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t|We 
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ongestion-
ontrolproblem in a 
ommuni
ation network with multiple traÆ
sour
es, ea
h modeled as a fully-
ontrollable stream of 
uidtraÆ
. The 
ontrolled traÆ
 shares a 
ommon bottlene
knode with high-priority 
ross traÆ
 des
ribed by a Markov-modulated 
uid (MMF). Ea
h 
ontrolled sour
e is assumedto have a unique round-trip delay. The goal is to maximizea linear 
ombination of the throughput, delay, traÆ
 lossrate, and a fairness metri
 at the bottlene
k node. We intro-du
e a simulation-based 
ongestion-
ontrol s
heme 
apableof performing e�e
tively under rapidly-varying 
ross traÆ
by making use of the provided MMFmodel of that variation.The 
ontrol problem is posed as a �nite-horizon Markovde
ision pro
ess and is solved heuristi
ally using a te
h-nique 
alled Hindsight Optimization. We provide a detailedderivation of our 
ongestion-
ontrol algorithm based on thiste
hnique. Our empiri
al study shows that the 
ontrols
heme performs signi�
antly better than the 
onventionalproportional-derivative (PD) 
ongestion-
ontrol method.Keywords|Communi
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ontrol delay. Taking these unique delays intothe a

ount in de
ision making is a diÆ
ult problem. Theobje
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ongestion 
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Previous resear
h on best-e�ort 
ongestion 
ontrol 
anbe divided into rate-based and window-based approa
hes.Here we present a rate-based approa
h, 
ontrolling therates of the best-e�ort sour
es rather than de
iding win-dow sizes to those sour
es. Previous rate-based workinvolves binary feedba
k [6℄ and proportional 
ontrollers[7℄, [8℄ for ATM (Asyn
hronous Transfer Mode) net-works and linear-in
rease/exponential-de
rease 
ontrollersfor TCP/IP (Transmission Control Proto
ol/Internet Pro-to
ol) networks [15℄. Re
ent approa
hes attempt to im-prove performan
e by in
orporating 
ontrol-theoreti
 te
h-niques, in
luding proportional-derivative (PD) 
ontrollers[9℄, [10℄, [17℄, [30℄, and those using optimal 
ontrol and dy-nami
 game te
hniques su
h as linear quadrati
 (LQ) team,H1, and non
ooperative game 
ontrollers [12℄, [13℄, [11℄.We motivate our work by noti
ing that most of the above
ontrol s
hemes are designed for 
onstant or slowly-varying
ross traÆ
 (with the ex
eption of the LQ team and theH1 
ontrollers). We 
all these 
onne
tion-level 
ongestion
ontrollers sin
e they assume that the 
ross-traÆ
 varia-tion is 
aused primarily by the joining of new 
onne
tionsand the termination of existing ones. However, bursti-ness in 
ross traÆ
 in real networks often o

urs at smalltime s
ales, i.e., from several millise
onds up to a se
ond[3℄. Fast 
hanges in the 
ross traÆ
, 
oupled with largebandwidth-delay produ
ts, often signi�
antly degrade theperforman
e of 
onne
tion-level 
ontrollers.We approa
h the 
ongestion-
ontrol problem using an al-ternative paradigm that alleviates these drawba
ks. Herewe assume we are provided with a sto
hasti
 model of the
ross traÆ
, and demonstrate a 
ontroller that a
hievessubstantial bene�ts from exploiting this model. We 
allour approa
h burst-level 
ongestion 
ontrol. Our 
ontrollerpredi
ts future 
ross traÆ
 using the sto
hasti
 
ross-traÆ
model so that the 
ontroller 
an anti
ipate 
hanges sto
has-ti
ally and a
t \before" the 
hanges happen.We model the 
ross traÆ
 at the bottlene
k node as aMarkov-modulated 
uid (MMF) [1℄, [2℄, [3℄. We formulateour 
ongestion-
ontrol problem as a dis
rete-time �nite-horizon Markov de
ision pro
ess (MDP) [5℄. The famil-iar 
ongestion 
ontrol goal|rapidly a
hieving queue sta-bility in response to step 
hanges in 
ross traÆ
|is notan appropriate measure of su

ess here due to the in
lu-sion of rapidly-varying 
ross traÆ
. Instead, we formulatea measure of performan
e over long tra
es of 
ross-traÆ
variation, balan
ing throughput, delay, loss, and fairness.We extend our previously proposed Hindsight Optimiza-tion (HO) te
hnique [4℄ to provide a heuristi
 solution tothe MDP problem|in parti
ular, the HO te
hnique has



2never previously been used to address a problem with anin�nite 
ontrol a
tion spa
e.The main 
ontribution of this work is to demonstratethat a sto
hasti
 
ross-traÆ
 model 
an be e�e
tively ex-ploited in 
ongestion 
ontrol to a
hieve substantial perfor-man
e bene�ts. A se
ondary 
ontribution is to providea spe
i�
 means to obtain these bene�ts using a novel
ongestion-
ontrol framework based on online simulation.Our work provides both a strong motivation and a use-ful starting point for seeking a pra
ti
ally-realized s
hemein
orporating traÆ
 models.Although MMF models have been extensively em-ployed in network performan
e analysis (e.g., [1℄, [2℄),our work is the �rst to exploit su
h models for rate-based 
ongestion 
ontrol. Compared with the work of[12℄, [13℄, whi
h models 
ross traÆ
 by an auto-regressivemoving-average pro
ess, MMF models have more stru
-ture, and better performan
e is therefore expe
ted whensu
h models are available. In [15℄, the authors in
or-porate a long-range-dependent model into the design ofa linear-in
rease/exponential-de
rease (LIED) 
ontroller.Our MMF model yields to a de
ision-theoreti
 analysis,as mentioned above, resulting in a 
ontroller that is not
onstrained to be LIED.Previous work on 
ongestion 
ontrol using MDP formu-lation in
ludes [33℄, [34℄, [35℄. Our work di�ers from [33℄,[34℄, [35℄ in the sizes of a
tion spa
es, the generality of re-ward stru
tures, and solution methods. Re
ent work onpoli
y rollout algorithms (see, e.g., [36℄) provides a meansof using simulation to sele
t \good" 
ontrol a
tions heuris-ti
ally, but requires starting with a good \base" heuristi
poli
y. Poli
y rollout uses one-step look-ahead relative tothe base poli
y value fun
tion (mu
h like value iteration)to obtain an estimate of the so-
alled \Q-value"|this esti-mate must lower bound the true Q-value be
ause the basepoli
y value fun
tion lower bounds the true value fun
tion.The Q-value estimate used in the HO te
hnique is an upperbound.The remainder of the paper is organized as follows. InSe
tion II, we des
ribe our network model and de�ne the
ongestion-
ontrol problem as an MDP. In Se
tion III, weintrodu
e the HO te
hnique for heuristi
 MDP 
ontrol, andpresent our gradient-based 
ontrol algorithm. Se
tion IVpresents the simulation results of our 
ontroller and the PD
ontroller to enable 
omparison. Se
tion V 
on
ludes thepaper.II. System Model and Problem Des
riptionA. System ModelWe 
onsider a network where a single bottlene
k node isshared by multiple rate-
ontrolled traÆ
 sour
es and otherhigh-priority \
ross-traÆ
" sour
es. The 
ontrolled sour
estransmit at rates spe
i�ed by a 
entral 
ontroller residing atthe bottlene
k node. Asso
iated with ea
h sour
e is a �xedround-trip delay. Without loss of generality, we assumethat the round-trip delays are distin
t from one another.We notate ve
tors and their 
omponents as follows: forve
tor ~v, we write v(i) for the ith 
omponent of ~v when that


omponent is s
alar, and ~v (i) for that 
omponent when itis itself a ve
tor. We also notate the jth 
omponent of theith 
omponent of ~v (when ~v is a ve
tor of ve
tors) as v(i;j).Throughout this paper we use the notation EX to denoteexpe
tation taken with respe
t to the random variable X .We assume that time is dis
rete with small time in
re-ments Æ. We now des
ribe four essential 
omponents of oursystem: the 
ontrolled traÆ
 sour
es, the 
ross traÆ
, thebottlene
k node, and the 
ongestion 
ontroller.Controlled Sour
es. Denote the 
olle
tion of 
on-trolled sour
es by the set N and let N = jNj be the 
ar-dinality of N. We assume that in real time the round-tripdelays are large 
ompared with the time in
rement Æ su
hthat we 
an express the delay by integral multiples of Æ withsuÆ
ient a

