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tWe 
onsider the problem of s
heduling an arriving sequen
e of pa
kets at a single server.Asso
iated with ea
h pa
ket is a deadline by whi
h the pa
ket must be s
heduled. Ea
h pa
ketbelongs to one of a predetermined set of 
lasses, and ea
h 
lass has an asso
iated weight value.The goal is to minimize the total weighted value of the pa
kets that miss their deadlines.We �rst prove that there is no poli
y that minimizes this weighted loss for all �nite arrivalsequen
es of pa
kets. We then present a 
lass of greedy s
heduling poli
ies, 
alled the 
urrent-minloss throughput-optimal (CMTO) poli
ies. We 
hara
terize all CMTO poli
ies, and provideexamples of easily implementable CMTO poli
ies. We 
ompare CMTO poli
ies with a multi
lassextension of the earliest-deadline-�rst (EDF) poli
y, 
alled EDF+, establishing that a sub
lassof CMTO poli
ies a
hieves no more weighted loss than EDF+ for any traÆ
 sequen
e, andat the same time a
hieves a substantial weighted-loss advantage over EDF+ for some traÆ
sequen
es|this advantage is shown to be arbitrarily 
lose to the maximum possible a
hievableadvantage. We also provide empiri
al results to quantify the weighted-loss advantage of CMTOpoli
ies over EDF+ and the stati
-priority (SP) poli
y, showing an advantage ex
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tionWe 
onsider the problem of s
heduling multi
lass traÆ
 with deadlines under a weighted-loss 
ri-terion. In this problem, a single server re
eives pa
ket traÆ
 in dis
rete time. Ea
h pa
ket hasan asso
iated deadline, and must be served by the deadline, or it is 
onsidered lost. Ea
h pa
ketbelongs to one of a predetermined �nite set of 
lasses, and ea
h 
lass has a real-number weight
orresponding to the 
ost in
urred for ea
h pa
ket lost in that 
lass. Every pa
ket takes one unit oftime to serve, and any �nite number of pa
kets 
an arrive per unit time. At ea
h time, the servermakes a de
ision on whi
h pa
ket to serve based on the pa
kets pending in the bu�er (i.e., in an \on-line" fashion). The problem of s
heduling pa
kets with deadlines has re
eived 
onsiderable interestin the literature; e.g., [11, 12, 13, 14, 15, 17, 16, 18℄. However, the treatment of on-line s
hedulingproblems with multiple 
lasses of traÆ
 remains relatively in
omplete. Our main 
ontribution inthis paper is the des
ription of a new family of multi
lass s
heduling poli
ies, a 
hara
terizationof its properties, and a rigorous analyti
al 
omparison of its performan
e relative to a multi
lassextension of the earliest-deadline-�rst (EDF) poli
y. We also provide substantial empiri
al resultsdemonstrating signi�
ant superiority for the new s
heduling poli
ies over both EDF and the stati
priority (SP) poli
y|these results suggest that realisti
 multi
lass traÆ
 with deadlines requires apoli
y that expli
itly 
onsiders the interplay between 
lass and deadline (rather than fo
using onone dimension and using the other to break ties).The multi
lass aspe
t of our problem is motivated by \di�erentiated" pa
ket delivery in high-speed 
omputer networks. There has been related work by the Internet Engineering Task For
e(IETF) intserv and di�serv 
ommunities, aiming at extending the best-e�ort servi
e o�ered by the
urrent Internet in order to provide servi
e di�erentiation beyond the traditional single-
lass pa
ketdelivery servi
e. For example, appli
ations with layered 
oding of data, su
h as Moving Pi
tureExpert Group (MPEG) video streams, layered Dis
rete Cosine Transform (DCT), or wavelet 
odersrequire pa
kets from \important" layers to be delivered preferably, but 
an tolerate some losses ofthe pa
kets from \unimportant" layers. In an MPEG stream, the I frames are 
onsidered moreimportant than the P or B frames [1℄.Several new approa
hes have been explored in the networking 
ommunity to address the problemof servi
e di�erentiation. One approa
h is to use a simple FIFO queue for the aggregated traÆ
and provide servi
e di�erentiation by applying di�erent dropping preferen
es to tagged or untaggedpa
kets [7℄. Another approa
h is to distinguish between pa
kets by assigning to ea
h pa
ket anasso
iated 
lass and then apply a multi
lass s
heduling algorithm, e.g., stati
-priority (SP), whi
halways s
hedules a highest-
lass pa
ket in the queue. A third approa
h is to use \pri
ing" todi�erentiate the servi
es [4℄. Sele
tion of the best approa
h is still on-going [9℄. Generally, ea
hof these approa
hes 
an be handled (to varying degrees of pre
ision) by introdu
ing 
lass weights.For example, the weight of a 
lass 
an be interpreted as the per-pa
ket pri
e [4℄, per-
lass dropping
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ket importan
e measure.We 
onsider s
heduling poli
ies that de
ide whi
h pa
ket to transmit based solely on the pa
kets
urrently pending in the bu�er. The earliest-deadline-�rst (EDF) poli
y, whi
h at ea
h time sele
tsa pa
ket with the earliest deadline among the pa
kets in the bu�er, is a well-known example of su
ha poli
y. EDF is a throughput optimal (TO) poli
y in the sense that it serves as many pa
kets overany time interval as any other poli
y for any traÆ
. This TO 
hara
terization of EDF providesa deterministi
, traÆ
-independent statement of the throughput of EDF. In [15℄, Ling and Shro�des
ribe a poli
y that also a
hieves optimal throughput in the above sense, but drops some pa
ketsstri
tly before their deadlines. The re
ent work of Hajek and Seri [11, 12℄ provides a rigorousstudy of throughput optimal poli
ies using a general deterministi
, traÆ
-independent optimalityframework. Their work also in
ludes a treatment of the multi
lass setting under an optimality
riterion 
alled lex-optimality [12℄.In this paper, we build on the deterministi
, traÆ
-independent framework of Hajek and Seriby 
onsidering the multi
lass 
riterion of weighted loss. Spe
i�
ally, we are interested in minimizingthe total weight of lost pa
kets. It turns out that there is no traÆ
-independent optimal poli
y; i.e.,there is no poli
y that has minimum weighted loss for all traÆ
 sequen
es. The same is true evenif we restri
t our attention only to the 
lass of TO poli
ies|so there is in some sense no \best"TO poli
y with respe
t to weighted loss. Our approa
h is to 
onsider a sub
lass of TO poli
ies,
alled CMTO poli
ies, that take into a

ount the weights of pa
kets in the bu�er a

ording to a\greedy" s
heme 
alled 
urrent-minloss s
heduling. Spe
i�
ally, a CMTO poli
y is a throughputoptimal poli
y that sele
ts a pa
ket to serve at ea
h time 
onsistent with the goal of minimizing theweighted loss assuming that there are no further arrivals. Minimizing the weighted loss of pa
kets
urrently in the queue is in a sense the best we 
an hope for, without any assumptions on the futuretraÆ
.We 
hara
terize all CMTO poli
ies by providing a ne
essary and suÆ
ient 
ondition on the
hoi
e of pa
ket to serve that su
h poli
ies must make at ea
h time step. It turns out that this
hara
terization suggests a natural two-step implementation of CMTO poli
ies. In Step 1, thepoli
y limits its attention to a subset of pa
kets in the bu�er (
alled an \eligible set"), and inStep 2 the poli
y sele
ts a pa
ket from the eligible set in a way that ensures throughput optimality.We present easily implementable algorithms for both steps, yielding simple example instan
es ofCMTO poli
ies.We 
ompare the CMTO poli
y with a simple multi
lass extension of EDF, 
alled EDF+ thatuses pa
ket 
lass only to break deadline ties, revealing the 
lear advantage of CMTO poli
ies overEDF+. Spe
i�
ally, we show that a sub
lass of the CMTO poli
ies a
hieves no more weighted lossthan EDF+ for any traÆ
. This result makes a deterministi
, traÆ
-independent statement aboutthe weighted loss of CMTO poli
ies in relation to EDF+ for any possible traÆ
 arrival sequen
e.We also show that there exist traÆ
 sequen
es su
h that any CMTO poli
y a
hieves a weighted-loss
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lose to the maximum possible a
hievable advantage.We also des
ribe two extensions of CMTO poli
ies. The �rst extension involves droppingsome pa
kets from the bu�er stri
tly before their deadlines. Su
h \s
heduling-dropping" poli
iesare appealing be
ause of their smaller bu�er requirements and their ability to provide more timelyfeedba
k on whi
h pa
kets will not be s
heduled. We show that a natural sub
lass of CMTO poli
ies
an be extended to s
heduling-dropping poli
ies without 
hanging the s
hedule of pa
kets served,while at the same time minimizing the bu�er usage among all throughput optimal s
heduling-dropping poli
ies. The se
ond extension involves a 
redit-based me
hanism to in
orporate fairlink-sharing into CMTO poli
ies. The result is a family of 
lass- and deadline-sensitive s
hedulingpoli
ies that expli
itly takes into a

ount link-share allo
ations for individual 
alls. Our preliminaryempiri
al results, presented below, show that these poli
ies retain the substantial advantages ofCMTO poli
ies with respe
t to weighted loss while giving fair link-sharing behavior similar to thatof previously proposed link-sharing s
hemes (e.g. [10℄).The remainder of this paper is organized as follows. In Se
tion 2, we introdu
e our notation andterminology, give a pre
ise problem de�nition, and show the non-existen
e of an optimal s
hedulingpoli
y. In Se
tion 3, we des
ribe the 
lass of CMTO s
heduling poli
ies. We present a ne
essaryand suÆ
ient 
ondition 
hara
terizing all CMTO poli
ies. We also provide examples of easilyimplementable CMTO poli
ies, with 
orre
tness proofs and algorithmi
 
