
Stochastic Enforced Hill-Climbing

Jia-Hong Wu JW@ALUMNI .PURDUE.EDU

Institute of Statistical Science,
Academia Sinica, Taipei 115, Taiwan ROC
Rajesh Kalyanam RKALYANA @PURDUE.EDU

Robert Givan GIVAN @PURDUE.EDU

Electrical and Computer Engineering,
Purdue University, W. Lafayette, IN 47907, USA

Abstract
Enforced hill-climbing is an effective deterministic hill-climbing technique that deals with lo-

cal optima using breadth-first search (a process called “basin flooding”). We propose and evaluate
a stochastic generalization of enforced hill-climbing foronline use in goal-oriented probabilis-
tic planning problems. We assume a provided heuristic function estimating expected cost to the
goal with flaws such as local optima and plateaus that thwart straightforward greedy action choice.
While breadth-first search is effective in exploring basinsaround local optima in deterministic prob-
lems, for stochastic problems we dynamically build and solve a heuristic-based Markov decision
process (MDP) model of the basin in order to find a good escape policy exiting the local optimum.
We note that building this model involves integrating the heuristic into the MDP problem because
the local goal is to improve the heuristic.

We evaluate our proposal in twenty-four recent probabilistic planning-competition benchmark
domains and twelve probabilistically interesting problems from recent literature. For evaluation,
we show that stochastic enforced hill-climbing (SEH) produces better policies than greedy heuristic
following for value/cost functions derived in two very different ways: one type derived by using
deterministic heuristics on a deterministic relaxation and a second type derived by automatic learn-
ing of Bellman-error features from domain-specific experience. Using the first type of heuristic,
SEH is shown to generally outperform all planners from the first three international probabilistic
planning competitions.

1. Introduction

Heuristic estimates of distance-to-the-goal have long been used in deterministic search and deter-
ministic planning. Such estimates typically have flaws suchas local extrema and plateaus that limit
their utility. Methods such as simulated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983; Cerny,
1985) and A* (Nilsson, 1980) search have been developed for handling flaws in heuristics. More
recently, excellent practical results have been obtained by “flooding” local optima using breadth-first
search. This method is called “enforced hill-climbing” (Hoffmann & Nebel, 2001).

Deterministic enforced hill-climbing (DEH) is proposed inthe work of Hoffmann and Nebel
(2001) as a core element of the successful deterministic planner Fast-Forward (FF). DEH is an
extension of the basic “hill-climbing” approach of simply selecting actions greedily by looking
ahead one action step, and terminating when reaching a localoptimum. DEH extends basic hill-
climbing by replacing termination at local optima with breadth-first search to find a successor state
with strictly better heuristic value. The planner then moves to that descendant and repeats this

1



process. DEH is guaranteed to find a path to the goal if the problem itself is deadend-free (so that
every state has such a path). While that relatively weak guarantee applies independent of the quality
of the heuristic function, the intent of DEH is to remediate flaws in a generally accurate heuristic
in order to leverage that heuristic in finding short paths to the goal. In domains where the basin
size (search depth needed to escape any optimum) is bounded,DEH can provide a polynomial-time
solution method (Hoffmann, 2005).

Enforced hill-climbing is not defined for probabilistic problems, due to the stochastic outcomes
of actions. In the presence of stochastic outcomes, finding descendants of better values no longer
implies the existence of a policy that reaches those descendants with high probability. One may ar-
gue that FF-Replan (Yoon, Fern, & Givan, 2007)—a top performer for recent probabilistic planning
benchmarks—uses enforced hill-climbing during its call toFF. However, the enforced hill-climbing
process is used on a determinized problem, and FF-Replan does not use any form of hill climbing
directly in the stochastic problem. In fact, FF-Replan doesnot consider the outcome probabilities
at all.

One problem to consider in generalizing enforced hill-climbing to stochastic domains is that the
solution to a deterministic problem is typically concise, asequential plan. In contrast, the solution
to a stochastic problem is a policy (action choice) for all possibly reached states. The essential
motivation for hill-climbing is to avoid storing exponential information during search, and even the
explicit solution to a stochastic problem cannot be directly stored while respecting this motivation.
For this reason, we limit consideration to the online setting, where the solution to the problem is a
local policy around the current state. After this local policy is committed to and executed until the
local region is exited, the planner then has a new online problem to solve (possibly retaining some
information from the previous solution). Our approach generalizes directly to the construction of
offline policies in situations where space to store such policies is available. Note that, in contrast,
deterministic enforced hill-climbing is easily implemented as an offline solution technique.

We propose a novel tool for stochastic planning by generalizing enforced hill-climbing to goal-
based stochastic domains. Rather than seeking a sequence ofactions deterministically leading to a
better state, our method uses a finite-horizon MDP analysis around the current state to seek apolicy
that expects to improve on the heuristic value of the currentstate. Critical to this process is the direct
incorporation of both the probabilistic model and the heuristic function in finding the desired policy.
Therefore, for the finite-horizon analysis, the heuristic function is integrated into the MDP problem
in order to represent the temporary, greedy goal of improving on the current heuristic value. This
integration is done by building a novel “heuristic-based MDP” in which any state has a new “exit”
action available that terminates execution with cost equalto the heuristic estimate for that state, and
all other action costs are removed1. In a heuristic-based MDP, finite-horizon policies are restricted
by a requirement that at horizon one, the exit action must be selected (but can also be selected at
other horizons). In this heuristic-based MDP, the cost of any policy π at a states is the expected
value of the heuristic upon exit (or horizon) ifπ is executed froms.

Thus, we find the desired local policy using value iteration on the heuristic-based MDP around
the current state, with deepening horizon, until a policy isfound with cost improving on the heuristic
estimate at the current state. The restriction of selectingthe exit action at horizon one corresponds
to initializing value iteration with the provided heuristic function. When such a policy is found, the

1. The motivation for the removal of action costs in the heuristic-based MDP is discussed in Section 3.2.

2



method executes the policy until an exiting action is indicated (or to the horizon used in computing
the policy).

The resulting method, stochastic enforced hill-climbing (SEH), simply generalizes depth-k
breadth-first search for a state with improved heuristic value (from DEH) to ak-horizon value iter-
ation computation seeking a policy that expects improvement in heuristic value. Note that although
stochastic enforced hill-climbing is an explicit statespace technique, it can be suitable for use in as-
tronomically large statespaces if the heuristic used is informative enough to limit the effective size
of the horizonk needed to find expected heuristic improvement. Our empirical results in this work
demonstrate this behavior successfully.

Applicability and limitations Stochastic enforced hill-climbing (SEH) can be applied to any
heuristic function. However, the applicability (and likewise the limitations) of SEH greatly depends
on the characteristics of the heuristic function. SEH is appropriate in any goal-oriented problem
given a strong enough heuristic function, and we demonstrate empirically that SEH generally out-
performs greedy following of the same heuristic for a variety of heuristics in a variety of domains,
even in presence of probabilistically interesting features (Little & Thiebaux, 2007) and deadends.
SEH can rely upon the heuristic function for identification of dead-ends and appropriate handling
of probabilistically interesting features that require non-local analysis—SEH simply provides local
search that often can correct other flaws in the heuristic function. SEH is thus intended as a possible
improvement over stochastic solution methods that construct a cost-to-go (cost) function and follow
it greedily when using the constructed cost function as a search heuristic. Many methods for con-
structing value/cost functions have been proposed and evaluated in the literature, all of which can
potentially be improved for goal-based domains by using SEHin place of greedy following (Sutton,
1988; Fahlman & Lebiere, 1990; Bertsekas, 1995; Gordon, 1995; Mahadevan & Maggioni, 2007;
Sanner & Boutilier, 2009)2. We prove the correctness of SEH in Section 3.4 by showing that in
deadend-free domains, SEH finds the goal with probability one (i.e. SEH does not get stuck in local
optima).

While SEH is a search technique that leverages a heuristic estimate of distance to go, it must
be emphasized that, unlike many other such search techniques, SEH makes no promises about the
optimality of the solution path found. SEH is a greedy, localtechnique and can only promise to
repeatedly find a policy that reduces the heuristic value, and only when that is possible. As such,
SEH is an inappropriate technique for use when optimal solutions are required.

Stochastic enforced hill-climbing can be ineffective in the presence of huge plateaus or valleys
in the heuristic functions, due to extreme resource consumption in finding desired local policies.
Heuristic functions with huge plateaus result from methodsthat have failed to find any useful infor-
mation about the problem in those state regions. SEH is inappropriate as the only tool for solving
a stochastic planning problem—other tools are needed to construct a useful heuristic function that
manages deadends and avoids huge plateaus. This weakness mirrors the weakness of enforced hill-
climbing in deterministic domains. SEH can also fail to find the goals when avoidable dead-ends
are present but not recognized early enough by the heuristic. In fact, effective dead-end detection is
a central goal in heuristic design when any greedy techniquewill be applied to the heuristic.

2. For applicability of SEH, a cost function must be non-negative and must identify goals by assigning zero to a state if
and only if it is a goal state; however, more general value/cost functions can be normalized to satisfy these require-
ments.

3



Further insight into the usefulness of SEH can be gained by comparison with recent determiniz-
ing replanners. As mentioned above, one way to exploit deterministic planning techniques such as
DEH for stochastic problems is to determinize the planning problem and use a deterministic plan-
ner to select an action sequence. Executing this action sequence in the problem is not guaranteed
to reach the goal due to the determinization approximation,so replanning is needed to augment
this technique. In this paper, we call stochastic planners that use this technique “determinizing re-
planners”. Determinizing replanners using a determinization (called “all outcomes”) that retains
all possible state transitions can be shown to reach the goalwith probability one in the absence of
dead-end states.

In contrast to determinizing replanners, SEH at no point relies on any determinization of the
problem, but instead analyzes increasing-size local probabilistic approximations to the problem.
SEH conducts a full probabilistic analysis within the horizon, seeking the objective of reducing the
provided heuristic, using value iteration. In this way, SEHleverages the probabilistic parameters
that are ignored by determinizing replanners, as well as theprovided heuristic function, which can
be based upon substantial probabilistic analysis. As a result, SEH successfully handles probabilistic
problem aspects that cause major problems for determinizing replanners. However, at this point,
we have no theoretical results characterizing its gains over determinizing replanners. Instead, we
have an extensive empirical evaluation showing advantagesover FF-Replan (Yoon et al., 2007)
and RFF (Teichteil-Konigsbuch, Kuter, & Infantes, 2010) (two determinizing replanners), as well
as substantial gains compared to greedy following of the heuristic (which also uses the transition
probability parameters).

Evaluation We test SEH on a broad range of domains from the first three international proba-
bilistic planning competitions (as well as the “probabilistically interesting” domains from the work
of Little & Thiebaux, 2007), using two very different methods to generate heuristic functions. First,
we test SEH on a heuristic function based on the ideas of the successful re-planner FF-Replan (Yoon
et al., 2007). This new “controlled-randomness FF (CR-FF) heuristic” is the deterministic FF heuris-
tic (Hoffmann & Nebel, 2001) computed on the simple determinization of the probabilistic problem
that makes available a deterministic transition wherever aprobabilistic transition was possible. We
note that FF-Replan itself does not use this (or any) heuristic function in the stochastic problem.
Instead, FF-Replan relies on FF to construct a plan in the deterministic problem, and these calls to
FF in turn use deterministic enforced hill-climbing with exactly this heuristic. Here, we consider
the performance of this heuristic directly in the stochastic problem, comparing greedy heuristic-
following with SEH-based search around the heuristic. The latter method using SEH constitutes a
novel method for combining determinization (that removes the probabilistic parameters) with proba-
bilistic reasoning. Our experiments show that this new method substantially outperforms FF-Replan
across our broad evaluation.

We have also performed a second evaluation of our technique on heuristic functions learned
from domain-specific experience by the relational feature-learning method presented in the work
of Wu and Givan (2007, 2010). These heuristic functions havealready been shown to give good
performance when used to construct a simple greedy policy, and are further improved by SEH.

The SEH technique can be seen to perform well in a domain-by-domain analysis across the
broad set of competition planning domains, and full domain-by-domain results are available in an
online appendix. However, to compress and summarize the extensive per-problem results, we have
divided all the evaluation domains into experimenter-defined “categories” and have aggregated per-

4



formance measurement within each problem category. While some categories are single domains,
more generally, multiple closely related domains may be aggregated within a single category. For
example, multiple domains from the competitions have been variants of the “blocks world”, and
problems in these domains are aggregated as a BLOCKSWORLD category.

