SCHEDULING MULTICLASS
PACKET STREAMS TO MINIMIZE
WEIGHTED LOSS*

ROBERT L. GIVAN Epwin K. P. CHONG
HyeEoNG SoO CHANG

School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47907-1285
E-mail: {givan,echong,hyeong}@ecn.purdue.edu

January 24, 2001

Abstract

We consider the problem of scheduling an arriving sequence of packets at a single server.
Associated with each packet is a deadline by which the packet must be scheduled. Each packet
belongs to one of a predetermined set of classes, and each class has an associated weight value.
The goal is to minimize the total weighted value of the packets that miss their deadlines.
We first prove that there is no policy that minimizes this weighted loss for all finite arrival
sequences of packets. We then present a class of greedy scheduling policies, called the current-
minloss throughput-optimal (CMTO) policies. We characterize all CMTO policies, and provide
examples of easily implementable CMTO policies. We compare CMTO policies with a multiclass
extension of the earliest-deadline-first (EDF) policy, called EDF+, establishing that a subclass
of CMTO policies achieves no more weighted loss than EDF+ for any traffic sequence, and
at the same time achieves a substantial weighted-loss advantage over EDF+ for some traffic
sequences—this advantage is shown to be arbitrarily close to the maximum possible achievable
advantage. We also provide empirical results to quantify the weighted-loss advantage of CMTO
policies over EDF+ and the static-priority (SP) policy, showing an advantage exceeding an order

of magnitude when serving heavy-tailed aggregations of MPEG traces.

Keywords: multiclass, deadlines, scheduling, weighted loss, throughput optimality, EDF, SP

*This research is supported by DARPA/ITO under contracts F19628-98-C-0051 and F30602-00-2-0552. The
equipment for this work was provided in part by a grant from Intel Corporation. The views and conclusions contained
in this document are those of the authors and should not be interpreted as representing the official policies, either

expressed or implied, of the Defense Advanced Research Projects Agency or the U. S. Government.

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 2

1 Introduction

We consider the problem of scheduling multiclass traffic with deadlines under a weighted-loss cri-
terion. In this problem, a single server receives packet traffic in discrete time. Each packet has
an associated deadline, and must be served by the deadline, or it is considered lost. Each packet
belongs to one of a predetermined finite set of classes, and each class has a real-number weight
corresponding to the cost incurred for each packet lost in that class. Every packet takes one unit of
time to serve, and any finite number of packets can arrive per unit time. At each time, the server
makes a decision on which packet to serve based on the packets pending in the buffer (i.e., in an “on-
line” fashion). The problem of scheduling packets with deadlines has received considerable interest
in the literature; e.g., [11, 12, 13, 14, 15, 17, 16, 18]. However, the treatment of on-line scheduling
problems with multiple classes of traffic remains relatively incomplete. Our main contribution in
this paper is the description of a new family of multiclass scheduling policies, a characterization
of its properties, and a rigorous analytical comparison of its performance relative to a multiclass
extension of the earliest-deadline-first (EDF) policy. We also provide substantial empirical results
demonstrating significant superiority for the new scheduling policies over both EDF and the static
priority (SP) policy—these results suggest that realistic multiclass traffic with deadlines requires a
policy that explicitly considers the interplay between class and deadline (rather than focusing on
one dimension and using the other to break ties).

The multiclass aspect of our problem is motivated by “differentiated” packet delivery in high-
speed computer networks. There has been related work by the Internet Engineering Task Force
(IETF) intserv and diffserv communities, aiming at extending the best-effort service offered by the
current Internet in order to provide service differentiation beyond the traditional single-class packet
delivery service. For example, applications with layered coding of data, such as Moving Picture
Expert Group (MPEG) video streams, layered Discrete Cosine Transform (DCT), or wavelet coders
require packets from “important” layers to be delivered preferably, but can tolerate some losses of
the packets from “unimportant” layers. In an MPEG stream, the I frames are considered more
important than the P or B frames [1].

Several new approaches have been explored in the networking community to address the problem
of service differentiation. One approach is to use a simple FIFO queue for the aggregated traffic
and provide service differentiation by applying different dropping preferences to tagged or untagged
packets [7]. Another approach is to distinguish between packets by assigning to each packet an
associated class and then apply a multiclass scheduling algorithm, e.g., static-priority (SP), which
always schedules a highest-class packet in the queue. A third approach is to use “pricing” to
differentiate the services [4]. Selection of the best approach is still on-going [9]. Generally, each
of these approaches can be handled (to varying degrees of precision) by introducing class weights.

For example, the weight of a class can be interpreted as the per-packet price [4], per-class dropping

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 3

utility, or a relative packet importance measure.

We counsider scheduling policies that decide which packet to transmit based solely on the packets
currently pending in the buffer. The earliest-deadline-first (EDF) policy, which at each time selects
a packet with the earliest deadline among the packets in the buffer, is a well-known example of such
a policy. EDF is a throughput optimal (TO) policy in the sense that it serves as many packets over
any time interval as any other policy for any traffic. This TO characterization of EDF provides
a deterministic, traffic-independent statement of the throughput of EDF. In [15], Ling and Shroff
describe a policy that also achieves optimal throughput in the above sense, but drops some packets
strictly before their deadlines. The recent work of Hajek and Seri [11, 12] provides a rigorous
study of throughput optimal policies using a general deterministic, traffic-independent optimality
framework. Their work also includes a treatment of the multiclass setting under an optimality
criterion called lez-optimality [12].

In this paper, we build on the deterministic, traffic-independent framework of Hajek and Seri
by considering the multiclass criterion of weighted loss. Specifically, we are interested in minimizing
the total weight of lost packets. It turns out that there is no traffic-independent optimal policy; i.e.,
there is no policy that has minimum weighted loss for all traffic sequences. The same is true even
if we restrict our attention only to the class of TO policies—so there is in some sense no “best”
TO policy with respect to weighted loss. Our approach is to consider a subclass of TO policies,
called CMTO policies, that take into account the weights of packets in the buffer according to a
“greedy” scheme called current-minloss scheduling. Specifically, a CMTO policy is a throughput
optimal policy that selects a packet to serve at each time consistent with the goal of minimizing the
weighted loss assuming that there are no further arrivals. Minimizing the weighted loss of packets
currently in the queue is in a sense the best we can hope for, without any assumptions on the future
traffic.

We characterize all CMTO policies by providing a necessary and sufficient condition on the
choice of packet to serve that such policies must make at each time step. It turns out that this
characterization suggests a natural two-step implementation of CMTO policies. In Step 1, the
policy limits its attention to a subset of packets in the buffer (called an “eligible set”), and in
Step 2 the policy selects a packet from the eligible set in a way that ensures throughput optimality.
We present easily implementable algorithms for both steps, yielding simple example instances of
CMTO policies.

We compare the CMTO policy with a simple multiclass extension of EDF, called EDF+ that
uses packet class only to break deadline ties, revealing the clear advantage of CMTO policies over
EDF+. Specifically, we show that a subclass of the CMTO policies achieves no more weighted loss
than EDF+ for any traffic. This result makes a deterministic, traffic-independent statement about
the weighted loss of CMTO policies in relation to EDF+ for any possible traffic arrival sequence.
We also show that there exist traffic sequences such that any CMTO policy achieves a weighted-loss

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 4

advantage over EDF+ that is arbitrarily close to the maximum possible achievable advantage.

We also describe two extensions of CMTO policies. The first extension involves dropping
some packets from the buffer strictly before their deadlines. Such “scheduling-dropping” policies
are appealing because of their smaller buffer requirements and their ability to provide more timely
feedback on which packets will not be scheduled. We show that a natural subclass of CMTO policies
can be extended to scheduling-dropping policies without changing the schedule of packets served,
while at the same time minimizing the buffer usage among all throughput optimal scheduling-
dropping policies. The second extension involves a credit-based mechanism to incorporate fair
link-sharing into CMTO policies. The result is a family of class- and deadline-sensitive scheduling
policies that explicitly takes into account link-share allocations for individual calls. Our preliminary
empirical results, presented below, show that these policies retain the substantial advantages of
CMTO policies with respect to weighted loss while giving fair link-sharing behavior similar to that
of previously proposed link-sharing schemes (e.g. [10]).

The remainder of this paper is organized as follows. In Section 2, we introduce our notation and
terminology, give a precise problem definition, and show the non-existence of an optimal scheduling
policy. In Section 3, we describe the class of CMTO scheduling policies. We present a necessary
and sufficient condition characterizing all CMTO policies. We also provide examples of easily
implementable CMTO policies, with correctness proofs and algorithmic complexity analyses. In
Section 4, we analytically compare CMTO policies and a multiclass extension of the EDF policy
(called EDF+), illustrating the clear advantage of CMTO over EDF+. We then describe some
extensions of CMTO policies in Section 5: CMTO policies that drop packets before their deadlines,
and policies based on CMTO that also incorporate link-share fairness. In Section 6, we illustrate
the performance of CMTO policies via simulations using practically reasonable traffic sequences,
comparing the performance of CMTO with EDF+, SP, and an SP-based fair-queueing policy. We
draw conclusions in Section 7 and also provide there some discussion of possible future research

directions. Throughout the paper, we relegate technically involved proofs to the appendix.

2 Multiclass Scheduling Problem

In this section, we present the notation and terminology that we will use throughout the paper,
and demonstrate the non-existence of a policy that minimizes weighted loss under all traffic. Our
treatment follows that of Hajek and Seri [11] (although some of our notation and terminology differs
from [11]).

2.1 Framework, terminology, and notation

We assume that time ¢ is slotted, i.e., ¢ € {1,2,...}, and that each packet takes exactly one time
slot to be served. Each packet p belongs to a particular class, denoted by C(p) € {1,...,m}, and

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 5

has a deadline d(p) € {1,2,...}. A packet that is not served by its deadline is said to be lost. More
precisely, if the arrival time for a packet p is ¢, then p needs to be served at some time between
t and d(p), inclusive, or p is lost. If p is lost, a cost we(p) > 0, depending only on the class of p,
is incurred. We assume without loss of generality that if C(p) < C(p'), then we) > we(yy. We
naturally consider that high-weight classes are more important than low-weight ones.

An arrival sequence (also called a traffic sequence, or a traffic for simplicity) A is a sequence
A = {A; : t > 1} such that A; is the set of packets arriving at time ¢. The sets A; are assumed
to be disjoint, and d(p) > t for all p € A;. The lazity of a packet p at time ¢ is defined as
ly(p) = d(p) — t + 1, i.e., the number of time slots left before the packet’s deadline expires and p
becomes lost. An arrival sequence is said to be finite if there is a finite 7" such that A; = () for all
t > T. For convenience, we also use the notation A to denote the set of packets U;>1 Ay.

Given an arrival sequence A, a schedule is a one-to-one partial mapping t — p, where ¢t €
{1,2,...} and, if p; is defined, p; € A U---U Ay with ¢t < d(py). If p; is defined, we say that p; is
scheduled (alternatively, transmitted or served) at time .

A scheduling policy m is a sequence of maps {m; : ¢ > 1} where m; is a function that maps
any nonempty set of packets P to a single element of P, where we require that the maps {m;} are
stationary; i.e., the function 71 must determine 7; for all ¢ as follows: for any set of packets P,
m(P) = w1 (P'), where the packets of P’ are exactly those of P but with their deadlines decreased
by ¢t — 1 time steps (packets with nonpositive resulting deadlines are removed). A scheduling policy
induces a schedule as follows. Given an arrival sequence A and a policy 7, define the sequence {F;}
by Py = () and, for all £ > 0,

Pt+1=At+1UPt—{pEPtZd(p)ZtOI‘p:ﬂ't(Pt)}.

Note that the sequence {P;} depends on and is completely determined by the arrival sequence A
and the policy w. At each time ¢, P, represents the set of packets that have arrived at or before
time £, have not been transmitted before time ¢, and have not yet missed their deadlines at time ¢.
We refer to packets in P; as available or pending in the system. We can also think of P, as the state
of the queue at time ¢, in the case where no packets are dropped ahead of their deadlines expiring.
(We assume that the queue starts out empty: Py = ().) The policy 7 selects the packet my(P;) to
transmit at time ¢. In other words, the scheduling policy 7 induces the schedule t — m(P;). We
say that 7 schedules a packet p at time ¢ if m;(P;) = p. Note that if P, is empty, m(F;) is undefined,
and no packet is served at time t.