omplexity analyses. InSe
tion 4, we analyti
ally 
ompare CMTO poli
ies and a multi
lass extension of the EDF poli
y(
alled EDF+), illustrating the 
lear advantage of CMTO over EDF+. We then des
ribe someextensions of CMTO poli
ies in Se
tion 5: CMTO poli
ies that drop pa
kets before their deadlines,and poli
ies based on CMTO that also in
orporate link-share fairness. In Se
tion 6, we illustratethe performan
e of CMTO poli
ies via simulations using pra
ti
ally reasonable traÆ
 sequen
es,
omparing the performan
e of CMTO with EDF+, SP, and an SP-based fair-queueing poli
y. Wedraw 
on
lusions in Se
tion 7 and also provide there some dis
ussion of possible future resear
hdire
tions. Throughout the paper, we relegate te
hni
ally involved proofs to the appendix.2 Multi
lass S
heduling ProblemIn this se
tion, we present the notation and terminology that we will use throughout the paper,and demonstrate the non-existen
e of a poli
y that minimizes weighted loss under all traÆ
. Ourtreatment follows that of Hajek and Seri [11℄ (although some of our notation and terminology di�ersfrom [11℄).2.1 Framework, terminology, and notationWe assume that time t is slotted, i.e., t 2 f1; 2; : : :g, and that ea
h pa
ket takes exa
tly one timeslot to be served. Ea
h pa
ket p belongs to a parti
ular 
lass, denoted by C(p) 2 f1; : : : ;mg, and
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ket that is not served by its deadline is said to be lost. Morepre
isely, if the arrival time for a pa
ket p is t, then p needs to be served at some time betweent and d(p), in
lusive, or p is lost. If p is lost, a 
ost wC(p) > 0, depending only on the 
lass of p,is in
urred. We assume without loss of generality that if C(p) < C(p0), then wC(p) > wC(p0). Wenaturally 
onsider that high-weight 
lasses are more important than low-weight ones.An arrival sequen
e (also 
alled a traÆ
 sequen
e, or a traÆ
 for simpli
ity) A is a sequen
eA = fAt : t � 1g su
h that At is the set of pa
kets arriving at time t. The sets At are assumedto be disjoint, and d(p) � t for all p 2 At. The laxity of a pa
ket p at time t is de�ned aslt(p) = d(p) � t + 1, i.e., the number of time slots left before the pa
ket's deadline expires and pbe
omes lost. An arrival sequen
e is said to be �nite if there is a �nite T su
h that At = ; for allt � T . For 
onvenien
e, we also use the notation A to denote the set of pa
kets [t�1At.Given an arrival sequen
e A, a s
hedule is a one-to-one partial mapping t 7! pt where t 2f1; 2; : : :g and, if pt is de�ned, pt 2 A1 [ � � � [ At with t � d(pt). If pt is de�ned, we say that pt iss
heduled (alternatively, transmitted or served) at time t.A s
heduling poli
y � is a sequen
e of maps f�t : t � 1g where �t is a fun
tion that mapsany nonempty set of pa
kets P to a single element of P , where we require that the maps f�tg arestationary ; i.e., the fun
tion �1 must determine �t for all t as follows: for any set of pa
kets P ,�t(P ) = �1(P 0), where the pa
kets of P 0 are exa
tly those of P but with their deadlines de
reasedby t�1 time steps (pa
kets with nonpositive resulting deadlines are removed). A s
heduling poli
yindu
es a s
hedule as follows. Given an arrival sequen
e A and a poli
y �, de�ne the sequen
e fPtgby P0 = ; and, for all t � 0,Pt+1 = At+1 [ Pt � fp 2 Pt : d(p) = t or p = �t(Pt)g :Note that the sequen
e fPtg depends on and is 
ompletely determined by the arrival sequen
e Aand the poli
y �. At ea
h time t, Pt represents the set of pa
kets that have arrived at or beforetime t, have not been transmitted before time t, and have not yet missed their deadlines at time t.We refer to pa
kets in Pt as available or pending in the system. We 
an also think of Pt as the stateof the queue at time t, in the 
ase where no pa
kets are dropped ahead of their deadlines expiring.(We assume that the queue starts out empty: P0 = ;.) The poli
y � sele
ts the pa
ket �t(Pt) totransmit at time t. In other words, the s
heduling poli
y � indu
es the s
hedule t 7! �t(Pt). Wesay that � s
hedules a pa
ket p at time t if �t(Pt) = p. Note that if Pt is empty, �t(Pt) is unde�ned,and no pa
ket is served at time t.A poli
y de�ned as above is often referred to as work-
onserving or non-idling be
ause �t(Pt)is de�ned whenever Pt 6= ;, and as 
ausal be
ause its sele
tion of the pa
ket to transmit dependsonly on the 
urrently pending pa
kets in the system. Our de�nition of a poli
y is more restri
tivethan the one in [11℄, but suÆ
es for our purposes (the de�nition in [11℄ allows for pa
ket sele
tionsthat depend arbitrarily on all past arrivals, not just the pending pa
kets).
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Figure 1: Graphi
al illustration of multi
lass pa
kets with deadlinesThroughout this paper, we graphi
ally illustrate sets of pa
kets using re
tangular arrays, su
has the one shown in Figure 1. The 
olumns of the array represent laxities, ordered from right toleft in in
reasing order, while the rows represent 
lasses, ordered from top to bottom in in
reasingorder (de
reasing importan
e). A blo
k in an entry of the array represents one or more pa
kets (aslabeled) with the asso
iated laxity and 
lass|if multiple pa
kets have the same laxity and 
lass,we indi
ate the number of pa
kets above or below the appropriate blo
k.We need a few more de�nitions before we 
an des
ribe our problem. The next de�nition is takendire
tly from [11℄. A s
heduling poli
y � is throughput optimal (TO) if, for any arrival sequen
e Aand any t � 1, poli
y � s
hedules at least as many pa
kets in slots f1; : : : ; tg as any other poli
ydoes.Denote the set of pa
kets s
heduled by � as S�; i.e., S� = f�t(Pt) : Pt 6= ;; t � 1g. Note thatA� S� is the set of pa
kets that are not served by � and will eventually miss their deadlines. Theweighted loss in
urred by a s
heduling poli
y � with respe
t to a �nite arrival sequen
e A isL�(A) = Xp2A�S� wC(p):We say that a s
heduling poli
y � dominates �0 over A if L�(A) � L�0(A). If � dominates �0 overall �nite arrival sequen
es, then we say that � dominates �0. Note that an equivalent de�nitionof domination 
an be stated using the notion of weighted throughput, the total weight of pa
ketsserved.A s
heduling poli
y � is said to be optimal if � dominates any other poli
y. If � is TO anddominates any other TO poli
y, we say that � is an optimal-TO (OTO) poli
y. Note that an OTOpoli
y need not be optimal, be
ause it is required to dominate only other TO poli
ies.2.2 Nonexisten
e of optimal poli
iesIdeally, our goal in multi
lass s
heduling should be to �nd an optimal poli
y as de�ned above.However, it is easy to show that there is no su
h poli
y.Proposition 1 No optimal s
heduling poli
y exists if and only if there are at least two 
lasses.
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Figure 2: Graphi
al illustration for the proof of Proposition 1Proof: If part: Let i and j be two 
lasses with wi > wj. Suppose A1 
onsists of a 
lass j pa
ket pwith laxity l1(p) = 1 and a 
lass i pa
ket p0 with laxity l1(p0) = 2 (see Figure 2). If At = ; for allt > 1, we must serve p at time 1 to dominate all other poli
ies over A. On the other hand, if A2
onsists of a 
lass i pa
ket with laxity 1, and At = ; for all t > 2, we need to serve p0 at time 1 todominate all other poli
ies over A. Hen
e, no optimal poli
y exists.Only if part: If all pa
kets have the same weight, then any TO poli
y (e.g., the earliest-deadline-�rst (EDF) poli
y) is optimal.Even though there is in general no optimal poli
y, we might still hope for an OTO poli
y, sin
esu
h a poli
y must only dominate all other TO poli
ies, not ne
essarily all other poli
ies. In theexample (see Figure 2) used in the proof of Proposition 1, we des
ribed two options in 
hoosing thepa
ket to serve su
h that the preferable option depends on the future arrivals. However, only oneof those options is 
onsistent with throughput optimality, so this example does not immediatelypre
lude the existen
e of an OTO poli
y.To explore further the existen
e of OTO poli
ies, we �rst review a throughput optimality
ondition by Hajek and Seri [11℄|this 
ondition is stated in Theorem 1 below, using the followingnotation. Given a nonempty set of pa
kets P at time t (with deadlines no less than t) and integerlaxity l � 1, let N lt (P ) be the number of pa
kets in P having laxity no more than l, and letÆlt(P ) = N lt (P )� l. We say that P is t-saturated if Ælt(P ) � 0 for some l � 1. De�neh(P ) = ( argmaxl Ælt(P ) if P is t-saturatedminfl : N lt (P ) > 0g otherwisewhere argmaxl Ælt(P ) is the smallest l maximizing Ælt(P ). Let �(P ) be the set of pa
kets in P whoselaxities do not ex
eed h(P ). We refer to the integer h(P ) as the Hajek-Seri 
ut for P .Considering the set Pt of pa
kets pending in the bu�er at time t, the integer Ælt(Pt) is a lowerbound on how many pa
kets in Pt must miss their deadlines by time t+ l in any s
hedule of futuretransmissions. Moreover, if Pt is t-saturated and at time t we serve a pa
ket not in �(Pt) (i.e.,one whose laxity ex
eeds h(Pt)), then the number of pa
kets in Pt that will de�nitely miss theirdeadlines in the future will in
rease. Indeed, Hajek and Seri show that s
heduling within �(Pt) isne
essary and suÆ
ient for throughput optimality.
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Figure 3: An example where EDF serves more weight than the poli
y using SP within �(Pt).Theorem 1 (Hajek-Seri) A poli
y � is a TO poli
y if and only if for any nonempty set of pa
ketsP , �1(P ) 2 �(P ).Within the 
lass of TO poli
ies, we have 
onsiderable freedom in 
hoosing whi
h pa
ket in �(Pt)to serve at ea
h time t. The earliest-deadline-�rst (EDF) poli
y provides su
h a 
hoi
e. However, ifwe are interested in minimizing weighted loss, we should 
hoose a pa
ket in �(Pt) based on its 
lass.A naive 
lass-based 
hoi
e is to sele
t a pa
ket within �(Pt) using SP (i.e., sele
t a highest-weightpa
ket). Su
h a poli
y is TO and appears always to serve more important pa
kets than EDF does.Unfortunately, this simple 
hoi
e does not in fa
t dominate EDF. Indeed, 
onsider the examplegiven in Figure 3. If there are no further arrivals, EDF serves more weight than � for this traÆ
.In the next se
tion, we explore a 
lass of poli
ies that make 
lass-sensitive sele
tions within �(Pt)with provable bene�ts, in
luding dominan
e of EDF.We now return to the issue of existen
e of an OTO poli
y. The following proposition indi
atesthat, unfortunately, there does not exist su
h a poli
y in general.Proposition 2 No OTO poli
y exists if and only if there are at least three 
lasses.Proof: A simple modi�
ation of the proof of Proposition 1 does the job.If part: Let i, j, and k be three 
lasses with wi > wj > wk. Suppose A1 
onsists of a 
lass ipa
ket p0 with laxity l1(p0) = 2, a 
lass j pa
ket p with laxity l1(p) = 1, and two 
lass k pa
ketswith laxities 1 and 2. (see Figure 4). If At = ; for all t > 1, we must serve p at time 1 to dominateall other TO poli
ies over A. On the other hand, if A2 
onsists of a 
lass i pa
ket with laxity 1,and At = ; for all t > 2, we need to serve p0 at time 1 to dominate all other TO poli
ies over A.Hen
e, no optimal TO poli
y exists. (The key di�eren
e between this example and that in Figure 2is that the presen
e of the 
lass k pa
kets ensures that all 
hoi
es of pa
ket to serve at time 1 are
onsistent with throughput-optimality.)Only if part: If there is only one 
lass, then any TO poli
y is OTO optimal. If there two 
lasses,then any TO poli
y that serves more 
lass 1 pa
kets than any other TO poli
y is OTO. Hajek andSeri [11℄ have shown that su
h a poli
y exists (
alled a MOSTO poli
y in [11℄).
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al illustration for the proof of Proposition 23 Current-Minloss S
heduling3.1 Basi
 des
ription and 
hara
terizationIn this se
tion, we des
ribe a 
lass of poli
ies 
alled 
urrent-minloss TO (CMTO) poli
ies. ACMTO poli
y is a TO multi
lass 
ausal s
heduling poli
y that s
hedules a pa
ket at ea
h timestep 
onsistent with the goal of minimizing the weighted loss of the 
urrent pa
kets in the bu�er.This poli
y a
hieves the minimum weighted loss assuming that there are no further arrivals. As weshowed in the previous se
tion, the multi
lass s
heduling problem is unsolvable in general withoutknowledge of future traÆ
. Minimizing the weighted loss of pa
kets 
urrently in the queue is ina sense the best we 
an hope for, without any assumptions on the future traÆ
 (see [3℄ for someof our work on minimizing weighted loss in the presen
e of sto
hasti
 assumptions on the futuretraÆ
). We de�ne and 
hara
terize CMTO poli
ies below. In the next se
tion, we give examplesof easily implementable CMTO poli
ies.We begin with some de�nitions. Let P be a set of pa
kets with deadlines no less than t. At-s
hedule of P is a one-to-one partial mapping i 7! pi 2 P where i 2 f1; 2; : : :g and, if pi is de�ned,then lt(pi) � 1. A t-s
hedule indu
es a s
hedule of the pa
kets in P : if pi is de�ned, then pi iss
heduled at time t+i�1. Note that all pa
kets in a t-s
hedule are s
heduled at times t or later. We
an think of a t-s
hedule as an indexed set of pa
kets fpi : i 2 Dg where D = fi � 1 : pi is de�nedgand lt(pi) � i for all i 2 D. A set of pa
kets is said to be t-s
hedulable if there exists a t-s
hedulethat 
ontains the set.A maximum-weight t-s
hedulable subset of Pt is a set Et � Pt su
h that the total weight ofpa
kets in Et is no less than that of any other t-s
hedulable subset of Pt. We say that A is anempty-future arrival sequen
e if At = ; for all t > 1|in su
h an arrival sequen
e, all the arrivalshappen at time 1. A poli
y � is a 
urrent-minloss (CM) poli
y if, for any empty-future arrivalsequen
e A, we have L�(A) � L�0(A) for any other poli
y �0. A throughput optimal CM poli
y is
alled a CMTO poli
y.The following theorem 
hara
terizes all CMTO poli
ies. We note that the fo
us on time step 1exploits the stationarity of the poli
ies we 
onsider to e�e
t all time steps.
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y � is a CMTO poli
y if and only if for any nonempty set of pa
kets P , thereexists a maximum-weight 1-s
hedulable subset E of P su
h that �1(P ) 2 �(E).Proof: See Appendix A.1.Similar to Theorem 2, we 
an state a 
hara
terization of all CM poli
ies|not ne
essarily TO|involving a di�erent (more relaxed) restri
tion of pa
ket 
hoi
e. Spe
i�
ally, if Pt is not t-saturated,then a CM poli
y 
an 
hoose any pa
ket in Pt. However, we will not dwell any further on non-TOCM poli
ies, and will restri
t our attention hen
eforth to CMTO poli
ies.3.2 Examples of CMTO poli
iesTheorem 2 suggests the following implementation of any CMTO poli
y:For ea
h t, if Pt is not empty, do:Step 1: Find a maximum-weight t-s
hedulable subset of Pt (
alled Et);Step 2: S
hedule a pa
ket within �(Et) for servi
e at time t.We refer to the two-step algorithm above as the CMTO algorithm. Next, we provide twoexamples of CMTO poli
ies based on the CMTO algorithm. These two examples di�er only intheir implementation of Step 1.3.3 Step 1 of the CMTO algorithmStep 1 of the CMTO algorithm takes a given set of pa
kets Pt and 
omputes a maximum-weightt-s
hedulable subset Et. These are pa
kets that are \eligible" to be s
heduled in the CMTOalgorithm; we therefore refer to Et in Step 1 as the eligible set. The 
omputation of Et from Ptis a familiar problem in \o�ine" s
heduling. Indeed, there are several algorithms des
ribed inthe literature that 
an be used for this purpose [14, 17, 16, 18℄. Here, we des
ribe two new simpleexample algorithms for Step 1. We present these two new algorithms not as superior alternatives toexisting algorithms, but simply to illustrate what is involved in the 
al
ulation of Step 1, and showsome of the diversity of approa
hes that are possible. We note that none of the previous work onsu
h \o�ine" algorithms proposes to in
orporate su
h methods as part of an online s
heduler, as wedo (e.g. the algorithms in [16℄ and [17℄ were suggested to provide upper bounds on the a
hievableperforman
e of online s
heduling algorithms). We also provide new 
areful and 
omplete 
orre
tnessproofs for both our new methods in the appendi
es.
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alled the Forward Algorithm,des
ribed as follows. We use the notation Pt(l) = fp 2 Pt : lt(p) = lg (set of pa
kets in Pt withlaxity l), and M = maxflt(p) : p 2 Ptg (largest laxity of pa
kets in Pt).Forward Algorithm:1. Input: a set of pa
kets Pt.2. Initialize: E(0) = ;,3. For l = 1; : : : ;M ,Set E(l) to be the l-most important pa
kets in Pt(l) [E(l � 1)(or the whole of Pt(l) [E(l � 1) if it has fewer than l pa
kets).4. Output: the set Et = E(M).In the Forward Algorithm, we grow an initially empty set into su