In order to fairly compare SEH with FF-based planners (such as RFF, as described in Teichteil-
Konigsbuch et al., 2010, and FF-Replan) that exploit the blocksworld-targeted planning heuristics
“added goal deletion” and “goal agenda”, we have provided these heuristics as extensions to SEH.
The resulting planner is called SEH+, described in detail in Section 3.6. Our results show that SEH+

performs nearly identically to SEH on non-blocksworld categories when using the CR-FF heuristic.
We employ these extensions when comparing SEH with the CR-FFheuristic to other planners.

Using experimenter-defined categories, we are able to show that SEH exploits the heuristic
functions more effectively than greedy following of the heuristic. SEH statistically significantly
outperforms greedy following in thirteen out of seventeen categories using the CR-FF heuristics
while losing in one category. SEH also outperforms greedy following in six out of seven cate-
gories using the learned heuristics. (In both cases, the other categories showed similar performance
between the compared planners.)

We show that SEH+, when using the CR-FF heuristics, outperforms FF-Replan onten out of
fifteen categories, with similar performance on two more categories, losing on only three categories.
Our aggregate results show that SEH+ (using the CR-FF heuristics) has a particularly strong perfor-
mance advantage over FF-Replan in “probabilistically interesting” categories (Little & Thiebaux,
2007).

Finally, we compare the performance of SEH+ against that of RFF-BG (Teichteil-Konigsbuch
et al., 2010), one winner of the fully-observable track of the third international probabilistic plan-
ning competition. SEH+ outperforms RFF-BG on twelve out of fifteen categories, withsimilar
performance on one more category, losing on only two categories.

In summary, our empirical work demonstrates that SEH provides a novel automatic technique
for improving on a heuristic function using limited searches, and that simply applying SEH to
reasonable heuristic functions produces a state-of-the-art planner.

2. Technical Background: Markov Decision Processes

We give a brief review of Markov decision processes (MDPs) specialized to goal-region objectives.
For more detail on MDPs, see the work of Bertsekas (1995), Puterman (2005), and Sutton and Barto
(1998).

2.1 Goal-oriented Markov Decision Processes

A Markov decision process (MDP)M is a tuple(S,A,C, T, sinit). Here,S is a finite state space
containing initial statesinit , andA selects a non-empty finite available action setA(s) for each state
s in S. The action-cost functionC assigns a non-negative real action-cost to each state-action-state
triple (s, a, s′) where actiona is enabled in states, i.e., a is in A(s). The transition probability
function T maps state-action pairs(s, a) to probability distributions overS, P(S), wherea is in
A(s).

To represent the goal, we include inS a zero-cost absorbing state⊥, i.e., such thatC(⊥, a, s) =
0 andT (⊥, a,⊥) = 1 for all s ∈ S anda ∈ A(⊥). Goal-oriented MDPs are MDPs where there is
a subsetG ⊆ S of the statespace, containing⊥, such that: (1)C(g, a, s′) is zero wheneverg ∈ G

5



and one otherwise, and (2)T (g, a,⊥) is one for allg ∈ G and alla ∈ A(g). The setG can thus be
taken to define the action-cost functionC, as well as constrain the transition probabilitiesT .

A (stochastic)policy for an MDPπ : S × N → P(A) specifies a distribution over actions for
each state at each finite horizon. The cost-to-go functionJπ(s, k) gives the expected cumulative
cost for k steps of execution starting at states selecting actions according toπ() at each state
encountered. For any horizonk, there is at least one (deterministic) optimal policyπ∗(·, k) for
which Jπ∗

(s, k), abbreviatedJ∗(s, k), is no greater thanJπ(s, k) at every states, for any other
policy π. The following “Q function” evaluates an actiona by using a provided cost-to-go function
J to estimate the value after actiona is applied,

Q(s, a, J) =
∑

s′∈S

T (s, a, s′)[C(s, a, s′) + J(s′)].

Recursive Bellman equations useQ() to describeJ∗ andJπ as follows:

Jπ(s, k) = E [Q(s, π(s, k), Jπ(·, k − 1))] and

J∗(s, k) = min
a∈A(s)

Q(s, a, J∗(·, k − 1)),

taking the expectation over the random choice made by the possibly stochastic policyπ(s, k). In
both cases, the zero step cost-to-go function is zero everywhere, so thatJ∗(s, 0) = Jπ(s, 0) = 0
for all s. Value iterationcomputesJ∗(s, k) for eachk in increasing order starting at zero. Note that
when a policy or cost function does not depend onk, we may dropk from its argument list.

Also usingQ(), we can select an action greedily relative to any cost function. The policy
Greedy(J) selects, at any states and horizonk, a uniformly randomly selected action from
argmina∈A(s)Q(s, a, J(·, k − 1)).

While goal-based MDP problems can be directly specified as above, they may also be specified
exponentially more compactly using planning languages such as PPDDL (Younes, Littman, Weiss-
man, & Asmuth, 2005), as used in our experiments. Our technique below avoids converting the
entire PPDDL problem explicitly into the above form, for resource reasons, but instead constructs a
sequence of smaller problems of explicit MDP form modeling heuristic flaws.

A dead-end stateis a state for which every policy has zero probability of reaching the goal at any
horizon. We say that a policyreaches a region of states with probability oneif following that policy
to horizonk has a probability of entering the region at some point that converges to one ask goes to
infinity. We saydead-ends are unavoidablein a problem whenever there is no policy fromsinit that
reaches the goal region with probability one. (We then say a domain has unavoidable dead-ends if
any problem in that domain has unavoidable dead-ends.) We note that greedy techniques such as
hill-climbing can be expected to perform poorly in domains that have dead-end states with attractive
heuristic values. Application of SEH thus leaves the responsibility for detecting and avoiding dead-
end states in the design of the heuristic function.

A heuristich : S →Rmay be provided, intended as an estimate of the cost functionJ for large
horizons, withh(s) = 0 for s ∈ G, andh(s) > 0 otherwise. The heuristic may indicate dead-end
states by returning a large positive valueV⊥ which we assume is selected by the experimenter to
exceed the expected steps to the goal from any state that can reach the goal. In our experiments, we
add trivial, incomplete dead-end detection (described in Section 5.2) to each heuristic function that
we evaluate.

6



We note that some domains evaluated in this paper do contain unavoidable deadends, so that
there may be no policy with success ratio one. The choice of the large value used for recognized
dead-end states effects a trade-off between optimizing success ratio and optimizing expected cost
incurred to the goal when successful.

2.2 Determinizing Stochastic Planning Problems

Some stochastic planners and heuristic computation techniques, including some used in our exper-
iments, rely on computing deterministic approximations ofstochastic problems. One such planner,
the all-outcomes FF-Replan (Yoon et al., 2007), determinizes a stochastic planning problem and
invokes the deterministic planner FF (Hoffmann & Nebel, 2001) on the determinized problem. The
determinization used in FF-Replan is constructed by creating a new deterministic action for each
possible outcome of a stochastic action while ignoring the probability of that outcome happen-
ing. This effectively allows the planner to control the randomness in executing actions, making
this determinization a kind of relaxation of the problem. InSection 5.2, we define a domain-
independent heuristic function, the “controlled-randomness FF heuristic” (CR-FF), as the determin-
istic FF heuristic (Hoffmann & Nebel, 2001) computed on the all-outcomes FF-Replan determiniza-
tion of the probabilistic problem3. A variety of relaxations have previously been combined with a
variety of deterministic heuristics in order to apply deterministic planning techniques to stochas-
tic problems (Bonet & Geffner, 2005). More generally, deterministic relaxations provide a general
technique for transferring techniques from deterministicplanning for use in solution of stochastic
problems.

3. Stochastic Enforced Hill-Climbing

Deterministic enforced hill-climbing (DEH) (Hoffmann & Nebel, 2001) searches for a successor
state of strictly better heuristic value and returns a path from the current state to such a successor.
This path is an action sequence that guarantees reaching thedesired successor. We illustrate the
behavior of DEH as compared to greedy policy using the example in Figure 1. In a stochastic
environment, there may be no single better descendant that can be reached with probability one,
since actions may have multiple stochastic outcomes. If we simply use breadth-first search as in
DEH to find a single better descendant and ignore the other possible outcomes, we might end up
selecting an action with very low probability of actually leading to any state of better heuristic value,
as illustrated in Figure 2. As shown in this figure, our algorithm, stochastic enforced hill-climbing
(SEH), accurately analyzes the probabilistic dynamics of the problem of improving the heuristic
value.

In this section, we give details of SEH. We note that in DEH, the local breadth-first search
gives a local policy in a state region surrounding the current state in a deterministic environment.
The value of following this policy is the heuristic value of the improved descendant found during
breadth-first search. In SEH, we implement these same ideas in a stochastic setting.

We present SEH in two steps. First, we present a simple general framework for online plan-
ning that repeatedly calls a “local” planner that selects a policy around the current state. Second,

3. The deterministic FF heuristic, described in the work of Hoffmann and Nebel (2001), from FF planner version 2.3
available at http://www.loria.fr/˜hoffmanj/ff.html, efficiently computes a greedy plan length in a problem relaxation
where state facts are never deleted. The plan found in the relaxed problem is referred to as a “relaxed plan” for the
problem.

7



h = 8

h = 7
h = 8

h = 6

h = 10

h = 0

h = 5

h = 7

(a) Behavior of greedy policy.

h = 8

h = 7 h = 8

h = 6

h = 10

h = 0

h = 5

h = 7

(b) Behavior of DEH.

Figure 1: Comparison between the behavior of DEH and greedy policy when a local optimum is encoun-
tered. The solid black circle represents the current state,and the shaded circle represents the goal state (with
heuristic value zero). In (a) the greedy policy keeps selecting actions indicated by the wide arrow and cannot
reach the goal state. On the other hand, DEH uses breadth-first search and finds the goal state that is two
steps away from the current state, as shown in (b).

h = 8

h = 7

h = 6 h = 10

h = 2

h = 5

h = 7

p =0.2

p =0.8
h = 0

(a) Behavior of DEH in stochastic environments.

h = 8

h = 7

h = 6 h = 10

h = 2

h = 5

h = 7

p =0.2

p =0.8
h = 0

(b) Behavior of SEH in stochastic environments.

Figure 2: Comparison between the behavior of SEH and DEH in a stochastic example. We assume DEH first
determinizes the problem, creating one deterministic action for each possible stochastic outcome. The solid
black circle represents the current state, and the shaded circle represents the goal state (with heuristic value
zero). In (a) DEH looks one step ahead and selects the action drawn with double lines, as one of the outcomes
leads to a state withh = 2, which is better than the current state. However, this action choice has a higher
probability of going to the state withh = 10 than the one withh = 2. In (b) SEH first decides there is no
policy with better value than5 when the horizon in the MDP only includes states reachable from the current
state in one step. SEH then extends the horizon to two so that all states are considered. It then selects the
actions indicated in the wide arrows that lead to the goal state.

8



Online Planning using a Local Planner

1. Repeat
2. s← current state
3. πlocal← Find-Local-Policy(s,h)
4. Followπlocal until a⊥ is selected
5. Until the goal is reached

Table 1: Pseudo-code for an online planning framework. The policy πlocal may be non-stationary, in which
case the local planner also returns the initial horizon for execution of the policy and termination in line 4 can
also happen by reaching that specified horizon.

we present a local planner based on the enforced hill-climbing idea. When the online planning
framework is instantiated with this local planner, the resulting algorithm is SEH. The combination
of these two steps constitute the central algorithmic contribution of this paper. Finally, we present
some analytical properties of our algorithm.

3.1 A Simple Online Planning Framework

A familiar direct approach to online planning is to call the planner at the current state and have the
planner select an action. That action is then executed in theenvironment, resulting in a new current
state. This process can then be repeated.

Here, we present a simple generalization of this approach that allows the planner to select more
than one action during each call, before any action is executed. The idea is that the planner makes a
plan for the local context surrounding the current state, and then that plan is executed until the local
context is exited. When the local context is exited, we have anew current state and the process is
repeated.

More formally, we augment the action space with a new “terminate” action (calleda⊥), indicat-
ing that the planned-for local context has been exited. We then define alocal policy around a state
s to be a partial mapping from states to the augmented action space that is defined ats and at every
state reachable froms under the policy4. An online planner can then be built by repeatedly seeking
and executing a local policy around the current state using aplanning subroutine. The local policy
is executed until the terminate action is called (which has no effect on the state), at which point a
new local policy must be sought. These ideas are reflected in the pseudo-code shown in Table 1.