ura
y. Hen
e, in dis
rete time, we denote theround-trip delay of sour
e i as d (i), a positive integer. Weindex the sour
es su
h that 0 < d(1) < d(2) < � � � < d(N).The sour
es 
onstantly transmit at the 
ontroller-spe
i�edrates and respond to rate 
ommands instantaneously upontheir arrival. This model emulates 
ontrolled ABR (avail-able bit rate) traÆ
 in ATM networks and UDP (UserDatagram Proto
ol) traÆ
 in IP networks, whi
h are suit-able 
andidates for rate-based 
ongestion-
ontrol s
hemes.Cross TraÆ
. The high-priority 
ross traÆ
 repre-sents, for example, CBR and VBR traÆ
 in ATM networks,or traÆ
 in IP networks re
eiving high-priority servi
e viathe CBQ (
lass-based queuing) s
heme [14℄. This 
rosstraÆ
 determines the available bandwidth that the 
on-trolled traÆ
 experien
es at the bottlene
k node.The 
ross-traÆ
 pro
ess 
an 
hange at any (dis
rete)time. For 
onvenien
e, instead of spe
ifying the 
ross-traÆ
 distribution, we spe
ify the \servi
e pro
ess," whi
his the di�eren
e between the rate of 
ross traÆ
 and C, the
onstant bandwidth of the bottlene
k node. This servi
epro
ess 
an also be 
hara
terized using an MMF modeleasily derived from the MMF model of the 
ross traÆ
.The servi
e pro
ess is represented by a Markov 
hain withstate spa
e S = f1; : : : ;mg, a transition probability ma-trix M : (S � S) 7! [0; 1℄, and a set of distin
t rate valuesv1; : : : ; vm (i.e., m is the number of the values that the ser-vi
e rate 
an take) whi
h are real numbers in the interval[0; C℄. By \servi
e rate" we mean the amount of 
uid best-e�ort traÆ
 that 
an be served in one time step. When instate s, the servi
e rate is vs. In this setting, measuringservi
e rate suÆ
es to determine the state of the servi
epro
ess.Bottlene
k Node. The bottlene
k node has a bu�erof �nite size. The 
ontrolled best-e�ort traÆ
 is bu�eredtogether, independently of any bu�ering needed for thehigh-priority 
ross traÆ
. We denote the size of the bu�erby B. As de�ned above, we denote the bandwidth at thebottlene
k node by C. We assume that the queue lengthat the bottlene
k node is known at ea
h time step. We alsoassume a �rst-in-�rst-out (FIFO) servi
e dis
ipline at thebottlene
k node.Congestion Controller. The 
ontroller, residing atthe bottlene
k node, makes 
ontrol de
isions at ea
h timestep. The 
ongestion-
ontrol problem is to determine a rate
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ommand u(i)k to relay to sour
e i, i = 1; : : : ; N , at time kto a
hieve some overall performan
e obje
tive. Our obje
-tive is to balan
e throughput, delay, loss, and fair servi
eto 
ontrolled sour
es, as des
ribed formally by the rewardfun
tion below. The 
ontroller 
an use system observationsand a model of the servi
e pro
ess to 
ompute rate 
om-mands. The rate 
ommand for a sour
e at any given epo
himpa
ts the bottlene
k node arrivals after a time durationequal to one round-trip delay for that sour
e. Therefore, atea
h de
ision-making epo
h, the 
ontroller needs to 
om-pute an appropriate rate 
ommand for ea
h sour
e thattakes into a

ount the round-trip delays and anti
ipatedservi
e-rate variation. The order of event o

urren
e atthe bottlene
k is: de
ision making, MMF transition, traÆ
arrival and simultaneous traÆ
 forwarding, and then 
he
kfor bu�er over
ow/under
ow.B. MDP Problem FormulationWe formulate the 
ongestion-
ontrol problem as aMarkov de
ision pro
ess (MDP). An MDP 
onsists of ana
tion spa
e, a state spa
e, a state-transition stru
ture, anda reward stru
ture. In the following, we des
ribe ea
h ofthese 
omponents for our problem.A
tion Spa
e. We assume that the transmission ratesat the 
ontrolled sour
es are bounded from below by zeroand from above by the 
ommon value C. We denote the a
-tion spa
e by U = [0; C℄N . For instan
e, at time k the 
on-trol a
tion is a ve
tor ~uk of the form ~uk = [u(1)k ; : : : ; u(N)k ℄.State Spa
e. The system state has three 
omponents.The �rst is the state of the servi
e pro
ess, taking values inS. The state of the servi
e pro
ess at ea
h time step 
orre-sponds to the departure rate observed at the previous timestep, and the MMF servi
e model will transition beforedepartures o

ur at the 
urrent time step. (This 
hoi
emodels that fa
t that we 
annot know the 
urrent 
rosstraÆ
 pre
isely until after it has o

urred and we have hadthe opportunity to measure it.) The se
ond 
omponent isthe 
urrent queue length l, taking values in L = [0; B℄. Thethird 
omponent 
onsists of the 
ontrol signals that havebeen issued in the past but whose impa
t has not yet beenfelt at the bottlene
k node due to the round-trip delays.This 
ontrol history ~w takes values in Ud(N) . For exam-ple, if the 
ontrol a
tions sele
ted over time are ~u0; ~u1; : : :then the 
ontrol history ~wk = (~w (1)k ; : : : ; ~w (d(N))k ) at timek is su
h that ~w (i)k = ~uk�i and thus w (i;j)k = u (j)k�i. Wenote that this 
ontrol history in
ludes unne
essary informa-tion in the form of history beyond the round-trip delay forsour
es 
loser than delay d(N). This information is in
ludedto greatly simplify our notation throughout this paper, butis not truly needed in the intended model or for any of ourmethods. The 
omplete state spa
e is X = S�L�Ud(N) .State Transition. If the state is ~x = (s; l; ~w) where~w = (~w (1); : : : ; ~w (d(N))) denotes the 
ontrol history, andwe apply a 
ontrol ~u, the system will make a transition toa new state ~x 0 = (s0; l0; ~w0). In the following, we spe
ifyhow ea
h 
omponent of ~x 0 depends on ~x and ~u.The servi
e-pro
ess state makes a transition from s to

s0 with probability P (s; s0) spe
i�ed in the given matrixM|this transition is una�e
ted by the values of l and ~w.The queue-length 
omponent l0 depends on ~x as follows.Let a(~x) =PNi=1 w(d (i) ;i) be the aggregate 
uid traÆ
 thatarrives during the transition from state x to state x0 fromall 
ontrolled sour
es|this traÆ
 is due to rate 
ommandsthat were issued to these sour
es in the past whi
h are nowre
orded in the state 
omponent ~w. Re
alling that theservi
e pro
ess 
onsumes 
uid traÆ
 at rate vs0 when inservi
e pro
ess state s0, and given the just 
omputed 
uidarrival, the queue-length 
omponent of the state 
hangesa

ording to the following di�eren
e equation, 
ommonly
alled Lindley's equation:l0 = maxfminfl + a(~x)� vs0 ; Bg; 0g:The queue-length 
omponent l0 does not depend on ~u dueto non-zero round-trip delays.Finally, the 
ontrol history updates as follows:~w 0 (1) = ~u; ~w 0 (i+1) = ~w 0 (i); i = 1; : : : ; d(N) � 1:Reward Stru
ture. We de�ne the one-step reward atstate ~x byR(~x) = T (~x)� �D(~x)� �F (~x)� �L(~x); (1)where 0 < � < minf1; �=2; �g, T (~x) is the throughputre
eived at one time step when the system is in state ~x,D(~x) is the total queuing delay in
urred at that time step,F (~x) is the sum of the absolute pairwise rate di�eren
esin arriving traÆ
 from di�erent 
ontrolled sour
es at thattime step, and L(~x) is the 
uid lost at the 
urrent time stepdue to bu�er over
ow (after \
he
k for bu�er over
ow").Note that these four quantities|throughput, delay, loss,and fairness|are independent metri
s in evaluating 
ontrolperforman
e; in parti
ular, spe
ifying throughput and lossis not redundant, be
ause the total arrival is not �xed orpre-determined.The s
aling fa
tors �, �, and � re
e
t our tradeo� prefer-en
e between throughput, delay, loss, and servi
e fairness.Spe
i�
ally, the restri
tion 0 < � < minf1; �; �g representsour preferen
e towards optimizing throughput, delay, andloss, with the fairness optimization somewhat subordinate.We are most interested in parameter values satisfying thisrestri
tion. The further restri
tion that � < �=2, as we willexplain after presenting Proposition 1, allows the analyti
alsele
tion of a hindsight-optimal 
ontrol sequen
e (de�nedlater) more easily, and we do not 
onsider the more diÆ
ultand less important 
ase of parameter settings that violatethis restri
tion. While it appears that, given the restri
-tions on �, the fairness term makes a negligible 
ontribu-tion to the reward fun
tion, this 
ontribution is important,as we dis
uss later in Se
tion IV-C.The one-step reward R(~x) depends only on the state ~xand not expli
itly on the 
ontrol ~u be
ause any rate 
om-mand in ~uwill not have impa
t on the bottlene
k node untilat least d(1) time units later, due to the non-zero round-trip delays d (i). Re
all that d(1) is the smallest among all



4d (i)'s. We now provide formal expressions for T (~x), D(~x),L(~x), and F (~x) for 
ompleteness. The throughput, delay,loss, and unfairness penalty at a time step are given by:T (~x) = minfl+ a(~x); vs0g (2)D(~x) = maxfminfl+ a(~x)� vs0 ; Bg; 0g (3)L(~x) = maxfl + a(~x)� vs0 �B; 0g (4)F (~x) = 1N � 1 NXi=1 NXj=i+1 ���w(d (i);i) � w(d (j) ;j)��� ; (5)where s0 is the servi
e-rate pro
ess state after MMF tran-sition from state s. Note that the throughput, delay, andloss terms of the reward fun
tion (and thus the reward it-self) are random variables due to their dependen
e on therandom variable s0.Optimization Goal. Based on the MDP model de-s
ribed above, we 
an state the 
ongestion-
ontrol problemas follows. For a given initial state ~x0 2 X, we apply a 
on-trol ~u0 2 U to the system and re
eive a reward of R(~x0)by serving traÆ
 at the bottlene
k node. The system willthen make a transition to a new state ~x1, sto
hasti
allya

ording to the state-transition stru
ture. We then applya 
ontrol ~u1, and so on. After a horizon of H steps, the
umulative reward re
eived (a random variable) is given byWH (~u0; : : : ; ~u ~H�1) � H�1Xk=0 R(~xk);where ~H = H � d(1), and ~u ~H�1 is the latest 
ontrol 
om-mand that 
an impa
t the bottlene
k node within the hori-zon H .Our 
hoi
e of ~uk is based on ~xk; that is, we use a \state-feedba
k" map �k : ~x 7! ~u and apply ~uk = �k(~xk). Thesequen
e of maps � = f�0; �1; �2; : : :g is 
alled a poli
y.For a given initial state ~x0, the problem is to �nd a poli
ythat maximizes the obje
tive fun
tionV �H (~x0) = E �WH(�0(~x0); : : : ; � ~H�1(~x ~H�1))� :Given a poli
y � or a �xed sequen
e of 
ontrols ~u0; ~u1; : : :,we denote the state of the system at ea
h time k in 0; 1; : : :by the random variable Xk and the state of the servi
epro
ess at time k by the random variable Sk.C. Optimal SolutionTo des
ribe our approa
h to the 
ongestion-
ontrol prob-lem, we �rst 
hara
terize the optimal 
ongestion-
ontrolpoli
y. For a given initial state ~x, letV �H(~x) = max� V �H (~x):Following a standard approa
h to solving MDPs, we writeQk(~x; ~u) = R(~x) +E(V �k�1(~x 0 )); k = 1; : : : ; H;where the expe
tation in the right-hand side is with respe
tto the next state ~x 0 , and V �k�1(~x 0 ) is the optimal 
umu-lative reward over the k � 1 time steps starting from the

