Burst-level Congestion Control
Using Hindsight Optimization

Gang Wu, Edwin K. P. Chong', and Robert Givan

Abstract— We consider the burst-level congestion-control
problem in a communication network with multiple traffic
sources, each modeled as a fully-controllable stream of fluid
traffic. The controlled traffic shares a common bottleneck
node with high-priority cross traffic described by a Markov-
modulated fluid (MMF). Each controlled source is assumed
to have a unique round-trip delay. The goal is to maximize
a linear combination of the throughput, delay, traffic loss
rate, and a fairness metric at the bottleneck node. We intro-
duce a simulation-based congestion-control scheme capable
of performing effectively under rapidly-varying cross traffic
by making use of the provided MMF model of that variation.
The control problem is posed as a finite-horizon Markov
decision process and is solved heuristically using a tech-
nique called Hindsight Optimization. We provide a detailed
derivation of our congestion-control algorithm based on this
technique. Our empirical study shows that the control
scheme performs significantly better than the conventional
proportional-derivative (PD) congestion-control method.

Keywords— Communication networks, congestion control,
traffic models, Markov-modulated fluid, Markov decision
processes, online simulation.

I. INTRODUCTION

We study the rate-based congestion control of traffic in a
network where a bottleneck node is shared by multiple best-
effort traffic sources and other high-priority “cross-traffic”
sources. We assume that the best-effort sources can be
fully controlled, but that each such source originates at a
unique distance from the bottleneck node, and thus has
a unique control delay. Taking these unique delays into
the account in decision making is a difficult problem. The
objective of congestion control is to determine proper and
fair transmission rates for the best-effort traffic sources to
utilize the bandwidth available to them efficiently at the
bottleneck node while achieving low average queuing delay
and a low traffic loss rate.
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Previous research on best-effort congestion control can
be divided into rate-based and window-based approaches.
Here we present a rate-based approach, controlling the
rates of the best-effort sources rather than deciding win-
dow sizes to those sources. Previous rate-based work
involves binary feedback [6] and proportional controllers
[7], [8] for ATM (Asynchronous Transfer Mode) net-
works and linear-increase/exponential-decrease controllers
for TCP/IP (Transmission Control Protocol/Internet Pro-
tocol) networks [15]. Recent approaches attempt to im-
prove performance by incorporating control-theoretic tech-
niques, including proportional-derivative (PD) controllers
[9], [10], [17], [30], and those using optimal control and dy-
namic game techniques such as linear quadratic (LQ) team,
H®°, and noncooperative game controllers [12], [13], [11].

We motivate our work by noticing that most of the above
control schemes are designed for constant or slowly-varying
cross traffic (with the exception of the LQ team and the
H® controllers). We call these connection-level congestion
controllers since they assume that the cross-traffic varia-
tion is caused primarily by the joining of new connections
and the termination of existing ones. However, bursti-
ness in cross traffic in real networks often occurs at small
time scales, i.e., from several milliseconds up to a second
[3]. Fast changes in the cross traffic, coupled with large
bandwidth-delay products, often significantly degrade the
performance of connection-level controllers.

We approach the congestion-control problem using an al-
ternative paradigm that alleviates these drawbacks. Here
we assume we are provided with a stochastic model of the
cross traffic, and demonstrate a controller that achieves
substantial benefits from exploiting this model. We call
our approach burst-level congestion control. Our controller
predicts future cross traffic using the stochastic cross-traffic
model so that the controller can anticipate changes stochas-
tically and act “before” the changes happen.

We model the cross traffic at the bottleneck node as a
Markov-modulated fluid (MMF) [1], [2], [3]. We formulate
our congestion-control problem as a discrete-time finite-
horizon Markov decision process (MDP) [5]. The famil-
iar congestion control goal—rapidly achieving queue sta-
bility in response to step changes in cross traffic—is not
an appropriate measure of success here due to the inclu-
sion of rapidly-varying cross traffic. Instead, we formulate
a measure of performance over long traces of cross-traffic
variation, balancing throughput, delay, loss, and fairness.
We extend our previously proposed Hindsight Optimiza-
tion (HO) technique [4] to provide a heuristic solution to
the MDP problem—in particular, the HO technique has



never previously been used to address a problem with an
infinite control action space.

The main contribution of this work is to demonstrate
that a stochastic cross-traffic model can be effectively ex-
ploited in congestion control to achieve substantial perfor-
mance benefits. A secondary contribution is to provide
a specific means to obtain these benefits using a novel
congestion-control framework based on online simulation.
Our work provides both a strong motivation and a use-
ful starting point for seeking a practically-realized scheme
incorporating traffic models.

Although MMF models have been extensively em-
ployed in network performance analysis (e.g., [1], [2]),
our work is the first to exploit such models for rate-
based congestion control. Compared with the work of
[12], [13], which models cross traffic by an auto-regressive
moving-average process, MMF models have more struc-
ture, and better performance is therefore expected when
such models are available. In [15], the authors incor-
porate a long-range-dependent model into the design of
a linear-increase/exponential-decrease (LIED) controller.
Our MMF model yields to a decision-theoretic analysis,
as mentioned above, resulting in a controller that is not
constrained to be LIED.

Previous work on congestion control using MDP formu-
lation includes [33], [34], [35]. Our work differs from [33],
[34], [35] in the sizes of action spaces, the generality of re-
ward structures, and solution methods. Recent work on
policy rollout algorithms (see, e.g., [36]) provides a means
of using simulation to select “good” control actions heuris-
tically, but requires starting with a good “base” heuristic
policy. Policy rollout uses one-step look-ahead relative to
the base policy value function (much like value iteration)
to obtain an estimate of the so-called “Q)-value”—this esti-
mate must lower bound the true ()-value because the base
policy value function lower bounds the true value function.
The )-value estimate used in the HO technique is an upper
bound.

The remainder of the paper is organized as follows. In
Section II, we describe our network model and define the
congestion-control problem as an MDP. In Section III, we
introduce the HO technique for heuristic MDP control, and
present our gradient-based control algorithm. Section IV
presents the simulation results of our controller and the PD
controller to enable comparison. Section V concludes the

paper.
II. SYSTEM MODEL AND PROBLEM DESCRIPTION
A. System Model

We consider a network where a single bottleneck node is
shared by multiple rate-controlled traffic sources and other
high-priority “cross-traffic” sources. The controlled sources
transmit at rates specified by a central controller residing at
the bottleneck node. Associated with each source is a fixed
round-trip delay. Without loss of generality, we assume
that the round-trip delays are distinct from one another.
We notate vectors and their components as follows: for
vector ¥, we write v(? for the ith component of @ when that

component is scalar, and @ for that component when it
is itself a vector. We also notate the jth component of the
ith component of # (when 7 is a vector of vectors) as v(%7),
Throughout this paper we use the notation Ex to denote
expectation taken with respect to the random variable X.