A policy defined as above is often referred to as work-conserving or non-idling because m(P;)
is defined whenever P; # (), and as causal because its selection of the packet to transmit depends
only on the currently pending packets in the system. Our definition of a policy is more restrictive
than the one in [11], but suffices for our purposes (the definition in [11] allows for packet selections

that depend arbitrarily on all past arrivals, not just the pending packets).

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 6

Figure 1: Graphical illustration of multiclass packets with deadlines

Throughout this paper, we graphically illustrate sets of packets using rectangular arrays, such
as the one shown in Figure 1. The columns of the array represent laxities, ordered from right to
left in increasing order, while the rows represent classes, ordered from top to bottom in increasing
order (decreasing importance). A block in an entry of the array represents one or more packets (as
labeled) with the associated laxity and class—if multiple packets have the same laxity and class,
we indicate the number of packets above or below the appropriate block.

We need a few more definitions before we can describe our problem. The next definition is taken
directly from [11]. A scheduling policy 7 is throughput optimal (TO) if, for any arrival sequence A
and any ¢t > 1, policy 7 schedules at least as many packets in slots {1,...,¢} as any other policy
does.

Denote the set of packets scheduled by 7 as S™; i.e., S™ = {m () : P, # (), t > 1}. Note that
A — 8™ is the set of packets that are not served by m and will eventually miss their deadlines. The

weighted loss incurred by a scheduling policy 7 with respect to a finite arrival sequence A is

L™(A) = > wep).
pEA—ST

We say that a scheduling policy m dominates n' over A if L™(A) < L™ (A). If = dominates 7’ over
all finite arrival sequences, then we say that = dominates 7. Note that an equivalent definition
of domination can be stated using the notion of weighted throughput, the total weight of packets
served.

A scheduling policy 7 is said to be optimal if 7 dominates any other policy. If 7 is TO and
dominates any other TO policy, we say that 7 is an optimal-TO (OTO) policy. Note that an OTO

policy need not be optimal, because it is required to dominate only other TO policies.

2.2 Nonexistence of optimal policies

Ideally, our goal in multiclass scheduling should be to find an optimal policy as defined above.

However, it is easy to show that there is no such policy.

Proposition 1 No optimal scheduling policy exists if and only if there are at least two classes.

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 7

p. class
j

Figure 2: Graphical illustration for the proof of Proposition 1

Proof: If part: Let ¢ and j be two classes with w; > w;. Suppose A; consists of a class j packet p
with laxity /;(p) = 1 and a class i packet p’ with laxity I;(p") = 2 (see Figure 2). If A, = () for all
t > 1, we must serve p at time 1 to dominate all other policies over A. On the other hand, if Ay
consists of a class i packet with laxity 1, and A; =) for all £ > 2, we need to serve p’ at time 1 to
dominate all other policies over A. Hence, no optimal policy exists.

Only if part: If all packets have the same weight, then any TO policy (e.g., the earliest-deadline-
first (EDF') policy) is optimal. |

Even though there is in general no optimal policy, we might still hope for an OTO policy, since
such a policy must only dominate all other TO policies, not necessarily all other policies. In the
example (see Figure 2) used in the proof of Proposition 1, we described two options in choosing the
packet to serve such that the preferable option depends on the future arrivals. However, only one
of those options is counsistent with throughput optimality, so this example does not immediately
preclude the existence of an OTO policy.

To explore further the existence of OTO policies, we first review a throughput optimality
condition by Hajek and Seri [11]—this condition is stated in Theorem 1 below, using the following
notation. Given a nonempty set of packets P at time ¢ (with deadlines no less than) and integer
laxity / > 1, let N}(P) be the number of packets in P having laxity no more than [, and let
SL(P) = N}(P) — 1. We say that P is t-saturated if 6.(P) > 0 for some [> 1. Define

h(P) = arg max; 6. (P) if P is t-saturated
min{/ : N}(P) > 0} otherwise

where arg max; 0/ (P) is the smallest [maximizing 0.(P). Let ®(P) be the set of packets in P whose
laxities do not exceed h(P). We refer to the integer h(P) as the Hajek-Seri cut for P.
Considering the set P, of packets pending in the buffer at time ¢, the integer 0}(F;) is a lower
bound on how many packets in P, must miss their deadlines by time ¢ 4 in any schedule of future
transmissions. Moreover, if P, is t-saturated and at time ¢ we serve a packet not in ®(F;) (i.e.,
one whose laxity exceeds h(F;)), then the number of packets in P; that will definitely miss their
deadlines in the future will increase. Indeed, Hajek and Seri show that scheduling within ®(P;) is

necessary and sufficient for throughput optimality.

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 8

Hajek-Seri'scut SP EDF

Figure 3: An example where EDF serves more weight than the policy using SP within ®(F;).

Theorem 1 (Hajek-Seri) A policy m is a TO policy if and only if for any nonempty set of packets
P, 1 (P) € &(P).

Within the class of TO policies, we have considerable freedom in choosing which packet in ®(F;)
to serve at each time ¢t. The earliest-deadline-first (EDF) policy provides such a choice. However, if
we are interested in minimizing weighted loss, we should choose a packet in ®(FP;) based on its class.
A naive class-based choice is to select a packet within ®(#;) using SP (i.e., select a highest-weight
packet). Such a policy is TO and appears always to serve more important packets than EDF does.
Unfortunately, this simple choice does not in fact dominate EDF. Indeed, consider the example
given in Figure 3. If there are no further arrivals, EDF serves more weight than « for this traffic.
In the next section, we explore a class of policies that make class-sensitive selections within ®(P;)
with provable benefits, including dominance of EDF.

We now return to the issue of existence of an OTO policy. The following proposition indicates

that, unfortunately, there does not exist such a policy in general.
Proposition 2 No OTO policy exists if and only if there are at least three classes.

Proof: A simple modification of the proof of Proposition 1 does the job.

If part: Let 4, j, and k be three classes with w; > w; > wy. Suppose A; consists of a class ¢
packet p’ with laxity [1(p') = 2, a class j packet p with laxity [;(p) = 1, and two class k packets
with laxities 1 and 2. (see Figure 4). If A; = () for all ¢ > 1, we must serve p at time 1 to dominate
all other TO policies over A. On the other hand, if Ay consists of a class ¢ packet with laxity 1,
and Ay = () for all ¢ > 2, we need to serve p’ at time 1 to dominate all other TO policies over A.
Hence, no optimal TO policy exists. (The key difference between this example and that in Figure 2
is that the presence of the class k packets ensures that all choices of packet to serve at time 1 are
consistent with throughput-optimality.)

Only if part: If there is only one class, then any TO policy is OTO optimal. If there two classes,
then any TO policy that serves more class 1 packets than any other TO policy is OTO. Hajek and
Seri [11] have shown that such a policy exists (called a MOSTO policy in [11]). |

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 9

Figure 4: Graphical illustration for the proof of Proposition 2

3 Current-Minloss Scheduling

3.1 Basic description and characterization

In this section, we describe a class of policies called current-minloss TO (CMTO) policies. A
CMTO policy is a TO multiclass causal scheduling policy that schedules a packet at each time
step consistent with the goal of minimizing the weighted loss of the current packets in the buffer.
This policy achieves the minimum weighted loss assuming that there are no further arrivals. As we
showed in the previous section, the multiclass scheduling problem is unsolvable in general without
knowledge of future traffic. Minimizing the weighted loss of packets currently in the queue is in
a sense the best we can hope for, without any assumptions on the future traffic (see [3] for some
of our work on minimizing weighted loss in the presence of stochastic assumptions on the future
traffic). We define and characterize CMTO policies below. In the next section, we give examples
of easily implementable CMTO policies.

We begin with some definitions. Let P be a set of packets with deadlines no less than ¢. A
t-schedule of P is a one-to-one partial mapping ¢ — p; € P where i € {1,2,...} and, if p; is defined,
then [;(p;) > 1. A t-schedule induces a schedule of the packets in P: if p; is defined, then p; is
scheduled at time t47—1. Note that all packets in a t-schedule are scheduled at times ¢ or later. We
can think of a t-schedule as an indexed set of packets {p; : i € D} where D = {i > 1: p; is defined}
and [y(p;) > i for all i € D. A set of packets is said to be t-schedulable if there exists a t-schedule
that contains the set.

A mazimum-weight t-schedulable subset of P; is a set Fy C P; such that the total weight of
packets in F; is no less than that of any other t-schedulable subset of P,. We say that A is an
empty-future arrival sequence if A; = () for all £ > 1-—in such an arrival sequence, all the arrivals
happen at time 1. A policy 7 is a current-minloss (CM) policy if, for any empty-future arrival
sequence A, we have L™(A) < L”'(A) for any other policy 7’. A throughput optimal CM policy is
called a CMTO policy.

The following theorem characterizes all CMTO policies. We note that the focus on time step 1

exploits the stationarity of the policies we consider to effect all time steps.

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 10

Theorem 2 A policy © is a CMTO policy if and only if for any nonempty set of packets P, there
exists a mazimum-weight 1-schedulable subset E of P such that m(P) € ®(E).

Proof: See Appendix A.1l. |

Similar to Theorem 2, we can state a characterization of all CM policies—not necessarily TO—
involving a different (more relaxed) restriction of packet choice. Specifically, if P, is not ¢-saturated,
then a CM policy can choose any packet in P;. However, we will not dwell any further on non-TO

CM policies, and will restrict our attention henceforth to CMTO policies.

3.2 Examples of CMTO policies

Theorem 2 suggests the following implementation of any CMTO policy:

For each t, if P, is not empty, do:
Step 1: Find a maximum-weight ¢-schedulable subset of P, (called E);

Step 2: Schedule a packet within ®(F;) for service at time t.

We refer to the two-step algorithm above as the CMTO algorithm. Next, we provide two
examples of CMTO policies based on the CMTO algorithm. These two examples differ only in

their implementation of Step 1.

3.3 Step 1 of the CMTO algorithm

Step 1 of the CMTO algorithm takes a given set of packets P, and computes a maximum-weight
t-schedulable subset E;. These are packets that are “eligible” to be scheduled in the CMTO
algorithm; we therefore refer to E; in Step 1 as the eligible set. The computation of E; from P,
is a familiar problem in “offline” scheduling. Indeed, there are several algorithms described in
the literature that can be used for this purpose [14, 17, 16, 18]. Here, we describe two new simple
example algorithms for Step 1. We present these two new algorithms not as superior alternatives to
existing algorithms, but simply to illustrate what is involved in the calculation of Step 1, and show
some of the diversity of approaches that are possible. We note that none of the previous work on
such “offline” algorithms proposes to incorporate such methods as part of an online scheduler, as we
do (e.g. the algorithms in [16] and [17] were suggested to provide upper bounds on the achievable
performance of online scheduling algorithms). We also provide new careful and complete correctness

proofs for both our new methods in the appendices.

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 11

3.3.1 Forward Algorithm

Our first example algorithm for Step 1 of the CMTO algorithm is called the Forward Algorithm,
described as follows. We use the notation P;(l) = {p € P; : l¢(p) = I} (set of packets in P, with
laxity 1), and M = max{l;(p) : p € P;} (largest laxity of packets in F;).

Forward Algorithm:
1. Input: a set of packets P;.
2. Initialize: E(0) =0,

3. Forl=1,..., M,
Set E(l) to be the [-most important packets in P;({) U E(l — 1)
(or the whole of P;(I) U E(l — 1) if it has fewer than [packets).