essively larger t-s
hedulablesubsets of Pt until we have rea
hed the largest t-s
hedulable subset of Pt. At ea
h su

essive step wekeep only the most important (highest-weight) pa
kets that 
an be s
heduled. The worst-
ase time
omplexity of the algorithm depends on the data stru
tures used to represent the sets Pt(l) andthe 
urrent largest t-s
hedulable subset (as \grown" by the algorithm). One natural approa
h is torepresent these sets with linked lists sorted to be in de
reasing order by weight, where pa
kets ofidenti
al weight and laxity are 
ombined into a single list entry (we assume the list entries 
ontaina 
ount of the number of pa
kets represented). In this 
ase, the algorithm runs in 
omplexityO(mM), where M is the largest laxity of pa
kets in Pt and m is the number of 
lasses. Notethat the key step of 
omputing the set E(l) in the algorithm (step 3) 
an be implemented as amerge operation running in time 
omplexity O(m) be
ause ea
h list involved will be at most m inlength, and this key step will be run at most M times. We note however that if we are to use thisrepresentation for the sets Pt(l) during online s
heduling, we must be able to eÆ
iently 
omputePt+1 from Pt and At+1, assuming that Pt is already so represented|when using this representationthis 
omputation (essentially sorting At+1, then merging) has a possibly higher O(jAt+1j log jAt+1j)
ost unless we also assume a similar sorted representation for the new arrivals At+1. If we assumea �xed bound on both M and m, then this sorting of arrivals 
an be 
arried out in O(jAt+1j) timeusing a bu
ket sort.The pa
kets in the output Et 
an be listed as a t-s
hedule (i.e., Et = fp1; : : : ; pjEtjg withlt(pi) � i), without in
reasing the 
omplexity, as long as we 
hoose our representation to orderpa
kets of the same weight by laxity (rather than arbitrarily)|this allows the O(mM) 
onversionof a length M linked list ordered by weight into a length M list ordered by laxity, with the latterbeing an earliest-deadline-�rst t-s
hedule.
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e a maximum-weightt-s
hedulable subset of Pt.Proposition 3 The Forward Algorithm yields a CMTO poli
y.Proof: See Appendix A.2.3.3.2 Ba
kward AlgorithmOur se
ond example algorithm for Step 1 of the CMTO algorithm is 
alled the Ba
kward Algorithm,des
ribed as follows.Ba
kward Algorithm:1. Input: a set of pa
kets Pt.2. Initialize: pl = AVAIL, l = 1; : : : ;M .3. For 
 = 1; : : : ;m (from highest to lowest 
lass),For pa
ket p in 
lass 
, from highest to lowest laxity,If �l = maxfj � lt(p) : pj = AVAILg exists, then set p�l = p.4. Output: the set Et = fpl : pl 6= AVAILg.The Ba
kward Algorithm 
an be implemented to run in 
omplexity (essentially)O(min(jPtj;M+m)), assuming that Pt is represented by giving for ea
h 
lass a linked list of pa
kets sorted by laxity.To see this, note that the algorithm s
hedules at most M pa
kets and reje
ts at most m pa
kets(be
ause on
e a pa
ket is reje
ted in a given 
lass, the algorithm 
an move on to the next 
lass).The 
omplexity bound of O(M + m) exploits the Union/Find disjoint-sets algorithm [5℄, whi
henables the Ba
kward Algorithm to s
hedule or reje
t ea
h pa
ket in essentially 
onstant time (thebound above omits an inverse A
kerman's fun
tion fa
tor from the Union/Find algorithm).A Union/Find implementation 
an be used to maintain equivalen
e 
lasses on the laxities, asfollows: two laxities are taken to be equivalent if their maximum \s
hedulable" laxities are thesame. Here, the \maximum s
hedulable laxity" for a given laxity l is the smallest \available" laxityin the s
hedule pl not greater than l. Spe
i�
ally, ea
h time the algorithm sets p�l to be some pa
ket,the equivalen
e 
lasses for laxities �l and �l+1 must be merged. The Union/Find algorithm must beimplemented to maintain the smallest equivalen
e 
lass member as the 
lass representative. Giventhis maintenan
e of equivalen
e 
lasses, the sele
tion of �l in step 3 in the Ba
kward Algorithm 
anbe done with a single 
all to \Find" the equivalen
e 
lass representative of lt(p).We note again that 
reating the required sorted representation of Pt+1 from Pt as arrivals At+1are pro
essed 
an be more expensive than the Ba
kward Algorithm itself if At+1 is originally givenin an unsorted fashion, and that a natural assumption would be that M and m are bounded so
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ket sort 
an be used for this purpose. We believe that the algorithms of [16℄and [17℄ 
an be spe
ialized to similar assumptions as well to a
hieve similar runtime 
omplexity,though that work does not dis
uss this spe
ialization and instead fo
uses on a
hieving a looserO(jP j log jP j) bound for an unsorted set of pa
kets P .Proposition 4 The Ba
kward Algorithm yields a CMTO poli
y.Proof: See Appendix A.33.3.3 Consistent sele
tion of eligible pa
ketsWe say that a CMTO poli
y is 
onsistent if whenever p 2 At and p =2 Et+k for some k � 0, thenp =2 Et+k+i for all i � 0. In other words, a 
onsistent CMTO poli
y has the property that a pa
ket
an only be eligible at a time t (i.e., in Et) if it has been eligible at all previous times sin
e itsarrival. It is straightforward to show that if we use either the Forward Algorithm or Ba
kwardAlgorithm in Step 1 of the CMTO algorithm, then the resulting poli
y is 
onsistent. Note that ina 
onsistent CMTO poli
y, if a pa
ket does not join Et at any time step t after its arrival, we 
ansimply drop the pa
ket from the bu�er at that time without a�e
ting the future s
hedule generatedby the algorithm, regardless of future arrivals; we will have more to say about su
h \dropping"poli
ies in Se
tion 5.1.3.4 Step 2 of the CMTO algorithmGiven a t-s
hedule fp1; : : : ; pjEtjg of the eligible set Et from Step 1 of the CMTO algorithm (as 
anbe obtained from the Forward or Ba
kward Algorithm), Step 2 of the CMTO algorithm 
an be
omputed using the following algorithm.� Algorithm1. Input: Et = fp1; : : : ; pjEtjg with lt(pi) � i.2. Initialize: i = 1, l = lt(p1), m = lt(p1).3. While i < jEtj and i 6= l,i = i+ 1; l = maxfl; lt(pi)g; m = minfm; lt(pi)g.4. If i = l (i.e. Et is t-saturated),then set �t = fp1; : : : ; pig (i is the Hajek-Seri 
ut for Et);else set �t = fp 2 Et : lt(p) = mg.5. Output: �t.
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omplexity O(jEtj). Be
ause jEtj �M , where M is the largest laxityof pa
kets in Pt, the entire CMTO algorithm 
an be implemented in O(M). Although Hajek andSeri do not provide an expli
it algorithm in [11℄ for 
al
ulating the set �(Et), they do note thatthe set 
an be 
omputed in 
omplexity O(M) if the input is sorted a

ording to laxities. The �Algorithm above requires only an input in the form of a t-s
hedule, not ne
essarily sorted a

ordingto laxities. (In addition, any t-s
hedulable set sorted by laxities is a t-s
hedule, and is thus suitablefor input to the � Algorithm).Proposition 5 Given a t-s
hedule of the set of pa
kets Et, the � Algorithm generates the set�(Et).Proof: See Appendix A.4.4 Comparison of CMTO and Multi
lass EDFWe now provide an analyti
al 
omparison between CMTO poli
ies and the earliest-deadline-�rst(EDF) poli
y, illustrating the 
lear advantage of CMTO over EDF. To be more spe
i�
, we assumethat the EDF poli
y breaks ties in favor of higher-
lass pa
kets. To emphasize that this version ofEDF extends the usual EDF by making it 
lass-sensitive, we will 
all this poli
y EDF+.We show the following two results. First, a sub
lass of CMTO poli
ies, 
alled CMTOEDF+poli
ies, dominates EDF+; i.e., any CMTOEDF+ poli
y a
hieves no more weighted loss than EDF+for any traÆ
. Se
ond, there exist traÆ
 sequen
es su
h that any CMTO poli
y a
hieves a weighted-loss advantage over EDF+ that is arbitrarily 
lose to the maximum possible a
hievable advantage.We �rst show the easier of the two results above|that any CMTO poli
y 
an arbitrarily out-perform EDF+ for some traÆ
 sequen
e. We state our result in terms of the \average weightedthroughput," whi
h we de�ne as follows. For any �nite arrival sequen
e A, let T (A) be the maximumnumber of pa
kets in A that 
an be served (i.e., the number of pa
kets served by any TO poli
y).Let W (S�(A)) the total weight of pa
kets served by �, and de�ne �W �(A) = W (S�(A))=T (A) asthe average weighted throughput of poli
y � for arrival sequen
e A. Note that for a TO poli
y �,�W �(A) is exa
tly the average weight of pa
kets served by �.Re
all that we have m 
lasses, with w1 and wm being the largest and smallest weights, respe
-tively. It is 
lear that for any TO poli
y � and any �nite arrival sequen
e A, �W �(A) is boundedabove by w1 and bounded below by wm. Therefore, any TO poli
y 
an outperform any other TOpoli
y (in terms of average weighted throughput) by at most w1 � wm. We show that any CMTOpoli
y 
omes arbitrarily 
lose to a
hieving this maximum performan
e advantage over EDF+ forsome traÆ
 sequen
e.Proposition 6 For any � > 0, there exists a �nite arrival sequen
e A su
h that �W �(A) ��WEDF+(A) � w1 � wm � � for any CMTO poli
y �.
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Figure 5: Pa
kets in proof of Proposition 6Proof: Fix � > 0 and 
hoose T � (w1 � wm)=�. Let A be an empty-future arrival sequen
e su
hthat A1 
onsists of T 
lass-1 pa
kets with laxity T , and T � 1 
lass m pa
kets p1; : : : ; pT�1 withlaxity T �1; see Figure 5. For this arrival sequen
e A, any CMTO poli
y � serves T 
lass-1 pa
kets.In 
ontrast, EDF+ serves T �1 
lass-m pa
kets and one 
lass-1 pa
ket. Hen
e, �W �(A) = w1, while�WEDF+(A) = 1T ((T � 1)wm + w1) � 1T ((T � 1)wm + wm + T�) = wm + �;whi
h 
ompletes the proof.We now show that a parti
ular sub
lass of CMTO, 
alled CMTOEDF+, dominates EDF+. Thisresult gives us a traÆ
-independent preferen
e for CMTOEDF+ poli
ies over EDF+; i.e., no matterwhat traÆ
 arrives, EDF+ will not outperform any CMTOEDF+ poli
y with respe
t to weightedthroughput.A CMTOEDF+ poli
y is any CMTO poli
y that uses EDF+ to sele
t the pa
ket to be servedfrom �(Et) (Step 2 in the CMTO algorithm). Note that a CMTOEDF+ poli
y need not a
tuallyperform Step 2, be
ause applying EDF+ to �(Et) is equivalent to applying EDF+ dire
tly tothe eligible set Et, making the 
al
ulation of �(Et) unne
essary. The 
riti
al di�eren
e betweenCMTOEDF+ poli
ies and EDF+ is the in
lusion of Step 1, the 
al
ulation of Et at ea
h time step,in CMTOEDF+.For 
onvenien
e, we assume that ea
h pa
ket p has an asso
iated ID number, denoted ID(p),whi
h distinguishes it from all other pa
kets (in
luding those of the same deadline and 
lass). Wesay that a pa
ket p1 is earlier than p2 (or that p2 is later than p1) if one of the following 
onditionshold:1. d(p1) < d(p2); or2. d(p1) = d(p2) and C(p1) < C(p2); or3. d(p1) = d(p2), C(p1) = C(p2), and ID(p1) < ID(p2).The above de�nition indu
es a total ordering on pa
kets, based primarily on their deadlines. Weassume throughout that the EDF+ poli
y serves the earliest pa
ket pre
isely a