We assume that time is discrete with small time incre-
ments 6. We now describe four essential components of our
system: the controlled traffic sources, the cross traffic, the
bottleneck node, and the congestion controller.

Controlled Sources. Denote the collection of con-
trolled sources by the set N and let N = |N| be the car-
dinality of N. We assume that in real time the round-trip
delays are large compared with the time increment § such
that we can express the delay by integral multiples of § with
sufficient accuracy. Hence, in discrete time, we denote the
round-trip delay of source i as d?, a positive integer. We
index the sources such that 0 < d) < d® < ... < dW).
The sources constantly transmit at the controller-specified
rates and respond to rate commands instantaneously upon
their arrival. This model emulates controlled ABR (avail-
able bit rate) traffic in ATM networks and UDP (User
Datagram Protocol) traffic in IP networks, which are suit-
able candidates for rate-based congestion-control schemes.

Cross Traffic. The high-priority cross traffic repre-
sents, for example, CBR and VBR traffic in ATM networks,
or traffic in IP networks receiving high-priority service via
the CBQ (class-based queuing) scheme [14]. This cross
traffic determines the available bandwidth that the con-
trolled traffic experiences at the bottleneck node.

The cross-traffic process can change at any (discrete)
time. For convenience, instead of specifying the cross-
traffic distribution, we specify the “service process,” which
is the difference between the rate of cross traffic and C', the
constant bandwidth of the bottleneck node. This service
process can also be characterized using an MMF model
easily derived from the MMF model of the cross traffic.
The service process is represented by a Markov chain with

state space S = {1,...,m}, a transition probability ma-
trix M : (S x S) — [0,1], and a set of distinct rate values
V1,...,Um (i.e., m is the number of the values that the ser-

vice rate can take) which are real numbers in the interval
[0,C]. By “service rate” we mean the amount of fluid best-
effort traffic that can be served in one time step. When in
state s, the service rate is vs. In this setting, measuring
service rate suffices to determine the state of the service
process.

Bottleneck Node. The bottleneck node has a buffer
of finite size. The controlled best-effort traffic is buffered
together, independently of any buffering needed for the
high-priority cross traffic. We denote the size of the buffer
by B. As defined above, we denote the bandwidth at the
bottleneck node by C. We assume that the queue length
at the bottleneck node is known at each time step. We also
assume a first-in-first-out (FIFO) service discipline at the
bottleneck node.

Congestion Controller. The controller, residing at
the bottleneck node, makes control decisions at each time
step. The congestion-control problem is to determine a rate



command uE:) to relay to source ¢, 4 = 1,..., N, at time k
to achieve some overall performance objective. Our objec-
tive is to balance throughput, delay, loss, and fair service
to controlled sources, as described formally by the reward
function below. The controller can use system observations
and a model of the service process to compute rate com-
mands. The rate command for a source at any given epoch
impacts the bottleneck node arrivals after a time duration
equal to one round-trip delay for that source. Therefore, at
each decision-making epoch, the controller needs to com-
pute an appropriate rate command for each source that
takes into account the round-trip delays and anticipated
service-rate variation. The order of event occurrence at
the bottleneck is: decision making, MMF transition, traffic
arrival and simultaneous traffic forwarding, and then check
for buffer overflow/underflow.

B. MDP Problem Formulation

We formulate the congestion-control problem as a
Markov decision process (MDP). An MDP consists of an
action space, a state space, a state-transition structure, and
a reward structure. In the following, we describe each of
these components for our problem.

Action Space. We assume that the transmission rates
at the controlled sources are bounded from below by zero
and from above by the common value C'. We denote the ac-
tion space by U = [0, C]". For instance, at time k the con-
trol action is a vector iy of the form i} = [ug), . ,uECN)].

State Space. The system state has three components.
The first is the state of the service process, taking values in
S. The state of the service process at each time step corre-
sponds to the departure rate observed at the previous time
step, and the MMF service model will transition before
departures occur at the current time step. (This choice
models that fact that we cannot know the current cross
traffic precisely until after it has occurred and we have had
the opportunity to measure it.) The second component is
the current queue length [, taking values in L = [0, B]. The
third component consists of the control signals that have
been issued in the past but whose impact has not yet been
felt at the bottleneck node due to the round-trip delays.

. . - . (N)
This control history @ takes values in U . For exam-
ple, if the control actions selected over time are g, @1, . ..

. S (1) —(d)) .
then the control history @y = (@, /..., @, ) at time
k is such that u'ik(l) = ij_; and thus w,c(“]) = u,gﬂ)z We

note that this control history includes unnecessary informa-
tion in the form of history beyond the round-trip delay for
sources closer than delay d™). This information is included
to greatly simplify our notation throughout this paper, but
is not truly needed in the intended model or for any of our
methods. The complete state space is X =S x L x U™,

State Transition. If the state is & = (s,l, W) where
W= (... ,u')’(d(N))) denotes the control history, and
we apply a control @, the system will make a transition to
a new state ' = (s',I',4"). In the following, we specify
how each component of ' depends on # and .

The service-process state makes a transition from s to

s' with probability P(s,s’) specified in the given matrix
M-—this transition is unaffected by the values of [ and w.

The queue-length component [’ depends on # as follows.
Let a(%) = Zf;l w(@) be the aggregate fluid traffic that
arrives during the transition from state z to state z' from
all controlled sources—this traffic is due to rate commands
that were issued to these sources in the past which are now
recorded in the state component . Recalling that the
service process consumes fluid traffic at rate vy when in
service process state s', and given the just computed fluid
arrival, the queue-length component of the state changes
according to the following difference equation, commonly
called Lindley’s equation:

' = max{min{l + a(Z) — vy, B},0}.

The queue-length component I’ does not depend on @ due
to non-zero round-trip delays.
Finally, the control history updates as follows:

@' M) @D =g O =1, dN) —1.

=i,
Reward Structure. We define the one-step reward at
state & by

R(Z) = T(Z) — aD(Z) — BF(Z) = CL(2), (1)

where 0 < f < min{l,a/2,(}, T(Z) is the throughput
received at one time step when the system is in state &,
D(Z) is the total queuing delay incurred at that time step,
F (&) is the sum of the absolute pairwise rate differences
in arriving traffic from different controlled sources at that
time step, and L(Z) is the fluid lost at the current time step
due to buffer overflow (after “check for buffer overflow”).
Note that these four quantities—throughput, delay, loss,
and fairness—are independent metrics in evaluating control
performance; in particular, specifying throughput and loss
is not redundant, because the total arrival is not fixed or
pre-determined.