4. Output: the set £, = E(M).

In the Forward Algorithm, we grow an initially empty set into successively larger t-schedulable
subsets of P, until we have reached the largest t-schedulable subset of P;. At each successive step we
keep only the most important (highest-weight) packets that can be scheduled. The worst-case time
complexity of the algorithm depends on the data structures used to represent the sets P;(l) and
the current largest ¢-schedulable subset (as “grown” by the algorithm). One natural approach is to
represent these sets with linked lists sorted to be in decreasing order by weight, where packets of
identical weight and laxity are combined into a single list entry (we assume the list entries contain
a count of the number of packets represented). In this case, the algorithm runs in complexity
O(mM), where M is the largest laxity of packets in P, and m is the number of classes. Note
that the key step of computing the set E(I) in the algorithm (step 3) can be implemented as a
merge operation running in time complexity O(m) because each list involved will be at most m in
length, and this key step will be run at most M times. We note however that if we are to use this
representation for the sets P;(l) during online scheduling, we must be able to efficiently compute
P, from P, and A;y1, assuming that P; is already so represented—when using this representation
this computation (essentially sorting A;;1, then merging) has a possibly higher O(|A;41|log|Ai+1])
cost unless we also assume a similar sorted representation for the new arrivals A;1q. If we assume
a fixed bound on both M and m, then this sorting of arrivals can be carried out in O(|A¢11]) time
using a bucket sort.

The packets in the output F; can be listed as a t-schedule (i.e., E, = {pl,...,p‘Et|} with
l¢(pi) > i), without increasing the complexity, as long as we choose our representation to order
packets of the same weight by laxity (rather than arbitrarily)—this allows the O(mM) conversion
of a length M linked list ordered by weight into a length M list ordered by laxity, with the latter

being an earliest-deadline-first ¢-schedule.

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 12

We are now ready to prove that the Forward Algorithm does indeed produce a maximum-weight
t-schedulable subset of ;.

Proposition 3 The Forward Algorithm yields a CMTO policy.

Proof: See Appendix A.2. [|

3.3.2 Backward Algorithm

Our second example algorithm for Step 1 of the CMTO algorithm is called the Backward Algorithm,

described as follows.

Backward Algorithm:
1. Input: a set of packets P;.
2. Initialize: p; = AVAIL, [=1,..., M.

3. For c=1,...,m (from highest to lowest class),
For packet p in class ¢, from highest to lowest laxity,

If | = max{j < l;(p) : pj = AVAIL} exists, then set p; = p.
4. Output: the set By = {p; : p # AVAIL}.

The Backward Algorithm can be implemented to run in complexity (essentially) O(min(|FP;|, M+
m)), assuming that P; is represented by giving for each class a linked list of packets sorted by laxity.
To see this, note that the algorithm schedules at most M packets and rejects at most m packets
(because once a packet is rejected in a given class, the algorithm can move on to the next class).
The complexity bound of O(M + m) exploits the Union/Find disjoint-sets algorithm [5], which
enables the Backward Algorithm to schedule or reject each packet in essentially constant time (the
bound above omits an inverse Ackerman’s function factor from the Union/Find algorithm).

A Union/Find implementation can be used to maintain equivalence classes on the laxities, as
follows: two laxities are taken to be equivalent if their maximum “schedulable” laxities are the
same. Here, the “maximum schedulable laxity” for a given laxity [is the smallest “available” laxity
in the schedule p; not greater than {. Specifically, each time the algorithm sets p; to be some packet,
the equivalence classes for laxities [and [+ 1 must be merged. The Union/Find algorithm must be
implemented to maintain the smallest equivalence class member as the class representative. Given
this maintenance of equivalence classes, the selection of I in step 3 in the Backward Algorithm can
be done with a single call to “Find” the equivalence class representative of {;(p).

We note again that creating the required sorted representation of P, from P; as arrivals Asyq
are processed can be more expensive than the Backward Algorithm itself if A;; is originally given

in an unsorted fashion, and that a natural assumption would be that M and m are bounded so

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 13

that an O(]A¢+1]) bucket sort can be used for this purpose. We believe that the algorithms of [16]
and [17] can be specialized to similar assumptions as well to achieve similar runtime complexity,
though that work does not discuss this specialization and instead focuses on achieving a looser

O(|P|log |P|) bound for an unsorted set of packets P.
Proposition 4 The Backward Algorithm yields a CMTO policy.

Proof: See Appendix A.3 |

3.3.3 Consistent selection of eligible packets

We say that a CMTO policy is consistent if whenever p € A, and p ¢ E,j for some k > 0, then
p ¢ Eyy g for all i > 0. In other words, a consistent CMTO policy has the property that a packet
can only be eligible at a time ¢ (i.e., in E}) if it has been eligible at all previous times since its
arrival. It is straightforward to show that if we use either the Forward Algorithm or Backward
Algorithm in Step 1 of the CMTO algorithm, then the resulting policy is consistent. Note that in
a counsistent CMTO policy, if a packet does not join E; at any time step ¢ after its arrival, we can
simply drop the packet from the buffer at that time without affecting the future schedule generated
by the algorithm, regardless of future arrivals; we will have more to say about such “dropping”

policies in Section 5.1.

3.4 Step 2 of the CMTO algorithm

Given a t-schedule {p1,...,pg, } of the eligible set E; from Step 1 of the CMTO algorithm (as can
be obtained from the Forward or Backward Algorithm), Step 2 of the CMTO algorithm can be

computed using the following algorithm.

® Algorithm
L. Input: Ey = {p1,...,pg,} with l;(p;) > 1.
2. Initialize: 1 =1, 1 = l;(p1), m = l;(p1).

3. While i < |Ey| and i # 1,
i=i+1; 1 =max{l,l;(p;)}; m = min{m, l;(p;)}.

4. Ifi =1 (i.e. Ey is t-saturated),
then set ®; = {p1,...,pi} (i is the Hajek-Seri cut for E);
else set @, = {p € E; : l;(p) = m}.

5. Output: ;.

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 14

The ¢ Algorithm runs in complexity O(|E¢|). Because |E;| < M, where M is the largest laxity
of packets in P, the entire CMTO algorithm can be implemented in O(M). Although Hajek and
Seri do not provide an explicit algorithm in [11] for calculating the set ®(E;), they do note that
the set can be computed in complexity O(M) if the input is sorted according to laxities. The ®
Algorithm above requires only an input in the form of a t-schedule, not necessarily sorted according
to laxities. (In addition, any ¢-schedulable set sorted by laxities is a t-schedule, and is thus suitable

for input to the ® Algorithm).

Proposition 5 Given a t-schedule of the set of packets Ey, the ® Algorithm generates the set
O(E,).

Proof: See Appendix A.4. |

4 Comparison of CMTO and Multiclass EDF

We now provide an analytical comparison between CMTO policies and the earliest-deadline-first
(EDF) policy, illustrating the clear advantage of CMTO over EDF. To be more specific, we assume
that the EDF policy breaks ties in favor of higher-class packets. To emphasize that this version of
EDF extends the usual EDF by making it class-sensitive, we will call this policy EDF+-.

We show the following two results. First, a subclass of CMTO policies, called CMTOgpp4
policies, dominates EDF+; i.e., any CMTOgpp policy achieves no more weighted loss than EDF+
for any traffic. Second, there exist traffic sequences such that any CMTO policy achieves a weighted-
loss advantage over EDF+ that is arbitrarily close to the maximum possible achievable advantage.

We first show the easier of the two results above—that any CMTO policy can arbitrarily out-
perform EDF+ for some traffic sequence. We state our result in terms of the “average weighted
throughput,” which we define as follows. For any finite arrival sequence A, let T'(A) be the maximum
number of packets in A that can be served (i.e., the number of packets served by any TO policy).
Let W(S™(A)) the total weight of packets served by =, and define W7 (A) = W (S™(A))/T(A) as
the average weighted throughput of policy 7 for arrival sequence A. Note that for a TO policy T,
WT(A) is exactly the average weight of packets served by .

Recall that we have m classes, with w; and w,, being the largest and smallest weights, respec-
tively. It is clear that for any TO policy 7 and any finite arrival sequence A, W™(A) is bounded
above by w; and bounded below by w,,. Therefore, any TO policy can outperform any other TO
policy (in terms of average weighted throughput) by at most w; — wy,. We show that any CMTO
policy comes arbitrarily close to achieving this maximum performance advantage over EDF+ for

some traffic sequence.

Proposition 6 For any ¢ > 0, there exists a finite arrival sequence A such that W™(A) —
WEPEY(A) > wy — w,, — € for any CMTO policy .

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 15

laxity
T Tl e 1
H '
T packets
i class
T-1 packets
H .

Figure 5: Packets in proof of Proposition 6

Proof: Fix ¢ > 0 and choose T' > (w; — wy,)/e. Let A be an empty-future arrival sequence such
that A; consists of T' class-1 packets with laxity T, and T — 1 class m packets p1,...,pr_1 with
laxity T — 1; see Figure 5. For this arrival sequence A, any CMTO policy 7 serves T class-1 packets.
In contrast, EDF+ serves 7' — 1 class-m packets and one class-1 packet. Hence, W™ (A) = wy, while

1

W EDEE (A) = < f

(T — Dwy, + wy) (T — Dwy, + wp, + T€) = wyy, + €,

N

which completes the proof. [|

We now show that a particular subclass of CMTO, called CMTOgpp, dominates EDF+. This
result gives us a traffic-independent preference for CMTOgpr4 policies over EDF+; i.e., no matter
what traffic arrives, EDF+ will not outperform any CMTOgpr4+ policy with respect to weighted
throughput.

A CMTOgpr+ policy is any CMTO policy that uses EDF+ to select the packet to be served
from ®(E;) (Step 2 in the CMTO algorithm). Note that a CMTOgpr+ policy need not actually
perform Step 2, because applying EDF+ to ®(F;) is equivalent to applying EDF+ directly to
the eligible set F;, making the calculation of ®(F;) unnecessary. The critical difference between
CMTOgpr4 policies and EDF+ is the inclusion of Step 1, the calculation of E; at each time step,
in CMTOgpp4+.

For convenience, we assume that each packet p has an associated ID number, denoted ID(p),
which distinguishes it from all other packets (including those of the same deadline and class). We
say that a packet py is earlier than po (or that py is later than py) if one of the following conditions
hold:

L. d(p1) < d(pz); or
2. d(p1) = d(p2) and C(p1) < C(p2); or

3. d(p1) = d(p2), C(p1) = C(p2), and ID(p1) < ID(p2).

The above definition induces a total ordering on packets, based primarily on their deadlines. We

assume throughout that the EDF+ policy serves the earliest packet precisely according to this

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 16

ordering. Similarly, at time ¢, CMTOgpr, serves the earliest packet in £} in the above sense. Note
that the earliest packet among a set of packets is unique.

In the remainder of the section, we consider only CMTOgpp4 policies. Our main result in
comparing CMTO policies and EDF+ is the following strong statement on consistent CMTOgpr4+

policies.
Theorem 3 Any consistent CMTOgpr+ policy dominates EDF+.

The above theorem establishes that any consistent CMTOgpr; policy achieves no more
weighted loss than EDF+ for any traffic sequence. This result makes a strong statement about
consistent CMTOgpr4+ policies relative to EDF+, because these different policies can lead to sig-
nificantly different queue states over time, and this statement implies that no arrival sequence can
drive these different policies to different states so as to favor EDF+ overall. Our proof of this
statement is rather involved, requiring special constructs that can be used to compare CMTOgpp+
policies and EDF+ over time even as their buffer states diverge. In the remainder of this section,
we describe the structure of the proof by stating key definitions and lemmas, relegating the rather
technical proofs of most lemmas to the appendix.

For the remainder of this discussion, we fix a particular arbitrary finite arrival sequence A and
an arbitrary consistent CMTOgpp4 policy that we will simply call CMTOgpr4 (a slight abuse
of notation). We argue that the policy CMTOgpp+ achieves no higher weighted loss on A than
EDF+. Throughout this discussion, the sets P, and E; refer to the evolution of the system under
arrivals given by A and service determined by policy CMTOgpr. .

To prove the theorem, we need to compare the weights of packets served by CMTOgppr4 and
by EDF+. The main issue that complicates this comparison is that the state of the buffer at each
time in general will be different for both policies, because as soon as they serve different packets,
the evolution of their buffers will take different paths. The key idea in our proof is to identify and
characterize coupling times in their evolutions—these are points in time when the buffer states are
identical for the two policies. It remains then to show that the total weight of packets served by
CMTOEgpr+ in between these coupling times is at least that of EDF+-.