We note that the notion of “local context” in our discussion here is informal — the precise
notion is given by the use of the “terminate” action. A local policy is executed until it selects the
“terminate” action. TheFind-Local-Policy routine is free to use any method to decide when a state
will be assigned the terminate action. Previously published envelopemethods (Dean, Kaelbling,
Kirman, & Nicholson, 1995) provide one way to address this issue, so that termination will be
assigned to every state outside some “envelope” of states. However, this framework is more general
than envelope methods, and allows for local policies that are not selected based upon pre-existing
envelopes of states (though we can always, post-planning, interpret the set of reachable states as
an envelope). The general intuition is that selecting the action for the current states may involve

4. The local policy returned can be non-stationary and finitehorizon, but must then select the terminate action at the
final stage, in all reachable states.

9



analysis that is sufficient to select actions for many surrounding states, so our framework allows the
Find-Local-Policy routine to return a policy specifying all such action selections.

Also, we note that this online planning framework includes recent re-planners such as FF-
Replan (Yoon et al., 2007) and RFF (Teichteil-Konigsbuch etal., 2010). However, replanning
because the current plan failed (e.g. because the determinization used to generate it was naive)
is quite different in character from SEH, which constructs plans to improve the heuristic value, and
replans each time such a plan terminates. Thus, SEH uses the heuristic function to define subgoals
and plan for the original goal incrementally.

It remains to present the local planner we combine with this online planning framework to
define stochastic enforced hill climbing. Our local planneranalyzes the MDP problem around the
current state, but with the heuristic function integrated into the problem so as to embody the subgoal
of improving on the heuristic value of the current state. We describe this simple integration of the
heuristic function into the problem next, and then discuss the local planner based on this integration.

3.2 Heuristic-based Markov Decision Processes

Our method relies on finite horizon analyses of a transformedMDP problem, with increasing hori-
zons. We transform the MDP problem with a novelheuristic achievement transformbefore analysis
in order to represent the goal of finding and executing a policy that expects to improve on the initial
(current) state’s heuristic value.

The heuristic achievement transform is very straightforward, and applies to any goal-oriented
MDP problem. First, all action costs are removed from the problem. Second, the “terminate” action
a⊥ is assigned the action costh(s) and transitions deterministically to the absorbing state⊥. When
a policy is executed, the selection of the actiona⊥ at any state will result in replanning, as discussed
in the online planning framework just presented. The actions a⊥ can be thought of as “heuristic
achievement” actions, allowing the immediate achievementof the value promised by the heuristic
function.

Analyzing the MDP transformed by the heuristic achievementtransform at a finite horizon
arounds0 represents the problem of finding a policy for improving on the heuristic value ofs0
without regard to the cost of achieving such improvement in the heuristic. Allowing the heuristic
achievement actiona⊥ to be selected at any point at any state reflects the greedy nature of this goal:
the planner is not forced to look further once an improvementis found, so long as there is a policy
from the initial state that expects to see improvement.

Formally, given MDPM = (S,A,C, T, s0) and non-negative heuristic functionh : S → R, the
heuristic achievement transform ofM underh, writtenMh, is given by(S,A′, C ′, T ′, s0), where
A′, C ′, andT ′ are as follows. Lets, s1, ands2 be arbitrary states fromS. We defineA′(s) to be
A(s) ∪ {a⊥}, and we takeC ′(s1, a, s2) = 0 andT ′(s1, a, s2) = T (s1, a, s2) for eacha ∈ A(s1).
Finally, we defineT ′(s, a⊥,⊥) = 1 andC ′(s, a⊥,⊥) = h(s).

The transformed MDP will have zero-cost policies at all states, and as such is not of imme-
diate use. However, policies that are required to selecta⊥ as their final action (at horizon one)
represent policies that are seeking to get to regions with low heuristic value, whatever the cost.
An increasing-horizon search for such policies corresponds roughly to a breadth-first search for an
improved heuristic value in deterministic enforced hill-climbing. Formally, we define the class of
heuristic-achievement policiesH as the class of policiesπ(s, k) that satisfyπ(s, 1) = a⊥ for all s.
We defineJ∗

h(s, k) to be the value minπ∈HJπ(s, k) in the heuristic transform MDP forh andπ∗
h to

10



be a policy that achieves this value. We note that, due to the zeroing of non-terminal action costs,
J∗
h(s, k) represents the expected heuristic value achieved at the next execution ofa⊥, wherea⊥ is

required at horizonk if not before. Formally, if we define the random variables′ to be the state at
whichπ∗

h first executesa⊥ in a trajectory froms, we haveJ∗
h(s, k) = E[h(s′)].

The rough motivation for setting action costs to zero for theanalysis of the heuristic-based
MDP is that such actions are being considered by our method toremediate a flawed heuristic. The
cumulative action cost required to reach a state of improvedheuristic value is a measure of the
magnitude of the flaw in the heuristic. Here, we remove this cost from the analysis in order to
directly express the subgoal of “reaching a state with lowerheuristic value”. Including action costs
might, for example, lead to preferring cheap paths to higherheuristic values (i.e., to states worse
than s0) when expensive paths to lower heuristic values have been found. The basic motivation
for enforced hill climbing is to strongly seek improved heuristic values. Instead of diluting this
subgoal by adding in action costs, our methods seek the “shortest” path to a heuristic improvement
by analyzing the heuristic-based MDP with an iteratively deepened finite horizon, as discussed in
the next subsection. This approach is most reasonable in settings where each action has the same
cost, so that the finite-horizon value iteration is a stochastic-setting analogue to uniform cost search.
In settings with varying action cost, future work is needed to adapt SEH to usefully consider that
cost without excessively diluting the focus on improving the heuristic.

Heuristic achievement value iteration Following the formalism of value iteration in Section 2.1,
we computeJ∗

h(s, k) with heuristic achievement value iterationas follows:

J∗
h(s, 1) = h(s), and

J∗
h(s, k) = min

a∈A′(s)
Q(s, a, J∗

h(·, k − 1)) for k ≥ 2.

A non-stationary policy achieving the cost-to-go given byJ∗
h(·, k) can also be computed using the

following definition:

π∗
h(s, 1) = a⊥, and

π∗
h(s, k) = argmina∈A′(s)Q(s, a, J∗

h(·, k − 1)) for k ≥ 2.

Note thatQ() is computed on the heuristic-achievement transformed MDPMh in both equations.
For technical reasons that arise when zero-cost loops are present, we require that tie breaking in the
argmin forπ∗

h(s, k) favors the action selected byπ∗
h(s, k−1) whenever it is one of the options. This

is to prevent the selection of looping actions over shorter,more direct routes of the same value.

3.3 A Local Planner

We consider a method to be stochastic enforced hill-climbing if it uses an online planning frame-
work, such as that presented in Table 1, together with a localpolicy selection method that solves
the heuristic-achievement MDP (exactly, approximately, or heuristically). Here, we describe one
straightforward method of local policy selection by defining SEH-find-local-policy using finite-
horizon value iteration. This method generalizes the breadth-first search used in deterministic
enforced hill-climbing, and seeks an expected heuristic improvement rather than a deterministic
path to an improved heuristic value. More sophisticated andheuristic methods than finite-horizon
value iteration should be considered if the implementationpresented here finds the local MDP prob-
lems intractable. Our analytical results in Section 3.4 apply to any method that exactly solves the

11



heuristic-achievement MDP, such as the method presented inTable 2; our experimental results are
conducted using the implementation in Table 2 as well.

We present pseudo-code forSEH-Find-Local-Policy in Table 2. A heuristic functionh respects
goalsif h(s) = 0 iff s ∈ G. The algorithm assumes a non-negative heuristic functionh : S → R

that respects goals, as input. SEH-Find-Local-Policy(s0,h) returns the policyπ∗
h and a horizonk.

The policy is only computed for states and horizons needed inorder to executeπ∗
h from s0 using

horizonk until the policy terminates.

Thus, in lines 5 to 11 of Table 2 , heuristic-achievement value iteration is conducted for increas-
ing horizons arounds0, seeking a policy improvingh(s0). Note that for a given horizonk+1, only
states reachable withink steps need to be included in the value iteration.

Early termination The primary termination condition for repeated local policy construction is
the discovery of a policy improving on the heuristic estimate of the initial state. As discussed below
in Proposition 1, in domains without deadends, SEH-Find-Local-Policy will always find a policy
improving onh(s0), given sufficient resources.

However, for badly flawed heuristic functions the “large enough” horizons that are analyzed in
SEH-Find-Local-Policy may be unacceptably large given resource constraints. Moreover, in do-
mains with unavoidable deadends, there may be no horizon, however large, with a policy improving
on the heuristic at the initial state. For these reasons, in practice, the algorithm stops enlarging the
horizon for heuristic-based MDP analysis when user-specified resource limits are exceeded.

When horizon-limited analysis of the heuristic-transformMDP construction does not yield the
desired results inexpensively, biased random walk is used to seek a new initial state. As an ex-
ample, consider a problem in which the provided heuristic labels all states reachable ink steps
with cost-to-go estimates that are very similar, forming a very large plateau. If analysis of this large
plateau exceeds the resources available, biased random walk is indicated, for lack of useful heuristic
guidance.

So, once a horizonk is found for whichJ∗
h(s0, k) < h(s0), the system executesπ∗

h from s0
at horizonk until the terminate actiona⊥ is selected. If the resource limit is exceeded without
finding such a horizon, the system executes a biased random walk of lengthκ, with the terminating
actiona⊥ imposed in all statess reachable by such biased random walk withh(s) < h(s0). This
additional biased random walk allows our method to retain some of the beneficial properties of
random exploration in domains where heuristic flaws are too large for MDP analysis. The resource
consumption threshold at which random walk is triggered canbe viewed as a parameter controlling
the blend of random walk and MDP-based search that is used in overcoming heuristic flaws. We
currently do not have a principled way of analyzing the tradeoff between resource consumption and
the cost of switching to biased random walk, or determining when to do such switching. Instead,
we use domain-independent resource limits as described in Section 5.1, which are determined after
some experimentation.

Horizon-limited analysis of the heuristic-transform MDP may also terminate without finding
a horizonk such thatJ∗

h(s0, k) < h(s0) when the entire reachable statespace has been explored,
in the presence of deadends. This may happen without exceeding the available resources, and in
this case we fall back to a fixed number of iterations of standard VI on the original MDP model
(including action costs and without the heuristic transform) for the reachable states.

12



SEH-Find-Local-Policy(s0,h)
// s0 is the current state.
// h : S ∪ {⊥} → R the heuristic function, extended withh(⊥) = 0.
// We assume global variableMh is the heuristic-achievement

transform of the original problemM underh.
// We seek a policy in the problemMh achieving cost less thanh(s0).
1. k = 1
2. Repeat
3. k = k + 1
4. // ComputeJ∗

h(s0, k) in Mh using value iteration
5. J∗

h(·, 1) = h(·), π∗
h(·, 1) = a⊥, n = 1

6. Repeat
7. n = n+ 1
8. For eachs reachable froms0 in Mh using at mostk − n steps
9. J∗

h(s, n) = mina∈A′(s)Q(s, a, J∗
h(·, n − 1))

10. π∗
h(s, n) = argmina∈A′(s)Q(s, a, J∗

h(·, n− 1))

11. Untiln = k

12. UntilJ∗
h(s0, k) < h(s0) or resource consumption exceeds user-set limits

13. If J∗
h(s0, k) < h(s0)

14. then
15. Returnπ∗

h and horizonk
16. else
17. // Return aκ-step biased random walk policyπ
18. // Note: implementations should computeπ lazily online
19. For n = 1 toκ
20. For each states
21. If h(s) < h(s0)
22. then
23. π(s, n) selectsa⊥ with probability one
24. else

25. π(s, n) selects each actiona ∈ A(s) with probability e−Q(s,a,h)
∑

ai∈A(s)(e
−Q(s,ai,h))

26. Returnπ and horizonκ

Table 2: Pseudo-code for the local planner used to implementstochastic enforced hill-climbing.

13



3.4 Analytical Properties of Stochastic Enforced Hill-Climbing

In deterministic settings, given sufficient resources and no dead-ends, enforced hill-climbing can
guarantee finding a deterministic path to an improved heuristic value (if nothing else, a goal state
will suffice). Given the finite state space, this guarantee implies a guarantee that repeated enforced
hill-climbing will find the goal.