The scaling factors «, 3, and ( reflect our tradeoff prefer-
ence between throughput, delay, loss, and service fairness.
Specifically, the restriction 0 < 8 < min{1, a, (} represents
our preference towards optimizing throughput, delay, and
loss, with the fairness optimization somewhat subordinate.
We are most interested in parameter values satisfying this
restriction. The further restriction that 8 < a/2, as we will
explain after presenting Proposition 1, allows the analytical
selection of a hindsight-optimal control sequence (defined
later) more easily, and we do not consider the more difficult
and less important case of parameter settings that violate
this restriction. While it appears that, given the restric-
tions on f, the fairness term makes a negligible contribu-
tion to the reward function, this contribution is important,
as we discuss later in Section IV-C.

The one-step reward R(Z) depends only on the state #
and not explicitly on the control # because any rate com-
mand in @ will not have impact on the bottleneck node until
at least d) time units later, due to the non-zero round-
trip delays d(?. Recall that d(!) is the smallest among all



d’s. We now provide formal expressions for T'(), D(%),

L(Z), and F(Z) for completeness. The throughput, delay,
loss, and unfairness penalty at a time step are given by:

T(2) min{l + a(Z), vy } (2)

D(@) = max{min{l + a(Z) — vy, B},0} (3)

L(Z) = max{l+ a(Z) — vy — B,0} (4)
N

FE) = Y X e w9 )
i=1 j=it1

where s’ is the service-rate process state after MMF tran-
sition from state s. Note that the throughput, delay, and
loss terms of the reward function (and thus the reward it-
self) are random variables due to their dependence on the
random variable s’.

Optimization Goal. Based on the MDP model de-
scribed above, we can state the congestion-control problem
as follows. For a given initial state Zy € X, we apply a con-
trol @y € U to the system and receive a reward of R(Zp)
by serving traffic at the bottleneck node. The system will
then make a transition to a new state &y, stochastically
according to the state-transition structure. We then apply
a control @;, and so on. After a horizon of H steps, the
cumulative reward received (a random variable) is given by

H-1

where H = H —dY), and Ug_, is the latest control com-
mand that can impact the bottleneck node within the hori-
zon H.

Our choice of i}, is based on Zj; that is, we use a “state-
feedback” map py : & — @ and apply @ = ug(Zg). The
sequence of maps m = {po, p1, ft2, ...} is called a policy.
For a given initial state @y, the problem is to find a policy
that maximizes the objective function

Vi (%) = £ (WH(HO(fO): R uﬁfl(fﬂfl))) :

Given a policy 7 or a fixed sequence of controls iy, i1, .. .,
we denote the state of the system at each time £in 0,1, ...
by the random variable X and the state of the service
process at time k by the random variable Sy.

C. Optimal Solution

To describe our approach to the congestion-control prob-
lem, we first characterize the optimal congestion-control
policy. For a given initial state Z, let

Vi (%) = max Vi (Z).
Following a standard approach to solving MDPs, we write

Qk(f7ﬁ):R(f)+E(Vk*—l(fl))7 k:]-a"';H;
where the expectation in the right-hand side is with respect
to the next state ', and V;* | (Z') is the optimal cumu-

lative reward over the k — 1 time steps starting from the

(random) state Z'. A key result in Markov decision theory
[5] then states that

Vi (#) = max T, 1),
() = max Qu (&, )
and a policy #* = (ui, uf,...) is an optimal policy if it
satisfies for all &,

p(T) = argmax Qp— (7, ).

In particular, for a fixed horizon H, the control «¢* is an
optimal “current” action if it satisfies

s

@* = py(%) = argmax Qu (&, qQ). (6)
ueU

At each control epoch we apply the “current” control
action @* in (6). Each control epoch involves optimizing
Qu (Z, @) with respect to @ for a horizon of H into the fu-
ture. This approach of applying a “moving-horizon” con-
trol solution in an online fashion is common in the optimal-
control literature, for example in receding-horizon control
(e.g., [19], [20]).

In practice we do not have explicit knowledge of Qpg.
Standard techniques can compute Qg in time polynomial
in the size of the state space. However, because we have
an implicitly specified state space (specified component by
component above), our actual state space is astronomical
in size; as a result, these standard techniques cannot be
applied in practice. Thus, (6) is not directly useful for de-
termining the optimal policy. Our MDP problem does not
yield to any other known analytical solution. Instead, we
approach the problem by computing an upper bound esti-
mate of Qg. We stress that the non-negligible information
delays in our system greatly complicate the problem. If
the delays are not significant with respect to the dynamics
of the Markov-modulated service process, we can greatly
reduce the state space, and standard techniques are appli-
cable to solving the resulting problem. In the next section,
we describe a particular approach to solving our problem,
based on evaluating candidate actions using such upper
bound estimates of Q.

III. CONGESTION-CONTROL ALGORITHM USING
HINDSIGHT OPTIMIZATION

A. The Hindsight Optimization Technique

In this subsection, we outline our solution approach,
which extends a technique called hindsight optimization,
first described in [4]. The overall control architecture is il-
lustrated in Figure 1. The controller comprises three parts:
a state observer, a traffic simulator, and a rate calculator.
The state observer is responsible for obtaining the system
state ¥ by measuring the service rate at each time step
(as well as observing the current queue length and storing
the recent control history). Given our assumption that the
MMF model state each determines a unique service rate,
the system state is fully observable.

The traffic simulator takes the observed current state &
and uses it as a starting state to generate a finite number
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Fig. 1. Congestion-control architecture.

of possible service-rate sequences (traces) using our MMF
model. The rate calculator takes these traces and computes
a rate command vector @. The calculation of the rate com-
mand vector is based on the following idea. Recall from
equation (6) that at any given control epoch and any state
Z, the optimal rate command is given by

i = argmax Q(7, 7 (7)
(we omit the subscript H in Qg (&, @) for brevity). We
rely on an estimate Q(Z, @) of the Q(Z,@) to carry out the
above maximization. This estimate is calculated as follows.
For each service-rate trace ¢, we compute the cumulative
reward by taking action @ at state Z followed by a trace-
optimal sequence of actions !, @%, ..., @t _, for the remain-
ing horizon of H —1 time steps. We say that the sequence
@l i@t .. ik | is trace-optimal if this sequence achieves
the largest possible cumulative reward under the assump-
tion that the service rate does indeed vary according to the
trace under consideration. We call any such trace-optimal
sequence a hindsight-optimal control sequence and the opti-
mal cumulative reward of any such sequence the hindsight-
optimal value of the trace—computing such a sequence and
its corresponding value is an offline optimization problem
that is often considerably easier than finding the optimal
stochastic control for the online problem. We compute the
average of the hindsight-optimal values over the set of n
generated traces for the specified initial control 4—this av-
erage Is our estimate Qn(Z, @) of Q(&, i@). In other words,
Q(x @) and its sampled approximation Qn(x @) are given
by

n(Z, 1) ZWt (%, 1), (8)
Q('f:ﬁ) R( )+ES1, Sy Max WH l(ula 7-'15[_1)7
Uyl
(9)
where
H-1
WHfl(ﬁl,. A ,ﬁgil) = R(f}c),
k=1

and W (Z, @) is the hindsight-optimal value for the trace ¢
as a result of applying control @ at state &.