Lemma 1 (Time-dominance) At any time while scheduling the arrival sequence A, the packet

served by CMTOgpr4 ts no earlier than the packet served by EDF+.
Proof: See Appendix B.1. [|

We say that time t is busy if P; (under CMTOgpr+) is t-saturated. If all times in the interval
[s,t] are busy, we say that [s, t] is busy. The basic idea is that we say ¢ is busy when choosing to be
idle at time ¢ would necessarily result in additional loss in the future, regardless of further arrivals;

in other words, any schedule of P, that does not serve a packet at time ¢ will serve fewer packets

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 17

than a schedule of P; that serves the maximum number of packets. Note that ¢ is busy if and only
if E; is t-saturated.

The following series of definitions allow us to characterize a particular coupling time that is
critical to our proof. We say that d is a t-saturation time of the set Ey if 6f*t+1(Et) =0;ie., E
contains exactly d — ¢t + 1 packets with deadlines in [t,d]. If d is a t-saturation time of E;, we also
say that E; is t-saturated at d. Note that if d is a ¢-saturation time of Ey or P, then [t,d] is busy.

Define the “influence” during interval [s, t] to be
I 1y = max{d(p) : p € ®(Ey),t' € [s,1]}.

The “influence” I, ;) is the largest deadline of any packet in the set ®(Ey) (in Step 2) at any time
t' during the interval [s,¢]. If ¢ is busy, then the laxity Ij; ;) —t + 1 is simply the Hajek-Seri cut on

Ey; ie., Iy is the smallest {-saturation time of Ej.
Lemma 2 For busy [s,t], there is a t-saturation time of Ey no less than Iig g
Proof: See Appendix B.2. |

Given a busy interval [s,], Lemma 2 justifies defining X[, ;; to be the smallest ¢-saturation time

no less than Ij; ;). We have the following lemma.

Lemma 3 (Time-restriction) During a busy interval [s,t], CMTOgpr4+ does not serve any packet

with deadline exceeding Y, -

Proof: For any t' € [s,], the deadline of any packet in ®(Ey) does not exceed ¥, (by definition
of X5 ;7). But any packet that CMTOgpr+ serves during the interval [s,] is an element of such a
®(Ey). The result follows. |

Lemma 4 For any t, if ¥y g =1 then t + 1 is a coupling time.

Proof: That CMTOgpr4 has the desired property follows directly from the time-restriction lemma
(Lemma 3). The same property then follows for EDF+ by using the time-dominance lemma

(Lemma 1). |

We are now ready to identify the coupling times mentioned before, signifying key times when the
buffer states for CMTOgpr4 and for EDF+ are equal. Assume that time 1 is busy (for otherwise,
the first busy time can be defined to be time 1 since CMTOgpp+ and EDF+ perform identically
until the first busy time).

Let ¢ > 1 be such that ¢+ 1 is the first non-busy time—this time must exist because A is a finite
arrival sequence. It follows that [1, c] is a busy interval. We can now show that X, ;| = ¢, implying

that ¢+ 1 is a coupling time. To see this, suppose not for contradiction, i.e. that 3 4 # c. This

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 18

implies Yy g > ¢, and thus that E. has a c-saturation time greater than c. The definition of ¥,
the c¢-schedulability of E., and our choice of packet to serve at time ¢ from ®(£,) then imply that
¢+ 1 is busy, contradicting our choice of ¢. The coupling at ¢+ 1 allows us to focus on the interval
[1,c] and show dominance there—we can then iterate the same proof by induction on later busy
intervals (CMTOgpp+ and EDF+ perform identically from time ¢ + 1 until the next busy time).
We now focus on showing dominance in the busy interval [1, c|.

Given a busy interval [s, t], define

Vs =1{p € Er:d(p) < X5}

The set W, ;) is always t-saturated (by the definition of ¥, ;) and ¢-schedulable (by the definition
of Et). Note that we always have ®(E;) C W[, 4. The following properties of the set W, ,; allow us
to establish the dominance of CMTOgpp over EDF+.

We use the notation min(P) to denote the smallest weight of any packet in P. Our key lemma
asserts that if we fix s, as we increase ¢ the set W[, is in a well-specified sense getting “no less
important.” Since at each time ¢ > s the policy CMTOgpp+ will be serving a packet in W[, 4, this
lemma gives us a useful lower bound on the weight of that packet that will be critical in proving

our main theorem.

Lemma 5 (V-monotonicity) Given a busy interval [s,t], if X > t, then min(¥[,) <

min(‘I’[s,tH})-
Proof: See Appendix B.3. [|

Let ey,...,e. be the packets served by EDF+ in [1,...,¢], in order, and my,...,m. likewise
the packets served by CMTOgppy. For any time s in [1,¢], let v5 be the least time ¢t > s for
which X, 4 = t. We proved above that ¥, | = ¢, which with the definition of ¥ implies that v,
is always in [1,¢|. Let Ay be the number of times in the interval [s, v,] that EDF+ serves a packet
never served by CMTOgpp. The monotonicity property just shown for ¥ enables us to prove the

following result.

Lemma 6 For any time s in [1,¢|, every packet served by CMTOgpr+ in the interval [s,vs] has
weight no less than min(®(E;))

Proof: The weight min(®(Es)) is less than or equal to the weight of every packet in ¥, 4 and
thus less than or equal to the weight of every packet in W, ;| for any ¢’ such that s <t < vy (using
U-monotonicity repeatedly). But every packet served by CMTOgpp4+ in the interval [s,vs] is in
one such ¥,) (i.e., every ms, ..., m,, is in its corresponding W, g, ..., ¥, ,,]), so every packet in

Ms, ..., My, 1S as important as min(P(Ej)). |

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 19

Lemma 7 For time s such that packet es is not in {my,...,m.}, CMTOgpr4+ serves As packets

during [s,vs| never served by EDF+ that are no less important than es.

Proof: The packet es cannot be in F;, or it would be served by CMTOgpr, at time s and then
would be mg (so that s would not be as assumed). Because e is not in Fj, it must be no more
important than min(®(E;)), or Es; would not be the maximum-weight s-schedulable subset of P;.

The lemma then follows by a simple counting argument given the preceding lemma once we

realize EDF+ cannot serve any of mg,..., m,, outside the interval [s,v;]. These packets cannot

be served by EDF+ after time vy because they will have expired, given the definition of v,. They
cannot be served by EDF+ at any time ¢ before s because, given the consistency of CMTOgpr+,
they must be eligible at any earlier time after their arrival, and thus must be later than the packet
served by CMTOgpr+ at time t—but the Lemma 1 states that EDF+ always serves a packet no

later than that served by CMTOgpp.]

The above lemma allows an easy proof of the following lemma, completing the proof of Theo-

rem 3.

Lemma 8 The total weight of packets served by CMTOgpr+ in [1,] is at least that of the packets
served by EDF+ in that interval.

Proof: Let i1 > 79 > --- > 1, be the n different times when EDF+ serves a packet e;; not in
mi,...,me (and thus never served by CMTOgpp). We construct a mapping from the packets e
to packets in my, ..., m, that are never served by EDF+, such that the mapping always maintains or
increases class weight. Note that EDF+ must lose at least m packets among my, ..., m. by a count-
ing argument—m, ..., m. are ¢ packets with deadlines not exceeding ¢ by the time-decomposition
lemma (Lemma 4), and EDF+ spends m times steps in [1,...,¢| serving other packets). So our
main concern in constructing the mapping above is maintaining or increasing class weight.

For k =1 to n, we simply select a packet p; served by CMTOgppr+ but not by EDF+ that is
no less important than e;, , ensuring that py is not in {p1,...,pr—1} using Lemma 7. The pairs
{(€i;,p1),- -, (€i,,pr)} constitute a mapping from the packets served by EDF+ but not CMTOgpr4
to those served by CMTOgpr+ but not EDF+ such that the image of any packet e; is no less
important than e;,. Because all other packets in eq,. .., e, are served by both policies, this mapping

implies the desired result. |

Redefining the first busy time after time ¢ to be time 1, and then selecting a new time ¢, we
can repeatedly apply the above lemmas to new busy intervals (we need apply this argument only
a finite number of times because A is a finite arrival sequence). This then establishes that the
total weight of packets served by CMTOgpr4 is at least that of EDF+, completing the proof of
Theorem 3.

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 20

5 Extensions of CMTO Policies

5.1 Scheduling-dropping CMTO policies

Recall that in a consistent CM'TO policy, any packet in P; that is not in the eligible set E; can be
dropped from the buffer at time ¢ without affecting the schedule of packets served by the algorithm.
This possibility motivates the consideration of policies that decide not only which packets to serve,
but also which packets to drop. Such “scheduling-dropping” policies are appealing because of their
smaller buffer requirements and their ability to provide more timely feedback on which packets will
not be scheduled.

We define a scheduling-dropping policy T as a sequence of pairs {(m,r¢) : t > 1}, where 7 = {m;}
is a policy and r; is a function that maps any nonempty set of packets P, to a nonempty subset of
P, (representing those packets that 7 “retains” in the buffer)—where, as for scheduling policies, we
require that the maps involved be stationary, in the same sense as defined there (so that m and rq

determine 7 and 7, for any). Given an arrival sequence A and a scheduling-dropping policy 7,

the sequence P; of packets in the buffer is given by Py = () and, for all ¢ > 0,
Pr1 = A Ur(Py) —{p € re(P) = d(p) =t or p = mi(re(F2))} -

We say that a packet p is dropped at time ¢ if p € P, — r(P}).

The notion of throughput optimality applies similarly to scheduling-dropping policies. It is clear
that a TO scheduling-dropping policy maintains a smaller buffer in general than a TO policy that
does not drop packets. We say that a scheduling-dropping policy is TO-buffer-optimal (TOBO) if
the policy is TO and, for any arrival sequence A and any ¢ > 1, the policy minimizes |r;(P;)| over
all TO scheduling-dropping policies. In other words, a TOBO policy keeps only those packets that
are necessary to preserve throughput optimality.

Hajek and Seri [11] provide the following characterization of TOBO policies, allowing an easy
proof that consistent CMTO policies are naturally buffer optimal when extended to drop as de-
scribed above. Let @ be a subset of P,. Following the notation of [11], we write @ =; P; if the
cardinality of the largest ¢-schedulable subset of P is equal to that of (). We note that the focus

on time step 1 exploits the stationarity of the policies we consider to effect all time steps.

Theorem 4 (Hajek-Seri) A scheduling-dropping policy 7 is TOBO if and only if for any nonempty
finite set of packets P, we have that r1(P) =1 P, r1(P) is 1-schedulable, and 1 (r1(P)) € ®(r1(P)).

We say that a scheduling-dropping policy © = {(m¢,7¢)} is a CMTO-dropping (CMTOD) policy
if # = {m} is a CMTO policy and ry(F;) = E;, where FE; is the eligible set associated with 7.
Any consistent CMTO policy can be made into a CMTOD policy without affecting the schedule
of packets served, by dropping packets not in E; at each time t—we also refer to such CMTOD

policies as consistent. So, for example, converting a consistent CMTOgpr4 policy into a CMTOD

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 21

policy results in a policy that dominates EDF+, by Theorem 3. The following result establishes
that our conversion of a consistent CMTO policy into a CMTOD policy in fact results in buffer
optimality.

Proposition 7 Any consistent CMTOD policy is a TOBO policy.