ording to this
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ket in Et in the above sense. Notethat the earliest pa
ket among a set of pa
kets is unique.In the remainder of the se
tion, we 
onsider only CMTOEDF+ poli
ies. Our main result in
omparing CMTO poli
ies and EDF+ is the following strong statement on 
onsistent CMTOEDF+poli
ies.Theorem 3 Any 
onsistent CMTOEDF+ poli
y dominates EDF+.The above theorem establishes that any 
onsistent CMTOEDF+ poli
y a
hieves no moreweighted loss than EDF+ for any traÆ
 sequen
e. This result makes a strong statement about
onsistent CMTOEDF+ poli
ies relative to EDF+, be
ause these di�erent poli
ies 
an lead to sig-ni�
antly di�erent queue states over time, and this statement implies that no arrival sequen
e 
andrive these di�erent poli
ies to di�erent states so as to favor EDF+ overall. Our proof of thisstatement is rather involved, requiring spe
ial 
onstru
ts that 
an be used to 
ompare CMTOEDF+poli
ies and EDF+ over time even as their bu�er states diverge. In the remainder of this se
tion,we des
ribe the stru
ture of the proof by stating key de�nitions and lemmas, relegating the ratherte
hni
al proofs of most lemmas to the appendix.For the remainder of this dis
ussion, we �x a parti
ular arbitrary �nite arrival sequen
e A andan arbitrary 
onsistent CMTOEDF+ poli
y that we will simply 
all CMTOEDF+ (a slight abuseof notation). We argue that the poli
y CMTOEDF+ a
hieves no higher weighted loss on A thanEDF+. Throughout this dis
ussion, the sets Pt and Et refer to the evolution of the system underarrivals given by A and servi
e determined by poli
y CMTOEDF+.To prove the theorem, we need to 
ompare the weights of pa
kets served by CMTOEDF+ andby EDF+. The main issue that 
ompli
ates this 
omparison is that the state of the bu�er at ea
htime in general will be di�erent for both poli
ies, be
ause as soon as they serve di�erent pa
kets,the evolution of their bu�ers will take di�erent paths. The key idea in our proof is to identify and
hara
terize 
oupling times in their evolutions|these are points in time when the bu�er states areidenti
al for the two poli
ies. It remains then to show that the total weight of pa
kets served byCMTOEDF+ in between these 
oupling times is at least that of EDF+.Lemma 1 (Time-dominan
e) At any time while s
heduling the arrival sequen
e A, the pa
ketserved by CMTOEDF+ is no earlier than the pa
ket served by EDF+.Proof: See Appendix B.1.We say that time t is busy if Pt (under CMTOEDF+) is t-saturated. If all times in the interval[s; t℄ are busy, we say that [s; t℄ is busy. The basi
 idea is that we say t is busy when 
hoosing to beidle at time t would ne
essarily result in additional loss in the future, regardless of further arrivals;in other words, any s
hedule of Pt that does not serve a pa
ket at time t will serve fewer pa
kets
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hedule of Pt that serves the maximum number of pa
kets. Note that t is busy if and onlyif Et is t-saturated.The following series of de�nitions allow us to 
hara
terize a parti
ular 
oupling time that is
riti
al to our proof. We say that d is a t-saturation time of the set Et if Æd�t+1t (Et) = 0; i.e., Et
ontains exa
tly d� t+ 1 pa
kets with deadlines in [t; d℄. If d is a t-saturation time of Et, we alsosay that Et is t-saturated at d. Note that if d is a t-saturation time of Et or Pt, then [t; d℄ is busy.De�ne the \in
uen
e" during interval [s; t℄ to beI[s;t℄ = maxfd(p) : p 2 �(Et0); t0 2 [s; t℄g:The \in
uen
e" I[s;t℄ is the largest deadline of any pa
ket in the set �(Et0) (in Step 2) at any timet0 during the interval [s; t℄. If t is busy, then the laxity I[t;t℄ � t+ 1 is simply the Hajek-Seri 
ut onEt; i.e., I[t;t℄ is the smallest t-saturation time of Et.Lemma 2 For busy [s; t℄, there is a t-saturation time of Et no less than I[s;t℄.Proof: See Appendix B.2.Given a busy interval [s; t℄, Lemma 2 justi�es de�ning �[s;t℄ to be the smallest t-saturation timeno less than I[s;t℄. We have the following lemma.Lemma 3 (Time-restri
tion) During a busy interval [s; t℄, CMTOEDF+ does not serve any pa
ketwith deadline ex
eeding �[s;t℄.Proof: For any t0 2 [s; t℄, the deadline of any pa
ket in �(Et0) does not ex
eed �[s;t℄ (by de�nitionof �[s;t℄). But any pa
ket that CMTOEDF+ serves during the interval [s; t℄ is an element of su
h a�(Et0). The result follows.Lemma 4 For any t, if �[1;t℄ = t then t+ 1 is a 
oupling time.Proof: That CMTOEDF+ has the desired property follows dire
tly from the time-restri
tion lemma(Lemma 3). The same property then follows for EDF+ by using the time-dominan
e lemma(Lemma 1).We are now ready to identify the 
oupling times mentioned before, signifying key times when thebu�er states for CMTOEDF+ and for EDF+ are equal. Assume that time 1 is busy (for otherwise,the �rst busy time 
an be de�ned to be time 1 sin
e CMTOEDF+ and EDF+ perform identi
allyuntil the �rst busy time).Let 
 � 1 be su
h that 
+1 is the �rst non-busy time|this time must exist be
ause A is a �nitearrival sequen
e. It follows that [1; 
℄ is a busy interval. We 
an now show that �[1;
℄ = 
, implyingthat 
+ 1 is a 
oupling time. To see this, suppose not for 
ontradi
tion, i.e. that �[1;
℄ 6= 
. This
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℄ > 
, and thus that E
 has a 
-saturation time greater than 
. The de�nition of �,the 
-s
hedulability of E
, and our 
hoi
e of pa
ket to serve at time 
 from �(E
) then imply that
+1 is busy, 
ontradi
ting our 
hoi
e of 
. The 
oupling at 
+1 allows us to fo
us on the interval[1; 
℄ and show dominan
e there|we 
an then iterate the same proof by indu
tion on later busyintervals (CMTOEDF+ and EDF+ perform identi
ally from time 
 + 1 until the next busy time).We now fo
us on showing dominan
e in the busy interval [1; 
℄.Given a busy interval [s; t℄, de�ne	[s;t℄ = fp 2 Et : d(p) � �[s;t℄g:The set 	[s;t℄ is always t-saturated (by the de�nition of �[s;t℄) and t-s
hedulable (by the de�nitionof Et). Note that we always have �(Et) � 	[s;t℄. The following properties of the set 	[s;t℄ allow usto establish the dominan
e of CMTOEDF+ over EDF+.We use the notation min(P ) to denote the smallest weight of any pa
ket in P . Our key lemmaasserts that if we �x s, as we in
rease t the set 	[s;t℄ is in a well-spe
i�ed sense getting \no lessimportant." Sin
e at ea
h time t � s the poli
y CMTOEDF+ will be serving a pa
ket in 	[s;t℄, thislemma gives us a useful lower bound on the weight of that pa
ket that will be 
riti
al in provingour main theorem.Lemma 5 (	-monotoni
ity) Given a busy interval [s; t℄, if �[s;t℄ > t, then min(	[s;t℄) �min(	[s;t+1℄).Proof: See Appendix B.3.Let e1; : : : ; e
 be the pa
kets served by EDF+ in [1; : : : ; 
℄, in order, and m1; : : : ;m
 likewisethe pa
kets served by CMTOEDF+. For any time s in [1; 
℄, let �s be the least time t � s forwhi
h �[s;t℄ = t. We proved above that �[1;
℄ = 
, whi
h with the de�nition of � implies that �sis always in [1; 
℄. Let �s be the number of times in the interval [s; �s℄ that EDF+ serves a pa
ketnever served by CMTOEDF+. The monotoni
ity property just shown for 	 enables us to prove thefollowing result.Lemma 6 For any time s in [1; 
℄, every pa
ket served by CMTOEDF+ in the interval [s; �s℄ hasweight no less than min(�(Es))Proof: The weight min(�(Es)) is less than or equal to the weight of every pa
ket in 	[s;s℄ andthus less than or equal to the weight of every pa
ket in 	[s;t0℄ for any t0 su
h that s � t0 � �s (using	-monotoni
ity repeatedly). But every pa
ket served by CMTOEDF+ in the interval [s; �s℄ is inone su
h 	[s;t0℄ (i.e., every ms; : : : ;m�s is in its 
orresponding 	[s;s℄; : : : ;	[s;�s℄), so every pa
ket inms; : : : ;m�s is as important as min(�(Es)).
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h that pa
ket es is not in fm1; : : : ;m
g, CMTOEDF+ serves �s pa
ketsduring [s; �s℄ never served by EDF+ that are no less important than es.Proof: The pa
ket es 
annot be in Es, or it would be served by CMTOEDF+ at time s and thenwould be ms (so that s would not be as assumed). Be
ause es is not in Es, it must be no moreimportant than min(�(Es)), or Es would not be the maximum-weight s-s
hedulable subset of Ps.The lemma then follows by a simple 
ounting argument given the pre
eding lemma on
e werealize EDF+ 
annot serve any of ms; : : : ;m�s outside the interval [s; �s℄. These pa
kets 
annotbe served by EDF+ after time �s be
ause they will have expired, given the de�nition of �s. They
annot be served by EDF+ at any time t before s be
ause, given the 
onsisten
y of CMTOEDF+,they must be eligible at any earlier time after their arrival, and thus must be later than the pa
ketserved by CMTOEDF+ at time t|but the Lemma 1 states that EDF+ always serves a pa
ket nolater than that served by CMTOEDF+.The above lemma allows an easy proof of the following lemma, 
ompleting the proof of Theo-rem 3.Lemma 8 The total weight of pa
kets served by CMTOEDF+ in [1; 
℄ is at least that of the pa
ketsserved by EDF+ in that interval.Proof: Let i1 > i2 > � � � > in be the n di�erent times when EDF+ serves a pa
ket eij not inm1; : : : ;m
 (and thus never served by CMTOEDF+). We 
onstru
t a mapping from the pa
kets eijto pa
kets inm1; : : : ;m
 that are never served by EDF+, su
h that the mapping always maintains orin
reases 
lass weight. Note that EDF+ must lose at leastm pa
kets among m1; : : : ;m
 by a 
ount-ing argument|m1; : : : ;m
 are 
 pa
kets with deadlines not ex
eeding 
 by the time-de
ompositionlemma (Lemma 4), and EDF+ spends m times steps in [1; : : : ; 
℄ serving other pa
kets). So ourmain 
on
ern in 
onstru
ting the mapping above is maintaining or in
reasing 
lass weight.For k = 1 to n, we simply sele
t a pa
ket pk served by CMTOEDF+ but not by EDF+ that isno less important than eik , ensuring that pk is not in fp1; : : : ; pk�1g using Lemma 7. The pairsf(ei1 ; p1); : : : ; (eik ; pk)g 
onstitute a mapping from the pa
kets served by EDF+ but not CMTOEDF+to those served by CMTOEDF+ but not EDF+ su
h that the image of any pa
ket eil is no lessimportant than eil . Be
ause all other pa
kets in e1; : : : ; e
 are served by both poli
ies, this mappingimplies the desired result.Rede�ning the �rst busy time after time 
 to be time 1, and then sele
ting a new time 
, we
an repeatedly apply the above lemmas to new busy intervals (we need apply this argument onlya �nite number of times be
ause A is a �nite arrival sequen
e). This then establishes that thetotal weight of pa
kets served by CMTOEDF+ is at least that of EDF+, 
ompleting the proof ofTheorem 3.
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ies5.1 S
heduling-dropping CMTO poli
iesRe
all that in a 
onsistent CMTO poli
y, any pa
ket in Pt that is not in the eligible set Et 
an bedropped from the bu�er at time t without a�e
ting the s
hedule of pa
kets served by the algorithm.This possibility motivates the 
onsideration of poli
ies that de
ide not only whi
h pa
kets to serve,but also whi
h pa
kets to drop. Su
h \s
heduling-dropping" poli
ies are appealing be
ause of theirsmaller bu�er requirements and their ability to provide more timely feedba
k on whi
h pa
kets willnot be s
heduled.We de�ne a s
heduling-dropping poli
y �� as a sequen
e of pairs f(�t; rt) : t � 1g, where � = f�tgis a poli
y and rt is a fun
tion that maps any nonempty set of pa
kets Pt to a nonempty subset ofPt (representing those pa
kets that �� \retains" in the bu�er)|where, as for s
heduling poli
ies, werequire that the maps involved be stationary, in the same sense as de�ned there (so that �1 and r1determine �t and rt for any t). Given an arrival sequen
e A and a s
heduling-dropping poli
y ��,the sequen
e Pt of pa
kets in the bu�er is given by P0 = ; and, for all t � 0,Pt+1 = At+1 [ rt(Pt)� fp 2 rt(Pt) : d(p) = t or p = �t(rt(Pt))g :We say that a pa
ket p is dropped at time t if p 2 Pt � rt(Pt).The notion of throughput optimality applies similarly to s
heduling-dropping poli
ies. It is 
learthat a TO s
heduling-dropping poli
y maintains a smaller bu�er in general than a TO poli
y thatdoes not drop pa
kets. We say that a s
heduling-dropping poli
y is TO-bu�er-optimal (TOBO) ifthe poli
y is TO and, for any arrival sequen
e A and any t � 1, the poli
y minimizes jrt(Pt)j overall TO s
heduling-dropping poli
ies. In other words, a TOBO poli
y keeps only those pa
kets thatare ne
essary to preserve throughput optimality.Hajek and Seri [11℄ provide the following 
hara
terization of TOBO poli
ies, allowing an easyproof that 
onsistent CMTO poli
ies are naturally bu�er optimal when extended to drop as de-s
ribed above. Let Q be a subset of Pt. Following the notation of [11℄, we write Q �t Pt if the
ardinality of the largest t-s
hedulable subset of Pt is equal to that of Q. We note that the fo
uson time step 1 exploits the stationarity of the poli
ies we 
onsider to e�e
t all time steps.Theorem 4 (Hajek-Seri) A s
heduling-dropping poli
y �� is TOBO if and only if for any nonempty�nite set of pa
kets P , we have that r1(P ) �1 P , r1(P ) is 1-s
hedulable, and �1(r1(P )) 2 �(r1(P )).We say that a s
heduling-dropping poli
y �� = f(�t; rt)g is a CMTO-dropping (CMTOD) poli
yif � = f�tg is a CMTO poli
y and rt(Pt) = Et, where Et is the eligible set asso
iated with �.Any 
onsistent CMTO poli
y 
an be made into a CMTOD poli
y without a�e
ting the s
heduleof pa
kets served, by dropping pa
kets not in Et at ea
h time t|we also refer to su
h CMTODpoli
ies as 
onsistent. So, for example, 
onverting a 
onsistent CMTOEDF+ poli
y into a CMTOD
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y results in a poli
y that dominates EDF+, by Theorem 3. The following result establishesthat our 
onversion of a 
onsistent CMTO poli
y into a CMTOD poli
y in fa
t results in bu�eroptimality.Proposition 7 Any 
onsistent CMTOD poli
y is a TOBO poli
y.Proof: Be
ause Et is a maximum-weight t-s
hedulable set, rt(Pt) = Et �t Pt and rt(Pt)�Et is t-s
hedulable. By de�nition, a CMTOD poli
y serves a pa
ket in �(rt(Pt)) at ea
h time t. Therefore,by Theorem 4, the desired result holds.5.2 In
orporation of fair link-sharing in CMTO poli
iesIn this se
tion, we explore the in
orporation of \fairness" into CMTO poli
ies. We adopt thefollowing standard framework for fair link-sharing (see, e.g., [10℄). Every pa
ket arriving at thequeue is asso
iated with one of a �nite number of 
alls. We think of these 
alls as sharing the\bandwidth" of the server (also 
alled the link). Ea
h 
all is targeted to re
eive a preallo
atedfra
tion of the overall bandwidth of the link, expressed as follows. Fix a number TF representingthe interval of time over whi
h we wish to enfor
e fairness in the link-sharing. The dis
rete time-lineis then divided into intervals of length TF . Asso
iated with ea
h 
all i is a number fi representingthe number of time slots that the server should allo
ate to 
all i during ea
h interval of length TF(for 
onvenien
e, we will use the term \TF -interval" for su
h an interval). We 
all fi the link-shareallo
ation of 
all i. Naturally, we assume that the link-share allo
ations for the 
alls sum to avalue less than or equal to TF . A s
heduling poli
y is 
onsidered to provide fair link-sharing if itserves ea
h 
all approximately a