Given the estimate Q(Z,d) of Q(&, ) for each action,
the hindsight optimization approach is to select and exe-
cute the action @ that maximizes this estimate. Previous
applications of the hindsight-optimization technique have
all involved MDP problems with finite action spaces, un-
like our congestion control problem. When the action space
is finite, we can simply compute the estimate Q(f, @) for
each action #, and choose the candidate action associated
with the largest such estimate for execution. Here, how-
ever, we have an uncountable continuous action space, and
cannot compute this estimate for every action. Instead, we
extend the hindsight optimization technique by finding a
(locally) optimal action using a gradient ascent technique.
Because we seek to use gradient ascent to solve this prob-
lem, we actually need to analyze traces to find the gradi-
ent of Q(Z, @) relative to changes in @ (rather than to find
Q(Z, ) itself). We discuss a method for estimating this
gradient from traces below.

As explained in [4], Q(:E’, ) is an upper bound on Q(Z, @)
if exactly computed (e.g., by infinite sampling). This upper
bound can be arbitrarily loose. However, these estimates
are only used to rank candidate actions, and thus it only
matters whether or not these estimates preserve the rela-
tive values at different states. Our results below give evi-
dence that for congestion control problems the ranking is
preserved well enough to make Q(Z, @) useful for selecting
an effective control policy.

B. Hindsight-optimal Control Sequences

At each decision-making epoch, we wish to determine
a rate vector @* according to (7) using Q,(&,@) in place
of Q(Z,d). For a given ¥, we wish to maximize Qn(i‘, @)
with respect to @. Because the argument @ is a vector of
continuous variables, we can use a search algorithm based
on the gradient of Qn(a':', @) with respect to @, which we
denote by Vg Q. (Z, @).

Note that from equation (8), we can write Vg Q, (%, @)

as
Zv Wy (&),

where V; W (Z, @) is the gradient of W;*(Z, @) with respect
to @. Therefore, the calculation of Vg Qn(f, @) reduces
to calculating the gradients on a per-trace basis, i.e., the
gradients of the W;*(Z,@). It turns out that these gradients
can be computed analytically, as we will show later. Our
gradient estimate above is akin to the idea of infinitesimal
perturbation analysis [27].

Recall that dV) is the smallest round-trip delay among
all d(9’s. We note that if d) > H—1, then no matter what
control sequence we apply, by the end of the horizon H, no
action will have impact on the bottleneck node. Therefore,
we consider only the nontrivial case where 0 < d) < H—1.

Suppose that the current time is zero and the current
state is @ = (so,lo, Wp). We wish to select as the current
control the action @ that maximizes Q(Zo,@:). In the
following, we first describe how we compute a hindsight-
optimal control sequence for a given service-process trace.

V,—; (10)



Based on n such sequences, we then show how to obtain
the gradient of @, (%o, o), which together with a search
algorithm forms our congestion-control algorithm. We now
assume that we have generated a specific service-process
trace t = {vg,,...,Vsy }-

Given the initial state Zy and action wy, define the trace-
relative committed aggregate arrival rate (from all con-
trolled sources due to rate commands in the control his-
tory as indicated in the Wy component of xg) at times
k=0,...,H — 1 for initial control @y by

N ) )
(o) = 3 Lkl 5 where I = 1,y

i=1

where we define u‘)’éo) to be @y. The function I;(k) returns
1 when & is less than d (¥, or equivalently, when the arrival
from source i at time k is specified by wy. Define the trace-
relative queue-length sequence {l%, k =0,...,H} (and the
queue length {l~,§+1, k = 1,...,H} before “checking for
underflow”) for initial control @y by

l§c+1(_’0) =
ll§+1(-’0) =

with I§ (@) = lo the current queue size.

max{l},, (d),0}, and

min{l}, (@) + af (o) — vsy,.,, B},

Notice uéz) is the control decision we are going to make at
the current time and has not been determined yet; however,
in the following proposition, u(()z) is assumed given because
we will assign it candidate values to determine the associ-
ated Q values. For a service-rate trace t = {Vsy5---30sy }s
we wish to compute a hindsight-optimal control sequence
al,... it _,, where H = H — dY as before. In choosing
such a control sequence, we will need notation for the num-
ber of sources that can affect a given time (i.e., sources such
that the round-trip delay is less than the specified time)—
we write N, for the set of sources j such that k& > d ) and
let N = |Nyg|. The following proposition gives the means
to compute the unique hindsight-optimal control sequence
analytically. (For the proof, see Appendix I.)

Proposition 1: Given system state Zo = (so,lo, W), ac-
tion o, and a trace of future service rates vs, , .. ., Vs, , the
sequence {i@f, k = 1,..., H — 1} with (ul)® for source i
specified as below is the unique hindsight-optimal control
sequence.

7t
(ui))(z) _ 0 - ~ When lk+d(z)+1 Z 07
_lk+d(i)+1/Nk+d(i) otherwise,
Tt _ 7t — . . —
where [y, = U, 44, (@0) is a function of do.

The hindsight-optimal control sequence given in Proposi-
tion 1 is justified as follows. We first note that l~,§+d (41 (o)
is the first value of the queue length “before checking for
underflow” that can be influenced by the control (uf)®,
because control sent to source i experiences a delay of d (¥,
and then the arrivals at time k + d? have their first effect
on queue length at the next time step k+d? +1. The first
case of the proposition corresponds to the situation where

the predicted cross traffic leaves insufficient service band-
width over the interval 0,...,k + d® to empty the queue
at time step k +d® 41 (before new arrivals at that time).
In this case, the full available service at time k + d is
utilized to serve fluid already requested by controls we are
committed to (i.e., either @y or controls that are in the his-
tory at time 0, that is, fluid in the “pipeline”) so that any
further fluid arriving at time k + d(¥ will only be delayed
until at least the next time step (incurring delay without
improving throughput). Therefore, in the first case, it is
optimal to add no further requests for arrivals at time k
by setting (ul)® to zero (given that delay and dropping
are penalized more heavily than fairness according to the
above assumptions on the parameters «, 3, and ().

In the second case, we have l,§+d(i)+1(ﬁ0) < 0, indicat-
ing that the bandwidth of the bottleneck node is not fully
used without additional traffic requests, leading to loss in
throughput. Hence, we need to request some additional
traffic to maintain throughput but not so much that the
queue fails to empty during traffic forwarding (incurring de-
lay penalties without gain in throughput). We also need to
divide this new traffic among all eligible (N, 4¢)) sources
to be fair. The expression given in case 2 for (uf,)® selects
exactly this amount of new traffic from source 3.

