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Previous researh on best-e�ort ongestion ontrol anbe divided into rate-based and window-based approahes.Here we present a rate-based approah, ontrolling therates of the best-e�ort soures rather than deiding win-dow sizes to those soures. Previous rate-based workinvolves binary feedbak [6℄ and proportional ontrollers[7℄, [8℄ for ATM (Asynhronous Transfer Mode) net-works and linear-inrease/exponential-derease ontrollersfor TCP/IP (Transmission Control Protool/Internet Pro-tool) networks [15℄. Reent approahes attempt to im-prove performane by inorporating ontrol-theoreti teh-niques, inluding proportional-derivative (PD) ontrollers[9℄, [10℄, [17℄, [30℄, and those using optimal ontrol and dy-nami game tehniques suh as linear quadrati (LQ) team,H1, and nonooperative game ontrollers [12℄, [13℄, [11℄.We motivate our work by notiing that most of the aboveontrol shemes are designed for onstant or slowly-varyingross traÆ (with the exeption of the LQ team and theH1 ontrollers). We all these onnetion-level ongestionontrollers sine they assume that the ross-traÆ varia-tion is aused primarily by the joining of new onnetionsand the termination of existing ones. However, bursti-ness in ross traÆ in real networks often ours at smalltime sales, i.e., from several milliseonds up to a seond[3℄. Fast hanges in the ross traÆ, oupled with largebandwidth-delay produts, often signi�antly degrade theperformane of onnetion-level ontrollers.We approah the ongestion-ontrol problem using an al-ternative paradigm that alleviates these drawbaks. Herewe assume we are provided with a stohasti model of theross traÆ, and demonstrate a ontroller that ahievessubstantial bene�ts from exploiting this model. We allour approah burst-level ongestion ontrol. Our ontrollerpredits future ross traÆ using the stohasti ross-traÆmodel so that the ontroller an antiipate hanges stohas-tially and at \before" the hanges happen.We model the ross traÆ at the bottlenek node as aMarkov-modulated uid (MMF) [1℄, [2℄, [3℄. We formulateour ongestion-ontrol problem as a disrete-time �nite-horizon Markov deision proess (MDP) [5℄. The famil-iar ongestion ontrol goal|rapidly ahieving queue sta-bility in response to step hanges in ross traÆ|is notan appropriate measure of suess here due to the inlu-sion of rapidly-varying ross traÆ. Instead, we formulatea measure of performane over long traes of ross-traÆvariation, balaning throughput, delay, loss, and fairness.We extend our previously proposed Hindsight Optimiza-tion (HO) tehnique [4℄ to provide a heuristi solution tothe MDP problem|in partiular, the HO tehnique has



2never previously been used to address a problem with anin�nite ontrol ation spae.The main ontribution of this work is to demonstratethat a stohasti ross-traÆ model an be e�etively ex-ploited in ongestion ontrol to ahieve substantial perfor-mane bene�ts. A seondary ontribution is to providea spei� means to obtain these bene�ts using a novelongestion-ontrol framework based on online simulation.Our work provides both a strong motivation and a use-ful starting point for seeking a pratially-realized shemeinorporating traÆ models.Although MMF models have been extensively em-ployed in network performane analysis (e.g., [1℄, [2℄),our work is the �rst to exploit suh models for rate-based ongestion ontrol. Compared with the work of[12℄, [13℄, whih models ross traÆ by an auto-regressivemoving-average proess, MMF models have more stru-ture, and better performane is therefore expeted whensuh models are available. In [15℄, the authors inor-porate a long-range-dependent model into the design ofa linear-inrease/exponential-derease (LIED) ontroller.Our MMF model yields to a deision-theoreti analysis,as mentioned above, resulting in a ontroller that is notonstrained to be LIED.Previous work on ongestion ontrol using MDP formu-lation inludes [33℄, [34℄, [35℄. Our work di�ers from [33℄,[34℄, [35℄ in the sizes of ation spaes, the generality of re-ward strutures, and solution methods. Reent work onpoliy rollout algorithms (see, e.g., [36℄) provides a meansof using simulation to selet \good" ontrol ations heuris-tially, but requires starting with a good \base" heuristipoliy. Poliy rollout uses one-step look-ahead relative tothe base poliy value funtion (muh like value iteration)to obtain an estimate of the so-alled \Q-value"|this esti-mate must lower bound the true Q-value beause the basepoliy value funtion lower bounds the true value funtion.The Q-value estimate used in the HO tehnique is an upperbound.The remainder of the paper is organized as follows. InSetion II, we desribe our network model and de�ne theongestion-ontrol problem as an MDP. In Setion III, weintrodue the HO tehnique for heuristi MDP ontrol, andpresent our gradient-based ontrol algorithm. Setion IVpresents the simulation results of our ontroller and the PDontroller to enable omparison. Setion V onludes thepaper.II. System Model and Problem DesriptionA. System ModelWe onsider a network where a single bottlenek node isshared by multiple rate-ontrolled traÆ soures and otherhigh-priority \ross-traÆ" soures. The ontrolled sourestransmit at rates spei�ed by a entral ontroller residing atthe bottlenek node. Assoiated with eah soure is a �xedround-trip delay. Without loss of generality, we assumethat the round-trip delays are distint from one another.We notate vetors and their omponents as follows: forvetor ~v, we write v(i) for the ith omponent of ~v when that

omponent is salar, and ~v (i) for that omponent when itis itself a vetor. We also notate the jth omponent of theith omponent of ~v (when ~v is a vetor of vetors) as v(i;j).Throughout this paper we use the notation EX to denoteexpetation taken with respet to the random variable X .We assume that time is disrete with small time inre-ments Æ. We now desribe four essential omponents of oursystem: the ontrolled traÆ soures, the ross traÆ, thebottlenek node, and the ongestion ontroller.Controlled Soures. Denote the olletion of on-trolled soures by the set N and let N = jNj be the ar-dinality of N. We assume that in real time the round-tripdelays are large ompared with the time inrement Æ suhthat we an express the delay by integral multiples of Æ withsuÆient auray. Hene, in disrete time, we denote theround-trip delay of soure i as d (i), a positive integer. Weindex the soures suh that 0 < d(1) < d(2) < � � � < d(N).The soures onstantly transmit at the ontroller-spei�edrates and respond to rate ommands instantaneously upontheir arrival. This model emulates ontrolled ABR (avail-able bit rate) traÆ in ATM networks and UDP (UserDatagram Protool) traÆ in IP networks, whih are suit-able andidates for rate-based ongestion-ontrol shemes.Cross TraÆ. The high-priority ross traÆ repre-sents, for example, CBR and VBR traÆ in ATM networks,or traÆ in IP networks reeiving high-priority servie viathe CBQ (lass-based queuing) sheme [14℄. This rosstraÆ determines the available bandwidth that the on-trolled traÆ experienes at the bottlenek node.The ross-traÆ proess an hange at any (disrete)time. For onveniene, instead of speifying the ross-traÆ distribution, we speify the \servie proess," whihis the di�erene between the rate of ross traÆ and C, theonstant bandwidth of the bottlenek node. This servieproess an also be haraterized using an MMF modeleasily derived from the MMF model of the ross traÆ.The servie proess is represented by a Markov hain withstate spae S = f1; : : : ;mg, a transition probability ma-trix M : (S � S) 7! [0; 1℄, and a set of distint rate valuesv1; : : : ; vm (i.e., m is the number of the values that the ser-vie rate an take) whih are real numbers in the interval[0; C℄. By \servie rate" we mean the amount of uid best-e�ort traÆ that an be served in one time step. When instate s, the servie rate is vs. In this setting, measuringservie rate suÆes to determine the state of the servieproess.Bottlenek Node. The bottlenek node has a bu�erof �nite size. The ontrolled best-e�ort traÆ is bu�eredtogether, independently of any bu�ering needed for thehigh-priority ross traÆ. We denote the size of the bu�erby B. As de�ned above, we denote the bandwidth at thebottlenek node by C. We assume that the queue lengthat the bottlenek node is known at eah time step. We alsoassume a �rst-in-�rst-out (FIFO) servie disipline at thebottlenek node.Congestion Controller. The ontroller, residing atthe bottlenek node, makes ontrol deisions at eah timestep. The ongestion-ontrol problem is to determine a rate