(random) state ~x 0 . A key result in Markov de
ision theory[5℄ then states thatV �H (~x) = max~u2UQH(~x; ~u);and a poli
y �� = (��0; ��1; : : :) is an optimal poli
y if itsatis�es for all k,��k(~x) = argmax~u2UQH�k(~x; ~u):In parti
ular, for a �xed horizon H , the 
ontrol ~u� is anoptimal \
urrent" a
tion if it satis�es~u� = ��0(~x) = argmax~u2UQH(~x; ~u): (6)At ea
h 
ontrol epo
h we apply the \
urrent" 
ontrola
tion ~u� in (6). Ea
h 
ontrol epo
h involves optimizingQH(~x; ~u) with respe
t to ~u for a horizon of H into the fu-ture. This approa
h of applying a \moving-horizon" 
on-trol solution in an online fashion is 
ommon in the optimal-
ontrol literature, for example in re
eding-horizon 
ontrol(e.g., [19℄, [20℄).In pra
ti
e we do not have expli
it knowledge of QH .Standard te
hniques 
an 
ompute QH in time polynomialin the size of the state spa
e. However, be
ause we havean impli
itly spe
i�ed state spa
e (spe
i�ed 
omponent by
omponent above), our a
tual state spa
e is astronomi
alin size; as a result, these standard te
hniques 
annot beapplied in pra
ti
e. Thus, (6) is not dire
tly useful for de-termining the optimal poli
y. Our MDP problem does notyield to any other known analyti
al solution. Instead, weapproa
h the problem by 
omputing an upper bound esti-mate of QH . We stress that the non-negligible informationdelays in our system greatly 
ompli
ate the problem. Ifthe delays are not signi�
ant with respe
t to the dynami
sof the Markov-modulated servi
e pro
ess, we 
an greatlyredu
e the state spa
e, and standard te
hniques are appli-
able to solving the resulting problem. In the next se
tion,we des
ribe a parti
ular approa
h to solving our problem,based on evaluating 
andidate a
tions using su
h upperbound estimates of QH .III. Congestion-
ontrol Algorithm UsingHindsight OptimizationA. The Hindsight Optimization Te
hniqueIn this subse
tion, we outline our solution approa
h,whi
h extends a te
hnique 
alled hindsight optimization,�rst des
ribed in [4℄. The overall 
ontrol ar
hite
ture is il-lustrated in Figure 1. The 
ontroller 
omprises three parts:a state observer, a traÆ
 simulator, and a rate 
al
ulator.The state observer is responsible for obtaining the systemstate ~x by measuring the servi
e rate at ea
h time step(as well as observing the 
urrent queue length and storingthe re
ent 
ontrol history). Given our assumption that theMMF model state ea
h determines a unique servi
e rate,the system state is fully observable.The traÆ
 simulator takes the observed 
urrent state ~xand uses it as a starting state to generate a �nite number
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Fig. 1. Congestion-
ontrol ar
hite
ture.of possible servi
e-rate sequen
es (tra
es) using our MMFmodel. The rate 
al
ulator takes these tra
es and 
omputesa rate 
ommand ve
tor ~u. The 
al
ulation of the rate 
om-mand ve
tor is based on the following idea. Re
all fromequation (6) that at any given 
ontrol epo
h and any state~x, the optimal rate 
ommand is given by~u� = argmax~u2UQ(~x; ~u) (7)(we omit the subs
ript H in QH(~x; ~u) for brevity). Werely on an estimate Q̂(~x; ~u) of the Q(~x; ~u) to 
arry out theabove maximization. This estimate is 
al
ulated as follows.For ea
h servi
e-rate tra
e t, we 
ompute the 
umulativereward by taking a
tion ~u at state ~x followed by a tra
e-optimal sequen
e of a
tions ~u t1; ~u t2; : : : ; ~u t~H�1 for the remain-ing horizon of ~H � 1 time steps. We say that the sequen
e~u t1; ~u t2; : : : ; ~u t~H�1 is tra
e-optimal if this sequen
e a
hievesthe largest possible 
umulative reward under the assump-tion that the servi
e rate does indeed vary a

ording to thetra
e under 
onsideration. We 
all any su
h tra
e-optimalsequen
e a hindsight-optimal 
ontrol sequen
e and the opti-mal 
umulative reward of any su
h sequen
e the hindsight-optimal value of the tra
e|
omputing su
h a sequen
e andits 
orresponding value is an o�ine optimization problemthat is often 
onsiderably easier than �nding the optimalsto
hasti
 
ontrol for the online problem. We 
ompute theaverage of the hindsight-optimal values over the set of ngenerated tra
es for the spe
i�ed initial 
ontrol ~u|this av-erage is our estimate Q̂n(~x; ~u) of Q(~x; ~u). In other words,Q̂(~x; ~u) and its sampled approximation Q̂n(~x; ~u) are givenby Q̂n(~x; ~u) = 1n nXt=1W �t (~x; ~u); (8)Q̂(~x; ~u) = R(~x)+ES1;:::;SH max~u1;:::;~u ~H�1WH�1(~u1; : : : ; ~u ~H�1);(9)where WH�1(~u1; : : : ; ~u ~H�1) � H�1Xk=1 R(~xk);and W �t (~x; ~u) is the hindsight-optimal value for the tra
e tas a result of applying 
ontrol ~u at state ~x.

Given the estimate Q̂(~x; ~u) of Q(~x; ~u) for ea
h a
tion,the hindsight optimization approa
h is to sele
t and exe-
ute the a
tion ~u that maximizes this estimate. Previousappli
ations of the hindsight-optimization te
hnique haveall involved MDP problems with �nite a
tion spa
es, un-like our 
ongestion 
ontrol problem. When the a
tion spa
eis �nite, we 
an simply 
ompute the estimate Q̂(~x; ~u) forea
h a
tion ~u, and 
hoose the 
andidate a
tion asso
iatedwith the largest su
h estimate for exe
ution. Here, how-ever, we have an un
ountable 
ontinuous a
tion spa
e, and
annot 
ompute this estimate for every a
tion. Instead, weextend the hindsight optimization te
hnique by �nding a(lo
ally) optimal a
tion using a gradient as
ent te
hnique.Be
ause we seek to use gradient as
ent to solve this prob-lem, we a
tually need to analyze tra
es to �nd the gradi-ent of Q̂(~x; ~u) relative to 
hanges in ~u (rather than to �ndQ̂(~x; ~u) itself). We dis
uss a method for estimating thisgradient from tra
es below.As explained in [4℄, Q̂(~x; ~u) is an upper bound on Q(~x; ~u)if exa
tly 
omputed (e.g., by in�nite sampling). This upperbound 
an be arbitrarily loose. However, these estimatesare only used to rank 
andidate a
tions, and thus it onlymatters whether or not these estimates preserve the rela-tive values at di�erent states. Our results below give evi-den
e that for 
ongestion 
ontrol problems the ranking ispreserved well enough to make Q̂(~x; ~u) useful for sele
tingan e�e
tive 
ontrol poli
y.B. Hindsight-optimal Control Sequen
esAt ea
h de
ision-making epo
h, we wish to determinea rate ve
tor ~u� a

ording to (7) using Q̂n(~x; ~u) in pla
eof Q(~x; ~u). For a given ~x, we wish to maximize Q̂n(~x; ~u)with respe
t to ~u. Be
ause the argument ~u is a ve
tor of
ontinuous variables, we 
an use a sear
h algorithm basedon the gradient of Q̂n(~x; ~u) with respe
t to ~u, whi
h wedenote by r~u Q̂n(~x; ~u).Note that from equation (8), we 
an write r~u Q̂n(~x; ~u)as r~u Q̂n(~x; ~u) = 1n nXt=1r~uW �t (~x; ~u); (10)where r~uW �t (~x; ~u) is the gradient ofW �t (~x; ~u) with respe
tto ~u. Therefore, the 
al
ulation of r~u Q̂n(~x; ~u) redu
esto 
al
ulating the gradients on a per-tra
e basis, i.e., thegradients of theW �t (~x; ~u). It turns out that these gradients
an be 
omputed analyti
ally, as we will show later. Ourgradient estimate above is akin to the idea of in�nitesimalperturbation analysis [27℄.Re
all that d(1) is the smallest round-trip delay amongall d (i)'s. We note that if d(1) � H�1, then no matter what
ontrol sequen
e we apply, by the end of the horizon H , noa
tion will have impa
t on the bottlene
k node. Therefore,we 
onsider only the nontrivial 
ase where 0 < d(1) < H�1.Suppose that the 
urrent time is zero and the 
urrentstate is ~x0 = (s0; l0; ~w0). We wish to sele
t as the 
urrent
ontrol the a
tion ~u�0 that maximizes Q̂(~x0; ~u�0). In thefollowing, we �rst des
ribe how we 
ompute a hindsight-optimal 
ontrol sequen
e for a given servi
e-pro
ess tra
e.



