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Abstract

Enforced hill-climbing is an effective deterministic hdlimbing technique that deals with lo-
cal optima using breadth-first search (a process calledritfia®ding”). We propose and evaluate
a stochastic generalization of enforced hill-climbing torline use in goal-oriented probabilis-
tic planning problems. We assume a provided heuristic fanastimating expected cost to the
goal with flaws such as local optima and plateaus that thwigstforward greedy action choice.
While breadth-first search is effective in exploring basireund local optima in deterministic prob-
lems, for stochastic problems we dynamically build and s@\heuristic-based Markov decision
process (MDP) model of the basin in order to find a good escalpeypexiting the local optimum.
We note that building this model involves integrating thetgic into the MDP problem because
the local goal is to improve the heuristic.

We evaluate our proposal in twenty-four recent probahiligtanning-competition benchmark
domains and twelve probabilistically interesting probsefrom recent literature. For evaluation,
we show that stochastic enforced hill-climbing (SEH) progkibetter policies than greedy heuristic
following for value/cost functions derived in two very difent ways: one type derived by using
deterministic heuristics on a deterministic relaxatiod arsecond type derived by automatic learn-
ing of Bellman-error features from domain-specific expaeee Using the first type of heuristic,
SEH is shown to generally outperform all planners from thet tinree international probabilistic
planning competitions.

1. Introduction

Heuristic estimates of distance-to-the-goal have longhheseed in deterministic search and deter-
ministic planning. Such estimates typically have flaws sagtocal extrema and plateaus that limit
their utility. Methods such as simulated annealing (Kirkjs&, Gelatt, & Vecchi, 1983; Cerny,
1985) and A* (Nilsson, 1980) search have been developeddidimg flaws in heuristics. More
recently, excellent practical results have been obtaigetidnding” local optima using breadth-first
search. This method is called “enforced hill-climbing” {oann & Nebel, 2001).

Deterministic enforced hill-climbing (DEH) is proposedtime work of Hoffmann and Nebel
(2001) as a core element of the successful deterministitnplaFast-Forward (FF). DEH is an
extension of the basic “hill-climbing” approach of simplglecting actions greedily by looking
ahead one action step, and terminating when reaching adptiahum. DEH extends basic hill-
climbing by replacing termination at local optima with ba#afirst search to find a successor state
with strictly better heuristic value. The planner then nwowe that descendant and repeats this



process. DEH is guaranteed to find a path to the goal if thelgmoiiself is deadend-free (so that
every state has such a path). While that relatively weakagtee applies independent of the quality
of the heuristic function, the intent of DEH is to remediaten$ in a generally accurate heuristic
in order to leverage that heuristic in finding short pathsh® goal. In domains where the basin
size (search depth needed to escape any optimum) is boubHétgan provide a polynomial-time
solution method (Hoffmann, 2005).

Enforced hill-climbing is not defined for probabilistic fimlems, due to the stochastic outcomes
of actions. In the presence of stochastic outcomes, findesgehdants of better values no longer
implies the existence of a policy that reaches those deaogmavith high probability. One may ar-
gue that FF-Replan (Yoon, Fern, & Givan, 2007)—a top peréorfar recent probabilistic planning
benchmarks—uses enforced hill-climbing during its calFte However, the enforced hill-climbing
process is used on a determinized problem, and FF-Replannbdaise any form of hill climbing
directly in the stochastic problem. In fact, FF-Replan doesconsider the outcome probabilities
at all.

One problem to consider in generalizing enforced hill-tling to stochastic domains is that the
solution to a deterministic problem is typically conciseseguential plan. In contrast, the solution
to a stochastic problem is a policy (action choice) for alkgibly reached states. The essential
motivation for hill-climbing is to avoid storing exponeatiinformation during search, and even the
explicit solution to a stochastic problem cannot be diyestbred while respecting this motivation.
For this reason, we limit consideration to the online sgitimhere the solution to the problem is a
local policy around the current state. After this local pplis committed to and executed until the
local region is exited, the planner then has a new onlinelpnolto solve (possibly retaining some
information from the previous solution). Our approach galiges directly to the construction of
offline policies in situations where space to store suchcpdiis available. Note that, in contrast,
deterministic enforced hill-climbing is easily implemedtas an offline solution technique.

We propose a novel tool for stochastic planning by genenglienforced hill-climbing to goal-
based stochastic domains. Rather than seeking a sequeactoof deterministically leading to a
better state, our method uses a finite-horizon MDP analysisd the current state to seekalicy
that expects to improve on the heuristic value of the cumstate. Critical to this process is the direct
incorporation of both the probabilistic model and the h&tigifunction in finding the desired policy.
Therefore, for the finite-horizon analysis, the heuristindtion is integrated into the MDP problem
in order to represent the temporary, greedy goal of impgan the current heuristic value. This
integration is done by building a novel “heuristic-based RfIn which any state has a new “exit”
action available that terminates execution with cost etjudie heuristic estimate for that state, and
all other action costs are removedn a heuristic-based MDP, finite-horizon policies arerietsd
by a requirement that at horizon one, the exit action mustelected (but can also be selected at
other horizons). In this heuristic-based MDP, the cost of policy 7 at a states is the expected
value of the heuristic upon exit (or horizon)ifis executed frons.

Thus, we find the desired local policy using value iteratiarttte heuristic-based MDP around
the current state, with deepening horizon, until a polidpisid with cost improving on the heuristic
estimate at the current state. The restriction of seledtiegexit action at horizon one corresponds
to initializing value iteration with the provided heurisfunction. When such a policy is found, the

1. The motivation for the removal of action costs in the h&tigibased MDP is discussed in Section 3.2.



method executes the policy until an exiting action is intida(or to the horizon used in computing
the policy).

The resulting method, stochastic enforced hill-climbif®EH), simply generalizes depth-
breadth-first search for a state with improved heuristic&gfrom DEH) to ak-horizon value iter-
ation computation seeking a policy that expects improvenmemeuristic value. Note that although
stochastic enforced hill-climbing is an explicit statesp#echnique, it can be suitable for use in as-
tronomically large statespaces if the heuristic used mmétive enough to limit the effective size
of the horizonk needed to find expected heuristic improvement. Our empmsalts in this work
demonstrate this behavior successfully.

Applicability and limitations  Stochastic enforced hill-climbing (SEH) can be applied ty a
heuristic function. However, the applicability (and likee the limitations) of SEH greatly depends
on the characteristics of the heuristic function. SEH israppate in any goal-oriented problem
given a strong enough heuristic function, and we demomstmatpirically that SEH generally out-
performs greedy following of the same heuristic for a varigitheuristics in a variety of domains,
even in presence of probabilistically interesting featuilattle & Thiebaux, 2007) and deadends.
SEH can rely upon the heuristic function for identificatidndead-ends and appropriate handling
of probabilistically interesting features that requirenflocal analysis—SEH simply provides local
search that often can correct other flaws in the heuristiction. SEH is thus intended as a possible
improvement over stochastic solution methods that cocis&reost-to-go (cost) function and follow
it greedily when using the constructed cost function as echeaeuristic. Many methods for con-
structing value/cost functions have been proposed andiaedl in the literature, all of which can
potentially be improved for goal-based domains by using 88bace of greedy following (Sutton,
1988; Fahlman & Lebiere, 1990; Bertsekas, 1995; Gordon5;1®@hadevan & Maggioni, 2007;
Sanner & Boutilier, 200%) We prove the correctness of SEH in Section 3.4 by showingitha
deadend-free domains, SEH finds the goal with probabilig/(@e. SEH does not get stuck in local
optima).

While SEH is a search technique that leverages a heuridtinas of distance to go, it must
be emphasized that, unlike many other such search tectmi§igd makes no promises about the
optimality of the solution path found. SEH is a greedy, laeahnique and can only promise to
repeatedly find a policy that reduces the heuristic valud,@arly when that is possible. As such,
SEH is an inappropriate technique for use when optimal moisitare required.

Stochastic enforced hill-climbing can be ineffective ie firesence of huge plateaus or valleys
in the heuristic functions, due to extreme resource consomn finding desired local policies.
Heuristic functions with huge plateaus result from methibads$ have failed to find any useful infor-
mation about the problem in those state regions. SEH is nogpite as the only tool for solving
a stochastic planning problem—other tools are needed tstreant a useful heuristic function that
manages deadends and avoids huge plateaus. This weakness the weakness of enforced hill-
climbing in deterministic domains. SEH can also fail to fihe goals when avoidable dead-ends
are present but not recognized early enough by the heutistfact, effective dead-end detection is
a central goal in heuristic design when any greedy technigli®e applied to the heuristic.

2. For applicability of SEH, a cost function must be non-riegaand must identify goals by assigning zero to a state if
and only if it is a goal state; however, more general valug/@unctions can be normalized to satisfy these require-
ments.



Further insight into the usefulness of SEH can be gained mpapison with recent determiniz-
ing replanners. As mentioned above, one way to exploit detéstic planning techniques such as
DEH for stochastic problems is to determinize the plannirablem and use a deterministic plan-
ner to select an action sequence. Executing this actioresegun the problem is not guaranteed
to reach the goal due to the determinization approximationieplanning is needed to augment
this technique. In this paper, we call stochastic planf®asuse this technique “determinizing re-
planners”. Determinizing replanners using a determiionafcalled “all outcomes”) that retains
all possible state transitions can be shown to reach thevgtalprobability one in the absence of
dead-end states.

In contrast to determinizing replanners, SEH at no poiriesebn any determinization of the
problem, but instead analyzes increasing-size local fmitisic approximations to the problem.
SEH conducts a full probabilistic analysis within the horz seeking the objective of reducing the
provided heuristic, using value iteration. In this way, SEMerages the probabilistic parameters
that are ignored by determinizing replanners, as well aptbeided heuristic function, which can
be based upon substantial probabilistic analysis. As dty&ftH successfully handles probabilistic
problem aspects that cause major problems for determgnidplanners. However, at this point,
we have no theoretical results characterizing its gains dggerminizing replanners. Instead, we
have an extensive empirical evaluation showing advantages FF-Replan (Yoon et al., 2007)
and RFF (Teichteil-Konigsbuch, Kuter, & Infantes, 201@ydtdeterminizing replanners), as well
as substantial gains compared to greedy following of theiste (which also uses the transition
probability parameters).

Evaluation We test SEH on a broad range of domains from the first threenatienal proba-
bilistic planning competitions (as well as the “probaltiitially interesting” domains from the work
of Little & Thiebaux, 2007), using two very different methotb generate heuristic functions. First,
we test SEH on a heuristic function based on the ideas of tteesaful re-planner FF-Replan (Yoon
etal., 2007). This new “controlled-randomness FF (CR-FRlyistic” is the deterministic FF heuris-
tic (Hoffmann & Nebel, 2001) computed on the simple deterzation of the probabilistic problem
that makes available a deterministic transition whereyaoaabilistic transition was possible. We
note that FF-Replan itself does not use this (or any) heéurfighction in the stochastic problem.
Instead, FF-Replan relies on FF to construct a plan in therahiistic problem, and these calls to
FF in turn use deterministic enforced hill-climbing withaetly this heuristic. Here, we consider
the performance of this heuristic directly in the stoch@agtioblem, comparing greedy heuristic-
following with SEH-based search around the heuristic. Hiet method using SEH constitutes a
novel method for combining determinization (that removwesgrobabilistic parameters) with proba-
bilistic reasoning. Our experiments show that this new w@#ubstantially outperforms FF-Replan
across our broad evaluation.