3ommand u(i)k to relay to soure i, i = 1; : : : ; N , at time kto ahieve some overall performane objetive. Our obje-tive is to balane throughput, delay, loss, and fair servieto ontrolled soures, as desribed formally by the rewardfuntion below. The ontroller an use system observationsand a model of the servie proess to ompute rate om-mands. The rate ommand for a soure at any given epohimpats the bottlenek node arrivals after a time durationequal to one round-trip delay for that soure. Therefore, ateah deision-making epoh, the ontroller needs to om-pute an appropriate rate ommand for eah soure thattakes into aount the round-trip delays and antiipatedservie-rate variation. The order of event ourrene atthe bottlenek is: deision making, MMF transition, traÆarrival and simultaneous traÆ forwarding, and then hekfor bu�er overow/underow.B. MDP Problem FormulationWe formulate the ongestion-ontrol problem as aMarkov deision proess (MDP). An MDP onsists of anation spae, a state spae, a state-transition struture, anda reward struture. In the following, we desribe eah ofthese omponents for our problem.Ation Spae. We assume that the transmission ratesat the ontrolled soures are bounded from below by zeroand from above by the ommon value C. We denote the a-tion spae by U = [0; C℄N . For instane, at time k the on-trol ation is a vetor ~uk of the form ~uk = [u(1)k ; : : : ; u(N)k ℄.State Spae. The system state has three omponents.The �rst is the state of the servie proess, taking values inS. The state of the servie proess at eah time step orre-sponds to the departure rate observed at the previous timestep, and the MMF servie model will transition beforedepartures our at the urrent time step. (This hoiemodels that fat that we annot know the urrent rosstraÆ preisely until after it has ourred and we have hadthe opportunity to measure it.) The seond omponent isthe urrent queue length l, taking values in L = [0; B℄. Thethird omponent onsists of the ontrol signals that havebeen issued in the past but whose impat has not yet beenfelt at the bottlenek node due to the round-trip delays.This ontrol history ~w takes values in Ud(N) . For exam-ple, if the ontrol ations seleted over time are ~u0; ~u1; : : :then the ontrol history ~wk = (~w (1)k ; : : : ; ~w (d(N))k ) at timek is suh that ~w (i)k = ~uk�i and thus w (i;j)k = u (j)k�i. Wenote that this ontrol history inludes unneessary informa-tion in the form of history beyond the round-trip delay forsoures loser than delay d(N). This information is inludedto greatly simplify our notation throughout this paper, butis not truly needed in the intended model or for any of ourmethods. The omplete state spae is X = S�L�Ud(N) .State Transition. If the state is ~x = (s; l; ~w) where~w = (~w (1); : : : ; ~w (d(N))) denotes the ontrol history, andwe apply a ontrol ~u, the system will make a transition toa new state ~x 0 = (s0; l0; ~w0). In the following, we speifyhow eah omponent of ~x 0 depends on ~x and ~u.The servie-proess state makes a transition from s to

s0 with probability P (s; s0) spei�ed in the given matrixM|this transition is una�eted by the values of l and ~w.The queue-length omponent l0 depends on ~x as follows.Let a(~x) =PNi=1 w(d (i) ;i) be the aggregate uid traÆ thatarrives during the transition from state x to state x0 fromall ontrolled soures|this traÆ is due to rate ommandsthat were issued to these soures in the past whih are nowreorded in the state omponent ~w. Realling that theservie proess onsumes uid traÆ at rate vs0 when inservie proess state s0, and given the just omputed uidarrival, the queue-length omponent of the state hangesaording to the following di�erene equation, ommonlyalled Lindley's equation:l0 = maxfminfl + a(~x)� vs0 ; Bg; 0g:The queue-length omponent l0 does not depend on ~u dueto non-zero round-trip delays.Finally, the ontrol history updates as follows:~w 0 (1) = ~u; ~w 0 (i+1) = ~w 0 (i); i = 1; : : : ; d(N) � 1:Reward Struture. We de�ne the one-step reward atstate ~x byR(~x) = T (~x)� �D(~x)� �F (~x)� �L(~x); (1)where 0 < � < minf1; �=2; �g, T (~x) is the throughputreeived at one time step when the system is in state ~x,D(~x) is the total queuing delay inurred at that time step,F (~x) is the sum of the absolute pairwise rate di�erenesin arriving traÆ from di�erent ontrolled soures at thattime step, and L(~x) is the uid lost at the urrent time stepdue to bu�er overow (after \hek for bu�er overow").Note that these four quantities|throughput, delay, loss,and fairness|are independent metris in evaluating ontrolperformane; in partiular, speifying throughput and lossis not redundant, beause the total arrival is not �xed orpre-determined.The saling fators �, �, and � reet our tradeo� prefer-ene between throughput, delay, loss, and servie fairness.Spei�ally, the restrition 0 < � < minf1; �; �g representsour preferene towards optimizing throughput, delay, andloss, with the fairness optimization somewhat subordinate.We are most interested in parameter values satisfying thisrestrition. The further restrition that � < �=2, as we willexplain after presenting Proposition 1, allows the analytialseletion of a hindsight-optimal ontrol sequene (de�nedlater) more easily, and we do not onsider the more diÆultand less important ase of parameter settings that violatethis restrition. While it appears that, given the restri-tions on �, the fairness term makes a negligible ontribu-tion to the reward funtion, this ontribution is important,as we disuss later in Setion IV-C.The one-step reward R(~x) depends only on the state ~xand not expliitly on the ontrol ~u beause any rate om-mand in ~uwill not have impat on the bottlenek node untilat least d(1) time units later, due to the non-zero round-trip delays d (i). Reall that d(1) is the smallest among all