The above arguments hold when 0 < 8 < min{1, a/2, (},
as we have assumed in our choice of reward function. By
noticing that one infinitesimal increase in arrival (given
that the bottleneck is under utilized) will result in one such
increment in throughput but at most one such increment in
the unfairness penalty, it is immediate that the restriction
B < 1 will prioritize utilization of the bottleneck band-
width over any reduction in fairness penalty. Any strictly
positive value of « penalizes any traffic backlogging which
only causes delay but does not improve throughput. Fur-
thermore, setting 8 < min{«/2, (} makes it sub-optimal to
increase arrival from any source(s) to decrease unfairness
penalty without gain in throughput because this will result
in more penalty from delay and/or loss. To see why we need
B < a/2, suppose an increase in arrival will remain in the
buffer for K > 1 time steps before it is drained completely.
Thus, the maximum possible reduction in fairness penalty
is SK, and the delay penalty due to this traffic is a(K —1).
To maintain our preferred priority of reducing delay over
reducing unfairness, we require K < a(K — 1), or equiv-
alently f < (K — 1)a/K. Since (K —1)/K < K/(K + 1),
we set f < a/2 (for K = 2) to satisfy this inequality for
all K > 2.

C. Search Algorithm

Recall that at each time step, we wish to determine
and relay to the sources the control action u that yields
the largest estimate Q(a’:’o,ﬁo). Here, we use a simple
search algorithm that uses only the gradient of Q. Let
Vi Qn(fo,ﬁo) represent the gradient of Qn(a'z'o,ﬁo) (with
respect to the control action @). The search algorithm is
of the form (see, e.g., [16])

A~

ik +1) = (k) +v(k)Va Qu(o, d(k)),  (11)



where (k) is a positive step size, the iterate @(k) is an
estimate of @, and Vg Qn(fo, lp) is given by equation (10)
with the argument @ replaced by .

The result of Proposition 2 below can be used to compute
the gradient Vg W/ (Zo, @) (and hence Vg Q,(Zo,d0)).
Combining this result with the algorithm (11), we now
have an iterative procedure to compute #j. In prac-
tice, we terminate the algorithm (11) when the gradient
Vi Qn(o, @(k)) is sufficiently close to 0. Note that we also
need a value @ (0) to initialize the algorithm (in our exper-
iments, we set @ (0) = 0). We note that using a reasonable
guess of the value of @(0) instead of 0 could speed up con-
vergence; for instance, we can use the historical average of
i (0) as the initial value when invoking our gradient search
algorithm. For the step size sequence {v(k)}, a typical and
simple choice is to set y(k) to be a small positive constant.

We summarize the search procedure in the following
routine. Let Tr be a given set of future bandwidth
traces, n = |Tr| the cardinality of Tr as defined before,
and Vg Wi (Zo, @(k)) the gradient of the hindsight-optimal
value for trace t in Tr, as given by Proposition 2. We also
let d be a vector whose ith entry is (9. We assume a given
initial state #y. The search routine is as follows.

grad-search(Tr, d)
1. Initialize @(0).
2. Fork=1,2,...,do
Vi Qn(xo,ﬁ(k)) (1/n) ZAt 1
ik +1) = (k) + (k) Va Qn(Zo
until [Vg Qn (2o, @(k))| < e.
3. Output d(k).

Y ( o, (k)

The set of traces Tr and delay parameter vector d are
listed as arguments of the routine because both are needed
in the calculation of Vg W (Zy, @(k)).

There are points where the trace-relative hindsight-
optimal value is not differentiable. The use of gradient
ascent methods with functions that are not everywhere dif-
ferentiable has been studied before (e.g., [32]). In practice,
we have found that the non-differentiable points in our ob-
jective function do not impact the efficacy of the gradient
ascent algorithm. Hence, we do not delve further into this
issue.

The search algorithm is in fact only a local-search
method; the solution obtained depends on the initial con-
dition, and may not be globally optimal. To search for
a globally optimal solution, we could employ other famil-
iar search techniques such as simulated annealing, but we
have found satisfactory empirical results using only this
local search.

D. The Gradient of the Hindsight-optimal Value

This section gives a technical account of our efficient
means of computing the gradient of the hindsight-optimal
value for the purposes of controlling the step direction
in our search algorithm. Let k%(ily) be the first buffer-
underflow or buffer-full time after d(¥ — 1 when encoun-
tering trace t with no additional flow requested after d,

given by

k(i) = min{k 3 (lfc+1 =0andd" <k < H - 1)
ork=H-1},

k(o) = min{k : (ﬁc-{-l =Bandd" <k <H- 1)
ork:H—l}, and

k(i) = min {7 K'Y

We define N; to be the set of all sources j in N with
round-trip delays greater than d (¥, so by our ordering of
the sources we have N; = {j € N : j > i}. Sources
with longer round-trip delays than d(¥ have fluid arrivals
for time d (9 specified in the control history of @y, and no
hindsight-optimal control sequence can change the arrivals
that will occur at time d (¥ from those sources.

We now introduce notation that divides the sources in
N; according to whether they have arrival rates at time
d® that are higher or lower than any particular rate r.
For each source i € N, we partition the set N; of “un-
controllable” sources into two subsets, N (r) and NX (r),
according to how the arrival rates from those sources at
time d (¥ compare to the rate r, as follows:

i . 3) _q@) 5 . .
NL(r) ={j e N;rwl ™47 <1}, NL(r) = INL(r),
. () _ () ;

NL() ={j e Npzwl 477 >0}, NL(r) = INL(r).

For a given state &, and action iy, the gradient
VaW*(Zo, dp) of the hindsight-optimal value can be com-
puted analytically as characterized in the following propo-
sition. (For the proof, see Appendix II.)

Proposition 2: Given state ¥, candidate initial control
o, and service-rate trace t = {vs,,..., Vs, }, the source i
component (for any i) of Vg W* (&, dp), where it exists, is
given by the weighted sum of the following four terms (with
the weights 1, —a, —3, and —(, respectively), representing
the throughput, delay, fairness, and loss components of the
change in total reward:

) 1 1fz—landkt1( o) =dW
T (2. @ (%)
Vi (’T07u0) { 0 otherwise
Vi D(@o, 1) = k' —d®
VaF (%, )" = NL (ugi)) - N (ugi)) +Va Fl(i)
, 1if kY < k)
i L(Zo, @) = brwise,
Va L(Zy, to) { 0 otherwise,
where
0 ifi=1
v FW = =1 . . clse lfld()H %
T i NL) - NEr)  elseifr <uy)

—i+ Ni(r) — else if r > ul))

~lt i () /(- 1),

N(r)

T =
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Fig. 2. Network configuration for empirical study.