6Based on n su
h sequen
es, we then show how to obtainthe gradient of Q̂n(~x0; ~u0), whi
h together with a sear
halgorithm forms our 
ongestion-
ontrol algorithm. We nowassume that we have generated a spe
i�
 servi
e-pro
esstra
e t = fvs1 ; : : : ; vsHg.Given the initial state ~x0 and a
tion ~u0, de�ne the tra
e-relative 
ommitted aggregate arrival rate (from all 
on-trolled sour
es due to rate 
ommands in the 
ontrol his-tory as indi
ated in the ~w0 
omponent of x0) at timesk = 0; : : : ; H � 1 for initial 
ontrol ~u0 byatk(~u0) = NXi=1 Ii(k)w(d (i)�k;i)0 ; where Ii = 1f0;:::;d (i)gwhere we de�ne ~w(0)0 to be ~u0. The fun
tion Ii(k) returns1 when k is less than d (i), or equivalently, when the arrivalfrom sour
e i at time k is spe
i�ed by ~w0. De�ne the tra
e-relative queue-length sequen
e fltk, k = 0; : : : ; Hg (and thequeue length f~l tk+1, k = 1; : : : ; Hg before \
he
king forunder
ow") for initial 
ontrol ~u0 byltk+1(~u0) = maxf~l tk+1(~u0); 0g; and~l tk+1(~u0) = minfltk(~u0) + atk(~u0)� vsk+1 ; Bg;with lt0(~u0) = l0 the 
urrent queue size.Noti
e u(i)0 is the 
ontrol de
ision we are going to make atthe 
urrent time and has not been determined yet; however,in the following proposition, u(i)0 is assumed given be
ausewe will assign it 
andidate values to determine the asso
i-ated Q̂ values. For a servi
e-rate tra
e t = fvs1 ; : : : ; vsHg,we wish to 
ompute a hindsight-optimal 
ontrol sequen
e~u t1; : : : ; ~u t~H�1, where ~H = H � d(1) as before. In 
hoosingsu
h a 
ontrol sequen
e, we will need notation for the num-ber of sour
es that 
an a�e
t a given time (i.e., sour
es su
hthat the round-trip delay is less than the spe
i�ed time)|we write ~Nk for the set of sour
es j su
h that k � d (j) andlet ~Nk = j ~Nkj. The following proposition gives the meansto 
ompute the unique hindsight-optimal 
ontrol sequen
eanalyti
ally. (For the proof, see Appendix I.)Proposition 1: Given system state ~x0 = (s0; l0; ~w0), a
-tion ~u0, and a tra
e of future servi
e rates vs1 ; : : : ; vsH , thesequen
e f~u tk, k = 1; : : : ; ~H � 1g with (utk)(i) for sour
e ispe
i�ed as below is the unique hindsight-optimal 
ontrolsequen
e.(utk)(i) = ( 0 when ~l tk+d (i)+1 � 0,�~l tk+d (i)+1= ~Nk+d (i) otherwise,where ~l tk+d (i)+1 = ~l tk+d (i)+1(~u0) is a fun
tion of ~u0.The hindsight-optimal 
ontrol sequen
e given in Proposi-tion 1 is justi�ed as follows. We �rst note that ~l tk+d (i)+1(~u0)is the �rst value of the queue length \before 
he
king forunder
ow" that 
an be in
uen
ed by the 
ontrol (utk)(i),be
ause 
ontrol sent to sour
e i experien
es a delay of d (i),and then the arrivals at time k+ d (i) have their �rst e�e
ton queue length at the next time step k+d (i)+1. The �rst
ase of the proposition 
orresponds to the situation where

the predi
ted 
ross traÆ
 leaves insuÆ
ient servi
e band-width over the interval 0; : : : ; k + d (i) to empty the queueat time step k+ d (i)+1 (before new arrivals at that time).In this 
ase, the full available servi
e at time k + d (i) isutilized to serve 
uid already requested by 
ontrols we are
ommitted to (i.e., either ~u0 or 
ontrols that are in the his-tory at time 0, that is, 
uid in the \pipeline") so that anyfurther 
uid arriving at time k + d (i) will only be delayeduntil at least the next time step (in
urring delay withoutimproving throughput). Therefore, in the �rst 
ase, it isoptimal to add no further requests for arrivals at time kby setting (utk)(i) to zero (given that delay and droppingare penalized more heavily than fairness a

ording to theabove assumptions on the parameters �, �, and �).In the se
ond 
ase, we have ~l tk+d (i)+1(~u0) < 0, indi
at-ing that the bandwidth of the bottlene
k node is not fullyused without additional traÆ
 requests, leading to loss inthroughput. Hen
e, we need to request some additionaltraÆ
 to maintain throughput but not so mu
h that thequeue fails to empty during traÆ
 forwarding (in
urring de-lay penalties without gain in throughput). We also need todivide this new traÆ
 among all eligible ( ~Nk+d (i)) sour
esto be fair. The expression given in 
ase 2 for (utk)(i) sele
tsexa
tly this amount of new traÆ
 from sour
e i.The above arguments hold when 0 < � < minf1; �=2; �g,as we have assumed in our 
hoi
e of reward fun
tion. Bynoti
ing that one in�nitesimal in
rease in arrival (giventhat the bottlene
k is under utilized) will result in one su
hin
rement in throughput but at most one su
h in
rement inthe unfairness penalty, it is immediate that the restri
tion� < 1 will prioritize utilization of the bottlene
k band-width over any redu
tion in fairness penalty. Any stri
tlypositive value of � penalizes any traÆ
 ba
klogging whi
honly 
auses delay but does not improve throughput. Fur-thermore, setting � < minf�=2; �g makes it sub-optimal toin
rease arrival from any sour
e(s) to de
rease unfairnesspenalty without gain in throughput be
ause this will resultin more penalty from delay and/or loss. To see why we need� < �=2, suppose an in
rease in arrival will remain in thebu�er for K > 1 time steps before it is drained 
ompletely.Thus, the maximum possible redu
tion in fairness penaltyis �K, and the delay penalty due to this traÆ
 is �(K�1).To maintain our preferred priority of redu
ing delay overredu
ing unfairness, we require �K < �(K � 1), or equiv-alently � < (K � 1)�=K. Sin
e (K � 1)=K < K=(K + 1),we set � < �=2 (for K = 2) to satisfy this inequality forall K � 2.C. Sear
h AlgorithmRe
all that at ea
h time step, we wish to determineand relay to the sour
es the 
ontrol a
tion ~u�0 that yieldsthe largest estimate Q̂(~x0; ~u0). Here, we use a simplesear
h algorithm that uses only the gradient of Q̂. Letr~u Q̂n(~x0; ~u0) represent the gradient of Q̂n(~x0; ~u0) (withrespe
t to the 
ontrol a
tion ~u0). The sear
h algorithm isof the form (see, e.g., [16℄)~u(k + 1) = ~u(k) + 
(k)r~u Q̂n(~x0; ~u(k)); (11)



7where 
(k) is a positive step size, the iterate ~u(k) is anestimate of ~u�0, and r~u Q̂n(~x0; ~u0) is given by equation (10)with the argument ~u repla
ed by ~u0.The result of Proposition 2 below 
an be used to 
omputethe gradient r~uW �t (~x0; ~u0) (and hen
e r~u Q̂n(~x0; ~u0)).Combining this result with the algorithm (11), we nowhave an iterative pro
edure to 
ompute ~u�0. In pra
-ti
e, we terminate the algorithm (11) when the gradientr~u Q̂n(~x0; ~u(k)) is suÆ
iently 
lose to ~0. Note that we alsoneed a value ~u0(0) to initialize the algorithm (in our exper-iments, we set ~u0(0) = ~0). We note that using a reasonableguess of the value of ~u0(0) instead of ~0 
ould speed up 
on-vergen
e; for instan
e, we 
an use the histori
al average of~u0(0) as the initial value when invoking our gradient sear
halgorithm. For the step size sequen
e f
(k)g, a typi
al andsimple 
hoi
e is to set 
(k) to be a small positive 
onstant.We summarize the sear
h pro
edure in the followingroutine. Let Tr be a given set of future bandwidthtra
es, n = jTrj the 
ardinality of Tr as de�ned before,and r~uW �t (~x0; ~u(k)) the gradient of the hindsight-optimalvalue for tra
e t in Tr, as given by Proposition 2. We alsolet ~d be a ve
tor whose ith entry is d (i). We assume a giveninitial state ~x0. The sear
h routine is as follows.grad-sear
h(Tr; ~d)1. Initialize ~u(0).2. For k = 1; 2; : : : ; dor~u Q̂n(~x0; ~u(k)) = (1=n)Pnt=1r~uW �t (~x0; ~u(k))~u(k + 1) = ~u(k) + 
(k)r~u Q̂n(~x0; ~u(k))until jr~u Q̂n(~x0; ~u(k))j � ".3. Output ~u(k).The set of tra
es Tr and delay parameter ve
tor ~d arelisted as arguments of the routine be
ause both are neededin the 
al
ulation of r~uW �t (~x0; ~u(k)).There are points where the tra
e-relative hindsight-optimal value is not di�erentiable. The use of gradientas
ent methods with fun
tions that are not everywhere dif-ferentiable has been studied before (e.g., [32℄). In pra
ti
e,we have found that the non-di�erentiable points in our ob-je
tive fun
tion do not impa
t the eÆ
a
y of the gradientas
ent algorithm. Hen
e, we do not delve further into thisissue.The sear
h algorithm is in fa
t only a lo
al-sear
hmethod; the solution obtained depends on the initial 
on-dition, and may not be globally optimal. To sear
h fora globally optimal solution, we 
ould employ other famil-iar sear
h te
hniques su
h as simulated annealing, but wehave found satisfa
tory empiri
al results using only thislo
al sear
h.D. The Gradient of the Hindsight-optimal ValueThis se
tion gives a te
hni
al a