We have also performed a second evaluation of our technigueearistic functions learned
from domain-specific experience by the relational feateeening method presented in the work
of Wu and Givan (2007, 2010). These heuristic functions tekeady been shown to give good
performance when used to construct a simple greedy pohcyaee further improved by SEH.

The SEH technique can be seen to perform well in a domainelbyath analysis across the
broad set of competition planning domains, and full dontairdomain results are available in an
online appendix. However, to compress and summarize tiemgive per-problem results, we have
divided all the evaluation domains into experimenter-aefitcategories” and have aggregated per-
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formance measurement within each problem category. Whiteescategories are single domains,
more generally, multiple closely related domains may beegated within a single category. For
example, multiple domains from the competitions have bemiants of the “blocks world”, and
problems in these domains are aggregated asaCBSWORLD category.

In order to fairly compare SEH with FF-based planners (s@cRF, as described in Teichteil-
Konigsbuch et al., 2010, and FF-Replan) that exploit theksworld-targeted planning heuristics
“added goal deletion” and “goal agenda”, we have providesdahheuristics as extensions to SEH.
The resulting planner is called SEdescribed in detail in Section 3.6. Our results show thad SE
performs nearly identically to SEH on non-blocksworld gatges when using the CR-FF heuristic.
We employ these extensions when comparing SEH with the CReliRstic to other planners.

Using experimenter-defined categories, we are able to shaWwSEH exploits the heuristic
functions more effectively than greedy following of the hstic. SEH statistically significantly
outperforms greedy following in thirteen out of seventeategories using the CR-FF heuristics
while losing in one category. SEH also outperforms greedipviang in six out of seven cate-
gories using the learned heuristics. (In both cases, thex otiiegories showed similar performance
between the compared planners.)

We show that SEH, when using the CR-FF heuristics, outperforms FF-Replatenrout of
fifteen categories, with similar performance on two moregaties, losing on only three categories.
Our aggregate results show that SEfdising the CR-FF heuristics) has a particularly strongquerf
mance advantage over FF-Replan in “probabilisticallyregéng” categories (Little & Thiebaux,
2007).

Finally, we compare the performance of SEHgainst that of RFF-BG (Teichteil-Konigsbuch
et al., 2010), one winner of the fully-observable track & third international probabilistic plan-
ning competition. SEH outperforms RFF-BG on twelve out of fifteen categories, \githilar
performance on one more category, losing on only two caiegjor

In summary, our empirical work demonstrates that SEH pexia novel automatic technique
for improving on a heuristic function using limited searshand that simply applying SEH to
reasonable heuristic functions produces a state-ofthglanner.

2. Technical Background: Markov Decision Processes

We give a brief review of Markov decision processes (MDPgEsdized to goal-region objectives.
For more detail on MDPs, see the work of Bertsekas (1995grRan (2005), and Sutton and Barto
(1998).

2.1 Goal-oriented Markov Decision Processes

A Markov decision process (MDRY! is a tuple(S, A, C, T, sinit). Here,S is a finite state space
containing initial state;,;;, and A selects a non-empty finite available action 4ét) for each state
sin S. The action-cost functiof’ assigns a non-negative real action-cost to each statmasitte
triple (s, a, s’) where actiona is enabled in state, i.e., a is in A(s). The transition probability
function " maps state-action paifs, a) to probability distributions ovef, P(S), wherea is in
A(s).

To represent the goal, we includeSma zero-cost absorbing state i.e., such tha€’ (L, a, s) =
0OandT'(Ll,a,l)=1forall s € Sanda € A(L). Goal-oriented MDPs are MDPs where there is
a subsetd C S of the statespace, containing such that: (1)C(g, a, s’) is zero whenevey € G
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and one otherwise, and (2) g, a, L) is one for allg € G and alla € A(g). The set& can thus be
taken to define the action-cost functiéh as well as constrain the transition probabilitiés

A (stochastic)policy for an MDP7 : S x N — P(A) specifies a distribution over actions for
each state at each finite horizon. The cost-to-go funcfid(s, k) gives the expected cumulative
cost for k steps of execution starting at stateselecting actions according to() at each state
encountered. For any horizon there is at least one (deterministic) optimal polie¥(-, k) for
which J™" (s, k), abbreviated/*(s, k), is no greater tha™ (s, k) at every states, for any other
policy 7. The following “Q function” evaluates an actianby using a provided cost-to-go function
J to estimate the value after actiaris applied,

Q(s,a,J) = Z T(s,a,s)[C(s,a,s") + J(s")].

s'eS
Recursive Bellman equations ug) to describe/* and.J™ as follows:

J"(s, k) = E[Q(s,7(s,k),J"(-,k —1))] and

J*(s,k) = min Q(s,a,J*(-,k — 1)),
a€A(s)

taking the expectation over the random choice made by thsitppstochastic policyr(s, k). In
both cases, the zero step cost-to-go function is zero evemay so that/*(s,0) = J™(s,0) = 0

for all s. Value iteratiorcomputes/*(s, k) for eachk in increasing order starting at zero. Note that
when a policy or cost function does not dependkpwe may dropk from its argument list.

Also usingQ(), we can select an action greedily relative to any cost fonctiThe policy
GreedyJ) selects, at any state and horizonk, a uniformly randomly selected action from
argmir}zeA(s)Q('S? a, J('v k— 1))

While goal-based MDP problems can be directly specified aseglihey may also be specified
exponentially more compactly using planning languaget ssd®PDDL (Younes, Littman, Weiss-
man, & Asmuth, 2005), as used in our experiments. Our tecienizelow avoids converting the
entire PPDDL problem explicitly into the above form, foroesce reasons, but instead constructs a
sequence of smaller problems of explicit MDP form modeliegtistic flaws.

A dead-end stais a state for which every policy has zero probability of keag the goal at any
horizon. We say that a poliagaches a region of states with probability dfrfellowing that policy
to horizonk has a probability of entering the region at some point thatemes to one asgoes to
infinity. We saydead-ends are unavoidalwtea problem whenever there is no policy frafg; that
reaches the goal region with probability one. (We then sagraain has unavoidable dead-ends if
any problem in that domain has unavoidable dead-ends.) \éethat greedy techniques such as
hill-climbing can be expected to perform poorly in domaimatthave dead-end states with attractive
heuristic values. Application of SEH thus leaves the resitility for detecting and avoiding dead-
end states in the design of the heuristic function.

A heuristich : S — R may be provided, intended as an estimate of the cost fungtionlarge
horizons, withi(s) = 0 for s € G, andh(s) > 0 otherwise. The heuristic may indicate dead-end
states by returning a large positive valige which we assume is selected by the experimenter to
exceed the expected steps to the goal from any state tha¢aelm the goal. In our experiments, we
add trivial, incomplete dead-end detection (describedeictiBn 5.2) to each heuristic function that
we evaluate.



We note that some domains evaluated in this paper do contaivoidable deadends, so that
there may be no policy with success ratio one. The choiceefalye value used for recognized
dead-end states effects a trade-off between optimizingesscratio and optimizing expected cost
incurred to the goal when successful.

2.2 Determinizing Stochastic Planning Problems

Some stochastic planners and heuristic computation tgeabsj including some used in our exper-
iments, rely on computing deterministic approximationstothastic problems. One such planner,
the all-outcomes FF-Replan (Yoon et al., 2007), deterramia stochastic planning problem and
invokes the deterministic planner FF (Hoffmann & Nebel, 20én the determinized problem. The
determinization used in FF-Replan is constructed by ergati new deterministic action for each
possible outcome of a stochastic action while ignoring thabability of that outcome happen-
ing. This effectively allows the planner to control the ranthess in executing actions, making
this determinization a kind of relaxation of the problem. Section 5.2, we define a domain-
independent heuristic function, the “controlled-randess\FF heuristic” (CR-FF), as the determin-
istic FF heuristic (Hoffmann & Nebel, 2001) computed on the@atcomes FF-Replan determiniza-
tion of the probabilistic problefa A variety of relaxations have previously been combinedit
variety of deterministic heuristics in order to apply detaristic planning techniques to stochas-
tic problems (Bonet & Geffner, 2005). More generally, detiristic relaxations provide a general
technique for transferring techniques from determiniptamning for use in solution of stochastic
problems.

3. Stochastic Enforced Hill-Climbing

Deterministic enforced hill-climbing (DEH) (Hoffmann & Nel, 2001) searches for a successor
state of strictly better heuristic value and returns a paimfthe current state to such a successor.
This path is an action sequence that guarantees reachirdgsived successor. We illustrate the
behavior of DEH as compared to greedy policy using the examplFigure 1. In a stochastic
environment, there may be no single better descendant d@mabe reached with probability one,
since actions may have multiple stochastic outcomes. Ifim@lg use breadth-first search as in
DEH to find a single better descendant and ignore the othesilgesoutcomes, we might end up
selecting an action with very low probability of actuallaiing to any state of better heuristic value,
as illustrated in Figure 2. As shown in this figure, our altjor, stochastic enforced hill-climbing
(SEH), accurately analyzes the probabilistic dynamicshefgroblem of improving the heuristic
value.

In this section, we give details of SEH. We note that in DEH tbcal breadth-first search
gives a local policy in a state region surrounding the curségite in a deterministic environment.
The value of following this policy is the heuristic value dietimproved descendant found during
breadth-first search. In SEH, we implement these same ideastochastic setting.

We present SEH in two steps. First, we present a simple dgefnanaework for online plan-
ning that repeatedly calls a “local” planner that select®l&cp around the current state. Second,

3. The deterministic FF heuristic, described in the work offshann and Nebel (2001), from FF planner version 2.3
available at http://www.loria.fr/"hoffmanij/ff.html, €iently computes a greedy plan length in a problem relaxati
where state facts are never deleted. The plan found in thge®lproblem is referred to as a “relaxed plan” for the
problem.



(a) Behavior of greedy policy. (b) Behavior of DEH.

Figure 1: Comparison between the behavior of DEH and greetigypwhen a local optimum is encoun-
tered. The solid black circle represents the current saate the shaded circle represents the goal state (with
heuristic value zero). In (a) the greedy policy keeps sklgcictions indicated by the wide arrow and cannot
reach the goal state. On the other hand, DEH uses breadtkdasch and finds the goal state that is two
steps away from the current state, as shown in (b).

(a) Behavior of DEH in stochastic environments. (b) Behavior of SEH in stochastic environments.

Figure 2: Comparison between the behavior of SEH and DEH fachastic example. We assume DEH first
determinizes the problem, creating one deterministioadtr each possible stochastic outcome. The solid
black circle represents the current state, and the shaddd represents the goal state (with heuristic value
zero). In (a) DEH looks one step ahead and selects the acg@madvith double lines, as one of the outcomes
leads to a state with = 2, which is better than the current state. However, this aatlwice has a higher
probability of going to the state with = 10 than the one witth = 2. In (b) SEH first decides there is no
policy with better value tha when the horizon in the MDP only includes states reachabla the current
state in one step. SEH then extends the horizon to two so Hrsiates are considered. It then selects the
actions indicated in the wide arrows that lead to the go&tsta



Online Planning using a Local Planner

1. Repeat

2 s < current state

3. Tocal < Find-Local-Policy(s,h)
4 Follow mmjocq Until a | is selected
5. Until the goal is reached

Table 1: Pseudo-code for an online planning framework. T mocq May be non-stationary, in which
case the local planner also returns the initial horizon karcation of the policy and termination in line 4 can
also happen by reaching that specified horizon.

we present a local planner based on the enforced hill-climlidlea. When the online planning
framework is instantiated with this local planner, the tesg algorithm is SEH. The combination
of these two steps constitute the central algorithmic doutiion of this paper. Finally, we present
some analytical properties of our algorithm.