E. The Congestion-control Algorithm

We conclude this section by summarizing the congestion-
control algorithm as follows. At each control epoch, we
perform these steps:

1. Observe current system state Zp;

2. Generate a set Tr of future service-rate traces;
3. Compute i = grad-search(Tr, J);

4. Transmit rate command @ to sources.

Our control approach exploits two structural properties
of our problem. The first is that the stochasticity in our
problem is “exogenous”; i.e., the randomness in the ser-
vice process is independent of the control we choose. This
property greatly eases the application of the hindsight-
optimization framework, resulting in more natural offline
optimization subproblems that are typically more easily
solved. The second property is the piecewise linearity of
the reward function, which leads to the tractability of our
per-trace analysis, in particular, the piecewise derivation
of the gradient of the hindsight-optimal value.

IV. EmMPIRICAL RESULTS
A. Evaluation Setup

We use the network simulator ns2 to carry out simula-
tion. We have modified ns to implement our congestion-
control algorithm over UDP to emulate an ATM network,
and we set the packet size to be 53 bytes, the size of a
standard ATM cell.

Figure 2 illustrates our simulated network. The traffic
sent from four sources, indexed by O through 3, shares a
common bottleneck node. All links between the sources
and the bottleneck node have bandwidth of 155 Mbps,
while the bottleneck link is of only 55 Mbps. The size of the
buffer at the bottleneck node is 150 cells. Source 0 repre-
sents the source for high-priority cross traffic. Sources 1, 2,
and 3 are controlled best-effort traffic sources, which send
traffic at the rates determined by the controller residing at
the bottleneck node. These three sources are associated
with round-trip delays of 20, 30, and 40 ms, respectively.

Our empirical study consists of two parts. In the first
part, the cross-traffic source 0 is composed of 10 identi-
cal connections, each generating fluid traffic according to
a two-state ON-OFF MMF model. We will be varying the
two transmission rates corresponding to the ON and the
OFF states, to let the aggregated cross traffic rate have
different variances (ranging from 0 to 72.6 Mbps?) but the

same mean (22 Mbps). This allows us to study the impact
of the variance of the cross traffic on system performance.
In the two-state MMF model, the expected lengths of the
ON and the OFF periods are 400 and 600 ms, respectively;
these values were chosen to be the same as in the second
part of our empirical study.

In the second part, source 0 consists of 1000 independent
and identically-distributed voice connections, reflecting a
typical scenario arising in networks with mixed voice and
data traffic. The dynamics of voice connections are well
captured by MMF models [1], [18]. We model a single voice
connection by a two-state ON-OFF MMF model, with the
expected ON and OFF periods being 400 and 600 ms, re-
spectively. Since a standard voice connection consumes
64 Kbps bandwidth, we set the rate of each voice connec-
tion to 70.7 Kbps by considering that the actual payload
in a 53-byte ATM cell is only 48 bytes.

B. Comparison Metrics

We will compare the performance of the controller de-
scribed in this paper, called the “HO controller” hereafter,
with the well-known PD controller. Our comparison met-
rics are utilization, average queuing delay, cell loss rate, and
cumulative fairness, which are of direct interest to network
users. Utilization is defined as the ratio of the total number
of cells forwarded to the total available service “volume”
(the sum of the service rates) over the simulation period at
the bottleneck node. The average queuing delay is the total
amount of time that all the cells spend waiting in the queue
at the bottleneck node divided by the total number of cells
forwarded. The cell loss rate is defined as the number of
cells (from the controlled sources) lost due to buffer over-
flow divided by the total number of cells that arrive at the
bottleneck node (from the controlled sources) over the sim-
ulation period. To define cumulative fairness, let T; denote
the total number of cells that arrive from source i. Then,
cumulative fairness is defined as the standard deviation of
the T;’s divided by the mean of the Tj’s.

In most previous papers, e.g., [9], [10], the test metric
is the controller’s ability to maintain a target queue size.
However, by design the HO controller does not aim to main-
tain a fixed queue size. Thus, we do not evaluate the HO
controller’s ability in this respect.

C. Impact of Cross-traffic Variance

In this subsection, we investigate the impact of the vari-
ance in cross traffic on the performance of the HO and
PD controllers. PD-type congestion controllers have been
shown to be generally effective. PD controllers adjust the
transmission rate based on the deviation of the queue size
from a target value. We tested the PD controller with dif-
ferent target queue sizes. The target queue size reflects the
network administrator’s tradeoff among utilization, delay,
and cell loss rate. A larger target value indicates the desire
for higher utilization at the expense of higher delay and
cell loss rate. To maintain fairness, the PD controller is-
sues the same rate command to every controlled source at
each decision epoch.
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Fig. 3. Plots of utilizations.

For the HO controller, we generate 200 service-rate
traces at each decision epoch using the cross-traffic model.
Each trace is of length H = 50 time intervals. We chose the
duration § of each time interval to be 1 ms. The value of §
was chosen on one hand to be small enough to capture the
fast variation in service rate and on the other hand large
enough for affordable computation. In addition, 1 ms is a
value of ¢ small enough to express typical round-trip delays
as integral multiples of §. We set a = 1000, 8 = 2/3, and
¢ = 1. These values satisfy the restrictions on the values
of a, B, and ( that we have given in defining our objective
function, in equation (1).

Figure 3 shows the utilization values achieved by the
competing controllers. The PD controller with a target
queue size of 50 cells is denoted by PD-50, and similarly
for PD-10 and PD-1. The horizontal axis is the rate vari-
ance of the cross traffic. We can see that all controllers
achieve high utilization, when constant-rate cross traffic is
present. As the cross traffic becomes more variable, the
utilization values achieved by the PD controllers decrease
at rates much faster than that of the HO controller. The
reason is that when the cross traffic is highly variable, the
PD controllers cannot maintain a stable queue size to en-
sure satisfactory utilization. For example, sudden increases
in the service rate can drain the cells waiting in the buffer
completely, leading to loss in utilization. In contrast, by
making use of the service-rate model, the HO controller
can stochastically “anticipate” changes in service rate and
can in turn respond to these changes beforehand. Figure 3
demonstrates the effectiveness of the HO controller in an
environment with a highly-variable service rate, a condition
which is often found in practical networks.

Figure 4 shows plots of the average queuing delays. The
HO controller achieves much smaller queuing delays than
those of PD-50 and PD-10. PD-1 has queuing delays close
to those of HO; however, it does so at the significant cost of
much smaller utilizations (see Figure 3). Compared with
HO, PD-50 has much larger delay and less utilization; it
has more than four times the delay and 8% less utiliza-
tion in the most variable service rate case, i.e., the right-
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Fig. 4. Plots of average delays.
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Fig. 5. Plots of cell loss rates.

most points in the figures shown. Figures 4 and 3 suggest
that the HO controller can achieve higher utilization with
smaller delay compared with the PD controllers.