ount of our eÆ
ientmeans of 
omputing the gradient of the hindsight-optimalvalue for the purposes of 
ontrolling the step dire
tionin our sear
h algorithm. Let kt;i(~u0) be the �rst bu�er-under
ow or bu�er-full time after d (i) � 1 when en
oun-tering tra
e t with no additional 
ow requested after ~u0,

given bykt;i# (~u0) = minnk : �ltk+1 = 0 and d (i) � k < H � 1�or k = H � 1o;kt;i" (~u0) = minnk : �ltk+1 = B and d (i) � k < H � 1�or k = H � 1o; andkt;i(~u0) = minnkt;i# ; kt;i" o :We de�ne Ni to be the set of all sour
es j in N withround-trip delays greater than d (i), so by our ordering ofthe sour
es we have Ni = fj 2 N : j > ig. Sour
eswith longer round-trip delays than d (i) have 
uid arrivalsfor time d (i) spe
i�ed in the 
ontrol history of ~w0, and nohindsight-optimal 
ontrol sequen
e 
an 
hange the arrivalsthat will o

ur at time d (i) from those sour
es.We now introdu
e notation that divides the sour
es inNi a

ording to whether they have arrival rates at timed (i) that are higher or lower than any parti
ular rate r.For ea
h sour
e i 2 N, we partition the set Ni of \un-
ontrollable" sour
es into two subsets, Ni<(r) and Ni>(r),a

ording to how the arrival rates from those sour
es attime d (i) 
ompare to the rate r, as follows:Ni<(r) = fj 2 Ni : w(d (j)�d (i);j)0 < rg; N i<(r) = jNi<(r)j;Ni>(r) = fj 2 Ni : w(d (j)�d (i);j)0 > rg; N i>(r) = jNi>(r)j:For a given state ~x0 and a
tion ~u0, the gradientr~uW �(~x0; ~u0) of the hindsight-optimal value 
an be 
om-puted analyti
ally as 
hara
terized in the following propo-sition. (For the proof, see Appendix II.)Proposition 2: Given state ~x0, 
andidate initial 
ontrol~u0, and servi
e-rate tra
e t = fvs1 ; : : : ; vsHg, the sour
e i
omponent (for any i) of r~uW �(~x0; ~u0), where it exists, isgiven by the weighted sum of the following four terms (withthe weights 1, ��, ��, and ��, respe
tively), representingthe throughput, delay, fairness, and loss 
omponents of the
hange in total reward:r~u T (~x0; ~u0)(i) = � 1 if i = 1 and kt;1# (~u0) = d (1)0 otherwiser~uD(~x0; ~u0)(i) = kt;i � d (i)r~u F (~x0; ~u0)(i) = N i<(u(i)0 )�N i>(u(i)0 ) +r~u F (i)1r~u L(~x0; ~u0)(i) = � 1 if kt;i" < kt;i#0 otherwise,wherer~u F (i)1 =8>>><>>>: 0 if i = 1i� 1 else if ~l td (i)+1 > 0i+N i>(r)�N i<(r) else if r < u(i)0�i+N i>(r) �N i<(r) else if r > u(i)0 ;r = �~l td (i)+1(u(i)0 )=(i� 1):
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Fig. 2. Network 
on�guration for empiri
al study.E. The Congestion-
ontrol AlgorithmWe 
on
lude this se
tion by summarizing the 
ongestion-
ontrol algorithm as follows. At ea
h 
ontrol epo
h, weperform these steps:1. Observe 
urrent system state ~x0;2. Generate a set Tr of future servi
e-rate tra
es;3. Compute ~u�0 = grad-sear
h(Tr; ~d);4. Transmit rate 
ommand ~u�0 to sour
es.Our 
ontrol approa
h exploits two stru
tural propertiesof our problem. The �rst is that the sto
hasti
ity in ourproblem is \exogenous"; i.e., the randomness in the ser-vi
e pro
ess is independent of the 
ontrol we 
hoose. Thisproperty greatly eases the appli
ation of the hindsight-optimization framework, resulting in more natural o�ineoptimization subproblems that are typi
ally more easilysolved. The se
ond property is the pie
ewise linearity ofthe reward fun
tion, whi
h leads to the tra
tability of ourper-tra
e analysis, in parti
ular, the pie
ewise derivationof the gradient of the hindsight-optimal value.IV. Empiri
al ResultsA. Evaluation SetupWe use the network simulator ns2 to 
arry out simula-tion. We have modi�ed ns to implement our 
ongestion-
ontrol algorithm over UDP to emulate an ATM network,and we set the pa
ket size to be 53 bytes, the size of astandard ATM 
ell.Figure 2 illustrates our simulated network. The traÆ
sent from four sour
es, indexed by 0 through 3, shares a
ommon bottlene
k node. All links between the sour
esand the bottlene
k node have bandwidth of 155 Mbps,while the bottlene
k link is of only 55 Mbps. The size of thebu�er at the bottlene
k node is 150 
ells. Sour
e 0 repre-sents the sour
e for high-priority 
ross traÆ
. Sour
es 1, 2,and 3 are 
ontrolled best-e�ort traÆ
 sour
es, whi
h sendtraÆ
 at the rates determined by the 
ontroller residing atthe bottlene
k node. These three sour
es are asso
iatedwith round-trip delays of 20, 30, and 40 ms, respe
tively.Our empiri
al study 
onsists of two parts. In the �rstpart, the 
ross-traÆ
 sour
e 0 is 
omposed of 10 identi-
al 
onne
tions, ea
h generating 
uid traÆ
 a

ording toa two-state ON-OFF MMF model. We will be varying thetwo transmission rates 
orresponding to the ON and theOFF states, to let the aggregated 
ross traÆ
 rate havedi�erent varian
es (ranging from 0 to 72:6 Mbps2) but the