4d (i)'s. We now provide formal expressions for T (~x), D(~x),L(~x), and F (~x) for ompleteness. The throughput, delay,loss, and unfairness penalty at a time step are given by:T (~x) = minfl+ a(~x); vs0g (2)D(~x) = maxfminfl+ a(~x)� vs0 ; Bg; 0g (3)L(~x) = maxfl + a(~x)� vs0 �B; 0g (4)F (~x) = 1N � 1 NXi=1 NXj=i+1 ���w(d (i);i) � w(d (j) ;j)��� ; (5)where s0 is the servie-rate proess state after MMF tran-sition from state s. Note that the throughput, delay, andloss terms of the reward funtion (and thus the reward it-self) are random variables due to their dependene on therandom variable s0.Optimization Goal. Based on the MDP model de-sribed above, we an state the ongestion-ontrol problemas follows. For a given initial state ~x0 2 X, we apply a on-trol ~u0 2 U to the system and reeive a reward of R(~x0)by serving traÆ at the bottlenek node. The system willthen make a transition to a new state ~x1, stohastiallyaording to the state-transition struture. We then applya ontrol ~u1, and so on. After a horizon of H steps, theumulative reward reeived (a random variable) is given byWH (~u0; : : : ; ~u ~H�1) � H�1Xk=0 R(~xk);where ~H = H � d(1), and ~u ~H�1 is the latest ontrol om-mand that an impat the bottlenek node within the hori-zon H .Our hoie of ~uk is based on ~xk; that is, we use a \state-feedbak" map �k : ~x 7! ~u and apply ~uk = �k(~xk). Thesequene of maps � = f�0; �1; �2; : : :g is alled a poliy.For a given initial state ~x0, the problem is to �nd a poliythat maximizes the objetive funtionV �H (~x0) = E �WH(�0(~x0); : : : ; � ~H�1(~x ~H�1))� :Given a poliy � or a �xed sequene of ontrols ~u0; ~u1; : : :,we denote the state of the system at eah time k in 0; 1; : : :by the random variable Xk and the state of the servieproess at time k by the random variable Sk.C. Optimal SolutionTo desribe our approah to the ongestion-ontrol prob-lem, we �rst haraterize the optimal ongestion-ontrolpoliy. For a given initial state ~x, letV �H(~x) = max� V �H (~x):Following a standard approah to solving MDPs, we writeQk(~x; ~u) = R(~x) +E(V �k�1(~x 0 )); k = 1; : : : ; H;where the expetation in the right-hand side is with respetto the next state ~x 0 , and V �k�1(~x 0 ) is the optimal umu-lative reward over the k � 1 time steps starting from the

(random) state ~x 0 . A key result in Markov deision theory[5℄ then states thatV �H (~x) = max~u2UQH(~x; ~u);and a poliy �� = (��0; ��1; : : :) is an optimal poliy if itsatis�es for all k,��k(~x) = argmax~u2UQH�k(~x; ~u):In partiular, for a �xed horizon H , the ontrol ~u� is anoptimal \urrent" ation if it satis�es~u� = ��0(~x) = argmax~u2UQH(~x; ~u): (6)At eah ontrol epoh we apply the \urrent" ontrolation ~u� in (6). Eah ontrol epoh involves optimizingQH(~x; ~u) with respet to ~u for a horizon of H into the fu-ture. This approah of applying a \moving-horizon" on-trol solution in an online fashion is ommon in the optimal-ontrol literature, for example in reeding-horizon ontrol(e.g., [19℄, [20℄).In pratie we do not have expliit knowledge of QH .Standard tehniques an ompute QH in time polynomialin the size of the state spae. However, beause we havean impliitly spei�ed state spae (spei�ed omponent byomponent above), our atual state spae is astronomialin size; as a result, these standard tehniques annot beapplied in pratie. Thus, (6) is not diretly useful for de-termining the optimal poliy. Our MDP problem does notyield to any other known analytial solution. Instead, weapproah the problem by omputing an upper bound esti-mate of QH . We stress that the non-negligible informationdelays in our system greatly ompliate the problem. Ifthe delays are not signi�ant with respet to the dynamisof the Markov-modulated servie proess, we an greatlyredue the state spae, and standard tehniques are appli-able to solving the resulting problem. In the next setion,we desribe a partiular approah to solving our problem,based on evaluating andidate ations using suh upperbound estimates of QH .III. Congestion-ontrol Algorithm UsingHindsight OptimizationA. The Hindsight Optimization TehniqueIn this subsetion, we outline our solution approah,whih extends a tehnique alled hindsight optimization,�rst desribed in [4℄. The overall ontrol arhiteture is il-lustrated in Figure 1. The ontroller omprises three parts:a state observer, a traÆ simulator, and a rate alulator.The state observer is responsible for obtaining the systemstate ~x by measuring the servie rate at eah time step(as well as observing the urrent queue length and storingthe reent ontrol history). Given our assumption that theMMF model state eah determines a unique servie rate,the system state is fully observable.The traÆ simulator takes the observed urrent state ~xand uses it as a starting state to generate a �nite number
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Fig. 1. Congestion-ontrol arhiteture.of possible servie-rate sequenes (traes) using our MMFmodel. The rate alulator takes these traes and omputesa rate ommand vetor ~u. The alulation of the rate om-mand vetor is based on the following idea. Reall fromequation (6) that at any given ontrol epoh and any state~x, the optimal rate ommand is given by~u� = argmax~u2UQ(~x; ~u) (7)(we omit the subsript H in QH(~x; ~u) for brevity). Werely on an estimate Q̂(~x; ~u) of the Q(~x; ~u) to arry out theabove maximization. This estimate is alulated as follows.For eah servie-rate trae t, we ompute the umulativereward by taking ation ~u at state ~x followed by a trae-optimal sequene of ations ~u t1; ~u t2; : : : ; ~u t~H�1 for the remain-ing horizon of ~H � 1 time steps. We say that the sequene~u t1; ~u t2; : : : ; ~u t~H�1 is trae-optimal if this sequene ahievesthe largest possible umulative reward under the assump-tion that the servie rate does indeed vary aording to thetrae under onsideration. We all any suh trae-optimalsequene a hindsight-optimal ontrol sequene and the opti-mal umulative reward of any suh sequene the hindsight-optimal value of the trae|omputing suh a sequene andits orresponding value is an o�ine optimization problemthat is often onsiderably easier than �nding the optimalstohasti ontrol for the online problem. We ompute theaverage of the hindsight-optimal values over the set of ngenerated traes for the spei�ed initial ontrol ~u|this av-erage is our estimate Q̂n(~x; ~u) of Q(~x; ~u). In other words,Q̂(~x; ~u) and its sampled approximation Q̂n(~x; ~u) are givenby Q̂n(~x; ~u) = 1n nXt=1W �t (~x; ~u); (8)Q̂(~x; ~u) = R(~x)+ES1;:::;SH max~u1;:::;~u ~H�1WH�1(~u1; : : : ; ~u ~H�1);(9)where WH�1(~u1; : : : ; ~u ~H�1) � H�1Xk=1 R(~xk);and W �t (~x; ~u) is the hindsight-optimal value for the trae tas a result of applying ontrol ~u at state ~x.