3.1 A Simple Online Planning Framework

A familiar direct approach to online planning is to call tHamqmer at the current state and have the
planner select an action. That action is then executed iartigonment, resulting in a new current
state. This process can then be repeated.

Here, we present a simple generalization of this approaatattows the planner to select more
than one action during each call, before any action is erelctithe idea is that the planner makes a
plan for the local context surrounding the current statd,than that plan is executed until the local
context is exited. When the local context is exited, we hamewa current state and the process is
repeated.

More formally, we augment the action space with a new “teatg@haction (called:, ), indicat-
ing that the planned-for local context has been exited. Wa tiefine docal policy around a state
s to be a partial mapping from states to the augmented actimcegbat is defined atand at every
state reachable fromunder the polic§. An online planner can then be built by repeatedly seeking
and executing a local policy around the current state usipigraning subroutine. The local policy
is executed until the terminate action is called (which hagffiect on the state), at which point a
new local policy must be sought. These ideas are reflectdgtipgeudo-code shown in Table 1.

We note that the notion of “local context” in our discussiceréis informal — the precise
notion is given by the use of the “terminate” action. A localigy is executed until it selects the
“terminate” action. Thd-ind-Local-Policy routine is free to use any method to decide when a state
will be assigned the terminate action. Previously publiseevelopemethods (Dean, Kaelbling,
Kirman, & Nicholson, 1995) provide one way to address th&iés so that termination will be
assigned to every state outside some “envelope” of sta@seter, this framework is more general
than envelope methods, and allows for local policies thatat selected based upon pre-existing
envelopes of states (though we can always, post-planniterpret the set of reachable states as
an envelope). The general intuition is that selecting thimador the current states may involve

4. The local policy returned can be non-stationary and fimitezon, but must then select the terminate action at the
final stage, in all reachable states.



analysis that is sufficient to select actions for many surding states, so our framework allows the
Find-Local-Policy routine to return a policy specifying all such action setat.

Also, we note that this online planning framework includesent re-planners such as FF-
Replan (Yoon et al., 2007) and RFF (Teichteil-Konigsbuctalet 2010). However, replanning
because the current plan failed (e.g. because the deteationi used to generate it was naive)
is quite different in character from SEH, which construdemp to improve the heuristic value, and
replans each time such a plan terminates. Thus, SEH usesdihistit function to define subgoals
and plan for the original goal incrementally.

It remains to present the local planner we combine with thine planning framework to
define stochastic enforced hill climbing. Our local planaealyzes the MDP problem around the
current state, but with the heuristic function integratetd the problem so as to embody the subgoal
of improving on the heuristic value of the current state. Weatibe this simple integration of the
heuristic function into the problem next, and then dischsddcal planner based on this integration.

3.2 Heuristic-based Markov Decision Processes

Our method relies on finite horizon analyses of a transformMBdP problem, with increasing hori-
zons. We transform the MDP problem with a nokelristic achievement transfotmfore analysis
in order to represent the goal of finding and executing a pdfiat expects to improve on the initial
(current) state’s heuristic value.

The heuristic achievement transform is very straightfedyand applies to any goal-oriented
MDP problem. First, all action costs are removed from théjenm. Second, the “terminate” action
a, is assigned the action cdsts) and transitions deterministically to the absorbing stat&Vhen
a policy is executed, the selection of the actignat any state will result in replanning, as discussed
in the online planning framework just presented. The astion can be thought of as “heuristic
achievement” actions, allowing the immediate achievenoétite value promised by the heuristic
function.

Analyzing the MDP transformed by the heuristic achievermesmtsform at a finite horizon
aroundsy represents the problem of finding a policy for improving oe treuristic value ok
without regard to the cost of achieving such improvemenhetieuristic. Allowing the heuristic
achievement action, to be selected at any point at any state reflects the greedserwtthis goal:
the planner is not forced to look further once an improvenefdund, so long as there is a policy
from the initial state that expects to see improvement.

Formally, given MDPM = (S, A, C, T, so) and non-negative heuristic functién: S — R, the
heuristic achievement transform df underh, written M, is given by (S, A", C", T’ sy), where
A', C’, andT” are as follows. Lek, s1, andss be arbitrary states fror§. We defineA’(s) to be
A(s) U {a, }, and we take?’(s1, a, s2) = 0 andT”(s1,a, s2) = T(s1,a, s2) for eacha € A(sy).
Finally, we definel”(s,a,, 1) =1andC’(s,a , 1) = h(s).

The transformed MDP will have zero-cost policies at allegatand as such is not of imme-
diate use. However, policies that are required to selects their final action (at horizon one)
represent policies that are seeking to get to regions withHeuristic value, whatever the cost.
An increasing-horizon search for such policies correspandghly to a breadth-first search for an
improved heuristic value in deterministic enforced hilbing. Formally, we define the class of
heuristic-achievement policidg as the class of policies(s, k) that satisfyr (s, 1) = a, for all s.
We defineJ; (s, k) to be the value mipe g J™ (s, k) in the heuristic transform MDP fdr andr;} to
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be a policy that achieves this value. We note that, due toehargy of non-terminal action costs,
Jy (s, k) represents the expected heuristic value achieved at thesresution ofa | , wherea | is
required at horizork if not before. Formally, if we define the random variablgo be the state at
which 7} first executes | in a trajectory froms, we haveJ; (s, k) = E[h(s')].

The rough motivation for setting action costs to zero for #malysis of the heuristic-based
MDP is that such actions are being considered by our methoehtediate a flawed heuristic. The
cumulative action cost required to reach a state of imprdwaatistic value is a measure of the
magnitude of the flaw in the heuristic. Here, we remove thist émm the analysis in order to
directly express the subgoal of “reaching a state with Idwerristic value”. Including action costs
might, for example, lead to preferring cheap paths to hidigaristic values (i.e., to states worse
than sg) when expensive paths to lower heuristic values have beamdfo The basic motivation
for enforced hill climbing is to strongly seek improved histic values. Instead of diluting this
subgoal by adding in action costs, our methods seek thetésdibpath to a heuristic improvement
by analyzing the heuristic-based MDP with an iterativelgpkned finite horizon, as discussed in
the next subsection. This approach is most reasonabletingsetvhere each action has the same
cost, so that the finite-horizon value iteration is a stotib&®tting analogue to uniform cost search.
In settings with varying action cost, future work is neededdapt SEH to usefully consider that
cost without excessively diluting the focus on improving tieuristic.

Heuristic achievement value iteration Following the formalism of value iteration in Section 2.1,
we compute/; (s, k) with heuristic achievement value iteratias follows:

Ji(s,1) = h(s), and
Jp(s,k) = min Q(s,a,J; (-, k—1))fork > 2.
acA'(s)
A non-stationary policy achieving the cost-to-go given.by-, k) can also be computed using the
following definition:

7 (s,1) = ay, and
T, (s, k) = argmin,c 4/ Q(s, a, J; (-, k — 1)) for k > 2.

Note thatQ() is computed on the heuristic-achievement transformed MDA both equations.
For technical reasons that arise when zero-cost loops aseipr, we require that tie breaking in the
argmin forr} (s, k) favors the action selected lay (s, k — 1) whenever it is one of the options. This
is to prevent the selection of looping actions over shonene direct routes of the same value.

3.3 A Local Planner

We consider a method to be stochastic enforced hill-cligliirit uses an online planning frame-
work, such as that presented in Table 1, together with a joalidy selection method that solves
the heuristic-achievement MDP (exactly, approximatetyheuristically). Here, we describe one
straightforward method of local policy selection by defgiBEH-find-local-policy using finite-

horizon value iteration. This method generalizes the hheficst search used in deterministic
enforced hill-climbing, and seeks an expected heuristiprowvement rather than a deterministic
path to an improved heuristic value. More sophisticated lsutistic methods than finite-horizon
value iteration should be considered if the implementapi@sented here finds the local MDP prob-
lems intractable. Our analytical results in Section 3.4happany method that exactly solves the
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heuristic-achievement MDP, such as the method presentéabie 2; our experimental results are
conducted using the implementation in Table 2 as well.

We present pseudo-code 8EH-Find-Local-Policy in Table 2. A heuristic functioh respects
goalsif h(s) = 0iff s € G. The algorithm assumes a non-negative heuristic fundtiort — R
that respects goals, as input. SEH-Find-Local-Paiigy) returns the policyr; and a horizork.
The policy is only computed for states and horizons needexddar to executer; from sy using
horizonk until the policy terminates.

Thus, in lines 5to 11 of Table 2, heuristic-achievement @dtieration is conducted for increas-
ing horizons aroundy, seeking a policy improving(so). Note that for a given horizoh + 1, only
states reachable withinsteps need to be included in the value iteration.

Early termination The primary termination condition for repeated local ppl@nstruction is
the discovery of a policy improving on the heuristic estienat the initial state. As discussed below
in Proposition 1, in domains without deadends, SEH-Findaldolicy will always find a policy
improving onh(sg), given sufficient resources.

However, for badly flawed heuristic functions the “large egio’ horizons that are analyzed in
SEH-Find-Local-Policy may be unacceptably large giverouese constraints. Moreover, in do-
mains with unavoidable deadends, there may be no horizevevsr large, with a policy improving
on the heuristic at the initial state. For these reasonstaatige, the algorithm stops enlarging the
horizon for heuristic-based MDP analysis when user-seciesource limits are exceeded.

When horizon-limited analysis of the heuristic-transfaMDP construction does not yield the
desired results inexpensively, biased random walk is useskek a new initial state. As an ex-
ample, consider a problem in which the provided heuristiiels all states reachable insteps
with cost-to-go estimates that are very similar, formingeanarge plateau. If analysis of this large
plateau exceeds the resources available, biased randdnswadicated, for lack of useful heuristic
guidance.

So, once a horizot is found for whichJ; (s, k) < h(so), the system executes; from s
at horizonk until the terminate actiom | is selected. If the resource limit is exceeded without
finding such a horizon, the system executes a biased randtnoflangth «, with the terminating
actiona, imposed in all states reachable by such biased random walk wite) < h(sp). This
additional biased random walk allows our method to retames@f the beneficial properties of
random exploration in domains where heuristic flaws aredogel for MDP analysis. The resource
consumption threshold at which random walk is triggeredbmmiewed as a parameter controlling
the blend of random walk and MDP-based search that is usedeirt@ming heuristic flaws. We
currently do not have a principled way of analyzing the todfleetween resource consumption and
the cost of switching to biased random walk, or determinirigemwto do such switching. Instead,
we use domain-independent resource limits as describe€ditiof 5.1, which are determined after
some experimentation.