Proof: Because F; is a maximum-weight ¢-schedulable set, r(P;) = Ey =; P, and r(P;) — Ey is t-
schedulable. By definition, a CMTOD policy serves a packet in ®(r.(F;)) at each time ¢. Therefore,
by Theorem 4, the desired result holds. [|

5.2 Incorporation of fair link-sharing in CMTO policies

In this section, we explore the incorporation of “fairness” into CMTO policies. We adopt the
following standard framework for fair link-sharing (see, e.g., [10]). Every packet arriving at the
queue is associated with one of a finite number of calls. We think of these calls as sharing the
“bandwidth” of the server (also called the link). Each call is targeted to receive a preallocated
fraction of the overall bandwidth of the link, expressed as follows. Fix a number TF representing
the interval of time over which we wish to enforce fairness in the link-sharing. The discrete time-line
is then divided into intervals of length Tr. Associated with each call 7 is a number f; representing
the number of time slots that the server should allocate to call ¢ during each interval of length T
(for convenience, we will use the term “Tp-interval” for such an interval). We call f; the link-share
allocation of call 4. Naturally, we assume that the link-share allocations for the calls sum to a
value less than or equal to 7. A scheduling policy is considered to provide fair link-sharing if it
serves each call approximately according to the prespecified link-share allocations. Note that it is
impossible for any causal policy to schedule packets to guarantee the link-share allocations ezactly,
even when such schedules exist. Without explicitly addressing link-sharing fairness, class-sensitive
policies—including CMTO policies—can be grossly unfair in the sense that high-class packets can
occupy all the server’s resources at the expense of starving lower classes of service.

Existing link-sharing schemes in the literature include weighted-fair queueing (WFQ), weighted-
round-robin (WRR), and class-based queueing (CBQ) (see [6] and [10]). In [10], Floyd and Jacobson
describe a scheme for fair link-sharing based on CBQ. Their scheme considers the class of packets
(called “priorities” in [10]), and distributes “excess” time slots according to these priorities. The
existing schemes do not explicitly take into account the interplay between multiple classes and
deadlines. Here, we describe a scheme to provide fair link-sharing in the presence of both multiple
classes and deadlines based on CMTO policies.

Our link-sharing scheme, called CMFQ (CMTO Fair Queueing), is based on a simple idea
extending CMTO policies: we consider modifying the CMTO step 1 selection of the “eligible set”

with a constrained selection—instead of selecting the maximum weight ¢-schedulable subset F; C P,

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 22

we select the maximum weight t-schedulable subset & C P, that can be served without causing
any class to exceed its link share allocation in the current Tr-interval. In order to provide “excess
bandwidth” control, we then modify this basic algorithm so that if the selected set & can be served
entirely without serving any member at the current time, then the current time is deemed excess
bandwidth and is scheduled using an unconstrained CMTO policy (without regard to fairness). We

now give a pseudocode outline for the class of CMFQ policies, as follows:

CMFQ Algorithm
Whenever ¢t = kTF for some integer k, set Cr; = f; (initial “credit”).
If P, is not empty, do:

1. Find a maximum-weight ¢-schedulable subset of P, (called &) such that the number of call-i

packets in & does not exceed Cry;

2. Let k be the smallest integer such that k7T is no less than ¢;
If & is t-saturated or |&| > kTF —t + 1, then

2a. Schedule a packet p within ®(&;).

2b. Set Crean(p) = Crean(p) — 1, where call(p) is the call index of packet p.
else (“excess bandwidth” exists)

2c. Find a maximum-weight ¢-schedulable subset of P, (called E;, as usual);

2d. Schedule a packet within ®(E;).

The CMFQ algorithm schedules packets similar to CMTO but takes into account the “remaining
credits” for each class (Cr;). If there is “excess bandwidth,” the algorithm proceeds exactly as in the
standard CMTO algorithm. We determine the presence of excess bandwidth by checking whether
the “credit-limited” eligible set & can be served within the current Tr-interval even if no member
is served at time t. This can be done if and only if both of the conditions checked in line 2 are
false: & must not be t-saturated, and the number of packets in & must be small enough to serve
by the start of the next Tr-interval without service at the current time.

One natural assumption regarding the relationship between calls and classes is that for every
call, all packets of that call belong to the same class. Under this assumption, the computation of

& can be accomplished using a simple modification of the Backward Algorithm:
1. Input: P, Cr; for all calls 4.

2. Let P; be the subset of P, obtained as follows: for each call ¢, retain only the Cr;-largest
laxity packets of call 4.

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 23

laxity
6 5 4 3

B :

2 class

ol N -

2 1

Figure 6: An example that illustrates the weakness of SPFQ.

3. Let & be the result of applying the Backward Algorithm to P;.
4. Output: &;.

The correctness of this algorithm rests on the following claim, which the reader can verify: for
any “credit-limited” schedule involving packets dropped in step 2, there is an equivalent-weight
“credit-limited” schedule not involving such packets (in this schedule, each such packet is replaced
by a packet from the same call retained in step 2).

In the Section 6, we evaluate the performance of (an instance of) CMFQ to illustrate its link-
sharing fairness. We also compare the policy to the scheme of Floyd and Jacobson [10] as well as
a simple credit-based extension of SP, which we call SPFQ. Specifically, SPFQ schedules a packet
according to SP among all packets that are in calls with positive credit, where the credits are
updated in a similar fashion to CMFQ—the call-i credit value is decremented whenever a call-
packet is scheduled. Our empirical results indicate that while all three schemes above provide
fair link-sharing, the weighted-loss incurred by CMFQ policies is significantly smaller than the
weighted-losses of the other two schemes.

We conclude this section by describing a simple example that gives insight into the superiority
of the CMFQ approach over SPFQ. Consider Figure 6. Currently six packets are in the queues and
only two more class-3 packets will arrive in the future. Suppose that fair link-sharing needs to be
provided by serving at least two packets of each class over eight time slots (here, classes and calls
coincide). On the one hand, any CMFQ policy will serve all of the packets currently in the queue
over six time slots, and the incoming class-3 packets over the next two time slots (by scheduling the
“excess bandwidth” using CMTO). On the other hand, SPFQ will lose the pending class-3 packets.
Even though both policies achieve the goal of fair link-sharing by serving two packets for each class,

CMFQ policies incur a smaller weighted loss than SPFQ.

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 24

6 Empirical Results

6.1 Weighted-loss comparisons with EDF+4 and SP

In this section, we provide quantitative results illustrating the performance of a particular
CMTOgpr4+ policy—which uses the backward algorithm for Step 1—in comparison with EDF+
and SP, and with a theoretical lower bound obtained from applying the optimal offline schedule to
the arriving packets. For convenience, in the remainder of this section we refer to this particular
CMTOgpr+ policy simply as the CMTOgpp4 policy. Our results show that the CMTOgpr4 policy
achieves weighted-loss values that are close to the theoretical lower bound, and outperforms EDF+
and SP by up to an order of magnitude.

Our experimental setting was designed to evaluate the above scheduling policies facing prac-
tically realistic video traffic with heavy-tailed session durations, under varying overall loads and
burstiness. The service rate of the server is adjusted by varying the number of time slots per
second—the larger the number of time slots per second, the higher the service rate—by varying the
service rate we implicitly vary the burstiness of the traffic, because higher service rates correspond
to more aggregation of video calls and consequently smoother traffic for a given load. We show
below how performance depends on burstiness by varying the service rate.

We simulate seven classes of video traffic, consisting of video sessions arriving over time with
random session durations. At each time slot, each class generates a video session according to a
fixed probability, which we call the session-arrival probability. The session-arrival probability is
the same for all classes, and is varied to set the desired load of the overall traffic—we show below
how performance is affected by varying this load. The duration of the sessions follows a Pareto
distribution, described below, to simulate heavy-tailed sessions observed in typical network traffic
[8]. All packets in a session have the same class. All the packets in a given session have the same
initial laxity at arrival, and is set randomly for the session according to a uniform distribution over
[16, 80] msec.

Within each session, packets are generated according to a real MPEG video trace. The video
trace we used was adapted from an MPEG encoding of the Star Wars movie provided by [2].
Specifically, the trace provided by [2] divides each frame of the Star Wars MPEG into 200-byte
packets, and these packets are evenly spaced over approximately 20 milliseconds.

The duration of each session is sampled from a Pareto distribution function F(z) = 1 — (b/x),
where a and b are fixed parameters (often called the shape and scale parameters, respectively).
We chose the parameters ¢ = 2 and b = 625 so that the mean duration of each session is 2 sec,
reflecting typical sessions found in practice. We selected this duration to model typical internet
traffic, giving a 1% chance that a session lasts longer than 10 seconds, so that the overall traffic
pattern has noticeable long-range dependence over timescales in minutes. (Note that this pattern

of session duration is not chosen to represent typical MPEG videos, but typical internet sessions,

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 25

even though our particular sessions are in fact MPEG video sessions, apart from their durations).

We set the weights of the seven classes (1 through 7) such that class i has a weight of w'™!.
By decreasing the parameter w, we accentuate the disparity in importance between classes, making
the scheduling problem more class-sensitive. We show below how performance depends on w.

We evaluate various online scheduling algorithms relative to the offline optimal weighted loss,
a theoretical lower bound on the weighted loss which we computed by applying an optimal offline
non-causal scheduling algorithm on the packets involved in the simulation. Specifically, we used
the algorithm of [3], although those of [14, 17, 16, 18] would also serve the same purpose. Our
results below show that the CMTOgpp4 policy achieves weighted loss values that are very close to
the lower bound, indicating that the CMTOgpr4 policy is essentially optimal for this particular
type of traffic.

We begin exploring the performance of the CMTOxpr, policy by measuring the competitive
ratio achieved by this policy in comparison to that achieved by the simpler EDF+ and SP policies.
The “competitive ratio” is the ratio between the performance of an online algorithm and the optimal
offline performance for the same traffic. Here, we use weighted loss as the measure of performance,
and compute the optimal off-line performance as just described. Figure 7 shows the competitive
ratio between the weighted loss achieved by each algorithm and the optimal offline weighted loss
(from the theoretical bound mentioned above), as a function of the service rate (number of time
slots per second). We vary the service rate while holding the load constant (as described above) to
vary the smoothness of the resulting traffic. Each point on the algorithm-evaluation plots represents
a simulation of the associated policy over 1,125,000 time slots. For these plots, we set w = 0.6 and
fixed the overall load to be 0.7 (the load is the ratio of the number of packets generated to the
total number of time slots), increasing the arrival rate of calls to maintain this load as the service
rate increases. For completeness, we also show an alternative perspective on the same data in
Figure 7 by showing the weighted loss achieved for the CMTOgpr+ policy versus that achieved by
the EDF+ and SP policies as a function of the service rate, in comparison to the theoretical bound
on performance computed by offline computation.

Because the service rate is increasing as we move to the right, the session-arrival rate is also
correspondingly increasing, to maintain the fixed load. Therefore, the number of simultaneous
sessions in the system is increasing as we move to the right, which corresponds to increasingly
smoother traffic. For this reason, we can see that the weighted loss decreases for all policies as the
service rate increases, in spite of the fixed load. On the other hand, as the service rate decreases,
the variation in traffic over time is more bursty and hence the weighted loss increases.

It is clear from Figure 7 that CMTOgpr4 outperforms both EDF+ and SP over the entire range
of service rates considered, quite substantially at some service rates. At the low end of the range
of service rates, the traffic is bursty and involves intermittent periods of heavy traffic loads. Under

these circumstances, SP performs well by preferentially serving the highest-weight packets at each

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 26

5¢ . 107
EDF+ ' EDF+
- - sP ! - -sp
- - - CMTO/EDF+ ! - - - CMTO/EDF+
4.5r i —— Theoretical Bound
1
.
i
4 ! 107
i
1
o /
B3.5F ; R
Q ~
2 ! © ~
T | 2
g 3+] —010-3
8 / k5 N
—_ =y Se.
] ! =) Se
L I © -
= i 2 Sl
£25F I T~
w s
2r 107
1.5¢ o
777777777 1075 L L L L L L
2000 3000 4000 5000 6000 7000 8000

P -
1000 2000 3000 4000 5000 6000 7000 8000
Service rate (time-steps/sec)

Service rate (time-steps/sec)

Figure 7: Competitive ratio and log weighted loss over varying service rates with w = 0.6 and fixed

load 0.7. The traffic is getting smoother as we move to the right.

time. On the other hand, at the high end of the range of service rates, the traffic is smooth and
therefore throughput-optimal policies such as EDF+ (and CMTOgpp4) provide the appropriate
mechanism for good weighted-loss performance, serving nearly all the traffic. The CMTOgpr4+
policy has a clear weighted-loss advantage over the entire range of service rate values, tailoring its
service style automatically to the appropriate traffic condition.