Figure 5 shows plots of cell loss rates (CLRs). The CLR
for the HO controller is the smallest for all the experiments
we carried out due to the fact that the implicit goal of a
hindsight-optimal control sequence is to keep a zero queue
length, and hence it leaves most of the buffer ready to
absorb bursts of incoming traffic. The PD-50 controller,
which achieves the closest utilization values to HO among
the PD controllers, has a CLR that is about an order of
magnitude larger than that of the HO controller in all our
experiments.

Our simulation shows that the HO controller is less fair
than the PD controllers: HO’s cumulative fairness values
are under 0.08 while those of PD’s are negligible. (We omit
the fairness plots for brevity.) While the magnitude of the
fairness term is quite small, it is still important—in fact,
it is possible to show that, for a wide class of reasonable
traffic models, when f = 0 the HO controller will only
request traffic from the closest source, starving all more
distant sources.

As expected, the HO controller achieves the highest cu-
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mulative reward in all the experiments we conducted, as
shown in Figure 6.

D. Voice Connections As Cross Traffic

In this subsection, source 0 consists of 1000 identical
voice connections. The parameters of the HO and PD
controllers are the same as in the first part of our em-
pirical study. Table 1 summarizes the performance com-
parison between the HO and PD controllers. In this ex-
periment, the rate variance of the cross traffic is relatively
small (1.2 Mbps?), and therefore the PD controllers achieve
good utilizations. However, the HO controller, while main-
taining high utilization value, enjoys much smaller queuing
delay and cell loss rate.

Table 1: Performance comparison using 1000 voice
connections as cross traffic

Controller | Util Delay (ms) CLR UF

HO 0.995 0.123 0.00 6.79e-2

PD-50 0.998 0.505 4.12e-3 8.88e-4

PD-10 0.957 0.213 5.78e-4 6.87e-4

PD-1 0.925 0.106 1.78e-4 9.14e-4

Util = Utilization = CLR = Cell Loss Rate UF =
Unfairness

V. CONCLUSIONS

We have introduced a simulation-based burst-level con-
gestion controller for a generic network to regulate best-
effort traffic to achieve high network efficiency while main-
taining fairness, represented by high utilization, traffic loss,
and low queuing delay. We have demonstrated that ex-
ploiting the structure of service-rate models can result in
significantly improved network performance.

Our empirical study demonstrates the effectiveness of the
HO controller with rapidly-varying cross traffic. In such
situations, conventional PD controllers lose their ability to
stablize the queue size, leading to decreased throughput,
increased queuing delay, and increased cell loss rate. The
use of a cross-traffic model provides a clear advantage to the
HO controller, enabling prediction and reaction to likely
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traffic variations. Moreover, the HO controller does not
require the tuning of controller gains, a nontrivial task in
PD controller design.

While the proposed control scheme is promising, two
main issues remain to be addressed:
1) Our hindsight-optimization framework is founded on a
crisp and powerful decision-theoretic formulation, but lit-
tle is understood on general conditions under which the
technique works well.
2) To incorporate a long-range-dependence traffic model
into our control scheme is an interesting direction worth
pursuing. Such a model can be made Markovian but with
a potentially large state space. Managing the size of the
state space but still capturing the long-range dependence
is important for our approach to apply in this case.

APPENDICES
I. PROOF OF PROPOSITION 1

Before presenting the proof of Proposition 1, we give two
lemmas needed for the proof.

Lemma 1: Counsider the function f(wi,...,wn) =
N N
T Yin O =41 |w; - wj| . Then we have:
N i f(wl,...,wl) > flwy,...,wy) —
> izt |wi — wjl.
i. f(w],...,wy) > f(wi,...,wn) holds when

Zﬁ\;l wi = Zi\;l w; and w] # w; imply w; = ¢ for all
1, where ¢ is a constant.

The lemma can be proven with ease using elementary
algebra, which we omit here.

Lemma 2: For a given service-rate trace t, starting state
Zp, and initial control @y, the hindsight-optimal value,
W (%o, dp), can be written as follows:

Wi (%o, o) = T} (o, do) — aDy (Zo, i) — Lz (Lo, o)

H-1
=" BE} (o, o, k),
k=0

where T} (%o, do), Dy (2o, tp), and L (Zy, ) are the maxi-
mal possible throughput, the minimum possible delay, and
the minimum possible loss, respectively, achievable from &
taking tp and encountering trace ¢t. The term F;*(Zo, o, k)
is the minimum unfairness penalties at time k subject to
optimizing T} (%o, Uo), Dj (Zo, tp), and Lj(Zo, ip).

Proof: Let t, ¥y, and iy be given. The cumulative
reward, Wy (%, tp), is a continuous function on L x Ud(N),
which is a compact set. By the Weierstrass theorem [16],

. L () .
there is a point in L X U™ such that at the point
W (&, tp) achieves its maximum, W;*(Zy, dp). For a given
initial condition, the queue length, taking values in L, is

. . ()
completely determined by the control in U? A Hence,

we conclude that there is a control sequence in U™ that
achieves W (&g, @p). We refer to any such control sequence
an optimal control.

We now argue that any optimal control must optimize
throughput, delay, and loss independently, in the follow-
ing sense. The trace-relative queue-size trajectory {I%,



k =0,...,H} is the trajectory the system will follow if
no further fluid is requested by controls sent after time
0. The loss and delay experienced under this trajectory
clearly lower bound those achieved by requesting further
fluid—more fluid requested leads to potentially more loss
and more delay, but no less. These loss and delay lower
bounds are Dj (&, tdp) and L} (&, dp), respectively. The
lemma claims that any optimal control must result in de-
lay of Dj (&, i) and loss of L}(Zy, o). Recall that d*)
is the earliest time any control can affect the bottleneck
node. Then, it is apparent that T} (Zo, o) is the sum of
three terms: the throughput received from time 0 to d(*) —1
(affected only by the control history recorded in @), the
throughput at time d(*) (determined by @), and the sum
of service rates after d*) (determined by a particular con-
trol sequence after time 0). The lemma claims that any
optimal control must also fully use the service rate after
time d!), thus achieving T} (Zy, @o).

We prove these claims by showing in the following that
any control that does not optimize throughput, delay, and
loss independently can be improved. If a control does not
fully use the service rate at time k (after time dW), as in-
dicated by a negative [} 41, We can increase the arrival at
time k to obtain a larger throughput without incurring any
delay and loss until [}, reaches zero from below; [{, ; =0
indicates that the service rate is fully used. Furthermore,
the potential fairness penalty due to the increased arrival
will always be less than the gain in throughput because
B < 1. Hence, an optimal control must maximize through-
put. If a control causes more delay than the delay lower
bound at time k (indicated by a positive l,fH), we can defer
the arrival of a sufficiently small amount of fluid unserved
at time k until time k£ 4+ 1 to decrease delay while keep-
ing throughput fully utilized. In the case of excess loss, a
similar change can be made by cancelling the arrival of a
sufficiently small amount of fluid unserved at time k. More-
over, considering part i of Lemma 1 and the restrictions on
«, 3, and (, it is easy to show that the fairness penalty
from this deferred or reduced arrival will always be smaller
than the gain from the reduced delay and/or loss. Thus,
an optimal control must minimize delay and loss.