The situation is more subtle for stochastic settings. In a problem with no dead-ends, for every
states the optimal policy reaches the goal with probability one. Itfollows that in such problems, for
anyh assigning zero to every goal state, for every states and real valueǫ > 0, there is some horizon
k such thatJ∗

h(s, k) < ǫ. (Recall thatJ∗
h analyzes the heuristic transform MDP wherein action costs

are dropped except thath() must be realized at horizon one.) Because SEH-Find-Local-Policy(s,h)
considers eachk in turn untilJ∗

h(s, k) < h(s) we then have:

Proposition 1. Given non-goal states, no dead-ends, non-negative heuristic function
h : S → R respecting goals, and sufficient resources, the routine SEH-Find-Local-
policy(s,h) returns the policyπ∗

h and a horizonk with expected returnJ∗
h(s, k) strictly

less thanh(s).

However, unlike the deterministic setting, the policy found by the routine SEH-Find-Local-Policy
only expectssome improvement in the heuristic value. So particular executions of the policy from
the current state may result in a degraded heuristic value.

Here, we prove that even in stochastic settings, in spite of this possibility of poor results from
one iteration, SEH will reach the goal region with probability one, in the absence of dead-end states
and with sufficient resources. In practice, the provision of“sufficient resources” is a serious hurdle,
and must be addressed by providing a base heuristic with modest-sized flaws.

Theorem 1. In dead-end free domains, with unbounded memory resources,SEH rea-
ches the goal region with probability one.

Proof. Let x0, x1, x2, . . . , xm, . . . be random variables representing the sequence of
states assigned tos in line 2 of Table 1 when we execute SEH on a planning problem,
with x0 being the initial statesinit . If the algorithm achievesxτ ∈ G for someτ , and
thus terminates, we takexj+1 = xj for all j ≥ τ . (Note that as a resultxj ∈ G implies
xj+1 ∈ G, whereG is the goal region of states.)

We show that for arbitrarym > 0 the probability thatxm is in the goal region is

at least1 −
h(sinit )
mδ

, for a real valueδ > 0 defined below. This expression goes to one
asm goes to infinity, and so we can conclude that SEH reaches the goal region with
probability one.

By Proposition 1, from any non-goal states, absent dead-ends and with sufficient
resources, one iteration of SEH is guaranteed to return a policy for some finite horizon
ks with valueJ∗

h(s, ks) improving onh(s). Let δs = h(s)−J∗
h(s, ks) > 0 be the value

of the improvement froms at horizonks. Because there are finitely many non-goal
states, there existsδ = mins∈S−G δs > 0 such that the improvementh(s)− J∗

h(s, ks)

14



is at leastδ. Consider an arbitrary i such thatxi /∈ G. Noting thatJ∗
h(xi, kxi

) =
E[h(xi+1)] due to zero action costs inMh, it follows immediately then thatE[h(xi)−
h(xi+1)|xi /∈ G] ≥ δ, whereG is the goal region of states. Using thatxi ∈ G implies
bothxi+1 ∈ G andh(xi) = h(xi+1) = 0, we write this as

E[h(xi)− h(xi+1)]

=E[h(xi)− h(xi+1)|xi /∈ G]Qi

+ E[h(xi)− h(xi+1)|xi ∈ G](1−Qi)

≥Qiδ, for δ > 0,

(1)

definingQj to be the probability thatxj /∈ G.
Now, we lower-bound the expected heuristic improvementE[h(x0) − h(xm)] af-

term calls toSEH-Find-Local-Policy, for m > 0. We can decompose this expected
improvement overm calls toSEH-Find-Local-Policy as the sum of the expected im-
provements for the individual calls. Then, lower-boundingthis sum using its smallest
term, we get

E[h(x0)− h(xm)]

=

m−1∑

i=0

E[h(xi)− h(xi+1)]

≥
m−1∑

i=0

Qiδ (from Inequality 1)

≥mQmδ,

(2)

asQm is non-increasing, sincexm−1 ∈ G impliesxm ∈ G.
Next, we combine this lower bound with the natural upper bound h(sinit), sinceh

is assumed to be non-negative (soE[h(x0)− h(xm)] ≤ h(sinit)) andx0 = sinit . Thus,

h(sinit) ≥ Qmmδ.

Therefore the probabilityQm thatxm /∈ G is at most
h(sinit )
mδ

, converging to zero with
largem and so SEH reaches the goal with probability one.

While the theorem above assumes the absence of dead-ends, problems with dead-ends are cov-
ered by this theorem as well if the dead-ends are both avoidable and identified by the heuristic.
Specifically, we may require that the heuristic function assigns∞ to a state if and only if there
is no policy to reach the goal from that state with probability one. In this case, the problem can
be converted to the form required by our theorem by simply removing all states assigned∞ from
consideration (either in pre-processing or during local MDP construction).

3.5 Variants and Extensions of SEH

SEH is based on finite-horizon analysis of the MDP transformed by the heuristic-achievement trans-
form around the current states0. The particular heuristic-achievement transform we describe is of
course not the only option for incorporating the heuristic in a local search arounds0. While we

15



have already considered a number of related alternatives inarriving at the choice we describe, other
options can and should be considered in future research. Onenotable restriction in our transform
is the removal of action costs, which is discussed in Section3.2. It is important for the method
to retain the actual heuristic value in the analysis so that it can trade off large, small, positive and
negative changes in heuristic value according to their probabilities of arising. For this reason, we
do not have the heuristic transform abstract away from the value and simply assign rewards of 1 or
0 according to whether the state improves onh(s0). Our choice to remove action costs during local
expansion can lead to poor performance in domains with flawedheuristics interacting badly with
high variations in action costs. This is a subject for futureresearch on the method.

Also, the MDP models we describe in this paper are limited in some obvious ways. These
limitations include that the state space is discrete and finite, the problem setting lacks discounting,
and the objective is goal-oriented. We have yet to implementany extension to relax these limitations,
and leave consideration of the issues that arise to future work. We note that it would appear that
the method is fundamentally goal-oriented, given the goal of repeatedly reducing the heuristic value
of the current state. However, it is possible to contemplateinfinite-horizon discounted non-goal-
oriented variants that seek policies that maintain the current heuristic estimate.

3.6 Incorporating FF Goal-ordering Techniques in SEH

The planner FF contains heuristic elements inspired by ordering issues that arise in the blocksworld
problems (Hoffmann & Nebel, 2001). These heuristic elements improve performance on the blocks-
world problems significantly. To assist in a fair comparisonof SEH with FF-Replan, we have
implemented two of the heuristic elements, namelygoal agendaandadded goal deletion, in a variant
of SEH that we call SEH+.

The implementation of SEH+ is as follows. The stochastic planning problem is first deter-
minized using the “all outcomes determinization” described in Section 2.2. The goal-agenda tech-
nique of FF is then invoked on the determinized problem to extract a sequence of temporary goals
G1, . . . , Gm, where eachGi is a set of goal facts andGm is the original problem goal. SEH with a
stochastic version of added goal deletion, described next in this subsection, is then invoked repeat-
edly to compute a sequence of statess0, . . . , sm, wheres0 is the initial state and fori > 0 eachsi
is defined as the state reached by invoking SEH in statesi−1 with goalGi (thus satisfyingGi).

Added goal deletionis the idea of pruning the state search space by avoiding repetitive addition
and deletion of the same goal fact along searched paths. In FF, for a search states, if a goal fact
is achieved by the action arriving ats, but is deleted by an action in the relaxed plan found froms,
thens is not expanded further (Hoffmann & Nebel, 2001).

For our stochastic adaptation of added goal deletion, we define the set of facts added by any
state transition(s, a, s′) to be those facts true ins′ but not ins and represent it as the set difference
s′−s. Then, the set of added goal facts for the transition are those added facts which are also true in
the current temporary goalGi, i.e.,(s′ − s) ∩Gi. We prune any state transition(s, a, s′) whenever
the relaxed plan computed froms′ to the current temporary goalGi contains an action that deletes
any of the added goal facts. A transition(s, a, s′) is “pruned” by modifying the Bellman update at
states so thats′ contributes the dead-end state value (V⊥) to the Q-value fora at s, weighted by
the transition probability (instead of contributing the cost-to-go ats′). More formally, we define a

16



modified Q-function when using added goal deletion,Qagd(s, a, J) as follows:

I(s′) =

{
1, if f ∈ (s′ − s) ∩Gi is deleted by an action in relaxedplan(s′,Gi)5

0, otherwise

Qagd(s, a, J) =
∑

s′

T (s, a, s′)[I(s′)V⊥ + (1− I(s′))J(s′)]

Qagd() then replacesQ() in the definition of the cost-to-go functionJ∗
h() in Section 3.2. Also,

“reachability” in line 8 of Table 2 does not use pruned transitions.
In some problems, subsequent deletion of newly added goals is unavoidable for any valid plan.

Added goal deletion prunes all routes leading to the goal region for such problems even though
no actual deadend is present. Hence, this is an incomplete technique as discussed in the work
of Hoffmann and Nebel (2001). FF falls back to best-first search if DEH is not able to find a valid
plan due to pruning. Similarly, when unable to find an improved policy, SEH falls back to either
value iteration or biased random walk as described in Section 3.3.

Preliminary exploration of incorporating stochastic variants of FF’s helpful action pruning
(Hoffmann & Nebel, 2001) into SEH did not improve performance, much like the effect of added
goal deletion on all domains except the blocksworld6. As a result, we do not report on helpful-
action-pruning methods here.

4. Related Work

4.1 Fast-Foward (FF) Planner and Deterministic Enforced Hill-Climbing

For an introduction to deterministic enforced hill-climbing (DEH) and its relation to our technique,
please see Section 3. Here, we additionally note that there are several lines of work that directly ex-
tend the FF planner to allow planning with numeric state-variables (Hoffmann, 2003) and planning
with uncertainty (Hoffmann & Brafman, 2006, 2005; Domshlak& Hoffmann, 2007). Although
these techniques involve significant changes to the computation of the relaxed-plan heuristic and
the possible addition of the use of belief states to handle uncertainty, enforced hill-climbing is
still the primary search technique used in these lines of work. We note that although in the work
of Domshlak and Hoffmann (2007) actions with probabilisticoutcome are handled, the planner
(Probabilistic-FF) is designed for probabilistic planning with no observability, whereas our planner
is designed for probabilistic planning with full observability.

4.2 Envelope-based Planning Techniques

Stochastic enforced hill-climbing dynamically constructs local MDPs to find a local policy leading
to heuristically better state regions. The concept of forming local MDPs, or “envelopes”, and using
them to facilitate probabilistic planning has been used in previous research such as the work of Bonet
and Geffner (2006), Dean et al. (1995), which we briefly review here.

The envelope-based methods in the work of Dean et al. (1995) and Gardiol and Kaelbling (2003)
start with a partial policy in a restricted area of the problem (the “envelope”), then iteratively im-

5. relaxedplan(s′,Gi) computes the relaxed plan between statess
′ andGi as defined in the work of Hoffmann and

Nebel (2001) using the all-outcomes problem determinization defined in Section 2.2.
6. We explored ideas based on defining the helpfulness of an action to be the expectation of the helpfulness of its

deterministic outcomes.

17



proves the solution quality by extending the envelope and recomputing the partial policy. The
typical assumption when implementing this method is that the planner has an initial trajectory from
the starting state to the goal, generated by some stochasticplanner, to use as the initial envelope.

Another line of work, including RTDP (Barto, Bradtke, & Singh, 1995), LAO* (Hansen &
Zilberstein, 2001), and LDFS (Bonet & Geffner, 2006), starts with an envelope containing only the
initial state, and then iteratively expands the envelope byexpanding states. States are expanded
according to state values and dynamic programming methods are used to backup state values from
newly added states, until some convergence criterion is reached. Stochastic enforced hill-climbing
can be viewed as repeatedly deploying the envelope method with the goal, each time, of improving
on the heuristic estimate of distance-to-go. For a goodh function, most invocations result in trivial
one-step envelopes. However, when local optima or plateausare encountered, the envelope may
need to grow to locate a stochastically reachable set of exits.

All of the above referenced previous search methods have constructed envelopes seeking a high
quality policy to the goal rather than our far more limited and relatively inexpensive goal of basin
escape. Our results derive from online greedy exploitationof the heuristic rather than the more
expensive offline computation of converged values proving overall (near) optimality. LDFS, for
example, will compute/check values for at least all states reachable under the optimal policy (even
if given J∗ as input) and possibly vastly many others as well during the computation.