ording to the prespe
i�ed link-share allo
ations. Note that it isimpossible for any 
ausal poli
y to s
hedule pa
kets to guarantee the link-share allo
ations exa
tly,even when su
h s
hedules exist. Without expli
itly addressing link-sharing fairness, 
lass-sensitivepoli
ies|in
luding CMTO poli
ies|
an be grossly unfair in the sense that high-
lass pa
kets 
ano

upy all the server's resour
es at the expense of starving lower 
lasses of servi
e.Existing link-sharing s
hemes in the literature in
lude weighted-fair queueing (WFQ), weighted-round-robin (WRR), and 
lass-based queueing (CBQ) (see [6℄ and [10℄). In [10℄, Floyd and Ja
obsondes
ribe a s
heme for fair link-sharing based on CBQ. Their s
heme 
onsiders the 
lass of pa
kets(
alled \priorities" in [10℄), and distributes \ex
ess" time slots a

ording to these priorities. Theexisting s
hemes do not expli
itly take into a

ount the interplay between multiple 
lasses anddeadlines. Here, we des
ribe a s
heme to provide fair link-sharing in the presen
e of both multiple
lasses and deadlines based on CMTO poli
ies.Our link-sharing s
heme, 
alled CMFQ (CMTO Fair Queueing), is based on a simple ideaextending CMTO poli
ies: we 
onsider modifying the CMTO step 1 sele
tion of the \eligible set"with a 
onstrained sele
tion|instead of sele
ting the maximumweight t-s
hedulable subsetEt � Pt,
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t the maximum weight t-s
hedulable subset Et � Pt that 
an be served without 
ausingany 
lass to ex
eed its link share allo
ation in the 
urrent TF -interval. In order to provide \ex
essbandwidth" 
ontrol, we then modify this basi
 algorithm so that if the sele
ted set Et 
an be servedentirely without serving any member at the 
urrent time, then the 
urrent time is deemed ex
essbandwidth and is s
heduled using an un
onstrained CMTO poli
y (without regard to fairness). Wenow give a pseudo
ode outline for the 
lass of CMFQ poli
ies, as follows:CMFQ AlgorithmWhenever t = kTF for some integer k, set Cri = fi (initial \
redit").If Pt is not empty, do:1. Find a maximum-weight t-s
hedulable subset of Pt (
alled Et) su
h that the number of 
all-ipa
kets in Et does not ex
eed Cri;2. Let k be the smallest integer su
h that kTF is no less than t;If Et is t-saturated or jEtj � kTF � t+ 1, then2a. S
hedule a pa
ket p within �(Et).2b. Set Cr
all(p) = Cr
all(p) � 1, where 
all(p) is the 
all index of pa
ket p.else (\ex
ess bandwidth" exists)2
. Find a maximum-weight t-s
hedulable subset of Pt (
alled Et, as usual);2d. S
hedule a pa
ket within �(Et).The CMFQ algorithm s
hedules pa
kets similar to CMTO but takes into a

ount the \remaining
redits" for ea
h 
lass (Cri). If there is \ex
ess bandwidth," the algorithm pro
eeds exa
tly as in thestandard CMTO algorithm. We determine the presen
e of ex
ess bandwidth by 
he
king whetherthe \
redit-limited" eligible set Et 
an be served within the 
urrent TF -interval even if no memberis served at time t. This 
an be done if and only if both of the 
onditions 
he
ked in line 2 arefalse: Et must not be t-saturated, and the number of pa
kets in Et must be small enough to serveby the start of the next TF -interval without servi
e at the 
urrent time.One natural assumption regarding the relationship between 
alls and 
lasses is that for every
all, all pa
kets of that 
all belong to the same 
lass. Under this assumption, the 
omputation ofEt 
an be a

omplished using a simple modi�
ation of the Ba
kward Algorithm:1. Input: Pt, Cri for all 
alls i.2. Let Pt be the subset of Pt obtained as follows: for ea
h 
all i, retain only the Cri-largestlaxity pa
kets of 
all i.
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class

6           5          4        3          2         1

1

2

laxity

3Figure 6: An example that illustrates the weakness of SPFQ.3. Let Et be the result of applying the Ba
kward Algorithm to Pt.4. Output: Et.The 
orre
tness of this algorithm rests on the following 
laim, whi
h the reader 
an verify: forany \
redit-limited" s
hedule involving pa
kets dropped in step 2, there is an equivalent-weight\
redit-limited" s
hedule not involving su
h pa
kets (in this s
hedule, ea
h su
h pa
ket is repla
edby a pa
ket from the same 
all retained in step 2).In the Se
tion 6, we evaluate the performan
e of (an instan
e of) CMFQ to illustrate its link-sharing fairness. We also 
ompare the poli
y to the s
heme of Floyd and Ja
obson [10℄ as well asa simple 
redit-based extension of SP, whi
h we 
all SPFQ. Spe
i�
ally, SPFQ s
hedules a pa
keta

ording to SP among all pa
kets that are in 
alls with positive 
redit, where the 
redits areupdated in a similar fashion to CMFQ|the 
all-i 
redit value is de
remented whenever a 
all-ipa
ket is s
heduled. Our empiri
al results indi
ate that while all three s
hemes above providefair link-sharing, the weighted-loss in
urred by CMFQ poli
ies is signi�
antly smaller than theweighted-losses of the other two s
hemes.We 
on
lude this se
tion by des
ribing a simple example that gives insight into the superiorityof the CMFQ approa
h over SPFQ. Consider Figure 6. Currently six pa
kets are in the queues andonly two more 
lass-3 pa
kets will arrive in the future. Suppose that fair link-sharing needs to beprovided by serving at least two pa
kets of ea
h 
lass over eight time slots (here, 
lasses and 
alls
oin
ide). On the one hand, any CMFQ poli
y will serve all of the pa
kets 
urrently in the queueover six time slots, and the in
oming 
lass-3 pa
kets over the next two time slots (by s
heduling the\ex
ess bandwidth" using CMTO). On the other hand, SPFQ will lose the pending 
lass-3 pa
kets.Even though both poli
ies a
hieve the goal of fair link-sharing by serving two pa
kets for ea
h 
lass,CMFQ poli
ies in
ur a smaller weighted loss than SPFQ.
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al Results6.1 Weighted-loss 
omparisons with EDF+ and SPIn this se
tion, we provide quantitative results illustrating the performan
e of a parti
ularCMTOEDF+ poli
y|whi
h uses the ba
kward algorithm for Step 1|in 
omparison with EDF+and SP, and with a theoreti
al lower bound obtained from applying the optimal o�ine s
hedule tothe arriving pa
kets. For 
onvenien
e, in the remainder of this se
tion we refer to this parti
ularCMTOEDF+ poli
y simply as the CMTOEDF+ poli
y. Our results show that the CMTOEDF+ poli
ya
hieves weighted-loss values that are 
lose to the theoreti
al lower bound, and outperforms EDF+and SP by up to an order of magnitude.Our experimental setting was designed to evaluate the above s
heduling poli
ies fa
ing pra
-ti
ally realisti
 video traÆ
 with heavy-tailed session durations, under varying overall loads andburstiness. The servi
e rate of the server is adjusted by varying the number of time slots perse
ond|the larger the number of time slots per se
ond, the higher the servi
e rate|by varying theservi
e rate we impli
itly vary the burstiness of the traÆ
, be
ause higher servi
e rates 
orrespondto more aggregation of video 
alls and 
onsequently smoother traÆ
 for a given load. We showbelow how performan
e depends on burstiness by varying the servi
e rate.We simulate seven 
lasses of video traÆ
, 
onsisting of video sessions arriving over time withrandom session durations. At ea
h time slot, ea
h 
lass generates a video session a

ording to a�xed probability, whi
h we 
all the session-arrival probability. The session-arrival probability isthe same for all 
lasses, and is varied to set the desired load of the overall traÆ
|we show belowhow performan
e is a�e
ted by varying this load. The duration of the sessions follows a Paretodistribution, des
ribed below, to simulate heavy-tailed sessions observed in typi
al network traÆ
[8℄. All pa
kets in a session have the same 
lass. All the pa
kets in a given session have the sameinitial laxity at arrival, and is set randomly for the session a

ording to a uniform distribution over[16; 80℄ mse
.Within ea
h session, pa
kets are generated a

ording to a real MPEG video tra
e. The videotra
e we used was adapted from an MPEG en
oding of the Star Wars movie provided by [2℄.Spe
i�
ally, the tra
e provided by [2℄ divides ea
h frame of the Star Wars MPEG into 200-bytepa
kets, and these pa
kets are evenly spa
ed over approximately 20 millise
onds.The duration of ea
h session is sampled from a Pareto distribution fun
tion F (x) = 1� (b=x)a,where a and b are �xed parameters (often 
alled the shape and s
ale parameters, respe
tively).We 
hose the parameters a = 2 and b = 625 so that the mean duration of ea
h session is 2 se
,re
e
ting typi
al sessions found in pra
ti
e. We sele
ted this duration to model typi
al internettraÆ
, giving a 1% 
han
e that a session lasts longer than 10 se
onds, so that the overall traÆ
pattern has noti
eable long-range dependen
e over times
ales in minutes. (Note that this patternof session duration is not 
hosen to represent typi
al MPEG videos, but typi
al internet sessions,
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ular sessions are in fa
t MPEG video sessions, apart from their durations).We set the weights of the seven 
lasses (1 through 7) su
h that 
lass i has a weight of !i�1.By de
reasing the parameter !, we a

