt. We have E00t � Et and jE00t j = jE0tj. We will show that W (E00t ) � W (E0t),whih then learly implies that the jE0tj-highest-weight pakets in Et have total weight no less thanthat of E0t.Note that W (E00t ) = W (E0t) �W (E0t � Et) +W (Dt). Hene, to omplete the proof, it suÆesto show that W (Dt) � W (E0t � Et). We use ontradition. Suppose that W (Dt) < W (E0t � Et).Let k be the smallest integer in f1; : : : ; ng suh that the k-smallest-laxity pakets in Dt = Et �E0thave total weight less than that of the k-smallest-laxity pakets in E0t � Et. Let p be the kthsmallest-laxity paket in Dt = Et � E0t, and p0 the kth smallest-laxity paket in E0t � Et. Then,learly w(p) < w(p0).We now show that Ft = (Et�fpg)[fp0g is a t-shedulable subset of Pt. To see this, �rst onsiderthe ase where lt(p) � lt(p0). Thus, for l in the interval [lt(p); lt(p0)) we have Ælt(Ft) = Ælt(Et)�1 < 0,and for l outside that interval we have Ælt(Ft) = Ælt(Et) � 0. Hene, by Lemma 9, Ft is a t-shedulable. On the other hand, for the ase where lt(p0) < lt(p), we laim that Ælt(Et) < 0 for



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 36l in the interval [lt(p); lt(p0)). Indeed, for suh l we have N lt (Et) � N lt (Et \ E0t) + (k � 1). Also,N lt (E0t) � N lt (E0t \Et) + k. But N lt (E0t) � l by Lemma 9. Thus,N lt (Et) � N lt (Et \E0t) + k � 1 � N lt (E0t)� 1 � l � 1 < l;proving Ælt(Et) < 0 for suh l. Hene, for l in the interval [lt(p); lt(p0)) we have Ælt(Ft) = Ælt(Et)+1 � 0,and for l outside that interval we have Ælt(Ft) = Ælt(Et) � 0 as in the other ase. Again, by Lemma 9,Ft is a t-shedulable.Finally, note that W (Ft) =W (Et)� w(pi) + w(p0i) > W (Et);whih ontradits the assumption that Et is a maximum-weight t-shedulable subset of Pt.We are now ready to prove Proposition 3. We show that the output Et of the Forward Algorithmis a maximum-weight t-shedulable subset of Pt. For this, we show by indution that for eahl = 1; : : : ;M , the set E(l) in step 3 is a maximum-weight t-shedulable subset of Pt(1)[ � � � [Pt(l).For simpliity, write Q(l) = Pt(1) [ � � � [ Pt(l). As before, we use the notation w(p) for the weightof paket p, and W (E(l)) for the total weight of pakets in E(l) (similarly, W (Q(l)), et.).Beause E(0) = ;, E(1) is a highest-weight paket in Pt(1), if one exists, and hene is amaximum-weight t-shedulable subset of Q(1) = Pt(1). Now suppose that E(l� 1) is a maximum-weight t-shedulable subset of Pt(1) [ � � � [ Pt(l � 1), l � 1. Consider E(l) and any t-shedulablesubset E0 of Q(l). It is lear by Lemma 9 that E(l) is t-shedulable. Thus, it remains to show thatW (E(l)) �W (E0).Write E0 = A0 [B0 where A0 = E0 \ Pt(l) and B0 = E0 \Q(l� 1). By the indution hypothesisand Lemma 10(b), there exists B00 � E(l � 1) suh that jB00j = jB0j and W (B00) � W (B0). Then,E00 = A0 [ B00 is a subset of Pt(l) [E(l � 1), and jE00j = jA0j + jB00j = jA0j+ jB0j = jE0j. BeauseE(l) is by de�nition the l most important pakets in Pt(l) [ E(l � 1), it follows immediately thatW (E(l)) �W (E00), and then thatW (E(l)) �W (E00) =W (A0) +W (B00) �W (A0) +W (B0) =W (E0);whih ompletes the proof.A.3 Proof of Proposition 4We show that the output Et of the Bakward Algorithm is a maximum-weight t-shedulable subsetof Pt. We use the following notation and terminology. Consider a t-shedule �; i.e., � is a partialone-to-one mapping from laxities f1; : : : ;Mg to pakets in Pt suh that if p = �(l), then lt(p) � l.We say that � is a maximum-weight (MW) t-shedule if the the range of � is a maximum-weightt-shedulable subset of Pt. We say that � is aeptable if it an be extended to a MW t-shedule.The empty t-shedule is learly \aeptable" in this sense.