same mean (22 Mbps). This allows us to study the impa
tof the varian
e of the 
ross traÆ
 on system performan
e.In the two-state MMF model, the expe
ted lengths of theON and the OFF periods are 400 and 600 ms, respe
tively;these values were 
hosen to be the same as in the se
ondpart of our empiri
al study.In the se
ond part, sour
e 0 
onsists of 1000 independentand identi
ally-distributed voi
e 
onne
tions, re
e
ting atypi
al s
enario arising in networks with mixed voi
e anddata traÆ
. The dynami
s of voi
e 
onne
tions are well
aptured by MMF models [1℄, [18℄. We model a single voi
e
onne
tion by a two-state ON-OFF MMF model, with theexpe
ted ON and OFF periods being 400 and 600 ms, re-spe
tively. Sin
e a standard voi
e 
onne
tion 
onsumes64 Kbps bandwidth, we set the rate of ea
h voi
e 
onne
-tion to 70.7 Kbps by 
onsidering that the a
tual payloadin a 53-byte ATM 
ell is only 48 bytes.B. Comparison Metri
sWe will 
ompare the performan
e of the 
ontroller de-s
ribed in this paper, 
alled the \HO 
ontroller" hereafter,with the well-known PD 
ontroller. Our 
omparison met-ri
s are utilization, average queuing delay, 
ell loss rate, and
umulative fairness, whi
h are of dire
t interest to networkusers. Utilization is de�ned as the ratio of the total numberof 
ells forwarded to the total available servi
e \volume"(the sum of the servi
e rates) over the simulation period atthe bottlene
k node. The average queuing delay is the totalamount of time that all the 
ells spend waiting in the queueat the bottlene
k node divided by the total number of 
ellsforwarded. The 
ell loss rate is de�ned as the number of
ells (from the 
ontrolled sour
es) lost due to bu�er over-
ow divided by the total number of 
ells that arrive at thebottlene
k node (from the 
ontrolled sour
es) over the sim-ulation period. To de�ne 
umulative fairness, let Ti denotethe total number of 
ells that arrive from sour
e i. Then,
umulative fairness is de�ned as the standard deviation ofthe Ti's divided by the mean of the Ti's.In most previous papers, e.g., [9℄, [10℄, the test metri
is the 
ontroller's ability to maintain a target queue size.However, by design the HO 
ontroller does not aim to main-tain a �xed queue size. Thus, we do not evaluate the HO
ontroller's ability in this respe
t.C. Impa
t of Cross-traÆ
 Varian
eIn this subse
tion, we investigate the impa
t of the vari-an
e in 
ross traÆ
 on the performan
e of the HO andPD 
ontrollers. PD-type 
ongestion 
ontrollers have beenshown to be generally e�e
tive. PD 
ontrollers adjust thetransmission rate based on the deviation of the queue sizefrom a target value. We tested the PD 
ontroller with dif-ferent target queue sizes. The target queue size re
e
ts thenetwork administrator's tradeo� among utilization, delay,and 
ell loss rate. A larger target value indi
ates the desirefor higher utilization at the expense of higher delay and
ell loss rate. To maintain fairness, the PD 
ontroller is-sues the same rate 
ommand to every 
ontrolled sour
e atea
h de
ision epo
h.
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PD−1 Fig. 3. Plots of utilizations.For the HO 
ontroller, we generate 200 servi
e-ratetra
es at ea
h de
ision epo
h using the 
ross-traÆ
 model.Ea
h tra
e is of length H = 50 time intervals. We 
hose theduration Æ of ea
h time interval to be 1 ms. The value of Æwas 
hosen on one hand to be small enough to 
apture thefast variation in servi
e rate and on the other hand largeenough for a�ordable 
omputation. In addition, 1 ms is avalue of Æ small enough to express typi
al round-trip delaysas integral multiples of Æ. We set � = 1000, � = 2=3, and� = 1. These values satisfy the restri
tions on the valuesof �, �, and � that we have given in de�ning our obje
tivefun
tion, in equation (1).Figure 3 shows the utilization values a
hieved by the
ompeting 
ontrollers. The PD 
ontroller with a targetqueue size of 50 
ells is denoted by PD-50, and similarlyfor PD-10 and PD-1. The horizontal axis is the rate vari-an
e of the 
ross traÆ
. We 
an see that all 
ontrollersa
hieve high utilization, when 
onstant-rate 
ross traÆ
 ispresent. As the 
ross traÆ
 be
omes more variable, theutilization values a
hieved by the PD 
ontrollers de
reaseat rates mu
h faster than that of the HO 
ontroller. Thereason is that when the 
ross traÆ
 is highly variable, thePD 
ontrollers 
annot maintain a stable queue size to en-sure satisfa
tory utilization. For example, sudden in
reasesin the servi
e rate 
an drain the 
ells waiting in the bu�er
ompletely, leading to loss in utilization. In 
ontrast, bymaking use of the servi
e-rate model, the HO 
ontroller
an sto
hasti
ally \anti
ipate" 
hanges in servi
e rate and
an in turn respond to these 
hanges beforehand. Figure 3demonstrates the e�e
tiveness of the HO 
ontroller in anenvironment with a highly-variable servi
e rate, a 
onditionwhi
h is often found in pra
ti
al networks.Figure 4 shows plots of the average queuing delays. TheHO 
ontroller a
hieves mu
h smaller queuing delays thanthose of PD-50 and PD-10. PD-1 has queuing delays 
loseto those of HO; however, it does so at the signi�
ant 
ost ofmu
h smaller utilizations (see Figure 3). Compared withHO, PD-50 has mu
h larger delay and less utilization; ithas more than four times the delay and 8% less utiliza-tion in the most variable servi
e rate 
ase, i.e., the right-
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Fig. 4. Plots of average delays.
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Fig. 5. Plots of 
ell loss rates.most points in the �gures shown. Figures 4 and 3 suggestthat the HO 
ontroller 
an a
hieve higher utilization withsmaller delay 
ompared with the PD 
ontrollers.Figure 5 shows plots of 
ell loss rates (CLRs). The CLRfor the HO 
ontroller is the smallest for all the experimentswe 
arried out due to the fa
t that the impli
it goal of ahindsight-optimal 
ontrol sequen
e is to keep a zero queuelength, and hen
e it leaves most of the bu�er ready toabsorb bursts of in
oming traÆ
. The PD-50 
ontroller,whi
h a
hieves the 
losest utilization values to HO amongthe PD 
ontrollers, has a CLR that is about an order ofmagnitude larger than that of the HO 
ontroller in all ourexperiments.Our simulation shows that the HO 
ontroller is less fairthan the PD 
ontrollers: HO's 
umulative fairness valuesare under 0:08 while those of PD's are negligible. (We omitthe fairness plots for brevity.) While the magnitude of thefairness term is quite small, it is still important|in fa
t,it is possible to show that, for a wide 
lass of reasonabletraÆ
 models, when � = 0 the HO 
ontroller will onlyrequest traÆ
 from the 
losest sour
e, starving all moredistant sour
es.As expe
ted, the HO 
ontroller a
hieves the highest 
u-
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Fig. 6. Plots of 
umulative reward.mulative reward in all the experiments we 
ondu
ted, asshown in Figure 6.D. Voi
e Conne
tions As Cross TraÆ
In this subse
tion, sour
e 0 
onsists of 1000 identi
alvoi
e 
onne
tions. The parameters of the HO and PD
ontrollers are the same as in the �rst part of our em-piri
al study. Table 1 summarizes the performan
e 
om-parison between the HO and PD 
ontrollers. In this ex-periment, the rate varian
e of the 
ross traÆ
 is relativelysmall (1.2 Mbps2), and therefore the PD 
ontrollers a
hievegood utilizations. However, the HO 
ontroller, while main-taining high utilization value, enjoys mu
h smaller queuingdelay and 
ell loss rate.Table 1: Performan
e 
omparison using 1000 voi
e
onne
tions as 
ross traÆ
Controller Util Delay (ms) CLR UFHO 0.995 0.123 0.00 6.79e-2PD-50 0.998 0.505 4.12e-3 8.88e-4PD-10 0.957 0.213 5.78e-4 6.87e-4PD-1 0.925 0.106 1.78e-4 9.14e-4Util = Utilization CLR = Cell Loss Rate UF =UnfairnessV. Con
lusionsWe have introdu
ed a simulation-based burst-level 
on-gestion 
ontroller for a generi
 network to regulate best-e�ort traÆ
 to a
hieve high network eÆ
ien
y while main-taining fairness, represented by high utilization, traÆ
 loss,and low queuing delay. We have demonstrated that ex-ploiting the stru
ture of servi
e-rate models 
an result insigni�
antly improved network performan
e.Our empiri
al study demonstrates the e�e
tiveness of theHO 
ontroller with rapidly-varying 
ross traÆ
. In su
hsituations, 
onventional PD 
ontrollers lose their ability tostablize the queue size, leading to de
reased throughput,in
reased queuing delay, and in
reased 
ell loss rate. Theuse of a 
ross-traÆ
model provides a 
lear advantage to theHO 
ontroller, enabling predi
tion and rea
tion to likely

traÆ
 variations. Moreover, the HO 
ontroller does notrequire the tuning of 
ontroller gains, a nontrivial task inPD 
ontroller design.While the proposed 
ontrol s
heme is promising, twomain issues remain to be addressed:1) Our hindsight-optimization framework is founded on a
risp and powerful de
ision-theoreti
 formulation, but lit-tle is understood on general 
onditions under whi
h thete
hnique works well.2) To in
orporate a long-range-dependen
e traÆ
 modelinto our 
ontrol s
heme is an interesting dire
tion worthpursuing. Su
h a model 
an be made Markovian but witha potentially large state spa
e. Managing the size of thestate spa
e but still 
apturing the long-range dependen
eis important for our approa
h to apply in this 
ase.Appendi
esI. Proof of Proposition 1Before presenting the proof of Proposition 1, we give twolemmas needed for the proof.Lemma 1: Consider the fun
tion f(w1; : : : ; wN ) =1N�1PNi=1 PNj=i+1 jwi � wj j : Then we have:i. f(w01; : : : ; w0N ) � f(w1; : : : ; wN ) �PNi=1 jwi � w0ij.ii. f(w01; : : : ; w0N ) � f(w1; : : : ; wN ) holds whenPNi=1 w0i = PNi=1 wi and w0i 6= wi imply wi = 
 for alli, where 
 is a 
onstant.The lemma 
an be proven with ease using elementaryalgebra, whi
h we omit here.Lemma 2: For a given servi
e-rate tra
e t, starting state~x0, and initial 
ontrol ~u0, the hindsight-optimal value,W �t (~x0; ~u0), 
an be written as follows:W �t (~x0; ~u0) = T �t (~x0; ~u0)� �D�t (~x0; ~u0)� �L�t (~x0; ~u0)�H�1Xk=0 �F �t (~x0; ~u0; k);where T �t (~x0; ~u0), D�t (~x0; ~u0), and L�t (~x0; ~u0) are the maxi-mal possible throughput, the minimum possible delay, andthe minimum possible loss, respe
tively, a
hievable from ~x0taking ~u0 and en
ountering tra
e t. The term F �t (~x0; ~u0; k)is the minimum unfairness penalties at time k subje
t tooptimizing T �t (~x0; ~u0), D�t (~x0; ~u0), and L�t (~x0; ~u0).Proof: Let t, ~x0, and ~u0 be given. The 
umulativereward, Wt(~x0; ~u0), is a 
ontinuous fun
tion on L�Ud(N) ,whi
h is a 
ompa
t set. By the Weierstrass theorem [16℄,there is a point in L � Ud(N) su
h that at the pointWt(~x0; ~u0) a
hieves its maximum, W �t (~x0; ~u0). For a giveninitial 
ondition, the queue length, taking values in L, is
ompletely determined by the 
ontrol in Ud(N) . Hen
e,we 
on
lude that there is a 
ontrol sequen
e in Ud(N) thata
hievesW �t (~x0; ~u0). We refer to any su
h 
ontrol sequen
ean optimal 
ontrol.We now argue that any optimal 
ontrol must optimizethroughput, delay, and loss independently, in the follow-ing sense. The tra
e-relative queue-size traje
tory fltk,