entuate the disparity in importan
e between 
lasses, makingthe s
heduling problem more 
lass-sensitive. We show below how performan
e depends on !.We evaluate various online s
heduling algorithms relative to the o�ine optimal weighted loss,a theoreti
al lower bound on the weighted loss whi
h we 
omputed by applying an optimal o�inenon-
ausal s
heduling algorithm on the pa
kets involved in the simulation. Spe
i�
ally, we usedthe algorithm of [3℄, although those of [14, 17, 16, 18℄ would also serve the same purpose. Ourresults below show that the CMTOEDF+ poli
y a
hieves weighted loss values that are very 
lose tothe lower bound, indi
ating that the CMTOEDF+ poli
y is essentially optimal for this parti
ulartype of traÆ
.We begin exploring the performan
e of the CMTOEDF+ poli
y by measuring the 
ompetitiveratio a
hieved by this poli
y in 
omparison to that a
hieved by the simpler EDF+ and SP poli
ies.The \
ompetitive ratio" is the ratio between the performan
e of an online algorithm and the optimalo�ine performan
e for the same traÆ
. Here, we use weighted loss as the measure of performan
e,and 
ompute the optimal o�-line performan
e as just des
ribed. Figure 7 shows the 
ompetitiveratio between the weighted loss a
hieved by ea
h algorithm and the optimal o�ine weighted loss(from the theoreti
al bound mentioned above), as a fun
tion of the servi
e rate (number of timeslots per se
ond). We vary the servi
e rate while holding the load 
onstant (as des
ribed above) tovary the smoothness of the resulting traÆ
. Ea
h point on the algorithm-evaluation plots representsa simulation of the asso
iated poli
y over 1,125,000 time slots. For these plots, we set ! = 0:6 and�xed the overall load to be 0:7 (the load is the ratio of the number of pa
kets generated to thetotal number of time slots), in
reasing the arrival rate of 
alls to maintain this load as the servi
erate in
reases. For 
ompleteness, we also show an alternative perspe
tive on the same data inFigure 7 by showing the weighted loss a
hieved for the CMTOEDF+ poli
y versus that a
hieved bythe EDF+ and SP poli
ies as a fun
tion of the servi
e rate, in 
omparison to the theoreti
al boundon performan
e 
omputed by o�ine 
omputation.Be
ause the servi
e rate is in
reasing as we move to the right, the session-arrival rate is also
orrespondingly in
reasing, to maintain the �xed load. Therefore, the number of simultaneoussessions in the system is in
reasing as we move to the right, whi
h 
orresponds to in
reasinglysmoother traÆ
. For this reason, we 
an see that the weighted loss de
reases for all poli
ies as theservi
e rate in
reases, in spite of the �xed load. On the other hand, as the servi
e rate de
reases,the variation in traÆ
 over time is more bursty and hen
e the weighted loss in
reases.It is 
lear from Figure 7 that CMTOEDF+ outperforms both EDF+ and SP over the entire rangeof servi
e rates 
onsidered, quite substantially at some servi
e rates. At the low end of the rangeof servi
e rates, the traÆ
 is bursty and involves intermittent periods of heavy traÆ
 loads. Underthese 
ir
umstan
es, SP performs well by preferentially serving the highest-weight pa
kets at ea
h
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Figure 7: Competitive ratio and log weighted loss over varying servi
e rates with ! = 0:6 and �xedload 0:7. The traÆ
 is getting smoother as we move to the right.time. On the other hand, at the high end of the range of servi
e rates, the traÆ
 is smooth andtherefore throughput-optimal poli
ies su
h as EDF+ (and CMTOEDF+) provide the appropriateme
hanism for good weighted-loss performan
e, serving nearly all the traÆ
. The CMTOEDF+poli
y has a 
lear weighted-loss advantage over the entire range of servi
e rate values, tailoring itsservi
e style automati
ally to the appropriate traÆ
 
ondition.The higher servi
e rates shown in Figure 7 (near and above where SP and EDF+ performidenti
ally) are traÆ
s that we believe show an interesting interplay between 
lass-sensitivity anddeadline-sensitivity. For very bursty traÆ
, the deadline element is less important, as re
e
tedby the reasonable performan
e of SP on the left extreme of the �gure. For very smooth traÆ
,
lass be
omes less important, at least at this load of 0.7. To further explore the interplay betweendeadline and 
lass, we 
hoose a �xed arrival rate in this region (7500) and show plots in whi
h wevary either the load (i.e. the session arrival rate) or the multi-
lass nature of the problem (i.e. the
lass weight parameter !).In Figure 8, we show a plot of the weighted loss of CMTOEDF+ EDF+, and SP as a fun
tion of!, with a �xed servi
e rate of 7500 and a �xed load of 0:7. For values of ! 
lose to 1, all 
lasses areapproximately equivalent in weight, and hen
e any throughput optimal poli
y|in
luding EDF+and CMTOEDF+|is 
lose to weighted-loss optimal. On the other hand, for values of ! 
lose to 0,only 
lass-1 pa
kets 
ontribute to the weighted-loss, and hen
e SP approa
hes optimal performan
e.We 
an see that CMTOEDF+ outperforms both EDF+ and SP over the entire range of ! values,
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e rate 7500 and load 0:7.performing like SP for small values of ! and like EDF+ for large values of !.Figure 9 shows a plot of the 
ompetitive ratio for CMTOEDF+ EDF+, and SP as a fun
tion ofthe load, with ! = 0:6 and a �xed servi
e rate of 7500, alongside the alternative weighted loss viewof the same data. For these plots, we are using the same aggregated heavy-tailed MPEG tra
e traÆ
as for the previous plots, but holding the servi
e rate 
onstant and varying load (rather than �xingload and varying either servi
e rate or !). At low loads, it is possible to serve almost all pa
ketswithout missing their deadlines, and hen
e the throughput optimality of EDF+ and CMTOEDF+lead to weighted-loss values 
lose to the optimum (as indi
ated by weighted-loss values approa
hingthe theoreti
al bound)|in the �gure, we only show loads down to 0.6, where CMTOEDF+ stillshows a substantial advantage over EDF+. As the load in
reases, the abundan
e of 
lass-1 pa
ketsmakes serving only 
lass-1 pa
kets the appropriate way of minimizing the weighted loss. Hen
e,at high loads, SP signi�
antly outperforms EDF+ and begins to approa
h the theoreti
al bound.As we 
an see, CMTOEDF+ outperforms both SP and EDF+ over the entire range of load values,indi
ating the ability of CMTOEDF+ to tailor its 
hoi
e of pa
ket to serve based on the load, andto su

essfully manage the interplay of 
lass and deadline in 
hoosing a pa
ket to serve.6.2 Bu�er o

upan
yIn Figure 10, we illustrate the straightforward advantage in average bu�er o

upan
y that resultsfrom the early dropping of pa
kets in the CMTOD poli
y (here, CMTOEDF+ with the droppingextension added) as 
ompared to the EDF+ and SP poli
ies, whi
h do not perform any dropping
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Figure 9: Log weighted loss and 
ompetitive ratio for varying load (! = 0:6, servi
e rate= 7500).until pa
kets miss their deadlines. We show average bu�er o

upan
y for ea
h poli
y when fa
edwith the same traÆ
 used for Figure 9 (aggregated heavy-tailed MPEG traÆ
 with the servi
e rate�xed at 7500 and ! �xed at 0.6, with the arrival rate varied to vary the overall load).The SP poli
y a
tually uses less bu�er spa
e than CMTOD at low loads, be
ause SP servesfar fewer pa
kets than CMTOD by fo
using ex
lusively on the top 
lasses|this fo
us results infar higher dropping in lower 
lasses, resulting in lower bu�er o

upan
y. But at higher loads,as expe
ted, CMTOD is able to limit the bu�er o

upan
y needed for ex
ellent weighted lossperforman
e, whereas SP and EDF+ both have bu�er o

upan
ies that grow severely with growingload. Although we do not explore the issue here, we expe
t that similar advantages for CMTODare seen at low loads in highly bursty traÆ
, whi
h behaves lo
ally like high load traÆ
 duringbursts.6.3 Weighted loss and fairnessFigures 11 and 12 shows a preliminary 
omparison of the weighted-loss performan
e of CMFQrelative to SPFQ, CBQ, and CMTOSP. We defer a full 
omparison to future work|here we testthese methods only against very simple traÆ
 rather than using the MPEG aggregation traÆ
dis
ussed above. Here, we implement a CMFQ poli
y by using the modi�ed ba
kward algorithmas des
ribed in Se
tion 5 for step 1, and SP for step 2 (breaking ties in favor of lower laxitypa
kets). For this experiment, we allo
ate a 10% link share to ea
h of seven 
lasses (leaving 30%\ex
ess bandwidth"), and take the traÆ
 in ea
h 
lass to be single pa
kets generated with a �xed
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h time step. The probability of pa
ket generation is the same for all seven 
lasses,and is varied to vary the load in the system for the plots shown. CMFQ enfor
es fairness over a TF -interval of 600 time steps. The CMTOSP poli
y shown in the �gures uses the ba
kward algorithmfor step 1 of the CMTO algorithm, and then stati
 priority for step 2.At low load values, all poli
ies a
hieve fairness quite well, with the CM-based poli
ies yieldingex
ess bandwidth bene�ts to the lowest 
lasses; however, the weighted-loss advantage of CMFQover SPFQ and CBQ 
learly manifests itself with an advantage of orders of magnitude at load0.7. At low loads, CMFQ behaves like CMTOSP be
ause all 
lasses a
hieve their desired link-shareallo
ations even in CMTOSP. However, as the load in
reases, some weighted-loss performan
e mustbe sa
ri�
ed to provide fairness. At high loads, while CMTOSP a
hieves a lower weighted loss thanthe other poli
ies, it does not provide fairness (i.e., it does not maintain the required link-shareallo
ations)|Figure 12 shows that the CMTOSP poli
y begins to starve the lower 
lasses at load1.4. On the other hand, CMFQ, SPFQ, and CBQ all 
ontinue to provide fairness even at high loads.At loads ex
eeding 1, the requirement to maintain the link-share allo
ations dominates the need tominimize the weighted loss, and hen
e CMFQ performs similarly to SPFQ and CBQ in weightedloss. However, we 
an see from Figure 11 that at load values 
lose to 1, CMFQ provides superiorweighted-loss performan
e while at the same time preserving fairness as shown in Figure 12. Theseresults show that CMFQ su

essfully 
ombines the fairness behavior desired in link sharing withthe low weighted loss shown by CMTOSP, in
urring higher weighted loss only when the link-sharingrequirements essentially require su
h loss.7 Con
lusionsWe have shown that no s
heduling poli
y dominates all others over all traÆ
 sequen
es for ourmulti
lass setting with deadlines. Moreover, the standard EDF+ and SP poli
ies appear to havepoor weighted-loss performan
e over pra
ti
ally reasonable traÆ
 sequen
es. We have introdu
ed asimple 
lass of CMTO (greedy) poli
ies, whi
h a
hieves a weighted-loss performan
e that provablydominates the EDF+ poli
y. Our examples of CMTO poli
ies illustrate their ease of implemen-tation. These examples|the Forward and Ba
kward Algorithms|also yield 
onsistent poli
ies,whi
h implies that dropping non-eligible pa
kets at ea
h time step does not 
hange the s
heduledpa
kets, but redu
es the bu�er usage to the minimum required to maintain throughput optimality.We have also des
ribed a 
redit-based me
hanism based on CMTO to provide fair link-sharing. Ourempiri
al results indi
ate that a parti
ular instan
e of a CMTO poli
y outperforms both EDF+and SP under pra
ti
ally realisti
 traÆ
, with weighted-loss gains of up to an order of magnitude.We assumed a �xed pa
ket size in this paper. A natural generalization of CMTO poli
ies to the
ase of variable pa
ket sizes involves assuming that: 1) pa
ket sizes are bounded by deadlines; and2) the 
ost in
urred for ea
h pa
ket dropped is equal to the pa
ket's length multiplied by its 
lass
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ase, we 
an simply follow the two-step CMTO algorithm as before|the eligible set(in Step 1 of the CMTO algorithm) 
an be obtained by applying Sahni's algorithm [18℄. However,that 
hara
terization of su
h poli
ies involves extending the de�nitions of throughput optimalityand the 
urrent-minloss property.As we have shown, there is no poli
y that dominates all other poli
ies over all traÆ
 sequen
es,unless we have a