The higher service rates shown in Figure 7 (near and above where SP and EDF+ perform
identically) are traffics that we believe show an interesting interplay between class-sensitivity and
deadline-sensitivity. For very bursty traffic, the deadline element is less important, as reflected
by the reasonable performance of SP on the left extreme of the figure. For very smooth traffic,
class becomes less important, at least at this load of 0.7. To further explore the interplay between
deadline and class, we choose a fixed arrival rate in this region (7500) and show plots in which we
vary either the load (i.e. the session arrival rate) or the multi-class nature of the problem (i.e. the
class weight parameter w).

In Figure 8, we show a plot of the weighted loss of CMTOgpr+ EDF+, and SP as a function of
w, with a fixed service rate of 7500 and a fixed load of 0.7. For values of w close to 1, all classes are
approximately equivalent in weight, and hence any throughput optimal policy—including EDF+
and CMTOgpr+—is close to weighted-loss optimal. On the other hand, for values of w close to 0,
only class-1 packets contribute to the weighted-loss, and hence SP approaches optimal performance.

We can see that CMTOgpr+ outperforms both EDF+ and SP over the entire range of w values,

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 27

10

Weighted loss rate

10

/
P EDF+

/ / -- SP

L - -- CMTO/EDF+

Y —— Theoretical Bound
-5 L ! / L L L I

0 0.2 0.4 0.6 0.8 1

10

Figure 8: Log weighted loss for varying w with service rate 7500 and load 0.7.

performing like SP for small values of w and like EDF+ for large values of w.

Figure 9 shows a plot of the competitive ratio for CMTOgpr; EDF+, and SP as a function of
the load, with w = 0.6 and a fixed service rate of 7500, alongside the alternative weighted loss view
of the same data. For these plots, we are using the same aggregated heavy-tailed MPEG trace traffic
as for the previous plots, but holding the service rate constant and varying load (rather than fixing
load and varying either service rate or w). At low loads, it is possible to serve almost all packets
without missing their deadlines, and hence the throughput optimality of EDF+ and CMTOgpr+
lead to weighted-loss values close to the optimum (as indicated by weighted-loss values approaching
the theoretical bound)—in the figure, we only show loads down to 0.6, where CMTOgpp4 still
shows a substantial advantage over EDF+. As the load increases, the abundance of class-1 packets
makes serving only class-1 packets the appropriate way of minimizing the weighted loss. Hence,
at high loads, SP significantly outperforms EDF+ and begins to approach the theoretical bound.
As we can see, CMTOgpr4+ outperforms both SP and EDF+ over the entire range of load values,
indicating the ability of CMTOgpp+ to tailor its choice of packet to serve based on the load, and

to successfully manage the interplay of class and deadline in choosing a packet to serve.

6.2 Buffer occupancy

In Figure 10, we illustrate the straightforward advantage in average buffer occupancy that results
from the early dropping of packets in the CMTOD policy (here, CMTOgpr+ with the dropping
extension added) as compared to the EDF+ and SP policies, which do not perform any dropping

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 28
o 107
|
) EDF+ EDF+
y - - sP - - sP
: -~ - CMTO/EDF+ -~ CMTO/EDF+
N — Theoretical Bound
\\
\ 102} i
\ :

2% |
5 |
E \ 1]
g ! 2
S4r ' 51070 -
8 \ %
8 \ g
= ' =
£
w

al

' 107

ol

kel el T=T T P 107 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Load Load

Figure 9: Log weighted loss and competitive ratio for varying load (w = 0.6, service rate= 7500).

until packets miss their deadlines. We show average buffer occupancy for each policy when faced
with the same traffic used for Figure 9 (aggregated heavy-tailed MPEG traffic with the service rate
fixed at 7500 and w fixed at 0.6, with the arrival rate varied to vary the overall load).

The SP policy actually uses less buffer space than CMTOD at low loads, because SP serves
far fewer packets than CMTOD by focusing exclusively on the top classes—this focus results in
far higher dropping in lower classes, resulting in lower buffer occupancy. But at higher loads,
as expected, CMTOD is able to limit the buffer occupancy needed for excellent weighted loss
performance, whereas SP and EDF+ both have buffer occupancies that grow severely with growing
load. Although we do not explore the issue here, we expect that similar advantages for CMTOD
are seen at low loads in highly bursty traffic, which behaves locally like high load traffic during

bursts.

6.3 Weighted loss and fairness

Figures 11 and 12 shows a preliminary comparison of the weighted-loss performance of CMFQ
relative to SPFQ, CBQ, and CMTOgp. We defer a full comparison to future work—here we test
these methods only against very simple traffic rather than using the MPEG aggregation traffic
discussed above. Here, we implement a CMFQ policy by using the modified backward algorithm
as described in Section 5 for step 1, and SP for step 2 (breaking ties in favor of lower laxity
packets). For this experiment, we allocate a 10% link share to each of seven classes (leaving 30%

“excess bandwidth”), and take the traffic in each class to be single packets generated with a fixed

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang

12001
EDF+
- - sp
--- CMTO/EDF+
1000~
.. 8001
o
2 P
g P
(=% e
3 -
8 -
o -
& 600 .
= .
o ’
° .
=) S e
I -7
z L .
400F o 7
2008/
4 7z
1 ’
J .
; .
/// ///
0—’/ L L L L |
0.7 1 15 2 25 3

Load

Figure 10: Buffer occupancy levels at service rate 7500.

10 ¢
107
L1072k
g 10
@ -
A ’
o /
- ’
2 7
e /
i
L -3
210k
107
-~ SPFQ
CBQ
--- CMFQ
— CMTO/SP
10’5 L L L L L L]
0.7 0.8 0.9 1 11 1.2 13 1.4

Load

Figure 11: Log weighted loss for link-sharing algorithms and CMTOgp over varying loads.

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang

25

Load=1.4

= N
o1 o

[EnY
o

Link—sharing (%)

14

|

Class

Load=0.91

|

Ay
(o]

Load=1.12

e e T =
o N M O

Link—sharing (%)

» O 0

Il CBQ

Bl SPFQ
1 CMFQ
[] CMTOISP

Link—sharing (%)

|
|

H

5

Class

12

[

Class

Load=0.77

10}

[ee]

Link—sharing (%)

m
m

I

Class

|
|

30

Figure 12: Link-sharing fairness for the same traffic shown in Figure 11 for the same algorithims.

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 31

probability at each time step. The probability of packet generation is the same for all seven classes,
and is varied to vary the load in the system for the plots shown. CMFQ enforces fairness over a 1'p-
interval of 600 time steps. The CMTOgp policy shown in the figures uses the backward algorithm
for step 1 of the CMTO algorithm, and then static priority for step 2.

At low load values, all policies achieve fairness quite well, with the CM-based policies yielding
excess bandwidth benefits to the lowest classes; however, the weighted-loss advantage of CMFQ
over SPFQ and CBQ clearly manifests itself with an advantage of orders of magnitude at load
0.7. At low loads, CMFQ behaves like CMTOgp because all classes achieve their desired link-share
allocations even in CMTOgp. However, as the load increases, some weighted-loss performance must
be sacrificed to provide fairness. At high loads, while CMTOgp achieves a lower weighted loss than
the other policies, it does not provide fairness (i.e., it does not maintain the required link-share
allocations)—Figure 12 shows that the CMTOgp policy begins to starve the lower classes at load
1.4. On the other hand, CMFQ, SPFQ, and CBQ all continue to provide fairness even at high loads.
At loads exceeding 1, the requirement to maintain the link-share allocations dominates the need to
minimize the weighted loss, and hence CMFQ performs similarly to SPFQ and CBQ in weighted
loss. However, we can see from Figure 11 that at load values close to 1, CMFQ provides superior
weighted-loss performance while at the same time preserving fairness as shown in Figure 12. These
results show that CMFQ successfully combines the fairness behavior desired in link sharing with
the low weighted loss shown by CMTOgp, incurring higher weighted loss only when the link-sharing

requirements essentially require such loss.

7 Conclusions

We have shown that no scheduling policy dominates all others over all traffic sequences for our
multiclass setting with deadlines. Moreover, the standard EDF+ and SP policies appear to have
poor weighted-loss performance over practically reasonable traffic sequences. We have introduced a
simple class of CMTO (greedy) policies, which achieves a weighted-loss performance that provably
dominates the EDF+ policy. Our examples of CMTO policies illustrate their ease of implemen-
tation. These examples—the Forward and Backward Algorithms—also yield consistent policies,
which implies that dropping non-eligible packets at each time step does not change the scheduled
packets, but reduces the buffer usage to the minimum required to maintain throughput optimality.
We have also described a credit-based mechanism based on CMTO to provide fair link-sharing. Our
empirical results indicate that a particular instance of a CMTO policy outperforms both EDF+
and SP under practically realistic traffic, with weighted-loss gains of up to an order of magnitude.

We assumed a fixed packet size in this paper. A natural generalization of CMTO policies to the
case of variable packet sizes involves assuming that: 1) packet sizes are bounded by deadlines; and

2) the cost incurred for each packet dropped is equal to the packet’s length multiplied by its class

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 32

weight. In this case, we can simply follow the two-step CMTO algorithm as before—the eligible set
(in Step 1 of the CMTO algorithm) can be obtained by applying Sahni’s algorithm [18]. However,
that characterization of such policies involves extending the definitions of throughput optimality
and the current-minloss property.

As we have shown, there is no policy that dominates all other policies over all traffic sequences,
unless we have access to some knowledge of future traffic. Access to a probabilistic model of future
traffic should aid in scheduling decisions and therefore enable the design of higher-performance
schedulers. The analysis of schedulers that incorporate of such a traffic model entails changing
the notion of optimality from “traffic-independent” optimality to “probabilistic” optimality (e.g.,
in terms of the expected total weighted loss over a finite horizon). Preliminary results along these

lines are reported in [3].

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 33

A Proofs for Section 2

A.1 Proof of Theorem 2

Proof: If part: Let m be a policy and assume that for any nonempty set of packets P, there exists
a maximum-weight 1-schedulable subset £ of P such that = (P) € ®(F).

We first show that 7 is TO. By Theorem 1, it suffices to show that for any nonempty set of
packets P, 7 (P) € ®(P), i.e.,, m(P) has laxity not exceeding h(F). Let P be a nonempty set
of packets and F a maximum-weight 1-schedulable subset of P such that = (P) € ®(F). If P is
not l-saturated, then £ = P, and so m;(P) € ®(E) = ®(P) as desired. So suppose that P is
1-saturated. We show that h(FE) < h(P) (from which ®(E) C ®(P) and thus m (P) € ®(P) follows
immediately). Let [* = h(P) = argmax; 0! (P). Hence, for any k, 6¥(P) < 6} (P). Note that in
particular for all & > [* > 1,

07 (P) = 8] (P) = N{(P) — k = (N{ (P) =1I") = (N{(P1) = N{ (P)) = (k = I").
and Nf(P) — N{"(P) is the number of packets in P with laxities between [* + 1 and k. Similarly,
01 () = 81 (E) = (N{(E) = Ni (E)) — (k = 1").

Hence, because E C P,
OF(B) — 81 (B) < 8(P) — &7 (P)

for all £k > I* > 1, from which it follows that
Y (E) < 6 (E).

Thus, arg max; 6} (E) < I*, which means that h(E) < h(P), as desired.

Next, we show that 7 is a CM policy. Let A be an empty-future arrival sequence, and for
each time t let P, the pending packets at time ¢ on serving A using w. For each ¢, let E; be a
maximum-weight ¢-schedulable subset of P, such that 7, (P;) € E;. Assume that A; is nonempty,

for otherwise the result holds trivially. We use the following notation:
e w; = the weight of p} = m(P);
e W(A;) = total weight of packets in Ay;
e W(E,;) = the total weight of packets in Fy;
e T = the maximum deadline of any packet in A.