11k = 0; : : : ; Hg is the traje
tory the system will follow ifno further 
uid is requested by 
ontrols sent after time0. The loss and delay experien
ed under this traje
tory
learly lower bound those a
hieved by requesting further
uid|more 
uid requested leads to potentially more lossand more delay, but no less. These loss and delay lowerbounds are D�t (~x0; ~u0) and L�t (~x0; ~u0), respe
tively. Thelemma 
laims that any optimal 
ontrol must result in de-lay of D�t (~x0; ~u0) and loss of L�t (~x0; ~u0). Re
all that d(1)is the earliest time any 
ontrol 
an a�e
t the bottlene
knode. Then, it is apparent that T �t (~x0; ~u0) is the sum ofthree terms: the throughput re
eived from time 0 to d(1)�1(a�e
ted only by the 
ontrol history re
orded in ~w0), thethroughput at time d(1) (determined by ~u0), and the sumof servi
e rates after d(1) (determined by a parti
ular 
on-trol sequen
e after time 0). The lemma 
laims that anyoptimal 
ontrol must also fully use the servi
e rate aftertime d(1), thus a
hieving T �t (~x0; ~u0).We prove these 
laims by showing in the following thatany 
ontrol that does not optimize throughput, delay, andloss independently 
an be improved. If a 
ontrol does notfully use the servi
e rate at time k (after time d(1)), as in-di
ated by a negative ~l tk+1, we 
an in
rease the arrival attime k to obtain a larger throughput without in
urring anydelay and loss until ~l tk+1 rea
hes zero from below; ~l tk+1 = 0indi
ates that the servi
e rate is fully used. Furthermore,the potential fairness penalty due to the in
reased arrivalwill always be less than the gain in throughput be
ause� < 1. Hen
e, an optimal 
ontrol must maximize through-put. If a 
ontrol 
auses more delay than the delay lowerbound at time k (indi
ated by a positive ~l tk+1), we 
an deferthe arrival of a suÆ
iently small amount of 
uid unservedat time k until time k + 1 to de
rease delay while keep-ing throughput fully utilized. In the 
ase of ex
ess loss, asimilar 
hange 
an be made by 
an
elling the arrival of asuÆ
iently small amount of 
uid unserved at time k. More-over, 
onsidering part i of Lemma 1 and the restri
tions on�, �, and �, it is easy to show that the fairness penaltyfrom this deferred or redu
ed arrival will always be smallerthan the gain from the redu
ed delay and/or loss. Thus,an optimal 
ontrol must minimize delay and loss.The argument above implies that the optional traÆ
 ar-rival at any time k (> d(1)) from an optimal 
ontrol willnot a�e
t any other time step (be
ause no delay other thanD�t is experien
ed), and thus we 
on
lude that an optimal
ontrol maximizes reward re
eived at time k independentlyof optimization at any other time steps. In parti
ular, anoptimal 
ontrol optimizes the fairness 
omponent of thereward at a time independently of fairness optimization atany other times (where ea
h fairness optimization is donesubje
t to the 
onstraint that throughput, delay, and lossare already optimized independently). Then, a 
ontrol thatoptimizes throughput, delay, and loss independently, and,subje
t to this, optimizes fairness at ea
h time is an opti-mal 
ontrol. This 
ompletes the proof.Now, we present the proof of Proposition 1.Proof: The 
ontrol given in the proposition is eas-ily seen to independently and simultaneously optimize

throughput, delay, and loss; i.e., the 
ontrol a
hievesT �t (~x0; ~u0), D�t (~x0; ~u0), and L�t (~x0; ~u0). Furthermore, sub-je
t to optimizing T �t (~x0; ~u0), D�t (~x0; ~u0), and L�t (~x0; ~u0),the 
ontrol minimizes fairness at ea
h time step, byLemma 1 part ii. Therefore, by Lemma 2 the desired resultfollows. II. Proof of Proposition 2Proof: Note that by Lemma 2 the hindsight-optimalvalue 
an be de
omposed into the throughput, delay, loss,and fairness terms. We analyze the gradient of W �t (~x0; ~u0)with respe
t to ~u0 for ea
h term separately in the following.Throughput, Delay, and Loss. The hindsight-optimal 
ontrol a
hieves full utilization of link bandwidthafter time d(1) without in
urring more delay or loss than the
ontrol history spe
i�ed by ~w0. Hen
e, regardless of whatvalue we set for ~u0, the hindsight-optimal throughput, loss,and delay will be the same for a given tra
e, ex
ept possi-bly for throughput and loss experien
ed at time step d (i),and for delay experien
ed by 
ow arriving at time step d (i)(and possibly any time after d (i) for delay) for any valueof i.An in�nitesimal in
rease in arrivals will result in anin
rease of the same amount in the hindsight-optimalthroughput if and only if the sour
e in question is sour
eone (i.e., i = 1) and there is an under
ow at time d(1) un-der the 
urrent ~u0 (as indi
ated by �nding kt;1# (~u0) = d (1)).Changes in ~u0 for sour
es other than sour
e one impa
t thetraje
tory after d(1) where the hindsight-optimal through-put is already maximal and 
annot be in
reased by furtherarrivals (these arrivals simply have the e�e
t of leaving lessbandwidth for exploitation by hindsight-optimal 
ontrolssele
ted for later times for 
loser sour
es). Thus, we haver~u T (~x0; ~u0)(i) = � 1 if i = 1 and kt;1# (~u0) = d (1);0 otherwise.An in
rease in the arrivals for sour
e i 
an in
reasedelay at time d (i) and for arbitrarily many time stepsthereafter|until su
h time that the 
ontrols in the pipeline(along with ~u0) allow some leftover servi
e bandwidth (as-suming no further 
uid is requested after time zero) or untilthe in
remental arrival is dropped due to bu�er over
ow.The delay su�ered by the in
remental arrival will equal thein
remental arrival multiplied by kt;i�d (i). Thus, we haver~uD(~x0; ~u0)(i) = kt;i � d (i):The in
rease in arrivals at time d (i) will result in in-
reased dropping in the hindsight-optimal 
ase if and onlyif the in
rease eventually results in bu�er over
ow, i.e.,if the next bu�er-full time (after d (i)) o

urs before anybu�er under
ow (unused servi
e rate). This 
ondition 
anbe dete
ted by 
omparing the next bu�er-full time to thenext bu�er-under
ow time. Hen
e, we haver~u L(~x0; ~u0)(i) = � 1 if kt;i" < kt;i# ;0 otherwise.



12If ltk+1(~u0) = 0 or ltk(~u0)+atk(~u0)�vsk+1 = B in 
al
ulat-ing kt;i" or kt;i# , then T (~x0; ~u0)(i), D(~x0; ~u0)(i) = kt;i � d (i),and L(~x0; ~u0)(i) are non-di�erentiable due to pie
ewise lin-earity of these fun
tions.Fairness. The gradient of the fairness term involvestwo parts. The �rst part is the 
hange in fairness penalty
aused by an in�nitesimal 
hange in u(i)0 by 
omparing u(i)0with the sour
es in N(i). In
reases in u(i)0 will de
rease thefairness penalty terms 
omparing sour
e i with sour
es inNi>(u(i)0 ) and in
rease the fairness penalty terms 
omparingsour
e i to sour
es in Ni<(u(i)0 ), so that the total 
hange inthe fairness penalty terms 
omparing sour
e i with sour
esin Ni will be (N i<(u(i)0 )�N i>(u(i)0 ))=(N�1). Note this partof the gradient does not exist when u(i)0 = w(d (j)�d (i);j)0 forany j > i(in parti
ular, the e�e
ts of positive and negativein�nitesimal perturbations of u(i)0 do not sum to zero).The se
ond part is the 
hanges in fairness penalty termsinvolving sour
es not in fig[Ni 
aused by an in�nitesimalin
rease in u(i)0 , and this part 
an be divided into four 
ases:Case 1. When i = 1 there is no 
hange in this portion ofthe fairness penalty.Case 2. Otherwise, when ~l td (i)+1(~u0) > 0, sour
es num-bered less than i will be 
ontrolled to send no 
uid to arriveat time d (i) in the hindsight-optimal 
ontrol sequen
e forthe 
andidate a
tion ~u0 with or without the in�nitesimalin
rease in sour
e i; as a result the only 
hange in the fair-ness penalty terms 
omparing sour
e i with sour
es 
loserthan i will be due to the in
rease in sour
e i, moving thesour
e i arrival rate (at time d (i)) further from zero. These
hanges amount to one (N�1)th of one (in�nitesimal) steppenalty for the term for ea
h sour
e less than i, or a totaladditional penalty of (i� 1)=(N � 1).Case 3. Otherwise, if r < u(i)0 , where r =�~l td (i)+1(u(i)0 )=(i� 1) as given in the proposition, then thei�1 
losest sour
es de
rease by 1=(i�1) of the in�nitesimalin
rease and the resulting fairness term 
hanges show anin
rease in penalty equal to (i+N i>(r)�N i<(r))=(N � 1),with the �rst term being from the in
reased distan
ebetween the arrival rates from 
loser sour
es and thearrival rate from sour
e i, and the last two terms beingfrom the 
hange in 
omparisons between the 
losest i � 1sour
e arrivals and the arrivals from sour
es further awaythan sour
e i.Case 4. Otherwise, if r > u(i)0 then the de
rease inhindsight-optimal arrivals at time d (i) for the 
losest i� 1sour
es a
tually improves fairness in the terms 
ompar-ing to sour
e i, giving the resulting 
hange in fairness of(�i+N i>(r) �N i<(r))=(N � 1).The se
ond part of the gradient does not exist when r =u(i)0 or r = w(d (j)�d (i) ;j)0 for any j > i due to pie
ewiselinearity in the fairness term.Summarizing, we have:r~u F (~x0; ~u0)(i) = 1N � 1(N i<(u(i)0 )�N i>(u(i)0 ) +r~u F (i)1 );