Horizon-limited analysis of the heuristic-transform MDRaynalso terminate without finding
a horizonk such that/;(so, k) < h(so) when the entire reachable statespace has been explored,
in the presence of deadends. This may happen without exgeéue available resources, and in
this case we fall back to a fixed number of iterations of stechdd4 on the original MDP model
(including action costs and without the heuristic transfpfor the reachable states.
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SEH-Find-Local-Policy{y,h)
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sg IS the current state.
h:SU{L} — Rthe heuristic function, extended witl{_L) = 0.
We assume global variablg;, is the heuristic-achievement
transform of the original problemy/ underh.
We seek a policy in the probled¥;, achieving cost less thai(sy).
k=1
Repeat
k=k+1
Il ComputeJ; (so, k) in M}, using value iteration
Ji(,1) =h(), m(,1) =a;,n=1
Repeat
n=n+1
For eachs reachable fronsg in M}, using at mosk — n steps
J;Lk(3>n) = minaEA’(s) Q(s,a, J;Lk(vn - 1))
T (s,m) = argmin,c 45 Q(s, a, Jj; (,n — 1))
Untiln = &

Until J; (s, k) < h(so) or resource consumption exceeds user-set limits

If J;;(So, k) < h(S())
then
Returnr; and horizork
else
I/ Return as-step biased random walk poliey
/I Note: implementations should computéazily online
Forn=1to
For each state
If h(s) < h(so)
then
7(s,n) selects:; with probability one

else
o—Q(s,a,h)

7(s,n) selects each action€ A(s) with probability > (G
a;€A(s)\€ v

Returnr and horizons

Table 2: Pseudo-code for the local planner used to implesteahastic enforced hill-climbing.
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3.4 Analytical Properties of Stochastic Enforced Hill-Climbing

In deterministic settings, given sufficient resources andiead-ends, enforced hill-climbing can
guarantee finding a deterministic path to an improved hgunslue (if nothing else, a goal state
will suffice). Given the finite state space, this guaranteglies a guarantee that repeated enforced
hill-climbing will find the goal.

The situation is more subtle for stochastic settings. Inadlem with no dead-ends, for every
states the optimal policy reaches the goal with probability ondoliows that in such problems, for
anyh assigning zero to every goal state, for every staind real value > 0, there is some horizon
k such that/; (s, k) < e. (Recall that/; analyzes the heuristic transform MDP wherein action costs
are dropped except thaf) must be realized at horizon one.) Because SEH-Find-Lockdy®s,h)
considers each in turn until J; (s, k) < h(s) we then have:

Proposition 1. Given non-goal state, no dead-ends, non-negative heuristic function
h : S — R respecting goals, and sufficient resources, the routine -SiEH-Local-
policy(s,h) returns the policyr; and a horizork with expected returd’; (s, k) strictly
less tham(s).

However, unlike the deterministic setting, the policy fdumy the routine SEH-Find-Local-Policy
only expectssome improvement in the heuristic value. So particular @xeas of the policy from
the current state may result in a degraded heuristic value.

Here, we prove that even in stochastic settings, in spit@isfgossibility of poor results from
one iteration, SEH will reach the goal region with probapitine, in the absence of dead-end states
and with sufficient resources. In practice, the provisiotsafficient resources” is a serious hurdle,
and must be addressed by providing a base heuristic with sheded flaws.

Theorem 1. In dead-end free domains, with unbounded memory resousteld, rea-
ches the goal region with probability one.

Proof. Let xg,z1,29,...,2m,... be random variables representing the sequence of
states assigned toin line 2 of Table 1 when we execute SEH on a planning problem,
with x( being the initial state;,;. If the algorithm achieves, € G for somer, and
thus terminates, we take ,; = z; for all j > 7. (Note that as a result; € G implies
zj+1 € G, whereG is the goal region of states.)

We show that for arbitraryn > 0 the probability thatz,, is in the goal region is

at leastl — % for a real valugy > 0 defined below. This expression goes to one

asm goes to infinity, and so we can conclude that SEH reaches thlerggion with
probability one.

By Proposition 1, from any non-goal stateabsent dead-ends and with sufficient
resources, one iteration of SEH is guaranteed to returnieydor some finite horizon
ks with value J; (s, k) improving onh(s). Letds = h(s) — J; (s, ks) > 0 be the value
of the improvement frons at horizonk,. Because there are finitely many non-goal
states, there exists= min,cs_g ds > 0 such that the improvements) — J; (s, ks)
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is at leasty. Consider an arbitrary i such that ¢ G. Noting thatJ; (z;, k;,) =

E[h(z;+1)] due to zero action costs i}, it follows immediately then thaE[h(aZi) —
h(zi+1)|z; ¢ G] > 6, whereG is the goal region of states. Using thate G implies
bothz;1; € G andh(z;) = h(x;+1) = 0, we write this as

Elh(z;) — h(wit1)]
=E[h(x;) — Mzit1)|z: ¢ GlQ;

+ Elh(zi) = h(wiy1)|w; € GI(1 - Q)
>Q;6,ford > 0,

(1)

defining@; to be the probability that; ¢ G.

Now, we lower-bound the expected heuristic improvemgfit(xzo) — h(z,,)] af-
ter m calls to SEH-Find-Local-Policy, for m > 0. We can decompose this expected
improvement overn calls toSEH-Find-Local-Policy as the sum of the expected im-
provements for the individual calls. Then, lower-boundihig sum using its smallest
term, we get

m—1
= Elh(x;) — h(wit1)]

=0

- 2)
> Q;0 (from Inequality 1)

i=0
> mQmo,

as(@),, is non-increasing, since,,_1 € G impliesz,, € G.
Next, we combine this lower bound with the natural upper loblfsiit), sinceh
is assumed to be non-negative B(zg) — h(z,)] < h(sinit)) andxzg = sinit. Thus,

h(sinit) > Qmmd.

Therefore the probability,, thatx,, ¢ G is at most%, converging to zero with

largem and so SEH reaches the goal with probability one. O

While the theorem above assumes the absence of dead-eollenps with dead-ends are cov-

ered by this theorem as well if the dead-ends are both aveidaid identified by the heuristic.
Specifically, we may require that the heuristic functionigissoo to a state if and only if there
is no policy to reach the goal from that state with probapitihe. In this case, the problem can
be converted to the form required by our theorem by simplyosgng all states assignesb from
consideration (either in pre-processing or during local®Enstruction).

3.5 Variants and Extensions of SEH

SEH is based on finite-horizon analysis of the MDP transfarimethe heuristic-achievement trans-
form around the current statg. The particular heuristic-achievement transform we diesds of
course not the only option for incorporating the heuristiailocal search aroungy. While we
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have already considered a number of related alternativasiiing at the choice we describe, other
options can and should be considered in future research.n@able restriction in our transform
is the removal of action costs, which is discussed in Se@i@n It is important for the method
to retain the actual heuristic value in the analysis so thedin trade off large, small, positive and
negative changes in heuristic value according to their ghvdities of arising. For this reason, we
do not have the heuristic transform abstract away from theevand simply assign rewards of 1 or
0 according to whether the state improvesigsy). Our choice to remove action costs during local
expansion can lead to poor performance in domains with flaveedistics interacting badly with
high variations in action costs. This is a subject for futwsearch on the method.

Also, the MDP models we describe in this paper are limiteddme obvious ways. These
limitations include that the state space is discrete antkfittie problem setting lacks discounting,
and the objective is goal-oriented. We have yet to impleraapiextension to relax these limitations,
and leave consideration of the issues that arise to futur&. wée note that it would appear that
the method is fundamentally goal-oriented, given the gbedppeatedly reducing the heuristic value
of the current state. However, it is possible to contemplafi@ite-horizon discounted non-goal-
oriented variants that seek policies that maintain theetifneuristic estimate.

3.6 Incorporating FF Goal-ordering Techniques in SEH

The planner FF contains heuristic elements inspired byrmmléssues that arise in the blocksworld
problems (Hoffmann & Nebel, 2001). These heuristic elemanprove performance on the blocks-
world problems significantly. To assist in a fair comparistfnSEH with FF-Replan, we have
implemented two of the heuristic elements, nangaal agendandadded goal deletigin a variant
of SEH that we call SEH.

The implementation of SEH is as follows. The stochastic planning problem is first deter
minized using the “all outcomes determinization” desdaliire Section 2.2. The goal-agenda tech-
nique of FF is then invoked on the determinized problem toaexta sequence of temporary goals
Gy, ...,Gn, Where eaclt; is a set of goal facts and,,, is the original problem goal. SEH with a
stochastic version of added goal deletion, described nekiis subsection, is then invoked repeat-
edly to compute a sequence of staigs. . ., s,,, Wheresy is the initial state and foi > 0 eachs;
is defined as the state reached by invoking SEH in statewith goal G; (thus satisfying;).

Added goal deletiois the idea of pruning the state search space by avoidingitrepeaddition
and deletion of the same goal fact along searched paths. , lfof& search state, if a goal fact
is achieved by the action arriving atbut is deleted by an action in the relaxed plan found frgm
thens is not expanded further (Hoffmann & Nebel, 2001).

For our stochastic adaptation of added goal deletion, wael¢fie set of facts added by any
state transitior{s, a, s’) to be those facts true isf but not ins and represent it as the set difference
s’ —s. Then, the set of added goal facts for the transition areethdsled facts which are also true in
the current temporary goél;, i.e., (s’ — s) N G;. We prune any state transitign, a, s") whenever
the relaxed plan computed froshto the current temporary goél; contains an action that deletes
any of the added goal facts. A transition a, s’) is “pruned” by modifying the Bellman update at
states so thats’ contributes the dead-end state vallig X to the Q-value for at s, weighted by
the transition probability (instead of contributing thestto-go ats’). More formally, we define a
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modified Q-function when using added goal deletiQq,q(s, a, J) as follows:

1(s') 1, if fe (s’ —s)NG;isdeleted by an action in relaxgadan(s’,G;)°
S =
0, otherwise

Qaga(s,a,J) =Y T(s,a,8)[I(s)Vi + (1 - I(s)J(s)]

Qaga() then replaceg)() in the definition of the cost-to-go functios() in Section 3.2. Also,
“reachability” in line 8 of Table 2 does not use pruned traoss.

In some problems, subsequent deletion of newly added goalsavoidable for any valid plan.
Added goal deletion prunes all routes leading to the goabretpr such problems even though
no actual deadend is present. Hence, this is an incomplemitpie as discussed in the work
of Hoffmann and Nebel (2001). FF falls back to best-first sear DEH is not able to find a valid
plan due to pruning. Similarly, when unable to find an imprbpelicy, SEH falls back to either
value iteration or biased random walk as described in Se&ti8.

Preliminary exploration of incorporating stochastic aats of FF's helpful action pruning
(Hoffmann & Nebel, 2001) into SEH did not improve performanmuch like the effect of added
goal deletion on all domains except the blockswlrld\s a result, we do not report on helpful-
action-pruning methods here.

4. Related Work
4.1 Fast-Foward (FF) Planner and Deterministic Enforced Hil-Climbing

For an introduction to deterministic enforced hill-climbi (DEH) and its relation to our technique,
please see Section 3. Here, we additionally note that thierseaeral lines of work that directly ex-
tend the FF planner to allow planning with numeric statéal@es (Hoffmann, 2003) and planning
with uncertainty (Hoffmann & Brafman, 2006, 2005; Domshi&akHoffmann, 2007). Although
these techniques involve significant changes to the coriputaf the relaxed-plan heuristic and
the possible addition of the use of belief states to handtemainty, enforced hill-climbing is
still the primary search technique used in these lines okwdve note that although in the work
of Domshlak and Hoffmann (2007) actions with probabilististcome are handled, the planner
(Probabilistic-FF) is designed for probabilistic plangiwith no observability, whereas our planner
is designed for probabilistic planning with full obserJiipi

4.2 Envelope-based Planning Techniques

Stochastic enforced hill-climbing dynamically constsutdical MDPs to find a local policy leading
to heuristically better state regions. The concept of fagriocal MDPs, or “envelopes”, and using
them to facilitate probabilistic planning has been usedé@vious research such as the work of Bonet
and Geffner (2006), Dean et al. (1995), which we briefly nemiere.