Given the estimate Q̂(~x; ~u) of Q(~x; ~u) for eah ation,the hindsight optimization approah is to selet and exe-ute the ation ~u that maximizes this estimate. Previousappliations of the hindsight-optimization tehnique haveall involved MDP problems with �nite ation spaes, un-like our ongestion ontrol problem. When the ation spaeis �nite, we an simply ompute the estimate Q̂(~x; ~u) foreah ation ~u, and hoose the andidate ation assoiatedwith the largest suh estimate for exeution. Here, how-ever, we have an unountable ontinuous ation spae, andannot ompute this estimate for every ation. Instead, weextend the hindsight optimization tehnique by �nding a(loally) optimal ation using a gradient asent tehnique.Beause we seek to use gradient asent to solve this prob-lem, we atually need to analyze traes to �nd the gradi-ent of Q̂(~x; ~u) relative to hanges in ~u (rather than to �ndQ̂(~x; ~u) itself). We disuss a method for estimating thisgradient from traes below.As explained in [4℄, Q̂(~x; ~u) is an upper bound on Q(~x; ~u)if exatly omputed (e.g., by in�nite sampling). This upperbound an be arbitrarily loose. However, these estimatesare only used to rank andidate ations, and thus it onlymatters whether or not these estimates preserve the rela-tive values at di�erent states. Our results below give evi-dene that for ongestion ontrol problems the ranking ispreserved well enough to make Q̂(~x; ~u) useful for seletingan e�etive ontrol poliy.B. Hindsight-optimal Control SequenesAt eah deision-making epoh, we wish to determinea rate vetor ~u� aording to (7) using Q̂n(~x; ~u) in plaeof Q(~x; ~u). For a given ~x, we wish to maximize Q̂n(~x; ~u)with respet to ~u. Beause the argument ~u is a vetor ofontinuous variables, we an use a searh algorithm basedon the gradient of Q̂n(~x; ~u) with respet to ~u, whih wedenote by r~u Q̂n(~x; ~u).Note that from equation (8), we an write r~u Q̂n(~x; ~u)as r~u Q̂n(~x; ~u) = 1n nXt=1r~uW �t (~x; ~u); (10)where r~uW �t (~x; ~u) is the gradient ofW �t (~x; ~u) with respetto ~u. Therefore, the alulation of r~u Q̂n(~x; ~u) reduesto alulating the gradients on a per-trae basis, i.e., thegradients of theW �t (~x; ~u). It turns out that these gradientsan be omputed analytially, as we will show later. Ourgradient estimate above is akin to the idea of in�nitesimalperturbation analysis [27℄.Reall that d(1) is the smallest round-trip delay amongall d (i)'s. We note that if d(1) � H�1, then no matter whatontrol sequene we apply, by the end of the horizon H , noation will have impat on the bottlenek node. Therefore,we onsider only the nontrivial ase where 0 < d(1) < H�1.Suppose that the urrent time is zero and the urrentstate is ~x0 = (s0; l0; ~w0). We wish to selet as the urrentontrol the ation ~u�0 that maximizes Q̂(~x0; ~u�0). In thefollowing, we �rst desribe how we ompute a hindsight-optimal ontrol sequene for a given servie-proess trae.



6Based on n suh sequenes, we then show how to obtainthe gradient of Q̂n(~x0; ~u0), whih together with a searhalgorithm forms our ongestion-ontrol algorithm. We nowassume that we have generated a spei� servie-proesstrae t = fvs1 ; : : : ; vsHg.Given the initial state ~x0 and ation ~u0, de�ne the trae-relative ommitted aggregate arrival rate (from all on-trolled soures due to rate ommands in the ontrol his-tory as indiated in the ~w0 omponent of x0) at timesk = 0; : : : ; H � 1 for initial ontrol ~u0 byatk(~u0) = NXi=1 Ii(k)w(d (i)�k;i)0 ; where Ii = 1f0;:::;d (i)gwhere we de�ne ~w(0)0 to be ~u0. The funtion Ii(k) returns1 when k is less than d (i), or equivalently, when the arrivalfrom soure i at time k is spei�ed by ~w0. De�ne the trae-relative queue-length sequene fltk, k = 0; : : : ; Hg (and thequeue length f~l tk+1, k = 1; : : : ; Hg before \heking forunderow") for initial ontrol ~u0 byltk+1(~u0) = maxf~l tk+1(~u0); 0g; and~l tk+1(~u0) = minfltk(~u0) + atk(~u0)� vsk+1 ; Bg;with lt0(~u0) = l0 the urrent queue size.Notie u(i)0 is the ontrol deision we are going to make atthe urrent time and has not been determined yet; however,in the following proposition, u(i)0 is assumed given beausewe will assign it andidate values to determine the assoi-ated Q̂ values. For a servie-rate trae t = fvs1 ; : : : ; vsHg,we wish to ompute a hindsight-optimal ontrol sequene~u t1; : : : ; ~u t~H�1, where ~H = H � d(1) as before. In hoosingsuh a ontrol sequene, we will need notation for the num-ber of soures that an a�et a given time (i.e., soures suhthat the round-trip delay is less than the spei�ed time)|we write ~Nk for the set of soures j suh that k � d (j) andlet ~Nk = j ~Nkj. The following proposition gives the meansto ompute the unique hindsight-optimal ontrol sequeneanalytially. (For the proof, see Appendix I.)Proposition 1: Given system state ~x0 = (s0; l0; ~w0), a-tion ~u0, and a trae of future servie rates vs1 ; : : : ; vsH , thesequene f~u tk, k = 1; : : : ; ~H � 1g with (utk)(i) for soure ispei�ed as below is the unique hindsight-optimal ontrolsequene.(utk)(i) = ( 0 when ~l tk+d (i)+1 � 0,�~l tk+d (i)+1= ~Nk+d (i) otherwise,where ~l tk+d (i)+1 = ~l tk+d (i)+1(~u0) is a funtion of ~u0.The hindsight-optimal ontrol sequene given in Proposi-tion 1 is justi�ed as follows. We �rst note that ~l tk+d (i)+1(~u0)is the �rst value of the queue length \before heking forunderow" that an be inuened by the ontrol (utk)(i),beause ontrol sent to soure i experienes a delay of d (i),and then the arrivals at time k+ d (i) have their �rst e�eton queue length at the next time step k+d (i)+1. The �rstase of the proposition orresponds to the situation where

the predited ross traÆ leaves insuÆient servie band-width over the interval 0; : : : ; k + d (i) to empty the queueat time step k+ d (i)+1 (before new arrivals at that time).In this ase, the full available servie at time k + d (i) isutilized to serve uid already requested by ontrols we areommitted to (i.e., either ~u0 or ontrols that are in the his-tory at time 0, that is, uid in the \pipeline") so that anyfurther uid arriving at time k + d (i) will only be delayeduntil at least the next time step (inurring delay withoutimproving throughput). Therefore, in the �rst ase, it isoptimal to add no further requests for arrivals at time kby setting (utk)(i) to zero (given that delay and droppingare penalized more heavily than fairness aording to theabove assumptions on the parameters �, �, and �).In the seond ase, we have ~l tk+d (i)+1(~u0) < 0, indiat-ing that the bandwidth of the bottlenek node is not fullyused without additional traÆ requests, leading to loss inthroughput. Hene, we need to request some additionaltraÆ to maintain throughput but not so muh that thequeue fails to empty during traÆ forwarding (inurring de-lay penalties without gain in throughput). We also need todivide this new traÆ among all eligible ( ~Nk+d (i)) souresto be fair. The expression given in ase 2 for (utk)(i) seletsexatly this amount of new traÆ from soure i.The above arguments hold when 0 < � < minf1; �=2; �g,as we have assumed in our hoie of reward funtion. Bynotiing that one in�nitesimal inrease in arrival (giventhat the bottlenek is under utilized) will result in one suhinrement in throughput but at most one suh inrement inthe unfairness penalty, it is immediate that the restrition� < 1 will prioritize utilization of the bottlenek band-width over any redution in fairness penalty. Any stritlypositive value of � penalizes any traÆ baklogging whihonly auses delay but does not improve throughput. Fur-thermore, setting � < minf�=2; �g makes it sub-optimal toinrease arrival from any soure(s) to derease unfairnesspenalty without gain in throughput beause this will resultin more penalty from delay and/or loss. To see why we need� < �=2, suppose an inrease in arrival will remain in thebu�er for K > 1 time steps before it is drained ompletely.Thus, the maximum possible redution in fairness penaltyis �K, and the delay penalty due to this traÆ is �(K�1).To maintain our preferred priority of reduing delay overreduing unfairness, we require �K < �(K � 1), or equiv-alently � < (K � 1)�=K. Sine (K � 1)=K < K=(K + 1),we set � < �=2 (for K = 2) to satisfy this inequality forall K � 2.C. Searh AlgorithmReall that at eah time step, we wish to determineand relay to the soures the ontrol ation ~u�0 that yieldsthe largest estimate Q̂(~x0; ~u0). Here, we use a simplesearh algorithm that uses only the gradient of Q̂. Letr~u Q̂n(~x0; ~u0) represent the gradient of Q̂n(~x0; ~u0) (withrespet to the ontrol ation ~u0). The searh algorithm isof the form (see, e.g., [16℄)~u(k + 1) = ~u(k) + (k)r~u Q̂n(~x0; ~u(k)); (11)