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 37At the start of eah iteration of the inner \for" loop in step 3 of the algorithm, the variables plde�ne a t-shedule � where �(l) = pl if pl 6= AVAIL; i.e., the range of � is fpl : pl 6= AVAILg. Wenote that the mapping � is either extended or not hanged at eah iteration of step 3, so any paketthat annot be added to the mapping at one iteration will not be addable at any later iteration (werefer below to this property as \shedule extension preserves addability"). We laim that at thestart and end of eah iteration of step 3, � is aeptable. We prove this laim by indution. If � isthe empty shedule (whih is the ase when we start step 3), then � is aeptable, as noted before.For the indutive step, we show that if � is an aeptable t-shedule, and we apply one iterationof step 3, then the resulting t-shedule �0 is also aeptable. Eah iteration of step 3 takes a t-shedule � and extends it to another t-shedule �0 (possibly with no hange) as follows. We mayassume that �0 is di�erent from � beause it is trivially aeptable otherwise, sine � is. Thereforesome paket an be added to �. Let  be the lass of the highest-weight paket that an be addedto � to obtain another t-shedule. Let p be the largest-laxity paket in the lass  not alreadyin the range of �. Then �0 is the t-shedule that extends � by adding p at the largest laxity �lsuh that lt(p) � �l and �(�l) is unde�ned (i.e., pl is AVAIL). In other words, the only di�erenebetween �0 and �, if any, is that �0(�l) = p whereas �(�l) is unde�ned. The body of the \for" loopsin step 3 omputes exatly this �l (to see this, you must rule out previously rejeted pakets usingthe \shedule extension preserves addability" property mentioned above).To see that the resulting �0 is aeptable, note that some extension �00 of � is a MW t-shedule(by de�nition of aeptability of �). We now break into two ases. First, if �00(j) = p, for some j,then we must have j � �l sine �l was hosen to be the largest laxity available in �, and �00 extends�. Moreover, beause p is not sheduled in �, but is sheduled at �00(j) we an see that �(j) is notde�ned (and thus �0(j) is not de�ned unless j = �l). These observations imply that the sheduleidential to �00 exept that we swap �00(j) and �00(�l) must be a t-shedule that extends �0|and sinethis shedule shedules the same pakets as �00 (whih is MW) then it must also be MW, implyingas desired that �0 is aeptable. For the seond ase, we assume that �00 does not shedule p. Thenwe an onstrut a new t-shedule based on �00 by setting �00(�l) = p. This new t-shedule is learlyan extension of �0. Moreover, this new t-shedule is also an MW t-shedule, as follows: our hoieof p from the highest lass  ontaining pakets that an be added to �, together with the \sheduleextension preserves addability" property, ensures that all pakets sheduled by �00 but not by �have weight at most the weight of p, implying that the paket removed from �00 by setting �00(�l) = phas weight no more than p. Hene, �00 is aeptable, whih ompletes the indution argument.Finally, note that as step 3 terminates, the omputed t-shedule � must be an MW t-shedule,beause by the above laim, � is aeptable, and by the \shedule extension preserves addability"property there are no more pakets that an be used to extend � (all pakets have been onsideredin step 3 and either added or rejeted due to failure of addability). Beause the set Et in step 4 isthe range of �, we onlude that Et is a maximum-weight t-shedulable subset of Pt.