ess to some knowledge of future traÆ
. A

ess to a probabilisti
 model of futuretraÆ
 should aid in s
heduling de
isions and therefore enable the design of higher-performan
es
hedulers. The analysis of s
hedulers that in
orporate of su
h a traÆ
 model entails 
hangingthe notion of optimality from \traÆ
-independent" optimality to \probabilisti
" optimality (e.g.,in terms of the expe
ted total weighted loss over a �nite horizon). Preliminary results along theselines are reported in [3℄.
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tion 2A.1 Proof of Theorem 2Proof: If part: Let � be a poli
y and assume that for any nonempty set of pa
kets P , there existsa maximum-weight 1-s
hedulable subset E of P su
h that �1(P ) 2 �(E).We �rst show that � is TO. By Theorem 1, it suÆ
es to show that for any nonempty set ofpa
kets P , �1(P ) 2 �(P ), i.e., �1(P ) has laxity not ex
eeding h(P ). Let P be a nonempty setof pa
kets and E a maximum-weight 1-s
hedulable subset of P su
h that �1(P ) 2 �(E). If P isnot 1-saturated, then E = P , and so �1(P ) 2 �(E) = �(P ) as desired. So suppose that P is1-saturated. We show that h(E) � h(P ) (from whi
h �(E) � �(P ) and thus �1(P ) 2 �(P ) followsimmediately). Let l� = h(P ) = argmaxl Æl1(P ). Hen
e, for any k, Æk1 (P ) � Æl�1 (P ). Note that inparti
ular for all k > l� � 1,Æk1 (P )� Æl�1 (P ) = Nk1 (P )� k � (N l�1 (P )� l�) = (Nk1 (P1)�N l�1 (P ))� (k � l�):and Nk1 (P )�N l�1 (P ) is the number of pa
kets in P with laxities between l� + 1 and k. Similarly,Æk1 (E)� Æl�1 (E) = (Nk1 (E)�N l�1 (E))� (k � l�):Hen
e, be
ause E � P , Æk1 (E)� Æl�1 (E) � Æk1 (P )� Æl�1 (P )for all k > l� � 1, from whi
h it follows thatÆk1 (E) � Æl�1 (E):Thus, argmaxl Æl1(E) � l�, whi
h means that h(E) � h(P ), as desired.Next, we show that � is a CM poli
y. Let A be an empty-future arrival sequen
e, and forea
h time t let Pt the pending pa
kets at time t on serving A using �. For ea
h t, let Et be amaximum-weight t-s
hedulable subset of Pt su
h that �t(Pt) 2 Et. Assume that A1 is nonempty,for otherwise the result holds trivially. We use the following notation:� w�t = the weight of p�t = �t(Pt);� W (A1) = total weight of pa
kets in A1;� W (Et) = the total weight of pa
kets in Et;� T = the maximum deadline of any pa
ket in A.We 
laim that W (Et+1) = W (Et)� w�t for all 1 � t < T . To see this, note that Et+1 [ fp�t g isa t-s
hedulable subset of Pt. By de�nition of Et, we have W (Et) � W (Et+1) + w�t , whi
h implies
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hedulablesubset of Pt+1 be
ause p�t 2 �(Et). Hen
e, by de�nition of Et+1, we have W (Et+1) �W (Et)�w�t .By the above 
laim, we dedu
e that W (ET ) = W (E1) �PT�1t=1 w�t . But W (ET ) = w�T . Com-bining the above two equations we obtain PTt=1 w�t =W (E1). Hen
e,L�(A) =W (A1)� TXt=1 w�t =W (A1)�W (E1):By de�nition of E1, we have W (P1)�W (E1) � L�0(A) for any poli
y �0. Hen
e, L�(A) � L�0(A)for any poli
y �0, whi
h 
ompletes the proof.Only if part: We use 
ontraposition. Consider a poli
y � su
h that for some nonempty set ofpa
kets P , �1(P ) is not in �(E) for any maximum-weight 1-s
hedulable subset E of P . Let A be anempty-future arrival sequen
e. Without loss of generality, we assume that t = 1 and that A1 = Pis nonempty.We 
onsider two 
ases. First, if P is not 1-saturated, then E = P is a maximum 1-s
hedulablesubset of P . But �1(P ) 62 �(E) = �(P ) by assumption. Hen
e, by Theorem 1, � is not TO.If P is 1-saturated, we 
laim that the set of pa
kets P 0 s
heduled by � when en
ountering Ado not 
onstitute a maximum-weight 1-s
hedulable subset of A = P , and hen
e that L�(A) isgreater than L�0(A) for some poli
y �0 that s
hedules su
h a maximum-weight subset of P . Tosee this, suppose not: i.e., that P 0 is a maximum-weight 1-s
hedulable subset of P|then be
ause�1(P ) 62 �(P 0) by assumption, there is a pa
ket in �(P 0) that is not s
heduled by � at any timet > 1, 
ontradi
ting the assumption that � s
hedules all pa
kets in P 0. Hen
e, L�(A) is not minimal,and so � is not a CM poli
y, by de�nition.A.2 Proof of Proposition 3To prove Proposition 3, we will use two lemmas. The �rst lemma provides the following useful
hara
terization of t-s
hedulability.Lemma 9 A set of pa
kets P (with deadlines no less than t) is t-s
hedulable if and only if Ælt(P ) � 0for all l � 1.Proof: If part: We use indu
tion on l to show that if Æit(P ) � 0 for all i = 1; : : : ; l, then the pa
ketsin P with laxity not ex
eeding l 
an all be served by time t+N lt (P )� 1. For l = 1, if Æ1t (P ) � 0,then there is at most 1 pa
ket in P with laxity 1, whi
h (if it exists) 
an 
learly be served at time t.Now assume the desired result for l� 1. Suppose that Æit(P ) � 0 for i = 1; : : : ; l. Then, all pa
ketsin P with laxity not ex
eeding l � 1 
an be served by time t + N l�1t (P ) � 1. (by the indu
tionhypothesis). Be
ause Ælt(P ) = N lt (P ) � l � 0, we dedu
e that number of pa
kets in P with laxityl is N lt (P ) � N l�1t (P ) � l � N l�1t (P ). But the number of time instan
es from t + N l�1t (P ) to
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lusive) is N lt (P ) � N l�1t (P ) � l � N l�1t (P ), and t + N lt (P ) � 1 � l. Hen
e, allN lt (P ) � N l�1t (P ) pa
kets with laxity l 
an be served before their deadlines in the time intervalfrom t+N l�1t (P ) to t+N lt (P )� 1, 
ompleting the indu
tion argument.Only if part: Suppose Ælt(Pt) > 0 for some l. Then, N lt (P ) > l. But in the time intervalft; : : : ; t + l � 1g, only l pa
kets 
an be served. Therefore, some pa
ket in P 
annot be served byits deadline, whi
h implies that P is not t-s
hedulable.The se
ond lemma that we will use to prove Proposition 3 is the following.Lemma 10 If Et is a maximum-weight t-s
hedulable subset of Pt, and E0t is any other t-s
hedulablesubset of Pt, then(a) jEtj � jE0tj; and(b) The jE0tj-highest-weight pa
kets in Et have total weight no less than that of E0t.Proof: (a) Suppose jEtj < jE0tj. Let k � 1 be the largest integer su
h that Nk�1t (Et) = Nk�1t (E0t)(denote N0t (Et) = N0t (E0t) = 0). Thus, N lt (Et) < N lt (E0t) for all l � k, and so there is a p 2 E0t�Etwith lt(p) � k. Also, Ælt(Et) < Ælt(E0t) for all l � k. Be
ause E0t is t-s
hedulable, we have Ælt(E0t) � 0(by Lemma 9), and hen
e Ælt(Et) < 0 for all l � k. Thus, Æt(Et [ fpg) � 0 for all l � 1, whi
himplies (again by Lemma 9) that Et [ fpg is t-s
hedulable. Thus, Et is not a maximum-weightt-s
hedulable subset of Pt.(b) We use the notation w(p) for the weight of pa
ket p, and W (Et) for the total weight ofpa
kets in Et (similarly, W (E0t), et
.).Let n = jE0t � Etj. Be
ause jEt � E0tj = jE0t � Etj + jEtj � jE0tj and jEtj � jE0tj by part (a),there are at least n pa
kets in jEt � E0tj. Let Dt be the n-smallest-laxity pa
kets in Et � E0t, andlet E00t = (Et \E0t) [Dt. We have E00t � Et and jE00t j = jE0tj. We will show that W (E00t ) � W (E0t),whi
h then 
learly implies that the jE0tj-highest-weight pa
kets in Et have total weight no less thanthat of E0t.Note that W (E00t ) = W (E0t) �W (E0t � Et) +W (Dt). Hen
e, to 
omplete the proof, it suÆ
esto show that W (Dt) � W (E0t � Et). We use 
ontradi
tion. Suppose that W (Dt) < W (E0t � Et).Let k be the smallest integer in f1; : : : ; ng su
h that the k-smallest-laxity pa
kets in Dt = Et �E0thave total weight less than that of the k-smallest-laxity pa
kets in E0t � Et. Let p be the kthsmallest-laxity pa
ket in Dt = Et � E0t, and p0 the kth smallest-laxity pa
ket in E0t � Et. Then,
learly w(p) < w(p0).We now show that Ft = (Et�fpg)[fp0g is a t-s
hedulable subset of Pt. To see this, �rst 
onsiderthe 
ase where lt(p) � lt(p0). Thus, for l in the interval [lt(p); lt(p0)) we have Ælt(Ft) = Ælt(Et)�1 < 0,and for l outside that interval we have Ælt(Ft) = Ælt(Et) � 0. Hen
e, by Lemma 9, Ft is a t-s
hedulable. On the other hand, for the 
ase where lt(p0) < lt(p), we 
laim that Ælt(Et) < 0 for
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h l we have N lt (Et) � N lt (Et \ E0t) + (k � 1). Also,N lt (E0t) � N lt (E0t \Et) + k. But N lt (E0t) � l by Lemma 9. Thus,N lt (Et) � N lt (Et \E0t) + k � 1 � N lt (E0t)� 1 � l � 1 < l;proving Ælt(Et) < 0 for su
h l. Hen
e, for l in the interval [lt(p); lt(p0)) we have Ælt(Ft) = Ælt(Et)+1 � 0,and for l outside that interval we have Ælt(Ft) = Ælt(Et) � 0 as in the other 
ase. Again, by Lemma 9,Ft is a t-s
hedulable.Finally, note that W (Ft) =W (Et)� w(pi) + w(p0i) > W (Et);whi
h 
ontradi
ts the assumption that Et is a maximum-weight t-s
hedulable subset of Pt.We are now ready to prove Proposition 3. We show that the output Et of the Forward Algorithmis a maximum-weight t-s
hedulable subset of Pt. For this, we show by indu
tion that for ea
hl = 1; : : : ;M , the set E(l) in step 3 is a maximum-weight t-s
hedulable subset of Pt(1)[ � � � [Pt(l).For simpli
ity, write Q(l) = Pt(1) [ � � � [ Pt(l). As before, we use the notation w(p) for the weightof pa
ket p, and W (E(l)) for the total weight of pa
kets in E(l) (similarly, W (Q(l)), et
.).Be
ause E(0) = ;, E(1) is a highest-weight pa
ket in Pt(1), if one exists, and hen
e is amaximum-weight t-s
hedulable subset of Q(1) = Pt(1). Now suppose that E(l� 1) is a maximum-weight t-s
hedulable subset of Pt(1) [ � � � [ Pt(l � 1), l � 1. Consider E(l) and any t-s
hedulablesubset E0 of Q(l). It is 
lear by Lemma 9 that E(l) is t-s
hedulable. Thus, it remains to show thatW (E(l)) �W (E0).Write E0 = A0 [B0 where A0 = E0 \ Pt(l) and B0 = E0 \Q(l� 1). By the indu
tion hypothesisand Lemma 10(b), there exists B00 � E(l � 1) su
h that jB00j = jB0j and W (B00) � W (B0). Then,E00 = A0 [ B00 is a subset of Pt(l) [E(l � 1), and jE00j = jA0j + jB00j = jA0j+ jB0j = jE0j. Be
auseE(l) is by de�nition the l most important pa
kets in Pt(l) [ E(l � 1), it follows immediately thatW (E(l)) �W (E00), and then thatW (E(l)) �W (E00) =W (A0) +W (B00) �W (A0) +W (B0) =W (E0);whi
h 
ompletes the proof.A.3 Proof of Proposition 4We show that the output Et of the Ba
kward Algorithm is a maximum-weight t-s
hedulable subsetof Pt. We use the following notation and terminology. Consider a t-s
hedule �; i.e., � is a partialone-to-one mapping from laxities f1; : : : ;Mg to pa
kets in Pt su
h that if p = �(l), then lt(p) � l.We say that � is a maximum-weight (MW) t-s
hedule if the the range of � is a maximum-weightt-s
hedulable subset of Pt. We say that � is a

eptable if it 
an be extended to a MW t-s
hedule.The empty t-s
hedule is 
learly \a

eptable" in this sense.
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h iteration of the inner \for" loop in step 3 of the algorithm, the variables plde�ne a t-s
hedule � where �(l) = pl if pl 6= AVAIL; i.e., the range of � is fpl : pl 6= AVAILg. Wenote that the mapping � is either extended or not 
hanged at ea
h iteration of step 3, so any pa
ketthat 
annot be added to the mapping at one iteration will not be addable at any later iteration (werefer below to this property as \s
hedule extension preserves addability"). We 
laim that at thestart and end of ea
h iteration of step 3, � is a

eptable. We prove this 
laim by indu
tion. If � isthe empty s
hedule (whi
h is the 
ase when we start step 3), then � is a

eptable, as noted before.For the indu
tive step, we show that if � is an a

eptable t-s
hedule, and we apply one iterationof step 3, then the resulting t-s
hedule �0 is also a