7where (k) is a positive step size, the iterate ~u(k) is anestimate of ~u�0, and r~u Q̂n(~x0; ~u0) is given by equation (10)with the argument ~u replaed by ~u0.The result of Proposition 2 below an be used to omputethe gradient r~uW �t (~x0; ~u0) (and hene r~u Q̂n(~x0; ~u0)).Combining this result with the algorithm (11), we nowhave an iterative proedure to ompute ~u�0. In pra-tie, we terminate the algorithm (11) when the gradientr~u Q̂n(~x0; ~u(k)) is suÆiently lose to ~0. Note that we alsoneed a value ~u0(0) to initialize the algorithm (in our exper-iments, we set ~u0(0) = ~0). We note that using a reasonableguess of the value of ~u0(0) instead of ~0 ould speed up on-vergene; for instane, we an use the historial average of~u0(0) as the initial value when invoking our gradient searhalgorithm. For the step size sequene f(k)g, a typial andsimple hoie is to set (k) to be a small positive onstant.We summarize the searh proedure in the followingroutine. Let Tr be a given set of future bandwidthtraes, n = jTrj the ardinality of Tr as de�ned before,and r~uW �t (~x0; ~u(k)) the gradient of the hindsight-optimalvalue for trae t in Tr, as given by Proposition 2. We alsolet ~d be a vetor whose ith entry is d (i). We assume a giveninitial state ~x0. The searh routine is as follows.grad-searh(Tr; ~d)1. Initialize ~u(0).2. For k = 1; 2; : : : ; dor~u Q̂n(~x0; ~u(k)) = (1=n)Pnt=1r~uW �t (~x0; ~u(k))~u(k + 1) = ~u(k) + (k)r~u Q̂n(~x0; ~u(k))until jr~u Q̂n(~x0; ~u(k))j � ".3. Output ~u(k).The set of traes Tr and delay parameter vetor ~d arelisted as arguments of the routine beause both are neededin the alulation of r~uW �t (~x0; ~u(k)).There are points where the trae-relative hindsight-optimal value is not di�erentiable. The use of gradientasent methods with funtions that are not everywhere dif-ferentiable has been studied before (e.g., [32℄). In pratie,we have found that the non-di�erentiable points in our ob-jetive funtion do not impat the eÆay of the gradientasent algorithm. Hene, we do not delve further into thisissue.The searh algorithm is in fat only a loal-searhmethod; the solution obtained depends on the initial on-dition, and may not be globally optimal. To searh fora globally optimal solution, we ould employ other famil-iar searh tehniques suh as simulated annealing, but wehave found satisfatory empirial results using only thisloal searh.D. The Gradient of the Hindsight-optimal ValueThis setion gives a tehnial aount of our eÆientmeans of omputing the gradient of the hindsight-optimalvalue for the purposes of ontrolling the step diretionin our searh algorithm. Let kt;i(~u0) be the �rst bu�er-underow or bu�er-full time after d (i) � 1 when enoun-tering trae t with no additional ow requested after ~u0,

given bykt;i# (~u0) = minnk : �ltk+1 = 0 and d (i) � k < H � 1�or k = H � 1o;kt;i" (~u0) = minnk : �ltk+1 = B and d (i) � k < H � 1�or k = H � 1o; andkt;i(~u0) = minnkt;i# ; kt;i" o :We de�ne Ni to be the set of all soures j in N withround-trip delays greater than d (i), so by our ordering ofthe soures we have Ni = fj 2 N : j > ig. Soureswith longer round-trip delays than d (i) have uid arrivalsfor time d (i) spei�ed in the ontrol history of ~w0, and nohindsight-optimal ontrol sequene an hange the arrivalsthat will our at time d (i) from those soures.We now introdue notation that divides the soures inNi aording to whether they have arrival rates at timed (i) that are higher or lower than any partiular rate r.For eah soure i 2 N, we partition the set Ni of \un-ontrollable" soures into two subsets, Ni<(r) and Ni>(r),aording to how the arrival rates from those soures attime d (i) ompare to the rate r, as follows:Ni<(r) = fj 2 Ni : w(d (j)�d (i);j)0 < rg; N i<(r) = jNi<(r)j;Ni>(r) = fj 2 Ni : w(d (j)�d (i);j)0 > rg; N i>(r) = jNi>(r)j:For a given state ~x0 and ation ~u0, the gradientr~uW �(~x0; ~u0) of the hindsight-optimal value an be om-puted analytially as haraterized in the following propo-sition. (For the proof, see Appendix II.)Proposition 2: Given state ~x0, andidate initial ontrol~u0, and servie-rate trae t = fvs1 ; : : : ; vsHg, the soure iomponent (for any i) of r~uW �(~x0; ~u0), where it exists, isgiven by the weighted sum of the following four terms (withthe weights 1, ��, ��, and ��, respetively), representingthe throughput, delay, fairness, and loss omponents of thehange in total reward:r~u T (~x0; ~u0)(i) = � 1 if i = 1 and kt;1# (~u0) = d (1)0 otherwiser~uD(~x0; ~u0)(i) = kt;i � d (i)r~u F (~x0; ~u0)(i) = N i<(u(i)0 )�N i>(u(i)0 ) +r~u F (i)1r~u L(~x0; ~u0)(i) = � 1 if kt;i" < kt;i#0 otherwise,wherer~u F (i)1 =8>>><>>>: 0 if i = 1i� 1 else if ~l td (i)+1 > 0i+N i>(r)�N i<(r) else if r < u(i)0�i+N i>(r) �N i<(r) else if r > u(i)0 ;r = �~l td (i)+1(u(i)0 )=(i� 1):
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nodeFig. 2. Network on�guration for empirial study.E. The Congestion-ontrol AlgorithmWe onlude this setion by summarizing the ongestion-ontrol algorithm as follows. At eah ontrol epoh, weperform these steps:1. Observe urrent system state ~x0;2. Generate a set Tr of future servie-rate traes;3. Compute ~u�0 = grad-searh(Tr; ~d);4. Transmit rate ommand ~u�0 to soures.Our ontrol approah exploits two strutural propertiesof our problem. The �rst is that the stohastiity in ourproblem is \exogenous"; i.e., the randomness in the ser-vie proess is independent of the ontrol we hoose. Thisproperty greatly eases the appliation of the hindsight-optimization framework, resulting in more natural o�ineoptimization subproblems that are typially more easilysolved. The seond property is the pieewise linearity ofthe reward funtion, whih leads to the tratability of ourper-trae analysis, in partiular, the pieewise derivationof the gradient of the hindsight-optimal value.IV. Empirial ResultsA. Evaluation SetupWe use the network simulator ns2 to arry out simula-tion. We have modi�ed ns to implement our ongestion-ontrol algorithm over UDP to emulate an ATM network,and we set the paket size to be 53 bytes, the size of astandard ATM ell.Figure 2 illustrates our simulated network. The traÆsent from four soures, indexed by 0 through 3, shares aommon bottlenek node. All links between the souresand the bottlenek node have bandwidth of 155 Mbps,while the bottlenek link is of only 55 Mbps. The size of thebu�er at the bottlenek node is 150 ells. Soure 0 repre-sents the soure for high-priority ross traÆ. Soures 1, 2,and 3 are ontrolled best-e�ort traÆ soures, whih sendtraÆ at the rates determined by the ontroller residing atthe bottlenek node. These three soures are assoiatedwith round-trip delays of 20, 30, and 40 ms, respetively.Our empirial study onsists of two parts. In the �rstpart, the ross-traÆ soure 0 is omposed of 10 identi-al onnetions, eah generating uid traÆ aording toa two-state ON-OFF MMF model. We will be varying thetwo transmission rates orresponding to the ON and theOFF states, to let the aggregated ross traÆ rate havedi�erent varianes (ranging from 0 to 72:6 Mbps2) but the