Some of these previous methods are able to exploit properties (such as admissibility) of the
heuristic function to guarantee avoiding state expansionsin some regions of the state space. Clearly,
SEH exploits the heuristic function in a way that can avoid expanding regions of the statespace.
However, we have not at this point conducted any theoreticalanalysis of what regions can be guar-
anteed unexpanded for particular kinds of heuristic, and such analyses may be quite difficult.

4.3 Policy Rollout

The technique of “policy rollout” (Tesauro & Galperin, 1996; Bertsekas & Tsitsiklis, 1996) uses a
provided base policyπ to make online decisions. The technique follows the policyGreedy(Ṽ π),
whereṼ π is computed online by sampling simulations of the policyπ.

The computation of the optimal heuristic-transform policyπ∗
h in SEH has similarities to policy

rollout: in each case, online decisions are made by local probabilistic analysis that leverages pro-
vided information to manage longer-range aspects of the local choice. For SEH, a heuristic function
is provided while, for policy rollout, a base policy is provided. In this view, policy rollout does local
analysis under the assumption that non-local execution will use the base policyπ, whereas SEH
does local analysis under the assumption that non-local execution will achieve the base heuristic
cost estimateh.

In fact, for our goal-oriented setting, when the provided heuristic functionh is stochastic (a sim-
ple generalization of what we describe in this paper), and equal to a sampled-simulation evaluation
of V π for some policyπ, then SEH executes the same policy as policy rollout, assuming uniform
action costs and sufficient sampling to correctly order the action choices. This claim follows be-
cause whenh = V π there is always some action to yield an expected improvementin h in one step,
in our goal-oriented setting. The need for uniform action costs in this claim may be relaxed if a
variant of SEH is developed that retains action costs in the heuristic transform.

In policy rollout, only horizon-one greedy use of the sampled heuristic is needed, but the main
substance of SEH is to enable the repair and use of heuristic functions with flaws that cannot be

18



repaired at horizon one. Thus the central differences between the techniques are reflected in the
ability of SEH to leverage arbitrary heuristic functions and repair flaws in those functions at larger
horizons.

Policy rollout provides an elegant guarantee that the online policy selected improves on the base
policy, given sufficient sampling. This result follows intuitively because the computed policy is the
policy-iteration improvement of the base policy. Unfortunately, no similar guarantee is known to
apply for SEH for an arbitrary heuristic function. However,policy rollout cannot be used to improve
an arbitrary heuristic function either.

4.4 Local Search in Optimization

Stochastic enforced hill-climbing can be regarded as one ofmany local-search techniques designed
to improve on greedy one-step lookahead, the most naive formof local search optimization. Here
we briefly discuss connections to the method of simulated annealing, one of a large family of related
local search techniques. For more detail, please see the work of Aarts and Lenstra (1997).

Simulated annealing (Kirkpatrick et al., 1983; Cerny, 1985) allows the selection of actions with
inferior expected outcome with a probability that is monotone in the action q-value. The probability
that an inferior action will be selected often starts high and decreases over time according to a “cool-
ing” schedule. The ability to select inferior actions leadsto a non-zero probability of escaping local
optima. However, this method does not systematically search for a policy that does so. In contrast,
stochastic enforced hill-climbing analyzes a heuristic-based MDP at increasing horizons to system-
atically search for policies that give improved expected value (hence leaving the local extrema). In
our substantial preliminary experiments, we could not find successful parameter settings to control
simulated annealing for effective application to online action selection in goal-directed stochastic
planning. To our knowledge, simulated annealing has not otherwise been tested on direct forward-
search action selection in planning, although variants have been applied with some success to other
planning-as-search settings (Selman, Kautz, & Cohen, 1993; Kautz & Selman, 1992; Gerevini &
Serina, 2003) such as planning via Boolean satisfiability search.

5. Setup for Empirical Evaluation

Here, we describe the parameters used in evaluating our method, the heuristics we will test the
method on, the problem categories in which the tests will be conducted, the random variables for
aggregated evaluation, and issues arising in interpretingthe results and their statistical significance.
We run our experiments on Intel Xeon 2.8GHz machines with 533MHz bus speed and 512KB
cache.

5.1 Implementation Details

If at any horizon increase no new states are reachable, our implementation of SEH simply switches
to an explicit statespace method to solve the MDP formed by the reachable states. More specifically,
if the increase ink at line 3 in Table 2 does not lead to new reachable states in line 8, we trigger
value iteration on the states reachable froms0.

Throughout our experiments, the thresholds used to terminate local planning in line 12 of Table 2
are set at1.5∗105 states and one minute. We set the biased random walk lengthκ to ten. This work
makes the assumption that the heuristic functions used assign large values to easily recognized dead-

19



ends, as hill-climbing works very poorly in the presence of dead-end attractor states. We enforce
this requirement by doing very simple dead-end detection onthe front-end of each heuristic function
(described next in Section 5.2 for each heuristic) and assigning the value1.0 ∗ 105 to recognized
dead-end states.

We denote this implementation running on heuristich with SEH(h).

5.2 Heuristics Evaluated

The Controlled-randomness FF heuristic For use in our evaluations, we define a domain-
independent heuristic function, the “controlled-randomness FF heuristic” (CR-FF). We define CR-
FF on a states to be the FF distance-to-goal estimate (Hoffmann & Nebel, 2001) of s computed
on the all-outcomes determinization as described in Section 2.2. We denote the resulting heuristic
functionF . While computing the CR-FF heuristic, we use the reachability analysis built into the FF
planner for the detection of deadends.

Learned heuristics We also test stochastic enforced hill-climbing on automatically generated
heuristic functions from the work of Wu and Givan (2010), which on their own perform at the
state-of-the-art when used to construct a greedy policy. Weshift these heuristic functions to fit the
non-negative range requirement ofh discussed previously. These learned heuristic functions are
currently available for only seven of our test categories, and so are only tested in those categories.

We note that these heuristics were learned for a discounted setting without action costs and
so are not a direct fit to the “distance-to-go” formalizationadopted here. We are still able to get
significant improvements from applying our technique. We denote these heuristicsL. Only states
with no valid action choice available are labeled as deadends when applying SEH to the learned
heuristics.

5.3 Goals of the Evaluation

Our primary empirical goal is to show that stochastic enforced hill-climbing generally improves
significantly upon greedy following of the same heuristic (using the policy Greedy(h) as described
in the technical background above). We will show that this istrue for both of the heuristics defined
in Section 5.2. We show empirically the applicability and limitation of SEH discussed in Section 1,
in different types of problems including probabilistically interesting ones (Little & Thiebaux, 2007).

A secondary goal of our evaluation is to show that for some base heuristics the resulting per-
formance is strong in comparison to the deterministic replanners FF-Replan (Yoon et al., 2007) and
RFF (Teichteil-Konigsbuch et al., 2010). While both FF-Replan and RFF use the Fast-Forward (FF)
base planner, RFF uses a most-probable-outcome determinization in contrast to the all-outcomes
determinization used by FF-Replan. The primary other difference between RFF and FF-Replan is
that before executing the plan, RFF grows policy trees to minimize the probability of having to
replan, while FF-Replan does not.

5.4 Adapting IPPC Domains for Our Experiments

We conduct our empirical evaluation using all problems fromthe first three international proba-
bilistic planning competitions (IPPCs) as well as all twelve ”probabilistically interesting” problems
from the work of Little and Thiebaux (2007). We omit some particular problems or domains from
particular comparisons for any of several practical reasons, detailed in an online appendix.

20



Because enforced hill-climbing is by nature a goal-oriented technique and SEH is formulated
for the goal-oriented setting, we ignore the reward structure (including action and goal rewards)
in any of the evaluated problems and assume an uniform actioncost of one for those problems,
transforming any reward-oriented problem description into a goal-oriented one.

We provide detailed per-problem results in an online appendix for each planner evaluated in this
work. However, in support of our main conclusions, we limit our presentation here to aggregations
comparing pairs of planners over sets of related problems. For this purpose, we define seventeen
problem categories and aggregate within each problem category. While some categories are single
domains, more generally, multiple closely related domainsmay be aggregated within a single cat-
egory. For example, the blocksworld category aggregates all blocksworld problems from the three
competitions, even though the action definitions are not exactly the same in every such problem. For
some paired comparisons, we have aggregated the results of all problems labeled as or constructed
to be “probabilistically interesting” by the IPPC3 organizers or by the work of Little and Thiebaux
(2007) into a combined category PIPROBLEMS.

In Table 3, we list all evaluated categories (including the combined category PIPROBLEMS),
as well as the planning competitions or literature the problems in each category are from. The
evaluated problems in each category are identified in an online appendix.

The reward-oriented SYSADMIN domain from IPPC3 was a stochastic longest-path problem
where best performance required avoiding the goal so as to continue accumulating reward as long
as possible (Bryce & Buffet, 2008). (Note that contrary to the organizers’ report, the domain’s goal
condition is “all servers up” rather than “all servers down”.) Our goal-oriented adaptation removes
the longest-path aspect of the domain, converting it to a domain where the goal is to get all the
servers up.

The BLOCKSWORLD problems from IPPC2 contain flawed definitions that may lead to a block
stacking on top of itself. Nevertheless, the goal of these problems is well defined and is achievable
using valid actions, hence the problems are included in the BLOCKSWORLD category.

We have discovered that the five rectangle-tireworld problems (p11 to p15 from IPPC3 2-
TIREWORLD) have an apparent bug—no requirement to remain “alive” is included in the goal con-
dition. The domain design provides a powerful teleport action to non-alive agents intended only to
increase branching factor (Buffet, 2011). However, lacking a requirement to be alive in the goal,
this domain is easily solved by deliberately becoming non-alive and then teleporting to the goal. We
have modified these problems to require the predicate “alive”’ in the goal region. We have merged
these modified rectangle-tireworld problems with triangle-tireworld problems from both IPPC3 and
the work of Little and Thiebaux (2007) into a category SYSTEMATIC-TIRE, as these problems have
been systematically constructed to emphasize PI features.

5.5 Aggregating Performance Measurements

For our experiments, we have designed repeatable aggregatemeasurements that we can then sample
many times in order to evaluate statistical significance. Wenow define the random variables repre-
senting these aggregate measurements and describe our sampling process, as well as our method for
evaluating statistical significance.

21



Category Problem Source(s)

BLOCKSWORLD IPPC1, IPPC2, IPPC3

BOXWORLD IPPC1, IPPC3

BUSFARE Little and Thiebaux (2007)

DRIVE IPPC2

ELEVATOR IPPC2

EXPLODING BLOCKSWORLD IPPC1, IPPC2, IPPC3

FILEWORLD IPPC1

PITCHCATCH IPPC2

RANDOM IPPC2

RIVER Little and Thiebaux (2007)

SCHEDULE IPPC2, IPPC3

SEARCH AND RESCUE IPPC3

SYSADMIN IPPC3

SYSTEMATIC-TIRE
Triangle-tireworld (IPPC3 2-Tireworld P1 to P10, Little and Thiebaux (2007)),
Rectangle-tireworld (IPPC3 2-Tireworld P11 to P15) with bug fixed

TIREWORLD IPPC1, IPPC2

TOWERS OFHANOI IPPC1

ZENOTRAVEL IPPC1, IPPC2

PI PROBLEMS
BUSFARE, DRIVE, EXPLODING BLOCKSWORLD

PITCHCATCH, RIVER, SCHEDULE, SYSTEMATIC-TIRE, TIREWORLD

Table 3: List of categories and the planning competitions orliterature from which the problems in each
category are taken.

22



5.5.1 DEFINING AND SAMPLING AGGREGATE-MEASUREMENT RANDOM VARIABLES

For each pair of compared planners, we define four random variables representing aggregate per-
formance comparisons over the problems in each category. Each random variable is based upon a
sampling process that runs each planner five times on all problems in a category, and aggregates the
per-problem result by computing the mean. We use five-trial runs to reduce the incidence of low-
success planners failing to generate a plan length comparison. Each mean value from a five-trial run
is a sample value of the respective random variable.

First, the per-problem success ratio (SR) is the fraction ofthe five runs that succeed for each
problem. The success ratio random variable for each category and planner is then the mean SR
across all problems in the category.