The envelope-based methods in the work of Dean et al. (19@bardiol and Kaelbling (2003)
start with a partial policy in a restricted area of the prablghe “envelope”), then iteratively im-

5. relaxedplan(s’,GG;) computes the relaxed plan between stateand G; as defined in the work of Hoffmann and
Nebel (2001) using the all-outcomes problem determirdpadiefined in Section 2.2.

6. We explored ideas based on defining the helpfulness of #onao be the expectation of the helpfulness of its
deterministic outcomes.
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proves the solution quality by extending the envelope amomgputing the partial policy. The
typical assumption when implementing this method is thatlanner has an initial trajectory from
the starting state to the goal, generated by some stoclpdatiner, to use as the initial envelope.

Another line of work, including RTDP (Barto, Bradtke, & Simg1995), LAO* (Hansen &
Zilberstein, 2001), and LDFS (Bonet & Geffner, 2006), stavith an envelope containing only the
initial state, and then iteratively expands the envelopeXyanding states. States are expanded
according to state values and dynamic programming methedssad to backup state values from
newly added states, until some convergence criterion shexh Stochastic enforced hill-climbing
can be viewed as repeatedly deploying the envelope methbdhe goal, each time, of improving
on the heuristic estimate of distance-to-go. For a gofuhction, most invocations result in trivial
one-step envelopes. However, when local optima or plataeeigncountered, the envelope may
need to grow to locate a stochastically reachable set of.exit

All of the above referenced previous search methods hava@rcmted envelopes seeking a high
quality policy to the goal rather than our far more limitedlaelatively inexpensive goal of basin
escape. Our results derive from online greedy exploitatibthe heuristic rather than the more
expensive offline computation of converged values provingrall (near) optimality. LDFS, for
example, will compute/check values for at least all stag@gsmhable under the optimal policy (even
if given J* as input) and possibly vastly many others as well during tdmeputation.

Some of these previous methods are able to exploit propdiigch as admissibility) of the
heuristic function to guarantee avoiding state expansioaeme regions of the state space. Clearly,
SEH exploits the heuristic function in a way that can avoiganding regions of the statespace.
However, we have not at this point conducted any theoreticalysis of what regions can be guar-
anteed unexpanded for particular kinds of heuristic, art smalyses may be quite difficult.

4.3 Policy Rollout

The technique of “policy rollout” (Tesauro & Galperin, 1998ertsekas & Tsitsiklis, 1996) uses a
provided base policyr to make online decisions. The technique follows the polikeedy(V ™),
whereV™ is computed online by sampling simulations of the policy

The computation of the optimal heuristic-transform poligyin SEH has similarities to policy
rollout: in each case, online decisions are made by locdigiitistic analysis that leverages pro-
vided information to manage longer-range aspects of thed wwice. For SEH, a heuristic function
is provided while, for policy rollout, a base policy is prded. In this view, policy rollout does local
analysis under the assumption that non-local executiohusé the base policy, whereas SEH
does local analysis under the assumption that non-localutix@ will achieve the base heuristic
cost estimaté..

In fact, for our goal-oriented setting, when the providedrstic functionh is stochastic (a sim-
ple generalization of what we describe in this paper), antkip a sampled-simulation evaluation
of V™ for some policyr, then SEH executes the same policy as policy rollout, agsyimmiform
action costs and sufficient sampling to correctly order ttiea choices. This claim follows be-
cause whem = V7 there is always some action to yield an expected improveinénin one step,
in our goal-oriented setting. The need for uniform actiostsan this claim may be relaxed if a
variant of SEH is developed that retains action costs in éwistic transform.

In policy rollout, only horizon-one greedy use of the sardgheuristic is needed, but the main
substance of SEH is to enable the repair and use of heunstatibns with flaws that cannot be
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repaired at horizon one. Thus the central differences lerivilke techniques are reflected in the
ability of SEH to leverage arbitrary heuristic functiongdaepair flaws in those functions at larger
horizons.

Policy rollout provides an elegant guarantee that the erpinlicy selected improves on the base
policy, given sufficient sampling. This result follows iittvely because the computed policy is the
policy-iteration improvement of the base policy. Unforatgly, no similar guarantee is known to
apply for SEH for an arbitrary heuristic function. Howevaolicy rollout cannot be used to improve
an arbitrary heuristic function either.

4.4 Local Search in Optimization

Stochastic enforced hill-climbing can be regarded as omaanfy local-search techniques designed
to improve on greedy one-step lookahead, the most naive éblotal search optimization. Here
we briefly discuss connections to the method of simulate@alimy, one of a large family of related
local search techniques. For more detail, please see tHeokévarts and Lenstra (1997).

Simulated annealing (Kirkpatrick et al., 1983; Cerny, 198tows the selection of actions with
inferior expected outcome with a probability that is momatdn the action g-value. The probability
that an inferior action will be selected often starts higt dacreases over time according to a “cool-
ing” schedule. The ability to select inferior actions le#&mlgs non-zero probability of escaping local
optima. However, this method does not systematically $efmrca policy that does so. In contrast,
stochastic enforced hill-climbing analyzes a heurisasdd MDP at increasing horizons to system-
atically search for policies that give improved expecteldedhence leaving the local extrema). In
our substantial preliminary experiments, we could not finccessful parameter settings to control
simulated annealing for effective application to onlinéi@t selection in goal-directed stochastic
planning. To our knowledge, simulated annealing has naratise been tested on direct forward-
search action selection in planning, although variante leeen applied with some success to other
planning-as-search settings (Selman, Kautz, & Cohen, ;1R88tz & Selman, 1992; Gerevini &
Serina, 2003) such as planning via Boolean satisfiabiligyce

5. Setup for Empirical Evaluation

Here, we describe the parameters used in evaluating ourohethe heuristics we will test the
method on, the problem categories in which the tests willdreacted, the random variables for
aggregated evaluation, and issues arising in interprétiegesults and their statistical significance.
We run our experiments on Intel Xeon 2.8GHz machines with BiB& bus speed and 512KB
cache.

5.1 Implementation Details

If at any horizon increase no new states are reachable, @lementation of SEH simply switches
to an explicit statespace method to solve the MDP formed &dydhchable states. More specifically,
if the increase irk at line 3 in Table 2 does not lead to new reachable stateser8linve trigger
value iteration on the states reachable frgm

Throughout our experiments, the thresholds used to tetmioeal planning in line 12 of Table 2
are set al.5 x 10° states and one minute. We set the biased random walk lartgtten. This work
makes the assumption that the heuristic functions usegralssge values to easily recognized dead-
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ends, as hill-climbing works very poorly in the presence eadlend attractor states. We enforce
this requirement by doing very simple dead-end detectiameifront-end of each heuristic function
(described next in Section 5.2 for each heuristic) and asgigthe valuel.0 * 10° to recognized
dead-end states.

We denote this implementation running on heurigtiwith SEH(R).

5.2 Heuristics Evaluated

The Controlled-randomness FF heuristic For use in our evaluations, we define a domain-
independent heuristic function, the “controlled-randess FF heuristic” (CR-FF). We define CR-
FF on a states to be the FF distance-to-goal estimate (Hoffmann & Nebed12®f s computed
on the all-outcomes determinization as described in Se&id. We denote the resulting heuristic
function £'. While computing the CR-FF heuristic, we use the reachglahalysis built into the FF
planner for the detection of deadends.

Learned heuristics We also test stochastic enforced hill-climbing on autoosdlif generated
heuristic functions from the work of Wu and Givan (2010), @ion their own perform at the
state-of-the-art when used to construct a greedy policyshifé these heuristic functions to fit the
non-negative range requirement /ofdiscussed previously. These learned heuristic functioes a
currently available for only seven of our test categories] so are only tested in those categories.

We note that these heuristics were learned for a discourgithg without action costs and
so are not a direct fit to the “distance-to-go” formalizatadopted here. We are still able to get
significant improvements from applying our technique. Weale these heuristick. Only states
with no valid action choice available are labeled as deasleviten applying SEH to the learned
heuristics.

5.3 Goals of the Evaluation

Our primary empirical goal is to show that stochastic erdgdrtill-climbing generally improves
significantly upon greedy following of the same heuristisifg the policy Greedy:) as described
in the technical background above). We will show that thisug for both of the heuristics defined
in Section 5.2. We show empirically the applicability anditiation of SEH discussed in Section 1,
in different types of problems including probabilistigaihteresting ones (Little & Thiebaux, 2007).

A secondary goal of our evaluation is to show that for some lbeiristics the resulting per-
formance is strong in comparison to the deterministic remas FF-Replan (Yoon et al., 2007) and
RFF (Teichteil-Konigsbuch et al., 2010). While both FF-Repand RFF use the Fast-Forward (FF)
base planner, RFF uses a most-probable-outcome deteationizn contrast to the all-outcomes
determinization used by FF-Replan. The primary other gifiee between RFF and FF-Replan is
that before executing the plan, RFF grows policy trees tomiie the probability of having to
replan, while FF-Replan does not.

5.4 Adapting IPPC Domains for Our Experiments

We conduct our empirical evaluation using all problems fritra first three international proba-
bilistic planning competitions (IPPCs) as well as all tveetprobabilistically interesting” problems
from the work of Little and Thiebaux (2007). We omit some fmantar problems or domains from
particular comparisons for any of several practical reasdatailed in an online appendix.
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Because enforced hill-climbing is by nature a goal-oridrtechnique and SEH is formulated
for the goal-oriented setting, we ignore the reward stmec{including action and goal rewards)
in any of the evaluated problems and assume an uniform actienof one for those problems,
transforming any reward-oriented problem description @goal-oriented one.

We provide detailed per-problem results in an online appeiod each planner evaluated in this
work. However, in support of our main conclusions, we limit presentation here to aggregations
comparing pairs of planners over sets of related problenos.thts purpose, we define seventeen
problem categories and aggregate within each problemagted/hile some categories are single
domains, more generally, multiple closely related domairay be aggregated within a single cat-
egory. For example, the blocksworld category aggregatddaaksworld problems from the three
competitions, even though the action definitions are nattgxthe same in every such problem. For
some paired comparisons, we have aggregated the resultpafldems labeled as or constructed
to be “probabilistically interesting” by the IPPC3 orgaatiz or by the work of Little and Thiebaux
(2007) into a combined category PROBLEMS

In Table 3, we list all evaluated categories (including tbenbined category PPROBLEMS),
as well as the planning competitions or literature the mwid in each category are from. The
evaluated problems in each category are identified in am@lppendix.

The reward-oriented SSADMIN domain from IPPC3 was a stochastic longest-path problem
where best performance required avoiding the goal so asnince accumulating reward as long
as possible (Bryce & Buffet, 2008). (Note that contrary te tliganizers’ report, the domain’s goal
condition is “all servers up” rather than “all servers dowrQur goal-oriented adaptation removes
the longest-path aspect of the domain, converting it to aailemvhere the goal is to get all the
servers up.