same mean (22 Mbps). This allows us to study the impatof the variane of the ross traÆ on system performane.In the two-state MMF model, the expeted lengths of theON and the OFF periods are 400 and 600 ms, respetively;these values were hosen to be the same as in the seondpart of our empirial study.In the seond part, soure 0 onsists of 1000 independentand identially-distributed voie onnetions, reeting atypial senario arising in networks with mixed voie anddata traÆ. The dynamis of voie onnetions are wellaptured by MMF models [1℄, [18℄. We model a single voieonnetion by a two-state ON-OFF MMF model, with theexpeted ON and OFF periods being 400 and 600 ms, re-spetively. Sine a standard voie onnetion onsumes64 Kbps bandwidth, we set the rate of eah voie onne-tion to 70.7 Kbps by onsidering that the atual payloadin a 53-byte ATM ell is only 48 bytes.B. Comparison MetrisWe will ompare the performane of the ontroller de-sribed in this paper, alled the \HO ontroller" hereafter,with the well-known PD ontroller. Our omparison met-ris are utilization, average queuing delay, ell loss rate, andumulative fairness, whih are of diret interest to networkusers. Utilization is de�ned as the ratio of the total numberof ells forwarded to the total available servie \volume"(the sum of the servie rates) over the simulation period atthe bottlenek node. The average queuing delay is the totalamount of time that all the ells spend waiting in the queueat the bottlenek node divided by the total number of ellsforwarded. The ell loss rate is de�ned as the number ofells (from the ontrolled soures) lost due to bu�er over-ow divided by the total number of ells that arrive at thebottlenek node (from the ontrolled soures) over the sim-ulation period. To de�ne umulative fairness, let Ti denotethe total number of ells that arrive from soure i. Then,umulative fairness is de�ned as the standard deviation ofthe Ti's divided by the mean of the Ti's.In most previous papers, e.g., [9℄, [10℄, the test metriis the ontroller's ability to maintain a target queue size.However, by design the HO ontroller does not aim to main-tain a �xed queue size. Thus, we do not evaluate the HOontroller's ability in this respet.C. Impat of Cross-traÆ VarianeIn this subsetion, we investigate the impat of the vari-ane in ross traÆ on the performane of the HO andPD ontrollers. PD-type ongestion ontrollers have beenshown to be generally e�etive. PD ontrollers adjust thetransmission rate based on the deviation of the queue sizefrom a target value. We tested the PD ontroller with dif-ferent target queue sizes. The target queue size reets thenetwork administrator's tradeo� among utilization, delay,and ell loss rate. A larger target value indiates the desirefor higher utilization at the expense of higher delay andell loss rate. To maintain fairness, the PD ontroller is-sues the same rate ommand to every ontrolled soure ateah deision epoh.
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PD−1 Fig. 3. Plots of utilizations.For the HO ontroller, we generate 200 servie-ratetraes at eah deision epoh using the ross-traÆ model.Eah trae is of length H = 50 time intervals. We hose theduration Æ of eah time interval to be 1 ms. The value of Æwas hosen on one hand to be small enough to apture thefast variation in servie rate and on the other hand largeenough for a�ordable omputation. In addition, 1 ms is avalue of Æ small enough to express typial round-trip delaysas integral multiples of Æ. We set � = 1000, � = 2=3, and� = 1. These values satisfy the restritions on the valuesof �, �, and � that we have given in de�ning our objetivefuntion, in equation (1).Figure 3 shows the utilization values ahieved by theompeting ontrollers. The PD ontroller with a targetqueue size of 50 ells is denoted by PD-50, and similarlyfor PD-10 and PD-1. The horizontal axis is the rate vari-ane of the ross traÆ. We an see that all ontrollersahieve high utilization, when onstant-rate ross traÆ ispresent. As the ross traÆ beomes more variable, theutilization values ahieved by the PD ontrollers dereaseat rates muh faster than that of the HO ontroller. Thereason is that when the ross traÆ is highly variable, thePD ontrollers annot maintain a stable queue size to en-sure satisfatory utilization. For example, sudden inreasesin the servie rate an drain the ells waiting in the bu�erompletely, leading to loss in utilization. In ontrast, bymaking use of the servie-rate model, the HO ontrolleran stohastially \antiipate" hanges in servie rate andan in turn respond to these hanges beforehand. Figure 3demonstrates the e�etiveness of the HO ontroller in anenvironment with a highly-variable servie rate, a onditionwhih is often found in pratial networks.Figure 4 shows plots of the average queuing delays. TheHO ontroller ahieves muh smaller queuing delays thanthose of PD-50 and PD-10. PD-1 has queuing delays loseto those of HO; however, it does so at the signi�ant ost ofmuh smaller utilizations (see Figure 3). Compared withHO, PD-50 has muh larger delay and less utilization; ithas more than four times the delay and 8% less utiliza-tion in the most variable servie rate ase, i.e., the right-
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Fig. 4. Plots of average delays.
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Fig. 5. Plots of ell loss rates.most points in the �gures shown. Figures 4 and 3 suggestthat the HO ontroller an ahieve higher utilization withsmaller delay ompared with the PD ontrollers.Figure 5 shows plots of ell loss rates (CLRs). The CLRfor the HO ontroller is the smallest for all the experimentswe arried out due to the fat that the impliit goal of ahindsight-optimal ontrol sequene is to keep a zero queuelength, and hene it leaves most of the bu�er ready toabsorb bursts of inoming traÆ. The PD-50 ontroller,whih ahieves the losest utilization values to HO amongthe PD ontrollers, has a CLR that is about an order ofmagnitude larger than that of the HO ontroller in all ourexperiments.Our simulation shows that the HO ontroller is less fairthan the PD ontrollers: HO's umulative fairness valuesare under 0:08 while those of PD's are negligible. (We omitthe fairness plots for brevity.) While the magnitude of thefairness term is quite small, it is still important|in fat,it is possible to show that, for a wide lass of reasonabletraÆ models, when � = 0 the HO ontroller will onlyrequest traÆ from the losest soure, starving all moredistant soures.As expeted, the HO ontroller ahieves the highest u-
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Fig. 6. Plots of umulative reward.mulative reward in all the experiments we onduted, asshown in Figure 6.D. Voie Connetions As Cross TraÆIn this subsetion, soure 0 onsists of 1000 identialvoie onnetions. The parameters of the HO and PDontrollers are the same as in the �rst part of our em-pirial study. Table 1 summarizes the performane om-parison between the HO and PD ontrollers. In this ex-periment, the rate variane of the ross traÆ is relativelysmall (1.2 Mbps2), and therefore the PD ontrollers ahievegood utilizations. However, the HO ontroller, while main-taining high utilization value, enjoys muh smaller queuingdelay and ell loss rate.Table 1: Performane omparison using 1000 voieonnetions as ross traÆController Util Delay (ms) CLR UFHO 0.995 0.123 0.00 6.79e-2PD-50 0.998 0.505 4.12e-3 8.88e-4PD-10 0.957 0.213 5.78e-4 6.87e-4PD-1 0.925 0.106 1.78e-4 9.14e-4Util = Utilization CLR = Cell Loss Rate UF =UnfairnessV. ConlusionsWe have introdued a simulation-based burst-level on-gestion ontroller for a generi network to regulate best-e�ort traÆ to ahieve high network eÆieny while main-taining fairness, represented by high utilization, traÆ loss,and low queuing delay. We have demonstrated that ex-ploiting the struture of servie-rate models an result insigni�antly improved network performane.Our empirial study demonstrates the e�etiveness of theHO ontroller with rapidly-varying ross traÆ. In suhsituations, onventional PD ontrollers lose their ability tostablize the queue size, leading to dereased throughput,inreased queuing delay, and inreased ell loss rate. Theuse of a ross-traÆmodel provides a lear advantage to theHO ontroller, enabling predition and reation to likely