We claim that W(E;y1) = W(Ey) —w; for all 1 <t < T. To see this, note that Fyq U {p;} is
a t-schedulable subset of P,. By definition of E;, we have W (E;) > W (Ey+1) + w;, which implies

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 34

that W (Ei11) < W(E¢) — w;. On the other hand, note that £y — {p;} is a (¢ + 1)-schedulable
subset of P, because p; € ®(E;). Hence, by definition of Ey;, we have W (E;41) > W (E;) — wy.
By the above claim, we deduce that W(E;) = W(E;) — tT:_ll wy. But W(Er) = w}. Com-

bining the above two equations we obtain ZtT:1 w; = W(E}). Hence,
T
L™(A) = W(Ay) = > w} = W(A) — W(Ey).
t=1

By definition of E;, we have W (P;) — W (E;) < L™ (A) for any policy «’. Hence, L™(A) < L™ (A)
for any policy 7/, which completes the proof.

Only if part: We use contraposition. Consider a policy 7 such that for some nonempty set of
packets P, 1 (P) is not in ®(£) for any maximum-weight 1-schedulable subset E of P. Let A be an
empty-future arrival sequence. Without loss of generality, we assume that t = 1 and that 4, = P
is nonempty.

We consider two cases. First, if P is not 1-saturated, then £ = P is a maximum 1-schedulable
subset of P. But m(P) ¢ ®(F) = ®(P) by assumption. Hence, by Theorem 1, 7 is not TO.

If P is 1-saturated, we claim that the set of packets P’ scheduled by m when encountering A
do not constitute a maximum-weight 1-schedulable subset of A = P, and hence that L™(A) is
greater than L”'(A) for some policy 7' that schedules such a maximum-weight subset of P. To
see this, suppose not: i.e., that P’ is a maximum-weight 1-schedulable subset of P—then because
71 (P) ¢ ®(P') by assumption, there is a packet in ®(P’) that is not scheduled by 7 at any time
t > 1, contradicting the assumption that schedules all packets in P’. Hence, L™ (A) is not minimal,

and so 7 is not a CM policy, by definition. [|

A.2 Proof of Proposition 3

To prove Proposition 3, we will use two lemmas. The first lemma provides the following useful

characterization of t-schedulability.

Lemma 9 A set of packets P (with deadlines no less than t) is t-schedulable if and only if 4(P) < 0
for alll > 1.

Proof: If part: We use induction on [to show that if {(P) < 0 for alli = 1,...,, then the packets
in P with laxity not exceeding [can all be served by time t + N}(P) — 1. For | = 1, if 6} (P) < 0,
then there is at most 1 packet in P with laxity 1, which (if it exists) can clearly be served at time ¢.
Now assume the desired result for [— 1. Suppose that 6:(P) < 0 for i = 1,...,l. Then, all packets
in P with laxity not exceeding [— 1 can be served by time ¢ + N/~'(P) — 1. (by the induction
hypothesis). Because 6.(P) = N}(P) — 1 < 0, we deduce that number of packets in P with laxity
I is N}(P) — N/"Y(P) < | — N/"Y(P). But the number of time instances from ¢t + N}~'(P) to

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 35

t + N}(P) — 1 (inclusive) is N}(P) — N/=Y(P) > | — N/7Y(P), and t + N}(P) — 1 < I. Hence, all
N}(P) — N/"}(P) packets with laxity [can be served before their deadlines in the time interval
from t + N/7'(P) to t + N}(P) — 1, completing the induction argument.

Only if part: Suppose 0¢(P;) > 0 for some I. Then, Nj(P) > [. But in the time interval
{t,...,t +1— 1}, only [packets can be served. Therefore, some packet in P cannot be served by
its deadline, which implies that P is not ¢-schedulable. [|

The second lemma that we will use to prove Proposition 3 is the following.

Lemma 10 If E; is a mazimum-weight t-schedulable subset of Py, and E; is any other t-schedulable
subset of Py, then

(a) |Ey| = |Ei|; and
(b) The |E}|-highest-weight packets in E; have total weight no less than that of Ej.

Proof: (a) Suppose |E;| < |E}|. Let k> 1 be the largest integer such that NF~1(E;) = NF~1(E})
(denote NY(E;) = N?(E}) = 0). Thus, N}(E;) < N}(E}) for all | > k, and so there is a p € E} — E;
with I;(p) > k. Also, 64(E;) < 6L(E}) for all [> k. Because E| is t-schedulable, we have 6.(E}) < 0
(by Lemma 9), and hence 6}(E;) < 0 for all [> k. Thus, 6;(E; U {p}) < 0 for all [> 1, which
implies (again by Lemma 9) that E; U {p} is t-schedulable. Thus, F; is not a maximum-weight
t-schedulable subset of ;.

(b) We use the notation w(p) for the weight of packet p, and W (E};) for the total weight of
packets in F; (similarly, W (E}), etc.).

Let n = |E; — Ey|. Because |E; — E}| = |E}, — E{| + |E{| — |E}| and |E;| > |Ej| by part (a),
there are at least n packets in |Ey — Ej|. Let D; be the n-smallest-laxity packets in £} — Ej, and
let EY = (E; N E}) UD;. We have E' C E; and |E}| = |E}]|. We will show that W(E}) > W (E}),
which then clearly implies that the | E}|-highest-weight packets in E; have total weight no less than
that of Ej.

Note that W(E}) = W(E}) — W(E, — E;) + W(D;). Hence, to complete the proof, it suffices
to show that W(D;) > W(E] — E;). We use contradiction. Suppose that W (D;) < W(E| — Ey).
Let k be the smallest integer in {1,...,n} such that the k-smallest-laxity packets in D, = E; — E}
have total weight less than that of the k-smallest-laxity packets in E} — F;. Let p be the kth
smallest-laxity packet in D; = E; — E}, and p' the kth smallest-laxity packet in E} — E;. Then,
clearly w(p) < w(p').

We now show that F; = (E,—{p})U{p'} is a t-schedulable subset of P;. To see this, first consider
the case where [;(p) < l;(p'). Thus, for [in the interval [l;(p),;(p')) we have 6}(F;) = 6L(E;) —1 < 0,
and for [outside that interval we have &}(F;) = 6.(E;) < 0. Hence, by Lemma 9, F; is a t-
schedulable. On the other hand, for the case where [;(p') < l;(p), we claim that 0}(E;) < 0 for

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 36

[in the interval [l;(p),l;(p')). Indeed, for such [we have N}(E;) < NH(E; N E}) + (k—1). Also,
NN(E}) > NN(E.N E;) + k. But N}(E}) <1 by Lemma 9. Thus,

N{(B) < N{(E,NE)+k-1<N{(E) -1<1-1<I,

proving 6}(E;) < 0 for such I. Hence, for [in the interval [l;(p), [;(p')) we have 0} (F}) = 0% (E;)+1 < 0,
and for [outside that interval we have 6.(F;) = §}(E;) < 0 as in the other case. Again, by Lemma 9,
F; is a t-schedulable.
Finally, note that
W (F,) = W(E) —w(p;) +w(p;) > W(E),

which contradicts the assumption that E; is a maximum-weight t-schedulable subset of P,. [|

We are now ready to prove Proposition 3. We show that the output E; of the Forward Algorithm
is a maximum-weight t-schedulable subset of P;. For this, we show by induction that for each
l=1,...,M, the set E(l) in step 3 is a maximum-weight ¢-schedulable subset of P,(1) U---U P(I).
For simplicity, write Q(l) = P,(1) U--- U P;(I). As before, we use the notation w(p) for the weight
of packet p, and W (E(l)) for the total weight of packets in E(l) (similarly, W(Q(l)), etc.).

Because E(0) = 0, E(1) is a highest-weight packet in P;(1), if one exists, and hence is a
maximum-weight ¢-schedulable subset of Q(1) = P;(1). Now suppose that F(l — 1) is a maximum-
weight t-schedulable subset of P;(1) U--- U P;(I — 1),] > 1. Consider E(I) and any ¢-schedulable
subset E’ of Q(l). It is clear by Lemma 9 that F(l) is t-schedulable. Thus, it remains to show that
W(BQ) > W(E).

Write £’ = AU B’ where A’ = E'N P,(l) and B' = E' N Q(l — 1). By the induction hypothesis
and Lemma 10(b), there exists B” C E(l — 1) such that |B"| = |B'| and W(B") > W(B’). Then,
E" = A"UB" is a subset of P,(l) U E(l — 1), and |E"| = |A'| + |B"| = |A'| + |B'| = |E’|. Because
E(l) is by definition the [most important packets in P;(l) U E(I — 1), it follows immediately that
W(E(l)) > W(E"), and then that

W(E®) > W(E") =W (A)+W(B") > W(A) +W(B') =W(E),

which completes the proof. m

A.3 Proof of Proposition 4

We show that the output £} of the Backward Algorithm is a maximum-weight ¢-schedulable subset
of P;. We use the following notation and terminology. Consider a t-schedule o; i.e., o is a partial
one-to-one mapping from laxities {1,..., M} to packets in P; such that if p = o(I), then l;(p) > I.
We say that o is a mazimum-weight (MW) t-schedule if the the range of o is a maximum-weight
t-schedulable subset of P;,. We say that o is acceptable if it can be extended to a MW ¢-schedule.

The empty ¢-schedule is clearly “acceptable” in this sense.

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 37

At the start of each iteration of the inner “for” loop in step 3 of the algorithm, the variables p;
define a t-schedule o where o(l) = p; if p; # AVAIL; i.e., the range of o is {p; : p; # AVAIL}. We
note that the mapping o is either extended or not changed at each iteration of step 3, so any packet
that cannot be added to the mapping at one iteration will not be addable at any later iteration (we
refer below to this property as “schedule extension preserves addability”). We claim that at the
start and end of each iteration of step 3, o is acceptable. We prove this claim by induction. If ¢ is
the empty schedule (which is the case when we start step 3), then o is acceptable, as noted before.

For the inductive step, we show that if o is an acceptable t-schedule, and we apply one iteration
of step 3, then the resulting ¢-schedule o’ is also acceptable. Each iteration of step 3 takes a t-
schedule o and extends it to another ¢-schedule o’ (possibly with no change) as follows. We may
assume that o’ is different from o because it is trivially acceptable otherwise, since o is. Therefore
some packet can be added to 0. Let ¢ be the class of the highest-weight packet that can be added
to o to obtain another t-schedule. Let p be the largest-laxity packet in the class ¢ not already
in the range of 0. Then o' is the t-schedule that extends o by adding p at the largest laxity [
such that I;(p) > [and o(l) is undefined (i.e., p; is AVAIL). In other words, the only difference
between o' and o, if any, is that o’(l) = p whereas o(l) is undefined. The body of the “for” loops
in step 3 computes exactly this [(to see this, you must rule out previously rejected packets using
the “schedule extension preserves addability” property mentioned above).

To see that the resulting o’ is acceptable, note that some extension o of o is a MW ¢-schedule
(by definition of acceptability of o). We now break into two cases. First, if ”(j) = p, for some j,
then we must have j <[since | was chosen to be the largest laxity available in o, and ¢ extends
o. Moreover, because p is not scheduled in o, but is scheduled at ¢”(j) we can see that o(j) is not
defined (and thus o’(j) is not defined unless j =). These observations imply that the schedule
identical to o’ except that we swap o”(j) and ¢ (I) must be a t-schedule that extends o'—and since
this schedule schedules the same packets as ¢” (which is MW) then it must also be MW, implying
as desired that o’ is acceptable. For the second case, we assume that o” does not schedule p. Then
we can construct a new t-schedule based on o by setting 0" (I) = p. This new t-schedule is clearly
an extension of o’. Moreover, this new t-schedule is also an MW ¢-schedule, as follows: our choice
of p from the highest class ¢ containing packets that can be added to o, together with the “schedule
extension preserves addability” property, ensures that all packets scheduled by ¢” but not by o
have weight at most the weight of p, implying that the packet removed from o” by setting o (I) = p
has weight no more than p. Hence, ¢” is acceptable, which completes the induction argument.

Finally, note that as step 3 terminates, the computed ¢-schedule o must be an MW ¢-schedule,
because by the above claim, o is acceptable, and by the “schedule extension preserves addability”
property there are no more packets that can be used to extend o (all packets have been considered
in step 3 and either added or rejected due to failure of addability). Because the set E; in step 4 is

the range of o, we conclude that £} is a maximum-weight ¢-schedulable subset of F;. m

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 38

A.4 Proof of Proposition 5

To prove the correctness of the @ Algorithm, we use the following lemma.