The BLOCKSWORLD problems from IPPC2 contain flawed definitions that may |eaal block
stacking on top of itself. Nevertheless, the goal of thesblpms is well defined and is achievable
using valid actions, hence the problems are included in thed&SwWORLD category.

We have discovered that the five rectangle-tireworld proslgpll to p15 from IPPC3 2-
TIREWORLD) have an apparent bug—no requirement to remain “alive”dkigted in the goal con-
dition. The domain design provides a powerful teleportaactd non-alive agents intended only to
increase branching factor (Buffet, 2011). However, lagkinrequirement to be alive in the goal,
this domain is easily solved by deliberately becoming nibre@and then teleporting to the goal. We
have modified these problems to require the predicate “alivéhe goal region. We have merged
these modified rectangle-tireworld problems with triantjleworld problems from both IPPC3 and
the work of Little and Thiebaux (2007) into a categorySSEMATIC-TIRE, as these problems have
been systematically constructed to emphasize Pl features.

5.5 Aggregating Performance Measurements

For our experiments, we have designed repeatable aggregamirements that we can then sample
many times in order to evaluate statistical significance.ndi@ define the random variables repre-
senting these aggregate measurements and describe olinggonpcess, as well as our method for
evaluating statistical significance.
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Category Problem Source(s)
BLOCKSWORLD IPPC1, IPPC2, IPPC3
BOXWORLD IPPC1, IPPC3

BUSFARE Little and Thiebaux (2007)
DRIVE IPPC2

ELEVATOR IPPC2

EXPLODING BLOCKSWORLD

IPPCL1, IPPC2, IPPC3

FILEWORLD IPPC1

PITCHCATCH IPPC2

RANDOM IPPC2

RIVER Little and Thiebaux (2007)
SCHEDULE IPPC2, IPPC3

SEARCH AND RESCUE IPPC3

SYSADMIN IPPC3

SYSTEMATIC-TIRE

Triangle-tireworld (IPPC3 2-Tireworld P1 to P10, Littlecahiebaux (2007)),
Rectangle-tireworld (IPPC3 2-Tireworld P11 to P15) witlytixed

TIREWORLD IPPC1, IPPC2
TOWERS OFHANOI IPPC1
ZENOTRAVEL IPPC1, IPPC2

BUSFARE, DRIVE, EXPLODING BLOCKSWORLD
PITCHCATCH, RIVER, SCHEDULE, SYSTEMATIC-TIRE, TIREWORLD

Pl PROBLEMS

Table 3: List of categories and the planning competitiongiterature from which the problems in each
category are taken.
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5.5.1 DEFINING AND SAMPLING AGGREGATEMEASUREMENT RANDOM VARIABLES

For each pair of compared planners, we define four randomahlas representing aggregate per-
formance comparisons over the problems in each categogh EEmdom variable is based upon a
sampling process that runs each planner five times on allgarshin a category, and aggregates the
per-problem result by computing the mean. We use five-tuias$ to reduce the incidence of low-
success planners failing to generate a plan length conoparisach mean value from a five-trial run
is a sample value of the respective random variable.

First, the per-problem success ratio (SR) is the fractiotheffive runs that succeed for each
problem. The success ratio random variable for each categyd planner is then the mean SR
across all problems in the category.

Second, the per-problem successful plan length (SLengisan plan length of all successful
runs among the five runs. In order to compare two plannersamlphgth, we then define the per-
problem ratio of jointly successful plan lengths (JSLENTR®) for the two compared planners as
follows. If both planners have positive SR among the fivddraan the problem, JSLEN-RATIO is
the ratio of the SLen values for the two planners; otherwd§t,EN-RATIO is undefined for that
problem. We use ratio of lengths to emphasize small plarttetifferences more in short solutions
than in long solutions, and to decrease sensitivity to thawjarity of the action definitions.

The mean JSLEN-RATIO random variable for each category aidqgb planners is then the
geometric mean of the JSLEN-RATIO across all problems irctitegory for which JSLEN-RATIO
is well defined. In this manner we ensure that the two planme&rsompared on exactly the same set
of problems. Note then that, unlike SR, JSLEN-RATIO depemdthe pair of compared planners,
rather than being a measurement on any single planner;heisatio of successful plan length on
thejointly solvedproblems for the two planners.

Similarly, the per-problem ratio of jointly successful tumes (JSTIME-RATIO) is defined in
the same manner used for comparing plan lengths. The medMBESHATIO is again computed
as the geometric mean of well-defined per-problem JSTIMBIRA/alues.

Because JSLEN-RATIO and JSTIME-RATIO are ratios of two mieaments, we use the geo-
metric mean to aggregate per-problem results to generargls value, whereas we use arithmetic
mean for the SR variables. Note that geometric mean has #iedroperty that when the plan-
ners are tied overall (so that the geometric mean is onejntan is insensitive to which planner is
given the denominator of the ratio.

Thus, to draw a single sample of all four aggregate randorablass (SR for each planner,
JSLEN-RATIO, and JSTIME-RATIO) in comparing two planness run the two planners on each
problem five times, computing per-problem values for the fariables, and then take the (arith-
metic or geometric) means of the per-problem variables tmge sample of each aggregate vari-
able. This process is used repeatedly to draw as many saagpleseded to get significant results.

We use a plan-length cutoff of 2000 for each attempt. Ea@mygit is given a time limit of 30
minutes.

5.5.2 SGNIFICANCE OF PERFORMANCEDIFFERENCESBETWEEN PLANNERS

Our general goal is to order pairs of planners in overallgrentince on each category of problem.
To do this, we must trade off success rate and plan length.aWéethe position that a significant
advantage in success rate is our primary goal, with plantthenged only to determine preference
among planners when success rate differences are not fourgdsignificant.
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We determine significance for each of the three performaneasaorements (SR, JSLEN-
RATIO, and JSTIME-RATIO) using t-tests, ascribing sigrafice to the results when the p-value
is less than 0.05. The exact hypothesis tested and formest tised depends on the performance
measurement, as follows:

1. SR — We use a paired one-sided t-test on the hypothesiththdifference in true means is
larger than 0.02.

2. JSLEN-RATIO — We use a one-sample one-sided t-test onythethesis that the true geo-
metric mean of JSLEN-RATIO exceeds 1.05 (log of the true ni#a$LEN-RATIO exceeds
log(1.05)).

3. JSTIME-RATIO — We use a one-sample one-sided t-test orhyipothesis that the true
geometric mean of JSTIME-RATIO exceeds 1.05 (log of the tngan of JSTIME-RATIO
exceeddog(1.05)).

We stop sampling the performance variables when we haveathone of the following crite-
ria, representing “an SR winner is determined” or “SR appéad”:

1. Thirty samples have been drawn and the p-value for SReifte is below 0.05 or above 0.5.
2. Sixty samples have been drawn and the p-value for SR @ifteris below 0.05 or above 0.1.
3. One hundred and fifty samples have been drawn.

In all the experiments we present next, this stopping rddddo only 30 samples being drawn
unless otherwise mentioned. Upon stopping, we concludelkiangbetween the planners (naming a
“winner”) if either the SR difference or the JSLEN-RATIO hawalue below 0.05, with significant
SR differences being used first to determine the winner. ithae measure is significant upon
stopping, we deem the experiment inconclusive.

Combining categories For some of our evaluations, we aggregate results acrodfpladate-
gories of problem, e.g., the combined categoryPRbBLEMS In such cases, we have effectively
defined one larger category, and all our techniques for agfiperformance measurements and de-
termining statistical significance are the same as in Seétib. However, we do not actually re-run
planners for such combined-category measurements. thsteare-use the planner runs used for
the single-category experiments. Rather than use theistppyle just described, we compute the
maximum number of runs available in all the combined caiegaand use that many samples of
the combined-category performance measurements. To dwaidle counting problem results, we
treat combined categories separately when analyzing shitseand counting wins and losses.

6. Empirical Results

We present the performance evaluation of stochastic ezddndl-climbing (SEH) in this section.
The experiments underlying the results presented herb/et®9,850 planner runs in 17 categories.
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JSLEN- JSTIME- SR JSLEN-
SR of SR of RATIO  RATIO Difference RATIO )
Category SEH"(F) SEH(F) (SEH/  (SEH/ Significant?  Significant? ~ Winner
SEH")  SEH) (p-value) (p-value)

BLOCKSWORLD 0.93 0.72 1.58 2.85 YES(p=0.00) YES(p=0.00) SEH(F)

NON-BLOCKSWORLD 0.69 0.69 1.01 0.97 NO(p=1.00) NO(p=1.00) Inconclusive

Table 4: Aggregated comparison of SE(E") against SEHE).

6.1 Summary of Comparison

The results in Table 4 show that, for the CR-FF heuristic, $#tH the goal-ordering and added-
goal-deletion enhancements (SEH#’)) improves significantly over the baseline SEH technique
(SEH(F)) in the category BOoCKSWORLD, but does not show significant changes in the aggregated
performance for non-blocksworld problefng or the remainder of the experiments involving CR-
FF, we evaluate only SEHF), noting that both of our comparison planners (FF-ReplahRRF)
benefit from the goal-ordering and added-goal-deletioraroéments of their base planner, FF-
plan.

The results we present next for SEE) show:

e SEH'(F) significantly outperforms Greed) in 13 categories, but is outperformed by
Greedyf') in SCHEDULE. There were three categories where the comparison was-incon
clusive (BUSFARE, RIVER and TIREWORLD). See Table 5 for details.

e FF-Replan was inapplicable in two categories (IPPGRCH-AND-RESCUE and IPPC3
SYSADMIN). SEH'(F) significantly outperforms FF-Replan in 10 categories,ibuatutper-
formed by FF-Replan in three categorieXEODING BLOCKSWORLD, PITCHCATCH, and
ZENOTRAVEL). There were two categories where the comparison was ihcsine (FLE-
WORLD and RVER). SEH"(F) also significantly outperforms FF-Replan on the combined
category PIPROBLEMS although the winner varied between the aggregated césg@ee
Table 6 for details.

e RFF-BG was inapplicable in two categoriesy&AREand IPPC1 REWORLD). SEH"(F)
significantly outperforms RFF-BG in 12 categories, but ifpetdformed by RFF-BG in two
categories (EPLODING BLOCKSWORLD and SYSTEMATIC-TIRE). There was one category
where the comparison was inconclusiver §8DMIN). SEH™(F) also significantly outper-
forms RFF-BG on the combined categorydRoOBLEMS although the winner varied between
the aggregated categories. See Table 7 for details.