Second, the per-problem successful plan length (SLen) is the mean plan length of all successful
runs among the five runs. In order to compare two planners on plan length, we then define the per-
problem ratio of jointly successful plan lengths (JSLEN-RATIO) for the two compared planners as
follows. If both planners have positive SR among the five trials on the problem, JSLEN-RATIO is
the ratio of the SLen values for the two planners; otherwise,JSLEN-RATIO is undefined for that
problem. We use ratio of lengths to emphasize small plan length differences more in short solutions
than in long solutions, and to decrease sensitivity to the granularity of the action definitions.

The mean JSLEN-RATIO random variable for each category and pair of planners is then the
geometric mean of the JSLEN-RATIO across all problems in thecategory for which JSLEN-RATIO
is well defined. In this manner we ensure that the two plannersare compared on exactly the same set
of problems. Note then that, unlike SR, JSLEN-RATIO dependson the pair of compared planners,
rather than being a measurement on any single planner; it is the ratio of successful plan length on
the jointly solvedproblems for the two planners.

Similarly, the per-problem ratio of jointly successful runtimes (JSTIME-RATIO) is defined in
the same manner used for comparing plan lengths. The mean JSTIME-RATIO is again computed
as the geometric mean of well-defined per-problem JSTIME-RATIO values.

Because JSLEN-RATIO and JSTIME-RATIO are ratios of two measurements, we use the geo-
metric mean to aggregate per-problem results to generate a sample value, whereas we use arithmetic
mean for the SR variables. Note that geometric mean has the desired property that when the plan-
ners are tied overall (so that the geometric mean is one), themean is insensitive to which planner is
given the denominator of the ratio.

Thus, to draw a single sample of all four aggregate random variables (SR for each planner,
JSLEN-RATIO, and JSTIME-RATIO) in comparing two planners,we run the two planners on each
problem five times, computing per-problem values for the four variables, and then take the (arith-
metic or geometric) means of the per-problem variables to get one sample of each aggregate vari-
able. This process is used repeatedly to draw as many samplesas needed to get significant results.

We use a plan-length cutoff of 2000 for each attempt. Each attempt is given a time limit of 30
minutes.

5.5.2 SIGNIFICANCE OF PERFORMANCEDIFFERENCESBETWEEN PLANNERS

Our general goal is to order pairs of planners in overall performance on each category of problem.
To do this, we must trade off success rate and plan length. We take the position that a significant
advantage in success rate is our primary goal, with plan length used only to determine preference
among planners when success rate differences are not found to be significant.

23



We determine significance for each of the three performance measurements (SR, JSLEN-
RATIO, and JSTIME-RATIO) using t-tests, ascribing significance to the results when the p-value
is less than 0.05. The exact hypothesis tested and form of t-test used depends on the performance
measurement, as follows:

1. SR — We use a paired one-sided t-test on the hypothesis thatthe difference in true means is
larger than 0.02.

2. JSLEN-RATIO — We use a one-sample one-sided t-test on the hypothesis that the true geo-
metric mean of JSLEN-RATIO exceeds 1.05 (log of the true meanof JSLEN-RATIO exceeds
log(1.05)).

3. JSTIME-RATIO — We use a one-sample one-sided t-test on thehypothesis that the true
geometric mean of JSTIME-RATIO exceeds 1.05 (log of the truemean of JSTIME-RATIO
exceedslog(1.05)).

We stop sampling the performance variables when we have achieved one of the following crite-
ria, representing “an SR winner is determined” or “SR appears tied”:

1. Thirty samples have been drawn and the p-value for SR difference is below 0.05 or above 0.5.

2. Sixty samples have been drawn and the p-value for SR difference is below 0.05 or above 0.1.

3. One hundred and fifty samples have been drawn.

In all the experiments we present next, this stopping rule leads to only 30 samples being drawn
unless otherwise mentioned. Upon stopping, we conclude a ranking between the planners (naming a
“winner”) if either the SR difference or the JSLEN-RATIO hasp-value below 0.05, with significant
SR differences being used first to determine the winner. If neither measure is significant upon
stopping, we deem the experiment inconclusive.

Combining categories For some of our evaluations, we aggregate results across multiple cate-
gories of problem, e.g., the combined category PIPROBLEMS. In such cases, we have effectively
defined one larger category, and all our techniques for defining performance measurements and de-
termining statistical significance are the same as in Section 5.5. However, we do not actually re-run
planners for such combined-category measurements. Instead, we re-use the planner runs used for
the single-category experiments. Rather than use the stopping rule just described, we compute the
maximum number of runs available in all the combined categories and use that many samples of
the combined-category performance measurements. To avoiddouble counting problem results, we
treat combined categories separately when analyzing the results and counting wins and losses.

6. Empirical Results

We present the performance evaluation of stochastic enforced hill-climbing (SEH) in this section.
The experiments underlying the results presented here involve 169,850 planner runs in 17 categories.

24



Category
SR of
SEH+(F )

SR of
SEH(F )

JSLEN-
RATIO
(SEH/
SEH+)

JSTIME-
RATIO
(SEH/
SEH+)

SR
Difference
Significant?
(p-value)

JSLEN-
RATIO
Significant?
(p-value)

Winner

BLOCKSWORLD 0.93 0.72 1.58 2.85 YES (p=0.00) YES (p=0.00) SEH+(F )

NON-BLOCKSWORLD 0.69 0.69 1.01 0.97 NO (p=1.00) NO (p=1.00) Inconclusive

Table 4: Aggregated comparison of SEH+(F ) against SEH(F ).

6.1 Summary of Comparison

The results in Table 4 show that, for the CR-FF heuristic, SEHwith the goal-ordering and added-
goal-deletion enhancements (SEH+(F )) improves significantly over the baseline SEH technique
(SEH(F )) in the category BLOCKSWORLD, but does not show significant changes in the aggregated
performance for non-blocksworld problems7. For the remainder of the experiments involving CR-
FF, we evaluate only SEH+(F ), noting that both of our comparison planners (FF-Replan and RFF)
benefit from the goal-ordering and added-goal-deletion enhancements of their base planner, FF-
plan.

The results we present next for SEH+(F ) show:

• SEH+(F ) significantly outperforms Greedy(F ) in 13 categories, but is outperformed by
Greedy(F ) in SCHEDULE. There were three categories where the comparison was incon-
clusive (BUSFARE, RIVER and TIREWORLD). See Table 5 for details.

• FF-Replan was inapplicable in two categories (IPPC3 SEARCH-AND-RESCUE and IPPC3
SYSADMIN ). SEH+(F ) significantly outperforms FF-Replan in 10 categories, butis outper-
formed by FF-Replan in three categories (EXPLODING BLOCKSWORLD, PITCHCATCH, and
ZENOTRAVEL). There were two categories where the comparison was inconclusive (FILE-
WORLD and RIVER). SEH+(F ) also significantly outperforms FF-Replan on the combined
category PIPROBLEMS, although the winner varied between the aggregated categories. See
Table 6 for details.

• RFF-BG was inapplicable in two categories (BUSFAREand IPPC1 FILEWORLD). SEH+(F )
significantly outperforms RFF-BG in 12 categories, but is outperformed by RFF-BG in two
categories (EXPLODING BLOCKSWORLD and SYSTEMATIC-TIRE). There was one category
where the comparison was inconclusive (SYSADMIN ). SEH+(F ) also significantly outper-
forms RFF-BG on the combined category PIPROBLEMS, although the winner varied between
the aggregated categories. See Table 7 for details.

The “learned heuristic” from the work of Wu and Givan (2010) has been computed only in
a subset of the domains, hence only seven categories are applicable for the evaluation using the
learned heuristic (see an online appendix for details). Theresults we present next for SEH with the
learned heuristic, SEH(L), show:

7. We show p-values rounded to two decimal places. For example, we show p=0.00 when the value of p rounded to two
decimal places is 0.

25



Category
SR of
SEH+(F )

SR of
Greedy(F )

JSLEN-
RATIO
(Greedy/
SEH+)

JSTIME-
RATIO
(Greedy/
SEH+)

SR
Difference
Significant?
(p-value)

JSLEN-
RATIO
Significant?
(p-value)

Winner

BLOCKSWORLD 0.93 0.35 1.40 0.63 YES (p=0.00) YES (p=0.00) SEH+(F )

BOXWORLD 0.99 0.05 1.18 1.12 YES (p=0.00) YES (p=0.00) SEH+(F )

BUSFARE 1.00 0.99 0.85 0.86 NO (p=0.97) NO (p=0.21) Inconclusive

DRIVE 0.69 0.35 1.60 1.41 YES (p=0.00) YES (p=0.00) SEH+(F )

ELEVATOR 1.00 0.40 1.82 1.81 YES (p=0.00) YES (p=0.00) SEH+(F )

EXPLODING

BLOCKSWORLD
0.44 0.18 1.01 0.63 YES (p=0.00) NO (p=0.93) SEH+(F )

FILEWORLD 1.00 0.21 1.03 0.24 YES (p=0.00) NO (p=1.00) SEH+(F )

PITCHCATCH 0.45 0.00 – – YES (p=0.00) – SEH+(F )

RANDOM 0.99 0.94 1.76 0.59 YES (p=0.00) YES (p=0.00) SEH+(F )

RIVER 0.66 0.67 0.97 0.98 NO (p=0.60) NO (p=0.75) Inconclusive

SCHEDULE 0.54 0.60 1.18 0.32 YES (p=0.00) YES (p=0.01) Greedy(F )

SEARCH

AND RESCUE
1.00 1.00 1.23 1.08 NO (p=1.00) YES (p=0.00) SEH+(F )

SYSADMIN 0.27 0.27 1.21 1.23 NO (p=1.00) YES (p=0.00) SEH+(F )

SYSTEMATIC

-TIRE
0.29 0.21 1.03 0.72 YES (p=0.00) NO (p=0.86) SEH+(F )

TIREWORLD 0.91 0.90 0.96 0.79 NO (p=0.93) NO (p=0.74) Inconclusive

TOWERS OF

HANOI
0.53 0.00 – – YES (p=0.00) – SEH+(F )

ZENOTRAVEL 0.90 0.20 1.31 0.74 YES (p=0.00) YES (p=0.00) SEH+(F )

Table 5: Aggregated comparison of SEH+(F ) against Greedy(F ). The RIVER domain evaluation required
extending sampling to 60 samples as per the experimental protocol described in Section 5.5.2. The values and
p-values of JSLEN-RATIO and JSTIME-RATIO in PITCHCATCH and TOWERS OFHANOI are not available
due to the zero success ratio of Greedy(F ) in these categories.

26



Category
SR of
SEH+(F )

SR of
FF-Replan

JSLEN-
RATIO
(FFR/
SEH+(F ))

JSTIME-
RATIO
(FFR/
SEH+(F ))

SR
Difference
Significant?
(p-value)

JSLEN-
RATIO
Significant?
(p-value)

Winner

BLOCKSWORLD 0.93 0.87 1.33 1.17 YES (p=0.00) YES (p=0.00) SEH+(F )

BOXWORLD 0.99 0.88 3.93 1.57 YES (p=0.00) YES (p=0.00) SEH+(F )

BUSFARE 1.00 0.01 0.00 0.00 YES (p=0.00) – SEH+(F )

DRIVE 0.69 0.54 1.26 2.42 YES (p=0.00) YES (p=0.00) SEH+(F )

ELEVATOR 1.00 0.93 0.95 0.93 YES (p=0.00) NO (p=0.36) SEH+(F )

EXPLODING

BLOCKSWORLD
0.44 0.44 0.85 0.56 NO (p=0.96) YES (p=0.00) FF-Replan

FILEWORLD 1.00 1.00 0.97 0.57 NO (p=1.00) NO (p=1.00) Inconclusive

PITCHCATCH 0.45 0.51 2.78 0.21 YES (p=0.00) YES (p=0.00) FF-Replan

RANDOM 0.99 0.96 1.37 0.19 YES (p=0.00) YES (p=0.00) SEH+(F )

RIVER 0.66 0.65 0.94 0.93 NO (p=0.60) NO (p=0.33) Inconclusive

SCHEDULE 0.54 0.48 1.04 0.10 YES (p=0.00) NO (p=0.59) SEH+(F )

SYSTEMATIC

-TIRE
0.29 0.07 0.36 0.38 YES (p=0.00) YES (p=0.00) SEH+(F )

TIREWORLD 0.91 0.69 0.69 0.57 YES (p=0.00) YES (p=0.00) SEH+(F )

TOWERS OF

HANOI
0.59 0.50 0.64 0.06 YES (p=0.00) YES (p=0.00) SEH+(F )

ZENOTRAVEL 0.90 1.00 0.70 0.10 YES (p=0.00) YES (p=0.00) FF-Replan

PI
PROBLEMS

0.55 0.45 1.02 0.54 YES (p=0.00) NO (p=1.00) SEH+(F )

Table 6: Aggregated comparison of SEH+(F ) against FF-Replan (FFR). The RANDOM and RIVER domains
required extending sampling to 60 samples and the TOWERS OFHANOI domain required extending sampling
to 150 samples as per the experimental protocol described inSection 5.5.2. The p-value of JSLEN-RATIO in
BUSFARE is not available because the extremely low success rate of FFR leads to only one sample of JSLEN
being gathered in 30 attempts, yielding no estimated variance.