Lemma 11 Let Ey = {p1,...,pg,|} be a set of packets such that ly(p;) > i for each i =1,...,|Ey.
Then, Ey; is t-saturated if and only if there exists j € {1,...,|E|} such that j = max{l;(p;) : i =
1,...,4}

Proof: Only if part: If E; is t-saturated, then there is a j such that 5{ (Ey) =0, ie., th (Ey) = 5.
Because th (E;) is the number of packets in E; with laxity not exceeding j, and only packets in
{p1,...,p;} have laxity not exceeding j, we conclude that all packets in {pi,...,p;} have laxity
not exceeding j. Hence, j = max{l;(p;) :i=1,...,7}.

If part: Suppose j # max{l;(p;) : i = 1,...,5} for all j = 1,...,|E¢|. Because l;(p;) > pi,
for all j = 1,...,|E| we have j < max{l;(p;) : 4 = 1,...,7}, i.e., there is at least one packet in
{p1,...,p;} with laxity exceeding j. Again because l;(p;) > ¢ for all i, we deduce that th(Et) <7,
for all j € {1,...,|E|}. Hence, 6/(E;) = N} (E;) —j < 0 for all j € {1,...,|E;|}, and E; is not
t-saturated. [|

We are now ready to prove the correctness of the ® Algorithm as stated in Proposition 5.

It is easy to show by induction that each time the algorithm tests the conditions of the “while
loop” (in step 3), we have that | = max{l;(pg) : k=1,...,7} and m = min{l;(pg) : k =1,...,i}.

We now consider step 4. If E; is not t-saturated, then by Lemma 11 there can be no j such
that max{l;(pg) : k=1,...,j} = j, and thus the “while loop” in step 3 cannot terminate with the
condition ¢ = | = max{l;(pg) : k = 1,...,i} true—as a result, step 4 is reached with i = |E}| (the
only way step 3 can terminate) and ¢ # [. Hence, the output ®; = {p € E; : [;(p) = m} is equal to
®(E,;), by its definition, as desired. Now suppose E; is t-saturated. It is straightforward to check
that for any j, 6{ = 0 if and only if j = max{l;(px) : k = 1,...,7} (given that l;(p;) > j for any
7). This implies that the loop in step 3 terminates with both ¢ and [equal to the least j such that
6{ = 0 (such j exists by Lemma 11 since £} is ¢-saturated). But then ¢ is by definition h(E;), and
so the output value ®; = {p1,...,p;} is by definition ®(E;), as desired. m

B Proofs for Section 3

B.1 Proof of Lemma 1 (Time dominance)

We use induction on the time ¢. For the base case (at time 1), the two policies face the same buffer
state, then because EDF+ serves the earliest packet in A;, CMTOgpr4+ must serve a packet no
earlier. For the inductive case, we assume that at all times £ < ¢, CMTOgppy serves a packet

at time k£ no earlier than that served by EDF+ at that time. We must show that the packet p.

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 39

served by CMTOgpr4 at time ¢ is no earlier than that packet p, served by EDF+. Suppose for
contradiction that p. is earlier than p.. Then EDF+ must have served p. at some time ¢’ < ¢. In
this case, by the induction hypothesis, CMTOgpp+ must have served a packet p/ at time ' such
that p. is earlier than p, and both p! and p. have arrived and are unexpired at time ¢'. Because
CMTOgpr4+ will later serve p. at time ¢, by consistency p. must be in Ey. But this contradicts the
fact that CMTOgpp4 uses EDF+ to select the packet served in Ey. m

B.2 Proof of Lemma 2

By definition of I}, 4, there is some t' € [s,] and p’ € Ey with deadline d' such that d’ = I}, and
d' is a t'-saturation time of Ey (because t' is busy and p’ is a highest deadline packet in ®(Ey)).
If ¢ = t, then we are done. Otherwise, note that because Fy is t'-schedulable and t'-saturated at
d', and the packet served at t' is chosen consistent with a schedule of Ey, we can choose a subset
A of Ey N Py that is (¢ 4+ 1)-saturated at d’ and (¢’ + 1)-schedulable such that every packet in
A expires at or before d'.

Now we show that there must be a (#' + 1)-saturation time d"” of Ey, that is at least d’' > I} ;.
To see this, suppose not, i.e. that there is no such (#' + 1)-saturation time at d’ or later. It follows
that there is some packet in A that is not in Fy ;. Let p” be a latest expiring such packet (i.e. p”
is a latest expiring packet in A — Ey). We now have that the set of packets in A with deadlines
in the interval [d(p”) + 1,d’] is a subset of Ey1, by our choice of p”. It is straightforward to show
by a counting argument that this inclusion, together with the facts that A is (¢’ + 1)-saturated
at d and Eyy, has been assumed not to be (¢’ + 1)-saturated at d’, implies that Ey; is not
(t' + 1)-saturated at any deadline at or after d(p”). But this implies that p” can be added to Fy
preserving (' 4+ 1)-schedulability, contradicting the maximum schedulability of Ey;. Therefore,
by contradiction, there is some (¢’ 4 1)-saturation time of Ey ., greater or equal to d'.

Replacing ¢’ by ¢’ + 1, and d’ by d” and repeating the above argument until ¢’ = ¢, we arrive at

the desired result by induction. m

B.3 Proof of Lemma 5 (¥-monotonicity)

We prove the lemma by contradiction. Suppose there is a packet p in W[, ;1] such that the weight
of p is strictly less than min(¥y, ;).

We will show that the packet p can be replaced in Eyy1 by a packet p' from (Pyy1 Ny) — Epy1.
The weight of p’ must exceed that of p by our assumptions on p since p’ € Urs,- We show that such
p’ can be found so that this replacement results in a (t+ 1)-schedulable subset of P11 of larger total
weight than E;,,, contradicting the definition of E;;; as a maximum-weight (¢ 4+ 1)-schedulable
subset of Pyy;.

We first identify the earliest time at which p can occur in any schedule of E;,;. Let d be the

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 40

greatest time such that d < d(p) and 6f;f (Et41) = 0. (We assume by convention that 67, (E¢ 1) =
0, so that d is well-defined and lies in the interval [¢t,d(p) — 1].) We note then that d + 1 is the
earliest time at which p can be scheduled in any schedule of E; 1, and that d is a (¢ + 1)-saturation
time of Eyy; (or is equal to t).

We now argue that the deadline d occurs strictly within the extent of W[, s, i.e., that d < X, .
Suppose not. We then have that ¥, > d(p) > d > ¥,y > t. That d > t here implies that
d is a (t + 1)-saturation time of F;.; (rather than being equal to t). However, the definition X
does not allow Xps,11) > d > Xg with d a (t 4+ 1)-saturation time of Ej,;. This is because
Ij441,441) > d contradicts the fact that Ij,; ;1) is the smallest (¢ + 1)-saturation time of E;,, and
d > Ijpy1 1) with d > X > I) implies that d > I 4447, which contradicts g ;117 > d (since d
is a (t + 1)-saturation time of F;.1). Therefore, we can conclude by contradiction that d < X ;.

We now show that the desired packet p’ exists. We must find a p’ in (P41 N[,) — Eyq1 such
that (Fy11 —p) Up' is (t + 1)-schedulable. We ensure schedulability by selecting a p’ such that
d(p') > d. Since there is a schedule of E;;1 with p scheduled at d + 1, we can simply schedule p’ at
that time in place of p, so long as d(p') > d.

We show the existence of p’ by contradiction to conclude the proof of ¥-monotonicity. Suppose

for contradiction that:
(*) there is no p’ in (Pyy1 NV, y) — Eyyr with d(p') > d.

Because W[, is t-schedulable (since it is a subset of Ey) and t-saturated at X, ;, and a packet
p¢ was selected for service from ®(FE;), we know that W[, — p; is (¢ + 1)-schedulable and (¢ + 1)-
saturated at X . From this we can conclude that there are at least X, ;) — d packets in W, —py
with deadlines in [d + 1, Y[, 4]. Denote the set of these packets I'. Since d +1 > ¢+ 1, ' C Py.
Then, by our supposition above for contradiction (*), I' C Ey;;. But since d is a saturation time
of Eyy1, there are also d — ¢ (from d — (¢ + 1) + 1) packets in Fy;, with deadlines in [t + 1, d]—call
the set of these packets A. The sets A and I" together ensure that ¥, ;) is a (¢ 4 1)-saturation time
of Eyy1. But note that the packet p cannot be in A because its deadline is greater than d, and
cannot be in I' because I' C ¥, 4 and the weight of p is less than min(\If[Syﬂ), and A and I together
constitute all the packets in Eyy1 with deadlines not exceeding X, ;. Since p € Eyy1, d(p) must
thus exceed X[, ;). But then the fact that ¥, is a (¢ + 1)-saturation time of E;;; contradicts the
choice of d as the greatest such time less than d(p). This contradiction ensures that the desired p’

exists, concluding the proof. m

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 41

References

[1] S. Bajaj, L. Breslau, and S. Shenker, Uniform versus Priority Dropping for Layered Video,
ACM Computer Communication Review 28 (1998) 131-143.

[2] L. Breslau, Example Traffic Trace for NS, http://www.research.att.com/breslau/vint/trace.html

[3] H. S. Chang, R. Givan, and E. K. P. Chong, On-line Scheduling via Sampling, in: Proc. 5th
Int. Conf. on Artificial Intelligence Planning and Scheduling, CO, 2000, pp. 62-71.

[4] R. Cocchi, S. Shenker, D. Estrin, and L. Zhang, Pricing in Computer Networks: Motivation,
Formulation, and Example, IEEE/ACM Trans. on Net. 1 no. 6 (1993) 614-627.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, (MIT Press,
1990).

[6] A. Demers, S. Keshav, and S. Shenker, Analysis and simulation of a fair queuing algorithm, J.

of Internetworking: Research and Experience 1 (1990) 3-26.

[7] W. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, Adaptive Packet Marking for Providing
Differentiated Services in the Internet, in: Proc. Int. Conf. on Network Protocols, 1998, pp.
108-117.

[8] A. Feldmann, Characteristics of TCP connection arrivals, in: Self-similar Network Traffic
and Performance FEvaluation, eds. K. Park and W. Willinger, John Wiley and Sons, 2000, pp.
367-399.

[9] S. Floyd and K. Fall, Promoting the Use of End-to-End Congestion Control in the Internet,
IEEE/ACM Trans. on Net. 7, no. 4 (1999) 458-472.

[10] S. Floyd and V. Jacobson, Link-sharing and Resource Management Models for Packet Net-
works, IEEE/ACM Trans. on Net. 3, no. 4 (1995) 365-386.

[11] B. Hajek and P. Seri, On causal scheduling of multiclass traffic with deadlines, in: Proc. IEEE
Int. Symposium on Information Theory, Cambridge, MA. 1998, pp. 166.

[12] B. Hajek and P. Seri, Lex-Optimal Multiclass Scheduling with Deadlines, submitted to

Mathematics of Operations Research.

[13] E. L. Lawler, Combinatorial Optimization : Networks and Matroids, (Holt, Rinehart and
Winston, New York, 1976).

[14] E. L. Lawler and J. M. Moore, A Functional Equation and Its Application to Resource
Allocation and Sequencing Problems, Management Science 16 (1969) 77-84.

Multiclass scheduling: R. L. Givan, E. K. P. Chong, and H. S. Chang 42
[15] T. L. Ling and N. Shroff, Scheduling Real-Time Traffic in ATM Network, in: Proc. IEEE
INFOCOM, 1996, pp. 198-205.

[16] J. M. Peha, Heterogeneous-Criteria Scheduling: Minimizing Weighted Number of Tardy Jobs
and Weighted Completion Time, J. of Computers and Operations Research 22, no. 10 (1995)
1089-1100.

[17] J. M. Peha and F. A. Tobagi, Evaluating scheduling algorithms for traffic with heterogeneous
performance objectives, in: Proc. IEEFE GLOBECOM, 1990, pp. 21-27.

[18] S. Sahni, Algorithms for Scheduling Independent Tasks, J. of the ACM 23 (1976) 116-127.