eptable. Ea
h iteration of step 3 takes a t-s
hedule � and extends it to another t-s
hedule �0 (possibly with no 
hange) as follows. We mayassume that �0 is di�erent from � be
ause it is trivially a

eptable otherwise, sin
e � is. Thereforesome pa
ket 
an be added to �. Let 
 be the 
lass of the highest-weight pa
ket that 
an be addedto � to obtain another t-s
hedule. Let p be the largest-laxity pa
ket in the 
lass 
 not alreadyin the range of �. Then �0 is the t-s
hedule that extends � by adding p at the largest laxity �lsu
h that lt(p) � �l and �(�l) is unde�ned (i.e., pl is AVAIL). In other words, the only di�eren
ebetween �0 and �, if any, is that �0(�l) = p whereas �(�l) is unde�ned. The body of the \for" loopsin step 3 
omputes exa
tly this �l (to see this, you must rule out previously reje
ted pa
kets usingthe \s
hedule extension preserves addability" property mentioned above).To see that the resulting �0 is a

eptable, note that some extension �00 of � is a MW t-s
hedule(by de�nition of a

eptability of �). We now break into two 
ases. First, if �00(j) = p, for some j,then we must have j � �l sin
e �l was 
hosen to be the largest laxity available in �, and �00 extends�. Moreover, be
ause p is not s
heduled in �, but is s
heduled at �00(j) we 
an see that �(j) is notde�ned (and thus �0(j) is not de�ned unless j = �l). These observations imply that the s
heduleidenti
al to �00 ex
ept that we swap �00(j) and �00(�l) must be a t-s
hedule that extends �0|and sin
ethis s
hedule s
hedules the same pa
kets as �00 (whi
h is MW) then it must also be MW, implyingas desired that �0 is a

eptable. For the se
ond 
ase, we assume that �00 does not s
hedule p. Thenwe 
an 
onstru
t a new t-s
hedule based on �00 by setting �00(�l) = p. This new t-s
hedule is 
learlyan extension of �0. Moreover, this new t-s
hedule is also an MW t-s
hedule, as follows: our 
hoi
eof p from the highest 
lass 
 
ontaining pa
kets that 
an be added to �, together with the \s
heduleextension preserves addability" property, ensures that all pa
kets s
heduled by �00 but not by �have weight at most the weight of p, implying that the pa
ket removed from �00 by setting �00(�l) = phas weight no more than p. Hen
e, �00 is a

eptable, whi
h 
ompletes the indu
tion argument.Finally, note that as step 3 terminates, the 
omputed t-s
hedule � must be an MW t-s
hedule,be
ause by the above 
laim, � is a

eptable, and by the \s
hedule extension preserves addability"property there are no more pa
kets that 
an be used to extend � (all pa
kets have been 
onsideredin step 3 and either added or reje
ted due to failure of addability). Be
ause the set Et in step 4 isthe range of �, we 
on
lude that Et is a maximum-weight t-s
hedulable subset of Pt.
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orre
tness of the � Algorithm, we use the following lemma.Lemma 11 Let Et = fp1; : : : ; pjEtjg be a set of pa
kets su
h that lt(pi) � i for ea
h i = 1; : : : ; jEtj.Then, Et is t-saturated if and only if there exists j 2 f1; : : : ; jEtjg su
h that j = maxflt(pi) : i =1; : : : ; jg.Proof: Only if part: If Et is t-saturated, then there is a j su
h that Æjt (Et) = 0, i.e., N jt (Et) = j.Be
ause N jt (Et) is the number of pa
kets in Et with laxity not ex
eeding j, and only pa
kets infp1; : : : ; pjg have laxity not ex
eeding j, we 
on
lude that all pa
kets in fp1; : : : ; pjg have laxitynot ex
eeding j. Hen
e, j = maxflt(pi) : i = 1; : : : ; jg.If part: Suppose j 6= maxflt(pi) : i = 1; : : : ; jg for all j = 1; : : : ; jEtj. Be
ause lt(pi) � pi,for all j = 1; : : : ; jEtj we have j < maxflt(pi) : i = 1; : : : ; jg, i.e., there is at least one pa
ket infp1; : : : ; pjg with laxity ex
eeding j. Again be
ause lt(pi) � i for all i, we dedu
e that N jt (Et) < j,for all j 2 f1; : : : ; jEtjg. Hen
e, Æjt (Et) = N jt (Et) � j < 0 for all j 2 f1; : : : ; jEtjg, and Et is nott-saturated.We are now ready to prove the 
orre
tness of the � Algorithm as stated in Proposition 5.It is easy to show by indu
tion that ea
h time the algorithm tests the 
onditions of the \whileloop" (in step 3), we have that l = maxflt(pk) : k = 1; : : : ; ig and m = minflt(pk) : k = 1; : : : ; ig.We now 
onsider step 4. If Et is not t-saturated, then by Lemma 11 there 
an be no j su
hthat maxflt(pk) : k = 1; : : : ; jg = j, and thus the \while loop" in step 3 
annot terminate with the
ondition i = l = maxflt(pk) : k = 1; : : : ; ig true|as a result, step 4 is rea
hed with i = jEtj (theonly way step 3 
an terminate) and i 6= l. Hen
e, the output �t = fp 2 Et : lt(p) = mg is equal to�(Et), by its de�nition, as desired. Now suppose Et is t-saturated. It is straightforward to 
he
kthat for any j, Æjt = 0 if and only if j = maxflt(pk) : k = 1; : : : ; jg (given that lt(pj) � j for anyj). This implies that the loop in step 3 terminates with both i and l equal to the least j su
h thatÆjt = 0 (su
h j exists by Lemma 11 sin
e Et is t-saturated). But then i is by de�nition h(Et), andso the output value �t = fp1; : : : ; pig is by de�nition �(Et), as desired.B Proofs for Se
tion 3B.1 Proof of Lemma 1 (Time dominan
e)We use indu
tion on the time t. For the base 
ase (at time 1), the two poli
ies fa
e the same bu�erstate, then be
ause EDF+ serves the earliest pa
ket in A1, CMTOEDF+ must serve a pa
ket noearlier. For the indu
tive 
ase, we assume that at all times k < t, CMTOEDF+ serves a pa
ketat time k no earlier than that served by EDF+ at that time. We must show that the pa
ket p
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ket pe served by EDF+. Suppose for
ontradi
tion that p
 is earlier than pe. Then EDF+ must have served p
 at some time t0 < t. Inthis 
ase, by the indu
tion hypothesis, CMTOEDF+ must have served a pa
ket p0
 at time t0 su
hthat p
 is earlier than p0
, and both p0
 and p
 have arrived and are unexpired at time t0. Be
auseCMTOEDF+ will later serve p
 at time t, by 
onsisten
y p
 must be in Et0 . But this 
ontradi
ts thefa
t that CMTOEDF+ uses EDF+ to sele
t the pa
ket served in Et0 .B.2 Proof of Lemma 2By de�nition of I[s;t℄, there is some t0 2 [s; t℄ and p0 2 Et0 with deadline d0 su
h that d0 = I[s;t℄ andd0 is a t0-saturation time of Et0 (be
ause t0 is busy and p0 is a highest deadline pa
ket in �(Et0)).If t0 = t, then we are done. Otherwise, note that be
ause Et0 is t0-s
hedulable and t0-saturated atd0, and the pa
ket served at t0 is 
hosen 
onsistent with a s
hedule of Et0 , we 
an 
hoose a subset� of Et0 \ Pt0+1 that is (t0 + 1)-saturated at d0 and (t0 + 1)-s
hedulable su
h that every pa
ket in� expires at or before d0.Now we show that there must be a (t0+1)-saturation time d00 of Et0+1 that is at least d0 � I[s;t℄.To see this, suppose not, i.e. that there is no su
h (t0 + 1)-saturation time at d0 or later. It followsthat there is some pa
ket in � that is not in Et0+1. Let p00 be a latest expiring su
h pa
ket (i.e. p00is a latest expiring pa
ket in ��Et0+1). We now have that the set of pa
kets in � with deadlinesin the interval [d(p00) + 1; d0℄ is a subset of Et0+1, by our 
hoi
e of p00. It is straightforward to showby a 
ounting argument that this in
lusion, together with the fa
ts that � is (t0 + 1)-saturatedat d0 and Et0+1 has been assumed not to be (t0 + 1)-saturated at d0, implies that Et0+1 is not(t0 +1)-saturated at any deadline at or after d(p00). But this implies that p00 
an be added to Et0+1preserving (t0 + 1)-s
hedulability, 
ontradi
ting the maximum s
hedulability of Et0+1. Therefore,by 
ontradi
tion, there is some (t0 + 1)-saturation time of Et0+1 greater or equal to d0.Repla
ing t0 by t0 + 1, and d0 by d00 and repeating the above argument until t0 = t, we arrive atthe desired result by indu
tion.B.3 Proof of Lemma 5 (	-monotoni
ity)We prove the lemma by 
ontradi
tion. Suppose there is a pa
ket p in 	[s;t+1℄ su
h that the weightof p is stri
tly less than min(	[s;t℄).We will show that the pa
ket p 
an be repla
ed in Et+1 by a pa
ket p0 from (Pt+1\	[s;t℄)�Et+1.The weight of p0 must ex
eed that of p by our assumptions on p sin
e p0 2 	[s;t℄. We show that su
hp0 
an be found so that this repla
ement results in a (t+1)-s
hedulable subset of Pt+1 of larger totalweight than Et+1, 
ontradi
ting the de�nition of Et+1 as a maximum-weight (t + 1)-s
hedulablesubset of Pt+1.We �rst identify the earliest time at whi
h p 
an o

ur in any s
hedule of Et+1. Let d be the
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h that d < d(p) and Æd�tt+1(Et+1) = 0. (We assume by 
onvention that Æ0t+1(Et+1) =0, so that d is well-de�ned and lies in the interval [t; d(p) � 1℄.) We note then that d + 1 is theearliest time at whi
h p 
an be s
heduled in any s
hedule of Et+1, and that d is a (t+1)-saturationtime of Et+1 (or is equal to t).We now argue that the deadline d o

urs stri
tly within the extent of 	[s;t℄, i.e., that d < �[s;t℄.Suppose not. We then have that �[s;t+1℄ � d(p) > d � �[s;t℄ > t. That d > t here implies thatd is a (t + 1)-saturation time of Et+1 (rather than being equal to t). However, the de�nition �does not allow �[s;t+1℄ > d � �[s;t℄ with d a (t + 1)-saturation time of Et+1. This is be
auseI[t+1;t+1℄ > d 
ontradi
ts the fa
t that I[t+1;t+1℄ is the smallest (t+1)-saturation time of Et+1, andd � I[t+1;t+1℄ with d � �[s;t℄ � I[s;t℄ implies that d � I[s;t+1℄, whi
h 
ontradi
ts �[s;t+1℄ > d (sin
e dis a (t+ 1)-saturation time of Et+1). Therefore, we 
an 
on
lude by 
ontradi
tion that d < �[s;t℄.We now show that the desired pa
ket p0 exists. We must �nd a p0 in (Pt+1 \	[s;t℄)�Et+1 su
hthat (Et+1 � p) [ p0 is (t + 1)-s
hedulable. We ensure s
hedulability by sele
ting a p0 su
h thatd(p0) > d. Sin
e there is a s
hedule of Et+1 with p s
heduled at d+1, we 
an simply s
hedule p0 atthat time in pla
e of p, so long as d(p0) > d.We show the existen
e of p0 by 
ontradi
tion to 
on
lude the proof of 	-monotoni
ity. Supposefor 
ontradi
tion that:(*) there is no p0 in (Pt+1 \	[s;t℄)�Et+1 with d(p0) > d.Be
ause 	[s;t℄ is t-s
hedulable (sin
e it is a subset of Et) and t-saturated at �[s;t℄, and a pa
ketpt was sele
ted for servi
e from �(Et), we know that 	[s;t℄ � pt is (t + 1)-s
hedulable and (t + 1)-saturated at �[s;t℄. From this we 
an 
on
lude that there are at least �[s;t℄� d pa
kets in 	[s;t℄� ptwith deadlines in [d + 1;�[s;t℄℄. Denote the set of these pa
kets �. Sin
e d + 1 � t+ 1, � � Pt+1.Then, by our supposition above for 
ontradi
tion (*), � � Et+1. But sin
e d is a saturation timeof Et+1, there are also d� t (from d� (t+ 1) + 1) pa
kets in Et+1 with deadlines in [t+ 1; d℄|
allthe set of these pa
kets �. The sets � and � together ensure that �[s;t℄ is a (t+1)-saturation timeof Et+1. But note that the pa
ket p 
annot be in � be
ause its deadline is greater than d, and
annot be in � be
ause � � 	[s;t℄ and the weight of p is less than min(	[s;t℄), and � and � together
onstitute all the pa
kets in Et+1 with deadlines not ex
eeding �[s;t℄. Sin
e p 2 Et+1, d(p) mustthus ex
eed �[s;t℄. But then the fa
t that �[s;t℄ is a (t+ 1)-saturation time of Et+1 
ontradi
ts the
hoi
e of d as the greatest su
h time less than d(p). This 
ontradi
tion ensures that the desired p0exists, 
on
luding the proof.
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