The “learned heuristic” from the work of Wu and Givan (201@&shbeen computed only in
a subset of the domains, hence only seven categories areaplfor the evaluation using the
learned heuristic (see an online appendix for details). rékalts we present next for SEH with the
learned heuristic, SEHY), show:

7. We show p-values rounded to two decimal places. For exama show p=0.00 when the value of p rounded to two
decimal places is 0.
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JSLEN- JSTIME- SR JSLEN-
SR of SR of RATIO RATIO Difference RATIO )
Category SEH"(F) Greedy) (Greedy/ (Greedy/ Significant?  Significant? ~ Winner
SEH")  SEH") (p-value) (p-value)

BLOCKSWORLD 0.93 0.35 1.40 0.63 YES(p=0.00) YES(p=0.00) SEH(F)
BOXWORLD 0.99 0.05 1.18 1.12  vYES(p=0.00) YES(p=0.00) SEH(F)
BUSFARE 1.00 0.99 0.85 0.86 NO(p=0.97) NO(p=0.21) Inconclusive
DRIVE 0.69 0.35 1.60 1.41 vYES(p=0.00) YES(p=0.00) SEH(F)
ELEVATOR 1.00 0.40 1.82 1.81 VYES(p=0.00) YES(p=0.00) SEH(F)
EXPLODING

0.44 0.18 1.01 0.63 =0.00 =0.93 SEH (F
BLOCKSWORLD vES (p ) No ) (F)
FILEWORLD 1.00 0.21 1.03 0.24 YES(p=0.00) NO(p=1.00) SEH(F)
PITCHCATCH 0.45 0.00 - - YES (p=0.00) - SEH(F)
RANDOM 0.99 0.94 1.76 0.59 YES(p=0.00) YES(p=0.00) SEH(F)
RIVER 0.66 0.67 0.97 0.98 NO(p=0.60) NO(p=0.75) Inconclusive
SCHEDULE 0.54 0.60 1.18 0.32 YES(p=0.00) YES(p=0.01) Greedyt)
SEARCH

1.00 1.00 1.23 1.08 =1.00 =0.00 SEH(F
AND RESCUE No(p ) ves(p ) (F)
SYSADMIN 0.27 0.27 1.21 1.23  NO(p=1.00) YES(p=0.00) SEH(F)
ZSTY;TEEMAT'C 0.29 0.21 1.03 0.72  YES(p=0.00) NO(p=0.86) SEH(F)
TIREWORLD 0.91 0.90 0.96 0.79 NO(p=0.93) NO(p=0.74) Inconclusive
TOWERS OF

0.53 0.00 - - =0.00 - SEH(F
HANO! YES(p ) (F)
ZENOTRAVEL 0.90 0.20 1.31 0.74 YES(p=0.00) YES(p=0.00) SEH(F)

Table 5: Aggregated comparison of SE(E") against Greedy{). The RVER domain evaluation required
extending sampling to 60 samples as per the experimentalqoiaescribed in Section 5.5.2. The values and
p-values of JSLEN-RATIO and JSTIME-RATIO in'lRCHCATCH and TOWERS OFHANOI are not available
due to the zero success ratio of Greddyin these categories.
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JSLEN- JSTIME- SR JSLEN-
SR of SR of RATIO RATIO Difference RATIO ]
Category SEH"(F) FF-Replan (FFR/ (FFR/ Significant?  Significant? ~ Winner
SEH"(F)) SEH"(F)) (p-value) (p-value)
BLOCKSWORLD 0.93 0.87 1.33 1.17 vYES(p=0.00) YES(p=0.00) SEH(F)
BOXWORLD 0.99 0.88 3.93 1.57 vYES(p=0.00) YES(p=0.00) SEH(F)
BUSFARE 1.00 0.01 0.00 0.00 YES(p=0.00) - SEH(F)
DRIVE 0.69 0.54 1.26 2.42  YES(p=0.00) VYES(p=0.00) SEH(F)
ELEVATOR 1.00 0.93 0.95 0.93  YES(p=0.00) NO(p=0.36) SEH(F)
Efg;‘;i'\/’:gRLD 0.44 0.44 0.85 056 NO(p=0.96) YES(p=0.00) FF-Replan
FILEWORLD 1.00 1.00 0.97 0.57 NO (p=1.00) NO(p=1.00) Inconclusive
PITCHCATCH 0.45 0.51 2.78 0.21  YES(p=0.00) YES(p=0.00) FF-Replan
RANDOM 0.99 0.96 1.37 0.19  YES(p=0.00) YES(p=0.00) SEH(F)
RIVER 0.66 0.65 0.94 0.93 NO (p=0.60) NO (p=0.33) Inconclusive
SCHEDULE 0.54 0.48 1.04 0.10  YES(p=0.00) NO(p=0.59) SEH(F)
-STY| iEMAT'C 0.29 0.07 0.36 0.38  YES(p=0.00) YES(p=0.00) SEH(F)
TIREWORLD 0.91 0.69 0.69 0.57 YES(p=0.00) VYES(p=0.00) SEH(F)
L%VEFS OF 0.59 0.50 0.64 0.06 YES(p=0.00) YES(p=0.00) SEH(F)
ZENOTRAVEL 0.90 1.00 0.70 0.10  YES(p=0.00) YES(p=0.00) FF-Replan
E;OBLEMS 0.55 0.45 1.02 054 YES(p=0.00) NO(p=1.00) SEH(F)

Table 6: Aggregated comparison of SE(”) against FF-Replan (FFR). TheaRbpomM and RVER domains

required extending sampling to 60 samples and the/ErRS OFHANOI domain required extending sampling
to 150 samples as per the experimental protocol describ®ddtion 5.5.2. The p-value of JISLEN-RATIO in
BUSFAREIs not available because the extremely low success rateR®ié&des to only one sample of JSLEN

being gathered in 30 attempts, yielding no estimated vegian

27



JSLEN- JSTIME- SR JSLEN-
SR of SR of RATIO RATIO Difference RATIO )
Category SEH'(F) RFF-BG (RFF-BG/ (RFF-BG/ Significant?  Significant? ~ Winner
SEH"(F)) SEHY(F)) (p-value) (p-value)

BLOCKSWORLD 0.93 0.77 0.79 0.22  YES(p=0.00) YES(p=0.00) SEH(F)
BOXWORLD 0.99 0.89 1.03 3.70  YES(p=0.00) NO(p=1.00) SEH(F)
DRIVE 0.69 0.61 1.07 1.24  vES(p=0.00) NO(p=0.08) SEH(F)
ELEVATOR 1.00 1.00 1.27 0.15 NO (p=1.00) YES(p=0.00) SEH(F)
EXPLODING 0.44 0.43 0.84 0.56  NO(p=0.92) YES(p=0.00) RFF-BG
BLOCKSWORLD
PITCHCATCH 0.45 0.00 - - YES (p=0.00) - SEH(F)
RANDOM 0.99 0.74 1.26 0.56  YES(p=0.00) YES(p=0.00) SEH(F)
RIVER 0.66 0.51 0.77 0.21  YES(p=0.00) YES(p=0.00) SEH(F)
SCHEDULE 0.54 0.43 1.06 0.08 YES(p=0.00) NO(p=0.40) SEH(F)
SEARCH

1.00 0.01 2.99 0.86 =0.00 =0.00 SEH (F
AND RESCUE vES(p ) YES(p ) (F)
SYSADMIN 0.27 0.27 1.10 9.31 NO (p=1.00) NO(p=0.05) Inconclusive
STY| ELEMAT'C 0.29 0.81 1.22 449  YEs(p=0.00) YES(p=0.00) RFF-BG
TIREWORLD 0.91 0.71 0.68 0.21  YvES(p=0.00) VYES(p=0.00) SEH(F)
Li‘:j’gfs OF 0.58 0.48 0.64 0.01 YES(p=0.03) YES(p=0.00) SEH(F)
ZENOTRAVEL 0.90 0.02 1.20 0.04 YES(p=0.00) NO(p=0.27) SEH(F)
PI

0.55 0.51 0.91 0.50 =0.00 =0.00 SEH(F
PROBLEMS vES(p ) YES(p ) (F)

Table 7: Aggregated comparison of SE{") against RFF-BG. The IRER and TOWERS OFHANOI do-

mains required extending sampling to 60 samples as per pgeiexental protocol described in Section 5.5.2.

The values and p-values of JSLEN-RATIO and JSTIME-RATIO indHCATCH are not available due to the
zero success ratio of RFF-BG in this category.
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JSLEN- JSTIME- SR JSLEN-
SR of SR of RATIO RATIO Difference RATIO )

Category SEH(L) Greedy() (Greedy/ (Greedy/ Significant?  Significant? ~ Winner

SEH) SEH) (p-value) (p-value)
BLOCKSWORLD 1.00 1.00 7.00 3.69 NO(p=1.00) YES(p=0.00) SEH()
BOXWORLD 0.89 0.89 5.00 0.55 NO(p=1.00) YES(p=0.00) SEH()
EXPLODING

0.10 0.02 1.09 1.00 =0.00 =0.31 SEH

BLOCKSWORLD vES(p ) Nop ) 0)
STY;TEEMAT'C 0.34 0.14 0.75 0.39 YES(p=0.00) YES(p=0.00) SEH()
TIREWORLD 0.90 0.89 1.05 1.05 nNO(p=0.92) NO(p=0.60) Inconclusive
TOWERS OF _ B
HANO! 0.60 0.00 - - YES (p=0.00) SEHL)
ZENOTRAVEL 0.58 0.03 13.25 5.66 YES(p=0.00) YES (p=0.00) SEHL)

Table 8: Aggregated comparison of SHH@gainst Greedy(). The values of JSLEN-RATIO and JSTIME-
RATIO and p-value of JSLEN-RATIO in 3WERS OFHANOI are not available due to the zero success ratio

of Greedy( ) in this category.

e SEH(L) significantly outperforms Greed¥] in six categories. There was one category

(TIREWORLD) where the comparison was inconclusive. See Table 8 foilsleta

e SEH(L) significantly outperforms FF-Replan in five categoried, iboutperformed by FF-
Replan in two categories (LODING BLOCKSWORLD and ZENOTRAVEL). See Table 9 for

details.

6.2 Discussion

We now discuss the results for comparisons between paitamfigrs, including SEH versus greedy
heuristic-following, SEH versus FF-Replan, and SEH veREE-BG.

6.2.1 SEH/SEH VERSUSGREEDY

Our primary evaluation goal was to show that stochasticrertbhill-climbing generally improves
significantly upon greedy following of the same heuristisifg the policy Greedy:) as described
in the technical background above). This was demonstratesvdluating SEH with two different
heuristics in Tables 5 and 8, where SEM§ignificantly outperforms Greedy) in nineteen out of
twenty-four heuristic/category pairs, only losing i€i9EDULE for SEH"(F) against Greedyy).
We now discuss the only category where Greedy outperfornkt8€hniques significantly.

In SCHEDULE, there are multiple classes of network packets with diffeegrival rates. Pack-
ets have deadlines, and if a packet is not served beforeatdlide, the agent encounters a class-
dependent risk of “death” as well as a delay while the packetdaned up. To reach the goal of
serving a packet from every class, the agent must minimgeibpping-related risk of dying while
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JSLEN- JSTIME- SR JSLEN-
SR of SR of RATIO RATIO Difference RATIO )

Category SEH(L) FF-Replan (FFR/ (FFR/ Significant?  Significant? ~ Winner

SEH(L)) SEH(L)) (p-value) (p-value)
BLOCKSWORLD 1.00 0.83 0.99 2.06 YES(p=0.00) NoO (p=1.00) SEH()
BOXWORLD 0.89 0.88 3.61 0.54 NO (p=0.97) YES(p=0.00) SEH()
EXPLODING

0.10 0.46 0.71 0.73 =0.00 =0.00 FF-Repl

BLOCKSWORLD vES(p ) YES(p ) eplan
STY| ELEMAT'C 0.34 0.10 0.28 0.18 YES(p=0.00) YES(p=0.00) SEHL)
TIREWORLD 0.90 0.70 0.66 0.51  YES(p=0.00) YES(p=0.00) SEHL)
L%VEFS OF 0.60 0.42 0.64 476  YES(p=0.00) YES(p=0.00) SEHL)
ZENOTRAVEL 0.58 1.00 0.58 0.03 YES(p=0.00) YES(p=0.00) FF-Replan

Table 9: Aggregated comparison of SHH@gainst FF-Replan (FFR).

waiting for an arrival in each low-arrival-rate class. ThHiecaitcomes determinization underlying
the CR-FF heuristic gives a deterministic domain definitidrere dying is optional (never chosen)
and unlikely packet arrivals happen by choice, leading tery wptimistic heuristic value. When

using a very optimistic heuristic value, the basic locallgifaSEH, which is to improve on the

current state heuristic, leads to building very large Idd®)Ps for analysis. In the presence of
dead-ends (“death”, as above), even arbitrarily largel lski2Ps may not be able to achieve a local
improvement, and so inGGHEDULE, SEH" will typically hit the resource limit for MDP size at

every action step.