traÆ variations. Moreover, the HO ontroller does notrequire the tuning of ontroller gains, a nontrivial task inPD ontroller design.While the proposed ontrol sheme is promising, twomain issues remain to be addressed:1) Our hindsight-optimization framework is founded on arisp and powerful deision-theoreti formulation, but lit-tle is understood on general onditions under whih thetehnique works well.2) To inorporate a long-range-dependene traÆ modelinto our ontrol sheme is an interesting diretion worthpursuing. Suh a model an be made Markovian but witha potentially large state spae. Managing the size of thestate spae but still apturing the long-range dependeneis important for our approah to apply in this ase.AppendiesI. Proof of Proposition 1Before presenting the proof of Proposition 1, we give twolemmas needed for the proof.Lemma 1: Consider the funtion f(w1; : : : ; wN ) =1N�1PNi=1 PNj=i+1 jwi � wj j : Then we have:i. f(w01; : : : ; w0N ) � f(w1; : : : ; wN ) �PNi=1 jwi � w0ij.ii. f(w01; : : : ; w0N ) � f(w1; : : : ; wN ) holds whenPNi=1 w0i = PNi=1 wi and w0i 6= wi imply wi =  for alli, where  is a onstant.The lemma an be proven with ease using elementaryalgebra, whih we omit here.Lemma 2: For a given servie-rate trae t, starting state~x0, and initial ontrol ~u0, the hindsight-optimal value,W �t (~x0; ~u0), an be written as follows:W �t (~x0; ~u0) = T �t (~x0; ~u0)� �D�t (~x0; ~u0)� �L�t (~x0; ~u0)�H�1Xk=0 �F �t (~x0; ~u0; k);where T �t (~x0; ~u0), D�t (~x0; ~u0), and L�t (~x0; ~u0) are the maxi-mal possible throughput, the minimum possible delay, andthe minimum possible loss, respetively, ahievable from ~x0taking ~u0 and enountering trae t. The term F �t (~x0; ~u0; k)is the minimum unfairness penalties at time k subjet tooptimizing T �t (~x0; ~u0), D�t (~x0; ~u0), and L�t (~x0; ~u0).Proof: Let t, ~x0, and ~u0 be given. The umulativereward, Wt(~x0; ~u0), is a ontinuous funtion on L�Ud(N) ,whih is a ompat set. By the Weierstrass theorem [16℄,there is a point in L � Ud(N) suh that at the pointWt(~x0; ~u0) ahieves its maximum, W �t (~x0; ~u0). For a giveninitial ondition, the queue length, taking values in L, isompletely determined by the ontrol in Ud(N) . Hene,we onlude that there is a ontrol sequene in Ud(N) thatahievesW �t (~x0; ~u0). We refer to any suh ontrol sequenean optimal ontrol.We now argue that any optimal ontrol must optimizethroughput, delay, and loss independently, in the follow-ing sense. The trae-relative queue-size trajetory fltk,



11k = 0; : : : ; Hg is the trajetory the system will follow ifno further uid is requested by ontrols sent after time0. The loss and delay experiened under this trajetorylearly lower bound those ahieved by requesting furtheruid|more uid requested leads to potentially more lossand more delay, but no less. These loss and delay lowerbounds are D�t (~x0; ~u0) and L�t (~x0; ~u0), respetively. Thelemma laims that any optimal ontrol must result in de-lay of D�t (~x0; ~u0) and loss of L�t (~x0; ~u0). Reall that d(1)is the earliest time any ontrol an a�et the bottleneknode. Then, it is apparent that T �t (~x0; ~u0) is the sum ofthree terms: the throughput reeived from time 0 to d(1)�1(a�eted only by the ontrol history reorded in ~w0), thethroughput at time d(1) (determined by ~u0), and the sumof servie rates after d(1) (determined by a partiular on-trol sequene after time 0). The lemma laims that anyoptimal ontrol must also fully use the servie rate aftertime d(1), thus ahieving T �t (~x0; ~u0).We prove these laims by showing in the following thatany ontrol that does not optimize throughput, delay, andloss independently an be improved. If a ontrol does notfully use the servie rate at time k (after time d(1)), as in-diated by a negative ~l tk+1, we an inrease the arrival attime k to obtain a larger throughput without inurring anydelay and loss until ~l tk+1 reahes zero from below; ~l tk+1 = 0indiates that the servie rate is fully used. Furthermore,the potential fairness penalty due to the inreased arrivalwill always be less than the gain in throughput beause� < 1. Hene, an optimal ontrol must maximize through-put. If a ontrol auses more delay than the delay lowerbound at time k (indiated by a positive ~l tk+1), we an deferthe arrival of a suÆiently small amount of uid unservedat time k until time k + 1 to derease delay while keep-ing throughput fully utilized. In the ase of exess loss, asimilar hange an be made by anelling the arrival of asuÆiently small amount of uid unserved at time k. More-over, onsidering part i of Lemma 1 and the restritions on�, �, and �, it is easy to show that the fairness penaltyfrom this deferred or redued arrival will always be smallerthan the gain from the redued delay and/or loss. Thus,an optimal ontrol must minimize delay and loss.The argument above implies that the optional traÆ ar-rival at any time k (> d(1)) from an optimal ontrol willnot a�et any other time step (beause no delay other thanD�t is experiened), and thus we onlude that an optimalontrol maximizes reward reeived at time k independentlyof optimization at any other time steps. In partiular, anoptimal ontrol optimizes the fairness omponent of thereward at a time independently of fairness optimization atany other times (where eah fairness optimization is donesubjet to the onstraint that throughput, delay, and lossare already optimized independently). Then, a ontrol thatoptimizes throughput, delay, and loss independently, and,subjet to this, optimizes fairness at eah time is an opti-mal ontrol. This ompletes the proof.Now, we present the proof of Proposition 1.Proof: The ontrol given in the proposition is eas-ily seen to independently and simultaneously optimize