The argument above implies that the optional traffic ar-
rival at any time k& (> dV)) from an optimal control will
not affect any other time step (because no delay other than
Dy is experienced), and thus we conclude that an optimal
control maximizes reward received at time k independently
of optimization at any other time steps. In particular, an
optimal control optimizes the fairness component of the
reward at a time independently of fairness optimization at
any other times (where each fairness optimization is done
subject to the constraint that throughput, delay, and loss
are already optimized independently). Then, a control that
optimizes throughput, delay, and loss independently, and,
subject to this, optimizes fairness at each time is an opti-
mal control. This completes the proof. |

Now, we present the proof of Proposition 1.

Proof:  The control given in the proposition is eas-
ily seen to independently and simultaneously optimize
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throughput, delay, and loss; i.e., the control achieves
Ty (2o, o), Di (%o, Up), and Ly (Zo,dp). Furthermore, sub-
ject to optimizing T} (%o, do), Dy (%o, udp), and L} (%o, dp),
the control minimizes fairness at each time step, by
Lemma 1 part ii. Therefore, by Lemma 2 the desired result
follows. |

II. PROOF OF PROPOSITION 2

Proof: Note that by Lemma 2 the hindsight-optimal
value can be decomposed into the throughput, delay, loss,
and fairness terms. We analyze the gradient of W;* (%o, tp)
with respect to iy for each term separately in the following.

Throughput, Delay, and Loss. The hindsight-
optimal control achieves full utilization of link bandwidth
after time dV) without incurring more delay or loss than the
control history specified by wy. Hence, regardless of what
value we set for iy, the hindsight-optimal throughput, loss,
and delay will be the same for a given trace, except possi-
bly for throughput and loss experienced at time step d (¥,
and for delay experienced by flow arriving at time step d (¥
(and possibly any time after d(?) for delay) for any value
of i.

An infinitesimal increase in arrivals will result in an
increase of the same amount in the hindsight-optimal
throughput if and only if the source in question is source
one (i.e., i = 1) and there is an underflow at time d") un-
der the current @y (as indicated by finding ki’l(ﬁo) =dW),
Changes in tp for sources other than source one impact the
trajectory after d!) where the hindsight-optimal through-
put is already maximal and cannot be increased by further
arrivals (these arrivals simply have the effect of leaving less
bandwidth for exploitation by hindsight-optimal controls
selected for later times for closer sources). Thus, we have

L. @ J 1 ifi=1and kM (i) =dW),
Va T (Fo,)" = { 0 otherwise. '

An increase in the arrivals for source i can increase
delay at time d9 and for arbitrarily many time steps
thereafter—until such time that the controls in the pipeline
(along with ) allow some leftover service bandwidth (as-
suming no further fluid is requested after time zero) or until
the incremental arrival is dropped due to buffer overflow.
The delay suffered by the incremental arrival will equal the
incremental arrival multiplied by k¢ —d (9. Thus, we have

Va D(&y, i) = kb —d®.

The increase in arrivals at time d (¥ will result in in-
creased dropping in the hindsight-optimal case if and only
if the increase eventually results in buffer overflow, i.e.,
if the next buffer-full time (after d®) occurs before any
buffer underflow (unused service rate). This condition can
be detected by comparing the next buffer-full time to the
next buffer-underflow time. Hence, we have

e i ti
1 1fkT <k,

-’L 27 (t) =
Vi L(Zo, o) { 0 otherwise.



If I} (do) = 0 or I}, (do)+al, (@) —vs,,, = B in calculat-
ing k' or k|, then T'(&o, o)™, D(Zy, o)) = k' —d®,
and L(&y, ilp)? are non-differentiable due to piecewise lin-
earity of these functions.

Fairness. The gradient of the fairness term involves
two parts. The first part is the change in fairness penalty

caused by an infinitesimal change in u(()i) by comparing u(()i)

with the sources in N Increases in u(()i) will decrease the
fairness penalty terms comparing source ¢ with sources in
NY (uét)) and increase the fairness penalty terms comparing

source i to sources in N% (u(()i)), so that the total change in
the fairness penalty terms comparing source ¢ with sources

in N; will be (Vi (ul) = N2 (u{”)) /(N —1). Note this part

; G _q@ s
of the gradient does not exist when u” = w(® ¢ for
any j > i(in particular, the effects of positive and negative

infinitesimal perturbations of u(()z) do not sum to zero).

The second part is the changes in fairness penalty terms
involving sources not in {i} UN; caused by an infinitesimal
increase in u(()l), and this part can be divided into four cases:
Case 1. When i = 1 there is no change in this portion of
the fairness penalty. ~
Case 2. Otherwise, when [}, (i) > 0, sources num-
bered less than ¢ will be controlled to send no fluid to arrive
at time d(® in the hindsight-optimal control sequence for
the candidate action @y with or without the infinitesimal
increase in source ¢; as a result the only change in the fair-
ness penalty terms comparing source ¢ with sources closer
than ¢ will be due to the increase in source i, moving the
source i arrival rate (at time d(?)) further from zero. These
changes amount to one (N —1)th of one (infinitesimal) step
penalty for the term for each source less than 4, or a total
additional penalty of (i —1)/(N —1).

Case 3. Otherwise, if r <
—lth(i)H(u(()z))/(i — 1) as given in the proposition, then the
i—1 closest sources decrease by 1/(i—1) of the infinitesimal
increase and the resulting fairness term changes show an
increase in penalty equal to (i + N (r) — Ni(r))/(N — 1),
with the first term being from the increased distance
between the arrival rates from closer sources and the
arrival rate from source ¢, and the last two terms being
from the change in comparisons between the closest i — 1
source arrivals and the arrivals from sources further away
than source i. '

Case 4. Otherwise, if r > u((f) then the decrease in
hindsight-optimal arrivals at time d (9 for the closest i — 1
sources actually improves fairness in the terms compar-
ing to source i, giving the resulting change in fairness of
(=i + NL(r) = NL(r)/(N - 1).

The second part of the gradient does not exist when r =
u(()z) orr = wéd(])fd(l)’]) for any j > i due to piecewise
linearity in the fairness term.

Summarizing, we have:

ul?, where r =

N 1 i (i i (i i
Va P&, @) = 5 (VE(uf”) - Ni(ug)) + Va B,
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where

0 ife=1
o g _ i—1 else if ij(i)+1(ué’)) >0
el i+Ni(r)—Ni(r) elseifr <ul’

—i+ Ni(r) = Ni(r) elseifr> u(()i).

Combining the above arguments, we have the desired
result. |
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