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 38A.4 Proof of Proposition 5To prove the orretness of the � Algorithm, we use the following lemma.Lemma 11 Let Et = fp1; : : : ; pjEtjg be a set of pakets suh that lt(pi) � i for eah i = 1; : : : ; jEtj.Then, Et is t-saturated if and only if there exists j 2 f1; : : : ; jEtjg suh that j = maxflt(pi) : i =1; : : : ; jg.Proof: Only if part: If Et is t-saturated, then there is a j suh that Æjt (Et) = 0, i.e., N jt (Et) = j.Beause N jt (Et) is the number of pakets in Et with laxity not exeeding j, and only pakets infp1; : : : ; pjg have laxity not exeeding j, we onlude that all pakets in fp1; : : : ; pjg have laxitynot exeeding j. Hene, j = maxflt(pi) : i = 1; : : : ; jg.If part: Suppose j 6= maxflt(pi) : i = 1; : : : ; jg for all j = 1; : : : ; jEtj. Beause lt(pi) � pi,for all j = 1; : : : ; jEtj we have j < maxflt(pi) : i = 1; : : : ; jg, i.e., there is at least one paket infp1; : : : ; pjg with laxity exeeding j. Again beause lt(pi) � i for all i, we dedue that N jt (Et) < j,for all j 2 f1; : : : ; jEtjg. Hene, Æjt (Et) = N jt (Et) � j < 0 for all j 2 f1; : : : ; jEtjg, and Et is nott-saturated.We are now ready to prove the orretness of the � Algorithm as stated in Proposition 5.It is easy to show by indution that eah time the algorithm tests the onditions of the \whileloop" (in step 3), we have that l = maxflt(pk) : k = 1; : : : ; ig and m = minflt(pk) : k = 1; : : : ; ig.We now onsider step 4. If Et is not t-saturated, then by Lemma 11 there an be no j suhthat maxflt(pk) : k = 1; : : : ; jg = j, and thus the \while loop" in step 3 annot terminate with theondition i = l = maxflt(pk) : k = 1; : : : ; ig true|as a result, step 4 is reahed with i = jEtj (theonly way step 3 an terminate) and i 6= l. Hene, the output �t = fp 2 Et : lt(p) = mg is equal to�(Et), by its de�nition, as desired. Now suppose Et is t-saturated. It is straightforward to hekthat for any j, Æjt = 0 if and only if j = maxflt(pk) : k = 1; : : : ; jg (given that lt(pj) � j for anyj). This implies that the loop in step 3 terminates with both i and l equal to the least j suh thatÆjt = 0 (suh j exists by Lemma 11 sine Et is t-saturated). But then i is by de�nition h(Et), andso the output value �t = fp1; : : : ; pig is by de�nition �(Et), as desired.B Proofs for Setion 3B.1 Proof of Lemma 1 (Time dominane)We use indution on the time t. For the base ase (at time 1), the two poliies fae the same bu�erstate, then beause EDF+ serves the earliest paket in A1, CMTOEDF+ must serve a paket noearlier. For the indutive ase, we assume that at all times k < t, CMTOEDF+ serves a paketat time k no earlier than that served by EDF+ at that time. We must show that the paket p



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 39served by CMTOEDF+ at time t is no earlier than that paket pe served by EDF+. Suppose forontradition that p is earlier than pe. Then EDF+ must have served p at some time t0 < t. Inthis ase, by the indution hypothesis, CMTOEDF+ must have served a paket p0 at time t0 suhthat p is earlier than p0, and both p0 and p have arrived and are unexpired at time t0. BeauseCMTOEDF+ will later serve p at time t, by onsisteny p must be in Et0 . But this ontradits thefat that CMTOEDF+ uses EDF+ to selet the paket served in Et0 .B.2 Proof of Lemma 2By de�nition of I[s;t℄, there is some t0 2 [s; t℄ and p0 2 Et0 with deadline d0 suh that d0 = I[s;t℄ andd0 is a t0-saturation time of Et0 (beause t0 is busy and p0 is a highest deadline paket in �(Et0)).If t0 = t, then we are done. Otherwise, note that beause Et0 is t0-shedulable and t0-saturated atd0, and the paket served at t0 is hosen onsistent with a shedule of Et0 , we an hoose a subset� of Et0 \ Pt0+1 that is (t0 + 1)-saturated at d0 and (t0 + 1)-shedulable suh that every paket in� expires at or before d0.Now we show that there must be a (t0+1)-saturation time d00 of Et0+1 that is at least d0 � I[s;t℄.To see this, suppose not, i.e. that there is no suh (t0 + 1)-saturation time at d0 or later. It followsthat there is some paket in � that is not in Et0+1. Let p00 be a latest expiring suh paket (i.e. p00is a latest expiring paket in ��Et0+1). We