27



Category
SR of
SEH+(F )

SR of
RFF-BG

JSLEN-
RATIO
(RFF-BG/
SEH+(F ))

JSTIME-
RATIO
(RFF-BG/
SEH+(F ))

SR
Difference
Significant?
(p-value)

JSLEN-
RATIO
Significant?
(p-value)

Winner

BLOCKSWORLD 0.93 0.77 0.79 0.22 YES (p=0.00) YES (p=0.00) SEH+(F )

BOXWORLD 0.99 0.89 1.03 3.70 YES (p=0.00) NO (p=1.00) SEH+(F )

DRIVE 0.69 0.61 1.07 1.24 YES (p=0.00) NO (p=0.08) SEH+(F )

ELEVATOR 1.00 1.00 1.27 0.15 NO (p=1.00) YES (p=0.00) SEH+(F )

EXPLODING

BLOCKSWORLD
0.44 0.43 0.84 0.56 NO (p=0.92) YES (p=0.00) RFF-BG

PITCHCATCH 0.45 0.00 – – YES (p=0.00) – SEH+(F )

RANDOM 0.99 0.74 1.26 0.56 YES (p=0.00) YES (p=0.00) SEH+(F )

RIVER 0.66 0.51 0.77 0.21 YES (p=0.00) YES (p=0.00) SEH+(F )

SCHEDULE 0.54 0.43 1.06 0.08 YES (p=0.00) NO (p=0.40) SEH+(F )

SEARCH

AND RESCUE
1.00 0.01 2.99 0.86 YES (p=0.00) YES (p=0.00) SEH+(F )

SYSADMIN 0.27 0.27 1.10 9.31 NO (p=1.00) NO (p=0.05) Inconclusive

SYSTEMATIC

-TIRE
0.29 0.81 1.22 4.49 YES (p=0.00) YES (p=0.00) RFF-BG

TIREWORLD 0.91 0.71 0.68 0.21 YES (p=0.00) YES (p=0.00) SEH+(F )

TOWERS OF

HANOI
0.58 0.48 0.64 0.01 YES (p=0.03) YES (p=0.00) SEH+(F )

ZENOTRAVEL 0.90 0.02 1.20 0.04 YES (p=0.00) NO (p=0.27) SEH+(F )

PI
PROBLEMS

0.55 0.51 0.91 0.50 YES (p=0.00) YES (p=0.00) SEH+(F )

Table 7: Aggregated comparison of SEH+(F ) against RFF-BG. The RIVER and TOWERS OFHANOI do-
mains required extending sampling to 60 samples as per the experimental protocol described in Section 5.5.2.
The values and p-values of JSLEN-RATIO and JSTIME-RATIO in PITCHCATCH are not available due to the
zero success ratio of RFF-BG in this category.

28



Category
SR of
SEH(L)

SR of
Greedy(L)

JSLEN-
RATIO
(Greedy/
SEH)

JSTIME-
RATIO
(Greedy/
SEH)

SR
Difference
Significant?
(p-value)

JSLEN-
RATIO
Significant?
(p-value)

Winner

BLOCKSWORLD 1.00 1.00 7.00 3.69 NO (p=1.00) YES (p=0.00) SEH(L)

BOXWORLD 0.89 0.89 5.00 0.55 NO (p=1.00) YES (p=0.00) SEH(L)

EXPLODING

BLOCKSWORLD
0.10 0.02 1.09 1.00 YES (p=0.00) NO (p=0.31) SEH(L)

SYSTEMATIC

-TIRE
0.34 0.14 0.75 0.39 YES (p=0.00) YES (p=0.00) SEH(L)

TIREWORLD 0.90 0.89 1.05 1.05 NO (p=0.92) NO (p=0.60) Inconclusive

TOWERS OF

HANOI
0.60 0.00 – – YES (p=0.00) – SEH(L)

ZENOTRAVEL 0.58 0.03 13.25 5.66 YES (p=0.00) YES (p=0.00) SEH(L)

Table 8: Aggregated comparison of SEH(L) against Greedy(L). The values of JSLEN-RATIO and JSTIME-
RATIO and p-value of JSLEN-RATIO in TOWERS OFHANOI are not available due to the zero success ratio
of Greedy(L) in this category.

• SEH(L) significantly outperforms Greedy(L) in six categories. There was one category
(TIREWORLD) where the comparison was inconclusive. See Table 8 for details.

• SEH(L) significantly outperforms FF-Replan in five categories, but is outperformed by FF-
Replan in two categories (EXPLODING BLOCKSWORLD and ZENOTRAVEL). See Table 9 for
details.

6.2 Discussion

We now discuss the results for comparisons between pairs of planners, including SEH versus greedy
heuristic-following, SEH versus FF-Replan, and SEH versusRFF-BG.

6.2.1 SEH/SEH+ VERSUSGREEDY

Our primary evaluation goal was to show that stochastic enforced hill-climbing generally improves
significantly upon greedy following of the same heuristic (using the policy Greedy(h) as described
in the technical background above). This was demonstrated by evaluating SEH with two different
heuristics in Tables 5 and 8, where SEH(h) significantly outperforms Greedy(h) in nineteen out of
twenty-four heuristic/category pairs, only losing in SCHEDULE for SEH+(F ) against Greedy(F ).
We now discuss the only category where Greedy outperforms SEH techniques significantly.

In SCHEDULE, there are multiple classes of network packets with different arrival rates. Pack-
ets have deadlines, and if a packet is not served before its deadline, the agent encounters a class-
dependent risk of “death” as well as a delay while the packet is cleaned up. To reach the goal of
serving a packet from every class, the agent must minimize the dropping-related risk of dying while

29



Category
SR of
SEH(L)

SR of
FF-Replan

JSLEN-
RATIO
(FFR/
SEH(L))

JSTIME-
RATIO
(FFR/
SEH(L))

SR
Difference
Significant?
(p-value)

JSLEN-
RATIO
Significant?
(p-value)

Winner

BLOCKSWORLD 1.00 0.83 0.99 2.06 YES (p=0.00) NO (p=1.00) SEH(L)

BOXWORLD 0.89 0.88 3.61 0.54 NO (p=0.97) YES (p=0.00) SEH(L)

EXPLODING

BLOCKSWORLD
0.10 0.46 0.71 0.73 YES (p=0.00) YES (p=0.00) FF-Replan

SYSTEMATIC

-TIRE
0.34 0.10 0.28 0.18 YES (p=0.00) YES (p=0.00) SEH(L)

TIREWORLD 0.90 0.70 0.66 0.51 YES (p=0.00) YES (p=0.00) SEH(L)

TOWERS OF

HANOI
0.60 0.42 0.64 4.76 YES (p=0.00) YES (p=0.00) SEH(L)

ZENOTRAVEL 0.58 1.00 0.58 0.03 YES (p=0.00) YES (p=0.00) FF-Replan

Table 9: Aggregated comparison of SEH(L) against FF-Replan (FFR).

waiting for an arrival in each low-arrival-rate class. The all-outcomes determinization underlying
the CR-FF heuristic gives a deterministic domain definitionwhere dying is optional (never chosen)
and unlikely packet arrivals happen by choice, leading to a very optimistic heuristic value. When
using a very optimistic heuristic value, the basic local goal of SEH, which is to improve on the
current state heuristic, leads to building very large localMDPs for analysis. In the presence of
dead-ends (“death”, as above), even arbitrarily large local MDPs may not be able to achieve a local
improvement, and so in SCHEDULE, SEH+ will typically hit the resource limit for MDP size at
every action step.

In contrast, greedy local decision making is well suited to packet scheduling. Many well known
packet scheduling policies (e.g. “earliest deadline first”or “static priority” in the work of Liu &
Layland, 1973) make greedy local decisions and are practically quite effective. In our experiments,
the Greedy policy applied to CR-FF benefits from locally seeking to avoid the incidental delays of
dropped-packet cleanup: even though the heuristic sees no risk-of-dying cost to dropping, it still
recognizes the delay of cleaning up lost dropped packets. Thus, Greedy(F ) is a class-insensitive
policy that greedily seeks to avoid dropping, similar to “earliest deadline first”. The problems
SEH encounters in our evaluation in SCHEDULE suggest future work in automatically recognizing
domains where large MDP construction is proving futile and automatically reducing MDP size
limits to adapt performance towards the behavior of a greedypolicy. We note that across all tested
benchmark domains and both heuristics, there is only one domain/heuristic combination where this
phenomenon arose in practice.

6.2.2 SEH/SEH+ VERSUSFF-REPLAN AND RFF-BG

We have also demonstrated performance improvement of SEH+(F ) over the best performing plan-
ners in the first three international probabilistic planning competitions, outperforming FF-Replan in
ten out of fifteen categories while losing in three (EXPLODING BLOCKSWORLD, PITCHCATCH, and

30



ZENOTRAVEL), and outperforming RFF-BG in 12 out of 15 categories while losing in EXPLODING

BLOCKSWORLD and SYSTEMATIC-TIRE. Additionally, SEH(L) outperforms FF-Replan in five out
of seven categories while losing in EXPLODING BLOCKSWORLD and ZENOTRAVEL. In this section
we discuss the categories where SEH+(F ) and SEH(L) lose to FF-Replan and RFF-BG.

ZENOTRAVEL is a logistics domain where people are transported between cities via airplanes
and each load/unload/fly action has a non-zero probability of having no effect. As a result, it takes
an uncertain number of attempts to complete each task. In domains where the only probabilis-
tic effect is a choice between change and no change, the all-outcome determinization leads to a
“safe” determinized plan for FF-Replan–one in which no replanning is needed to reach the goal.
In such domains, including ZENOTRAVEL, all-outcomes determinization can provide an effective
way to employ deterministic enforced hill-climbing on the problem. We note though though, that
determinization still ignores the probabilities on the action outcomes, which can lead to very bad
choices in some domains (not ZENOTRAVEL). While both deterministic and stochastic enforced
hill-climbing must climb out of large basins in ZENOTRAVEL, the substantial overhead of stochas-
tic backup computations during basin expansion leads to at least a constant factor advantage for de-
terministic expansion. An extension to SEH that might address this problem successfully in future
research would detect domains where the only stochastic choice is between change and non-change,
and handle such domains with more emphasis on determinization.

EXPLODING BLOCKSWORLD is a variant of the blocks world with two new predicatesdet-
onated and destroyed. Each block can detonate once, during put-down, with some probability,
destroying the object it is being placed upon. The state resulting from the action depicted in Fig-
ure 3 has a delete-relaxed path to the goal, but no actual path, so this state is a dead-end attractor
for delete-relaxation heuristics such as CR-FF. FF-Replanor RFF-BG will never select this action
because there is no path to the goal including this action. SEH+(F ) with the weak dead-end de-
tection used in these experiments will select the dead action shown, resulting in poor performance
when this situation arises. It would be possible to use all-outcomes determinization as an improved
dead-end detector in conjunction with SEH+(F ) in order to avoid selecting such actions. Any such
dead-end detection would have to be carefully implemented and managed to control the run-time
costs incurred as SEH relies critically on being able to expand sufficiently large local MDP regions
during online action selection.

In PITCHCATCH, there are unavoidable dead-end states (used by the domain designers to simu-
late cost penalties). However, the CR-FF heuristic, because it is based on all-outcomes determiniza-
tion, assigns optimistic values that correspond to assumedavoidance of the dead-end states. As a
result, local search by SEH+(F ) is unable to find any expected improvement on the CR-FF values,
and falls back to biased random walk in this domain. This domain suggests, as do the other do-
mains where SEH+(F ) performs weakly, that further work is needed on managing domains with
unavoidable deadend states.