throughput, delay, and loss; i.e., the ontrol ahievesT �t (~x0; ~u0), D�t (~x0; ~u0), and L�t (~x0; ~u0). Furthermore, sub-jet to optimizing T �t (~x0; ~u0), D�t (~x0; ~u0), and L�t (~x0; ~u0),the ontrol minimizes fairness at eah time step, byLemma 1 part ii. Therefore, by Lemma 2 the desired resultfollows. II. Proof of Proposition 2Proof: Note that by Lemma 2 the hindsight-optimalvalue an be deomposed into the throughput, delay, loss,and fairness terms. We analyze the gradient of W �t (~x0; ~u0)with respet to ~u0 for eah term separately in the following.Throughput, Delay, and Loss. The hindsight-optimal ontrol ahieves full utilization of link bandwidthafter time d(1) without inurring more delay or loss than theontrol history spei�ed by ~w0. Hene, regardless of whatvalue we set for ~u0, the hindsight-optimal throughput, loss,and delay will be the same for a given trae, exept possi-bly for throughput and loss experiened at time step d (i),and for delay experiened by ow arriving at time step d (i)(and possibly any time after d (i) for delay) for any valueof i.An in�nitesimal inrease in arrivals will result in aninrease of the same amount in the hindsight-optimalthroughput if and only if the soure in question is soureone (i.e., i = 1) and there is an underow at time d(1) un-der the urrent ~u0 (as indiated by �nding kt;1# (~u0) = d (1)).Changes in ~u0 for soures other than soure one impat thetrajetory after d(1) where the hindsight-optimal through-put is already maximal and annot be inreased by furtherarrivals (these arrivals simply have the e�et of leaving lessbandwidth for exploitation by hindsight-optimal ontrolsseleted for later times for loser soures). Thus, we haver~u T (~x0; ~u0)(i) = � 1 if i = 1 and kt;1# (~u0) = d (1);0 otherwise.An inrease in the arrivals for soure i an inreasedelay at time d (i) and for arbitrarily many time stepsthereafter|until suh time that the ontrols in the pipeline(along with ~u0) allow some leftover servie bandwidth (as-suming no further uid is requested after time zero) or untilthe inremental arrival is dropped due to bu�er overow.The delay su�ered by the inremental arrival will equal theinremental arrival multiplied by kt;i�d (i). Thus, we haver~uD(~x0; ~u0)(i) = kt;i � d (i):The inrease in arrivals at time d (i) will result in in-reased dropping in the hindsight-optimal ase if and onlyif the inrease eventually results in bu�er overow, i.e.,if the next bu�er-full time (after d (i)) ours before anybu�er underow (unused servie rate). This ondition anbe deteted by omparing the next bu�er-full time to thenext bu�er-underow time. Hene, we haver~u L(~x0; ~u0)(i) = � 1 if kt;i" < kt;i# ;0 otherwise.



12If ltk+1(~u0) = 0 or ltk(~u0)+atk(~u0)�vsk+1 = B in alulat-ing kt;i" or kt;i# , then T (~x0; ~u0)(i), D(~x0; ~u0)(i) = kt;i � d (i),and L(~x0; ~u0)(i) are non-di�erentiable due to pieewise lin-earity of these funtions.Fairness. The gradient of the fairness term involvestwo parts. The �rst part is the hange in fairness penaltyaused by an in�nitesimal hange in u(i)0 by omparing u(i)0with the soures in N(i). Inreases in u(i)0 will derease thefairness penalty terms omparing soure i with soures inNi>(u(i)0 ) and inrease the fairness penalty terms omparingsoure i to soures in Ni<(u(i)0 ), so that the total hange inthe fairness penalty terms omparing soure i with souresin Ni will be (N i<(u(i)0 )�N i>(u(i)0 ))=(N�1). Note this partof the gradient does not exist when u(i)0 = w(d (j)�d (i);j)0 forany j > i(in partiular, the e�ets of positive and negativein�nitesimal perturbations of u(i)0 do not sum to zero).The seond part is the hanges in fairness penalty termsinvolving soures not in fig[Ni aused by an in�nitesimalinrease in u(i)0 , and this part an be divided into four ases:Case 1. When i = 1 there is no hange in this portion ofthe fairness penalty.Case 2. Otherwise, when ~l td (i)+1(~u0) > 0, soures num-bered less than i will be ontrolled to send no uid to arriveat time d (i) in the hindsight-optimal ontrol sequene forthe andidate ation ~u0 with or without the in�nitesimalinrease in soure i; as a result the only hange in the fair-ness penalty terms omparing soure i with soures loserthan i will be due to the inrease in soure i, moving thesoure i arrival rate (at time d (i)) further from zero. Thesehanges amount to one (N�1)th of one (in�nitesimal) steppenalty for the term for eah soure less than i, or a totaladditional penalty of (i� 1)=(N � 1).Case 3. Otherwise, if r < u(i)0 , where r =�~l td (i)+1(u(i)0 )=(i� 1) as given in the proposition, then thei�1 losest soures derease by 1=(i�1) of the in�nitesimalinrease and the resulting fairness term hanges show aninrease in penalty equal to (i+N i>(r)�N i<(r))=(N � 1),with the �rst term being from the inreased distanebetween the arrival rates from loser soures and thearrival rate from soure i, and the last two terms beingfrom the hange in omparisons between the losest i � 1soure arrivals and the arrivals from soures further awaythan soure i.Case 4. Otherwise, if r > u(i)0 then the derease inhindsight-optimal arrivals at time d (i) for the losest i� 1soures atually improves fairness in the terms ompar-ing to soure i, giving the resulting hange in fairness of(�i+N i>(r) �N i<(r))=(N � 1).The seond part of the gradient does not exist when r =u(i)0 or r = w(d (j)�d (i) ;j)0 for any j > i due to pieewiselinearity in the fairness term.Summarizing, we have:r~u F (~x0; ~u0)(i) = 1N � 1(N i<(u(i)0 )�N i>(u(i)0 ) +r~u F (i)1 );
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