now have that the set of pakets in � with deadlinesin the interval [d(p00) + 1; d0℄ is a subset of Et0+1, by our hoie of p00. It is straightforward to showby a ounting argument that this inlusion, together with the fats that � is (t0 + 1)-saturatedat d0 and Et0+1 has been assumed not to be (t0 + 1)-saturated at d0, implies that Et0+1 is not(t0 +1)-saturated at any deadline at or after d(p00). But this implies that p00 an be added to Et0+1preserving (t0 + 1)-shedulability, ontraditing the maximum shedulability of Et0+1. Therefore,by ontradition, there is some (t0 + 1)-saturation time of Et0+1 greater or equal to d0.Replaing t0 by t0 + 1, and d0 by d00 and repeating the above argument until t0 = t, we arrive atthe desired result by indution.B.3 Proof of Lemma 5 (	-monotoniity)We prove the lemma by ontradition. Suppose there is a paket p in 	[s;t+1℄ suh that the weightof p is stritly less than min(	[s;t℄).We will show that the paket p an be replaed in Et+1 by a paket p0 from (Pt+1\	[s;t℄)�Et+1.The weight of p0 must exeed that of p by our assumptions on p sine p0 2 	[s;t℄. We show that suhp0 an be found so that this replaement results in a (t+1)-shedulable subset of Pt+1 of larger totalweight than Et+1, ontraditing the de�nition of Et+1 as a maximum-weight (t + 1)-shedulablesubset of Pt+1.We �rst identify the earliest time at whih p an our in any shedule of Et+1. Let d be the



Multilass sheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 40greatest time suh that d < d(p) and Æd�tt+1(Et+1) = 0. (We assume by onvention that Æ0t+1(Et+1) =0, so that d is well-de�ned and lies in the interval [t; d(p) � 1℄.) We note then that d + 1 is theearliest time at whih p an be sheduled in any shedule of Et+1, and that d is a (t+1)-saturationtime of Et+1 (or is equal to t).We now argue that the deadline d ours stritly within the extent of 	[s;t℄, i.e., that d < �[s;t℄.Suppose not. We then have that �[s;t+1℄ � d(p) > d � �[s;t℄ > t. That d > t here implies thatd is a (t + 1)-saturation time of Et+1 (rather than being equal to t). However, the de�nition �does not allow �[s;t+1℄ > d � �[s;t℄ with d a (t + 1)-saturation time of Et+1. This is beauseI[t+1;t+1℄ > d ontradits the fat that I[t+1;t+1℄ is the smallest (t+1)-saturation time of Et+1, andd � I[t+1;t+1℄ with d � �[s;t℄ � I[s;t℄ implies that d � I[s;t+1℄, whih ontradits �[s;t+1℄ > d (sine dis a (t+ 1)-saturation time of Et+1). Therefore, we an onlude by ontradition that d < �[s;t℄.We now show that the desired paket p0 exists. We must �nd a p0 in (Pt+1 \	[s;t℄)�Et+1 suhthat (Et+1 � p) [ p0 is (t + 1)-shedulable. We ensure shedulability by seleting a p0 suh thatd(p0) > d. Sine there is a shedule of Et+1 with p sheduled at d+1, we an simply shedule p0 atthat time in plae of p, so long as d(p0) > d.We show the existene of p0 by ontradition to onlude the proof of 	-monotoniity. Supposefor ontradition that:(*) there is no p0 in (Pt+1 \	[s;t℄)�Et+1 with d(p0) > d.Beause 	[s;t℄ is t-shedulable (sine it is a subset of Et) and t-saturated at �[s;t℄, and a paketpt was seleted for servie from �(Et), we know that 	[s;t℄ � pt is (t + 1)-shedulable and (t + 1)-saturated at �[s;t℄. From this we an onlude that there are at least �[s;t℄� d pakets in 	[s;t℄� ptwith deadlines in [d + 1;�[s;t℄℄. Denote the set of these pakets �. Sine d + 1 � t+ 1, � � Pt+1.Then, by our supposition above for ontradition (*), � � Et+1. But sine d is a saturation timeof Et+1, there are also d� t (from d� (t+ 1) + 1) pakets in Et+1 with deadlines in [t+ 1; d℄|allthe set of these pakets �. The sets � and � together ensure that �[s;t℄ is a (t+1)-saturation timeof Et+1. But note that the paket p annot be in � beause its deadline is greater than d, andannot be in � beause � � 	[s;t℄ and the weight of p is less than min(	[s;t℄), and � and � togetheronstitute all the pakets in Et+1 with deadlines not exeeding �[s;t℄. Sine p 2 Et+1, d(p) mustthus exeed �[s;t℄. But then the fat that �[s;t℄ is a (t+ 1)-saturation time of Et+1 ontradits thehoie of d as the greatest suh time less than d(p). This ontradition ensures that the desired p0exists, onluding the proof.
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