In contrast, greedy local decision making is well suiteddoket scheduling. Many well known
packet scheduling policies (e.g. “earliest deadline fiost™static priority” in the work of Liu &
Layland, 1973) make greedy local decisions and are préigtigaite effective. In our experiments,
the Greedy policy applied to CR-FF benefits from locally segko avoid the incidental delays of
dropped-packet cleanup: even though the heuristic seeskofrdying cost to dropping, it still
recognizes the delay of cleaning up lost dropped packetsis,TGreedyk’) is a class-insensitive
policy that greedily seeks to avoid dropping, similar torfiest deadline first”. The problems
SEH encounters in our evaluation i SEDULE suggest future work in automatically recognizing
domains where large MDP construction is proving futile andbenatically reducing MDP size
limits to adapt performance towards the behavior of a grgedigy. We note that across all tested
benchmark domains and both heuristics, there is only oneggheuristic combination where this
phenomenon arose in practice.

6.2.2 SEH/SEH VERSUSFF-REPLAN AND RFF-BG

We have also demonstrated performance improvement off8EHover the best performing plan-
ners in the first three international probabilistic plamgnhaompetitions, outperforming FF-Replan in
ten out of fifteen categories while losing in threexC(EODING BLOCKSWORLD, PITCHCATCH, and
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ZENOTRAVEL), and outperforming RFF-BG in 12 out of 15 categories whikarlg in EXPLODING
BLockswoORLD and S'STEMATIC-TIRE. Additionally, SEH{) outperforms FF-Replan in five out
of seven categories while losing ikELODING BLOCKSWORLD and ZENOTRAVEL. In this section
we discuss the categories where SEH) and SEH() lose to FF-Replan and RFF-BG.

ZENOTRAVEL is a logistics domain where people are transported betwigies gia airplanes
and each load/unload/fly action has a non-zero probabilihaving no effect. As a result, it takes
an uncertain number of attempts to complete each task. Iraimhsnwhere the only probabilis-
tic effect is a choice between change and no change, thai@ibime determinization leads to a
“safe” determinized plan for FF-Replan—one in which no aeping is needed to reach the goal.
In such domains, including ZNOTRAVEL, all-outcomes determinization can provide an effective
way to employ deterministic enforced hill-climbing on theoplem. We note though though, that
determinization still ignores the probabilities on thei@attoutcomes, which can lead to very bad
choices in some domains (noEXOTRAVEL). While both deterministic and stochastic enforced
hill-climbing must climb out of large basins inERIOTRAVEL, the substantial overhead of stochas-
tic backup computations during basin expansion leads &aat b constant factor advantage for de-
terministic expansion. An extension to SEH that might aslsithis problem successfully in future
research would detect domains where the only stochasticelmbetween change and non-change,
and handle such domains with more emphasis on determinizati

EXPLODING BLOCKSWORLD is a variant of the blocks world with two new predicaibst-
onated anddestroyed Each block can detonate once, during put-down, with sorobgtrility,
destroying the object it is being placed upon. The statdtmegurom the action depicted in Fig-
ure 3 has a delete-relaxed path to the goal, but no actual pathis state is a dead-end attractor
for delete-relaxation heuristics such as CR-FF. FF-ReptdRFF-BG will never select this action
because there is no path to the goal including this actiornd'§E) with the weak dead-end de-
tection used in these experiments will select the deadrastiown, resulting in poor performance
when this situation arises. It would be possible to use @it@mes determinization as an improved
dead-end detector in conjunction with SEE") in order to avoid selecting such actions. Any such
dead-end detection would have to be carefully implementetinaanaged to control the run-time
costs incurred as SEH relies critically on being able to egufficiently large local MDP regions
during online action selection.

In PITCHCATCH, there are unavoidable dead-end states (used by the doswgndrs to simu-
late cost penalties). However, the CR-FF heuristic, bex#us based on all-outcomes determiniza-
tion, assigns optimistic values that correspond to asswameitiance of the dead-end states. As a
result, local search by SEHF) is unable to find any expected improvement on the CR-FF salue
and falls back to biased random walk in this domain. This dorsaggests, as do the other do-
mains where SEH(F') performs weakly, that further work is needed on managingalos with
unavoidable deadend states.

The two categories where SEH( loses to FF-Replan (B°LODING BLOCKSWORLD and
ZENOTRAVEL) are also categories where SE(’) loses to FF-Replan. Greedily following the
learned heuristics in these two categories leads to lonaress ratio than greedily following CR-
FF, suggesting more significant flaws in the learned hegsigtian in CR-FF. Although SEH is able
to give at least a five-fold improvement over greedy follogviin success ratio in these two cate-
gories, this improvement is not large enough for SEH( match the performance of SEKF) or
FF-Replan, both based on the relaxed-plan heuristic of FF.
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Figure 3: An illustration of a critical action choice of SEKF') in an EXPLODING BLOCKSWORLD problem
(IPPC2 P1). The middle state has no actual path to the godidsua delete-relaxed path to the goal. Due
to the table having been exploded, no block can be placedtbatable, resulting in the middle state being
a dead-end state. The middle state is a dead-end with aotatrheuristic value without regard to whether
the blocks shown have remaining explosive charge or nohisstate feature is not shown.

SEHT' loses to RFF in 8sTEMATIC-TIRE due to weak performance in Triangle Tireworld prob-
lems. Triangle Tireworld provides a map of connected lacetiarranged so that there is a single
“safe” path from the source to the destination, but expdabytmany shorter “unsafe” paths
Determinizing heuristics do not detect the risk in the uagaiths and so greedy following of such
heuristics will lead planners (such as SEHo take unsafe paths, lowering their success rate. While
our results above show that SEHan often repair a flawed heuristic, in the Triangle Tiredatb-
main the heuristic attracts SEHo apparent improvements that are actually dead-ends.

In contrast, RFF is designed to increase robustness forndigieed plans with a high proba-
bility of failure. RFF will continue planning to avoid suchifure rather than relying on replanning
after failure. Because the initial determinized plan haigh probability of failure (relative to RFF's
threshold), RFF extends the plan before execution and ¢an détect the need to use the longer,
safe route.

6.2.3 FERFORMANCE ONLARGE PROBLEMS

In order to demonstrate that the advantages of SEH are eimptiass problem size grows, we
present aggregated performance of S&H) on additional large-sized problems we have gener-
ated using generators provided by the first IPPC. As suclngcakperiments are computationally
very expensive, we have only run two domains that have beest widely evaluated in the plan-
ning literature: BockswoRLD and BoxwoRLD (which is a stochastic version of logistics). For
BLOCKSWORLD, we generated 15 problems each for 25- and 30-block problEoyBoXWORLD,

we generated 15 problems for the size of 20 cities and 20 b¢®esy one problem across the three
competitions reached this size iroBwORLD, and that problem was unsolved by the competition

8. The “safe” path can be drawn as following two sides of aagidar map, with many unsafe paths through the interior
of the triangle. Safety in this domain is represented by tiesgnce of spare tires to repair a flat tire that has 50%
chance of occurring on every step.
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SR of JSLEN- JSTIME- SR JSLEN-
SR of FE- RATIO RATIO Difference RATIO ]
Category SEH"(F) Replan  (FFR/ (FFR/ Significant?  Significant? ~ Winner
P SEHY)  SEHY) (p-value) (p-value)
BLOCKSWORLD 0.70 0.37 0.72 0.88 YES(p=0.00) YES(p=0.00) SEH(F)
BOXWORLD 0.67 0.34 5.02 0.98 YES(p=0.00) YES(p=0.00) SEH(F)

Table 10: Aggregated comparison of SE{#) against FF-Replan in scaled-up problems.

JSLEN- JSTIME-
SR JSLEN-
SRof SR ?RA,:T;_O ?RA,:T;_O Difference  RATIO _
Category SEHT(F) BG i G/ G/ Significant?  Significant? ~ Winner
SEHY) SEHY) (p-value) (p-value)
BLOCKSWORLD 0.70 0.33 0.46 0.14 YES(p=0.00) YEs(p=0.00) SEH(F)
BOXWORLD 0.67 0.00 0.88 10.81 YES(p=0.00) - SEH (F)

Table 11: Aggregated comparison of SE{#") against RFF-BG in scaled-up problems.

winner, RFF.) The aggregated results against FF-ReplarR&RdBG are presented in Tables 10
and 11. The experiments for these scaled-up problems caws@265 hours of CPU time and
show that SEF (F) successfully completed a majority of the attempts whileRefplan and RFF
succeeded substantially less often

Note that although the FF heuristic is very good am®voRLD and other logistics domains, the
failure of all-outcomes determinization to take into aauoilne probabilities on action outcomes is
quite damaging to FFR in 8XwWORLD, leading the planner to often select an action “hoping” fer i
low-probability “error outcome”. We note that RFF uses a syebable-outcome determinization
and will not suffer from the same issues as FFR in the boxwdddyen the high accuracy of the
FF heuristic in the boxworld, we believe that the ideas in R&FR likely be re-implemented and/or
tuned to achieve better scalability in the boxworld protdeiVe leave this possibility as a direction
for future work on understanding the scalability of RFF.

7. Summary

We have proposed and evaluated stochastic enforced imlbiclg, a novel generalization of the
deterministic enforced hill-climbing method used in tharpler FF (Hoffmann & Nebel, 2001).
Generalizing deterministic search for a descendant thstrictly better than the current state in
heuristic value, we analyze a heuristic-based MDP arougdcaal optimum or plateau reached at
increasing horizons to seek a policy that expects to exst MiDP with a better valued state. We

9. Our statistical protocol requires 30 samples of a randarnable averaging performance over 5 solution attempts, fo
each planner for each problem. With 45 problems and 3 plantigs yields 30*5*45*3=20,250 solution attempts,
each taking approximately 10 CPU minutes on these largdqrah
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have demonstrated that this approach provides substanfiabvement over greedy hill-climbing
for heuristics created using two different styles for hstizidefinition. We have also demonstrated
that one resulting planner is a substantial improvement B¥eReplan (Yoon et al., 2007) and
RFF (Teichteil-Konigsbuch et al., 2010) in our experiments

We find that the runtime of stochastic enforced hill-clindran be a concern in some domains.
One reason for the long runtime is that the number and sizecaf bptima basins or plateaus may
be large. Currently, long runtime is managed primarily byugng to biased random walk when
resource consumption exceeds user-set thresholds. Abjmssiure research direction regarding
this issue is how to prune the search space automaticallijabs/ @r action pruning.
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