The two categories where SEH(L) loses to FF-Replan (EXPLODING BLOCKSWORLD and
ZENOTRAVEL) are also categories where SEH+(F ) loses to FF-Replan. Greedily following the
learned heuristics in these two categories leads to lower success ratio than greedily following CR-
FF, suggesting more significant flaws in the learned heuristics than in CR-FF. Although SEH is able
to give at least a five-fold improvement over greedy following, in success ratio in these two cate-
gories, this improvement is not large enough for SEH(L) to match the performance of SEH+(F ) or
FF-Replan, both based on the relaxed-plan heuristic of FF.

31



Goal State

No Path

Destroyed Table

Pick-up-from-table b3

Destroyed Table

b3

Current 
State

b5

b1

b4

b2

b3
b5

b1

b4

b2

b5

b2

b3

b4

Figure 3: An illustration of a critical action choice of SEH+(F ) in an EXPLODING BLOCKSWORLD problem
(IPPC2 P1). The middle state has no actual path to the goal buthas a delete-relaxed path to the goal. Due
to the table having been exploded, no block can be placed ontothe table, resulting in the middle state being
a dead-end state. The middle state is a dead-end with an attractive heuristic value without regard to whether
the blocks shown have remaining explosive charge or not, so this state feature is not shown.

SEH+ loses to RFF in SYSTEMATIC-TIRE due to weak performance in Triangle Tireworld prob-
lems. Triangle Tireworld provides a map of connected locations arranged so that there is a single
“safe” path from the source to the destination, but exponentially many shorter “unsafe” paths8.
Determinizing heuristics do not detect the risk in the unsafe paths and so greedy following of such
heuristics will lead planners (such as SEH+) to take unsafe paths, lowering their success rate. While
our results above show that SEH+ can often repair a flawed heuristic, in the Triangle Tireworld do-
main the heuristic attracts SEH+ to apparent improvements that are actually dead-ends.

In contrast, RFF is designed to increase robustness for determinized plans with a high proba-
bility of failure. RFF will continue planning to avoid such failure rather than relying on replanning
after failure. Because the initial determinized plan has a high probability of failure (relative to RFF’s
threshold), RFF extends the plan before execution and can often detect the need to use the longer,
safe route.

6.2.3 PERFORMANCE ONLARGE PROBLEMS

In order to demonstrate that the advantages of SEH are emphasized as problem size grows, we
present aggregated performance of SEH+(F ) on additional large-sized problems we have gener-
ated using generators provided by the first IPPC. As such scaling experiments are computationally
very expensive, we have only run two domains that have been most widely evaluated in the plan-
ning literature: BLOCKSWORLD and BOXWORLD (which is a stochastic version of logistics). For
BLOCKSWORLD, we generated 15 problems each for 25- and 30-block problems. For BOXWORLD,
we generated 15 problems for the size of 20 cities and 20 boxes. (Only one problem across the three
competitions reached this size in BOXWORLD, and that problem was unsolved by the competition

8. The “safe” path can be drawn as following two sides of a triangular map, with many unsafe paths through the interior
of the triangle. Safety in this domain is represented by the presence of spare tires to repair a flat tire that has 50%
chance of occurring on every step.

32



Category
SR of
SEH+(F )

SR of
FF-
Replan

JSLEN-
RATIO
(FFR/
SEH+)

JSTIME-
RATIO
(FFR/
SEH+)

SR
Difference
Significant?
(p-value)

JSLEN-
RATIO
Significant?
(p-value)

Winner

BLOCKSWORLD 0.70 0.37 0.72 0.88 YES (p=0.00) YES (p=0.00) SEH+(F )

BOXWORLD 0.67 0.34 5.02 0.98 YES (p=0.00) YES (p=0.00) SEH+(F )

Table 10: Aggregated comparison of SEH+(F ) against FF-Replan in scaled-up problems.

Category
SR of
SEH+(F )

SR of
RFF-
BG

JSLEN-
RATIO
(RFF-
BG/
SEH+)

JSTIME-
RATIO
(RFF-
BG/
SEH+)

SR
Difference
Significant?
(p-value)

JSLEN-
RATIO
Significant?
(p-value)

Winner

BLOCKSWORLD 0.70 0.33 0.46 0.14 YES (p=0.00) YES (p=0.00) SEH+(F )

BOXWORLD 0.67 0.00 0.88 10.81 YES (p=0.00) – SEH+(F )

Table 11: Aggregated comparison of SEH+(F ) against RFF-BG in scaled-up problems.

winner, RFF.) The aggregated results against FF-Replan andRFF-BG are presented in Tables 10
and 11. The experiments for these scaled-up problems consumed 3,265 hours of CPU time and
show that SEH+(F ) successfully completed a majority of the attempts while FF-Replan and RFF
succeeded substantially less often9.

Note that although the FF heuristic is very good on BOXWORLD and other logistics domains, the
failure of all-outcomes determinization to take into account the probabilities on action outcomes is
quite damaging to FFR in BOXWORLD, leading the planner to often select an action “hoping” for its
low-probability “error outcome”. We note that RFF uses a most-probable-outcome determinization
and will not suffer from the same issues as FFR in the boxworld. Given the high accuracy of the
FF heuristic in the boxworld, we believe that the ideas in RFFcan likely be re-implemented and/or
tuned to achieve better scalability in the boxworld problems. We leave this possibility as a direction
for future work on understanding the scalability of RFF.

7. Summary

We have proposed and evaluated stochastic enforced hill-climbing, a novel generalization of the
deterministic enforced hill-climbing method used in the planner FF (Hoffmann & Nebel, 2001).
Generalizing deterministic search for a descendant that isstrictly better than the current state in
heuristic value, we analyze a heuristic-based MDP around any local optimum or plateau reached at
increasing horizons to seek a policy that expects to exit this MDP with a better valued state. We

9. Our statistical protocol requires 30 samples of a random variable averaging performance over 5 solution attempts, for
each planner for each problem. With 45 problems and 3 planners, this yields 30*5*45*3=20,250 solution attempts,
each taking approximately 10 CPU minutes on these large problems.

33



have demonstrated that this approach provides substantialimprovement over greedy hill-climbing
for heuristics created using two different styles for heuristic definition. We have also demonstrated
that one resulting planner is a substantial improvement over FF-Replan (Yoon et al., 2007) and
RFF (Teichteil-Konigsbuch et al., 2010) in our experiments.

We find that the runtime of stochastic enforced hill-climbing can be a concern in some domains.
One reason for the long runtime is that the number and size of local optima basins or plateaus may
be large. Currently, long runtime is managed primarily by reducing to biased random walk when
resource consumption exceeds user-set thresholds. A possible future research direction regarding
this issue is how to prune the search space automatically by state or action pruning.

Acknowledgments

This material is based upon work supported in part by the National Science Foundation, United
States under Grant No. 0905372 and by the National Science Council, Republic of China (98-2811-
M-001-149 and 99-2811-M-001-067).

References

Aarts, E., & Lenstra, J. (Eds.). (1997).Local Search in Combinatorial Optimization. John Wiley &
Sons, Inc.

Barto, A. G., Bradtke, S. J., & Singh, S. P. (1995). Learning to act using real-time dynamic pro-
gramming.Artificial Intelligence, 72, 81–138.

Bertsekas, D. P. (1995).Dynamic Programming and Optimal Control. Athena Scientific.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996).Neuro-Dynamic Programming. Athena Scientific.

Bonet, B., & Geffner, H. (2005). mGPT: A probabilistic planner based on heuristic search.Journal
of Artificial Intelligence Research, 24, 933–944.

Bonet, B., & Geffner, H. (2006). Learning depth-first search: A unified approach to heuristic search
in deterministic and non-deterministic settings, and its application to MDPs. InProceedings
of the Sixteenth International Conference on Automated Planning and Scheduling, pp. 142–
151.

Bryce, D., & Buffet, O. (2008). International planning competition uncertainty part: Benchmarks
and results.. http://ippc-2008.loria.fr/wiki/images/0/03/Results.pdf.

Buffet, O. (2011) Personal communication.

Cerny, V. (1985). Thermodynamical approach to the traveling salesman problem: An efficient sim-
ulation algorithm.J. Optim. Theory Appl., 45, 41–51.

Dean, T., Kaelbling, L. P., Kirman, J., & Nicholson, A. (1995). Planning under time constraints in
stochastic domains.Artificial Intelligence, 76, 35–74.

Domshlak, C., & Hoffmann, J. (2007). Probabilistic planning via heuristic forward search and
weighted model counting.Journal of Artificial Intelligence Research, 30, 565–620.

Fahlman, S., & Lebiere, C. (1990). The cascade-correlationlearning architecture. InAdvances in
Neural Information Processing Systems 2, pp. 524 – 532.

34



Gardiol, N. H., & Kaelbling, L. P. (2003). Envelope-based planning in relational MDPs. InProceed-
ings of the Seventeenth Annual Conference on Advances in Neural Information Processing
Systems.

Gerevini, A., & Serina, I. (2003). Planning as propositional CSP: from Walksat to local search
techniques for action graphs.Constraints, 8(4), 389–413.

Gordon, G. (1995). Stable function approximation in dynamic programming. InProceedings of the
Twelfth International Conference on Machine Learning, pp. 261–268.

Hansen, E., & Zilberstein, S. (2001). LAO*: A heuristic search algorithm that finds solutions with
loops.Artificial Intelligence, 129, 35–62.

Hoffmann, J. (2003). The Metric-FF planning system: Translating “ignoring delete lists” to numeric
state variables.Journal of Artificial Intelligence Research, 20, 291–341.

Hoffmann, J., & Brafman, R. (2005). Contingent planning viaheuristic forward search with implicit
belief states. InProceedings of the 15th International Conference on Automated Planning and
Scheduling.

Hoffmann, J., & Brafman, R. (2006). Conformant planning viaheuristic forward search: A new
approach.Artificial Intelligence, 170(6-7), 507 – 541.

Hoffmann, J. (2005). Where ‘ignoring delete lists’ works: Local search topology in planning bench-
marks.Journal of Artificial Intelligence Research, 24, 685–758.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through heuristic
search.Journal of Artificial Intelligence Research, 14, 253–302.

Kautz, H., & Selman, B. (1992). Planning as satisfiability. In Proceedings of the Tenth European
Conference on Artificial Intelligence (ECAI’92).

Kirkpatrick, S., Gelatt, Jr, C., & Vecchi, M. (1983). Optimization by simulated annealing.Science,
220, 671–680.

Little, I., & Thiebaux, S. (2007). Probabilistic planning vs replanning. InWorkshop on International
Planning Competition: Past, Present and Future (ICAPS).

Liu, C., & Layland, J. (1973). Scheduling algorithms for multiprogramming in a hard-real-time
environment.Journal of the Association for Computing Machinery, 20, 46–61.

Mahadevan, S., & Maggioni, M. (2007). Proto-value functions: A Laplacian framework for learn-
ing representation and control in Markov decision processes. Journal of Machine Learning
Research, 8, 2169–2231.

Nilsson, N. (1980).Principles of Artificial Intelligence. Tioga Publishing, Palo Alto, CA.

Puterman, M. L. (2005).Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc.

Sanner, S., & Boutilier, C. (2009). Practical solution techniques for first-order MDPs.Artificial
Intelligence, 173(5-6), 748–788.

Selman, B., Kautz, H., & Cohen, B. (1993). Local search strategies for satisfiability testing. In
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 521–532.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.Machine Learning,
3, 9–44.

35



Sutton, R. S., & Barto, A. G. (1998).Reinforcement Learning: An Introduction. MIT Press.

Teichteil-Konigsbuch, F., Kuter, U., & Infantes, G. (2010). Incremental plan aggregation for gener-
ating policies in MDPs. InProceedings of the Ninth International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2010), pp. 1231–1238.

Tesauro, G., & Galperin, G. (1996). On-line policy improvement using Monte-Carlo search. In
NIPS.

Wu, J., & Givan, R. (2007). Discovering relational domain features for probabilistic planning.
In Proceedings of the Seventeenth International Conference on Automated Planning and
Scheduling, pp. 344–351.

Wu, J., & Givan, R. (2010). Automatic induction of Bellman-Error features for probabilistic plan-
ning. Journal of Artificial Intelligence Research, 38, 687–755.

Yoon, S., Fern, A., & Givan, R. (2007). FF-Replan: A baselinefor probabilistic planning. InPro-
ceedings of the Seventeenth International Conference on Automated Planning and Schedul-
ing, pp. 352–358.

Younes, H., Littman, M., Weissman, D., & Asmuth, J. (2005). The first probabilistic track of the
international planning competition.Journal of Artificial Intelligence Research, 24, 851–887.

36