wherer~u F (i)1 = 8>>><>>>: 0 if i = 1i� 1 else if ~l td (i)+1(u(i)0 ) > 0i+N i>(r)�N i<(r) else if r < u(i)0�i+N i>(r) �N i<(r) else if r > u(i)0 :Combining the above arguments, we have the desiredresult. Referen
es[1℄ N. B. Shro� and M. S
hwartz, \Improved loss 
al
ulations at anATM multiplexer," IEEE/ACM Trans. Networking, vol. 6, no. 4,pp. 411{421, Aug. 1998.[2℄ L. A. Kulkarni and S.-Q. Li, \Performan
e analysis of a rate-based feedba
k 
ontrol s
heme," IEEE/ACM Trans. Networking,vol. 6, no. 6, pp. 797{810, De
. 1998.[3℄ R. Pazhyannur and R. Agrawal, \Feedba
k-based 
ow 
ontrolof B-ISDN/ATM networks," IEEE J. Sele
t. Areas Commun.,vol. 13, no. 7, pp. 1252{1266, Sep. 1995.[4℄ E. K. P. Chong, R. L. Givan, and H. S. Chang, \A framework forsimulation-based network 
ontrol via Hindsight Optimization," inPro
. 39th IEEE Conf. on De
ision and Control, Sydney, Aus-tralia, De
. 2000, pp. 1433{1438.[5℄ D. P. Bertsekas, Dynami
 Programming and Optimal Control,Volumes 1 and 2, Athena S
ienti�
, 1995.[6℄ K. Ramakrishnan and R. Jain, \A binary feedba
k s
heme for
ongestion avoidan
e in 
omputer networks," ACM Trans. Com-put. Syst., vol. 8, pp. 158-181, 1990.[7℄ L. Roberts, \Enhan
ed proportional rate 
ontrol algorithm(PRCA)," in ATM Forum/9494-0735R1, Aug. 1994.[8℄ A. W. Barnhart, \Expli
it rate performan
e evaluations," inATM Forum/94-0983, Sep. 1994.[9℄ L. Benmohamed and S. M. Meerkov, \Feedba
k 
ontrol of 
onges-tion in pa
ket swit
hing networks: The 
ase of a single 
ongestednode," IEEE/ACM Trans. Networking, vol. 1, no. 6, pp. 693{707,De
. 1993.[10℄ A. Kolarov and G. Ramamurthy, \A 
ontrol-theoreti
 approa
hto the design of an expli
it rate 
ontroller for ABR servi
e,"IEEE/ACM Trans. Networking, vol. 7, no. 5, pp. 741{753, O
t.1999.[11℄ E. Altman and T. Basar, \Multiuser rate-based 
ow 
ontrol,"IEEE Trans. Commun., vol. 46, no. 7, pp. 940{949, Jul. 1998.[12℄ E. Altman, T. Basar, and R. Srikant, \Robust rate 
ontrol forABR servi
es," in Pro
. IEEE INFOCOM, Mar. 1998, San Fran-
is
o, CA, pp. 166{173.[13℄ Z. Pan, E. Altman, and T. Basar, \Robust adaptive 
ow 
on-trol in high speed tele
ommuni
ations networks," in Pro
. 35thIEEE Conf. on De
ision and Control, De
. 1996, Kobe, Japan,pp. 1341{1346.[14℄ S. Floyd and V. Ja
obson, \Link-sharing and resour
e manage-ment models for pa
ket networks," IEEE/ACM Trans. Network-ing, vol. 3, no. 4, pp. 365{386, Aug. 1995.[15℄ T. Tuan and K. Park, \Multiple time s
ale 
ongestion 
ontrol forself-similar network traÆ
," Performan
e Evaluation, vol. 36-37,pp. 359{386, Aug. 1999.[16℄ E. K. P. Chong and S. H. Zak, An Introdu
tion to Optimization,John Wiley and Sons, New York, 1996.[17℄ S. C. Liew and D. C. Tse, \A 
ontrol-theoreti
 approa
h toadapting VBR 
ompressed video for transport over a CBR 
om-muni
ation 
hannel," IEEE/ACM Trans. Networking, vol. 6,no. 1, pp. 42{55, Feb. 1998.[18℄ I. Rubin and K. D. Lin, \A burst-level adaptive input-rate 
ow
ontrol s
heme for ATM networks," in Pro
. IEEE INFOCOM,1993, San Fran
is
o, CA, vol. 2, pp. 386{394.[19℄ D. Q. Mayne and H. Mi
halska, \Re
eding horizon 
ontrol ofnonlinear systems," IEEE Trans. Auto. Contr., vol. 35, no. 7,pp. 814{824, Jul. 1990.[20℄ J. B. Rawlings and K. R. Muske, \The stability of 
onstrainedre
eding horizon 
ontrol," IEEE Trans. Auto. Contr., vol. 38,no. 10, pp. 1512{1516, O
t. 1993.[21℄ J. M. Ja�e, \Bottlene
k 
ow 
ontrol," IEEE Trans. Commun.,vol. 29, no. 7, pp. 954{962, Jul. 1981.



13[22℄ F. Bonomi and K. Fendi
k, \The rate-based 
ow 
ontrol frame-work for the Available Bit Rate ATM servi
e," IEEE Network,vol. 9, no. 2, pp. 25-39, Mar./Apr. 1995.[23℄ K. Bharath-Kumar and J. M. Ja�e, \A new approa
h toperforman
e-oriented 
ow," IEEE Trans. Commun., vol. 29,no. 4, pp. 427{435, Apr. 1981.[24℄ V. M. Misra and W. B. Gong, \A hierar
hi
al model for tele-traÆ
," in Pro
. 37th IEEE Conf. De
ision and Control, 1998,Tampa, FL, vol. 2, pp. 1674{1679.[25℄ R. Jain, \Congestion 
ontrol in 
omputer networks: Issues andtrends," IEEE Network, vol. 4, no. 3, pp. 24{30, May 1990.[26℄ R. Pazhyannur and R. Agrawal, \Feedba
k based 
ow 
ontrol inATM networks with multiple propagation delays," in Pro
. IEEEINFOCOM, 1996, San Fran
is
o, CA, vol. 2, pp. 585{593.[27℄ Y.-C. Ho and X.-R. Cao, Perturbation Analysis of Dis
reteEvent Dynami
 Systems, Kluwer A
ademi
 Publishers, Boston,1991.[28℄ L. R. Rabiner, A tutorial on hidden Markov models and sele
tedappli
ations in spee
h re
ognition, Pro
. of the IEEE, vol. 77,no. 2, pp. 257{285, Feb. 1989.[29℄ M. L. Littman, Algorithms for Sequential De
ision Making,Ph.D. Thesis, Department of Computer S
ien
e, Brown Univer-sity, 1996.[30℄ I. Lengliz and F. Kamoun \A rate-based 
ow 
ontrol methodfor ABR servi
e in ATM networks," Computer Networks, vol. 34,no. 1, pp. 129{138, Jul. 2000.[31℄ H. Zhang, \Servi
e Dis
iplines For Guaranteed Performan
e Ser-vi
e in Pa
ket-Swit
hing Networks," Pro
. of the IEEE, vol. 83,no. 10, pp. 1374-1396, O
t. 1995.[32℄ E. K. P. Chong, S. Hui, and S. H. _Zak, \An Analysis of a Classof Neural Networks for Solving Linear Programming Problems,"IEEE Trans. Auto. Contr., Spe
ial Se
tion on Neural Networksin Control, Identi�
ation, and De
ision Making, vol. 44, no. 11,pp. 1995{2006, Nov. 1999.[33℄ P. Kermani and L. Kleinro
k, \Dynami
 
ow 
ontrol instore-and-forward 
omputer networks," IEEE Trans. Commun.,vol. COM-28, no. 2, pp. 263{271, Feb. 1980.[34℄ E. Altman and P. Nain, \Closed-loop 
ontrol with delayed infor-mation," Performan
e Evaluation Review, vol. 20, no. 1, pp. 193{204, Jun. 1992.[35℄ J. Kuri and A. Kumar, \Optimal 
ontrol of arrivals to queueswith delayed queue length information," IEEE Trans. Auto.Contr., vol. 40, no. 8, pp. 1444{1450, Aug. 1995.[36℄ D. P. Bertsekas and D. A. Castanon, \Rollout algorithms forsto
hasti
 s
heduling problems," Journal of Heuristi
s , vol. 5,pp. 89{108, 1999. Gang Wu re
eived the B.E. degree in auto-mati
 
ontrol from Shanghai Jiao Tong Uni-versity, China, in 1993; and the M.S
. degreein industrial engineering from the University ofManitoba, Canada, in 1997. He is 
urrently aPh.D. 
andidate in the S
hool of Ele
tri
al andComputer Engineering at Purdue University.His resear
h interests are in developing newrate 
ontrol methods to substantially improveperforman
e of 
ommuni
ation networks usingsto
hasti
 traÆ
 models. He was awarded aCanadian Ontario Graduate S
holarship, and he was also a re
ipientof the Canadian National S
ien
e and Engineering Resear
h Coun
ilPostgraduate S
holarship, both in 1998.

Edwin K. P. Chong re
eived the B.E.(Hons.)degree with First Class Honors from the Uni-versity of Adelaide, South Australia, in 1987;and the M.A. and Ph.D. degrees in 1989 and1991, respe
tively, both from Prin
eton Uni-versity, where he held an IBM Fellowship.He joined the S
hool of Ele
tri
al and Com-puter Engineering at Purdue University in1991, where he was named a University Fa
ultyS
holar in 1999, and was promoted to Profes-sor in 2001. Sin
e August 2001, he has beena Professor of Ele
tri
al and Computer Engineering and a Professorof Mathemati
s at Colorado State University. His 
urrent interestsare in 
ommuni
ation networks and optimization methods. He 
oau-thored the re
ent book, An Introdu
tion to Optimization, 2nd Edi-tion, Wiley-Inters
ien
e, 2001. He was on the editorial board of theIEEE Transa
tions on Automati
 Control, and is 
urrently an editorfor Computer Networks. He is an IEEE Control Systems So
iety Dis-tinguished Le
turer. He re
eived the NSF CAREER Award in 1995and the ASEE Frederi
k Emmons Terman Award in 1998.Robert Givan re
eived the B.S. degree withdistin
tion in Mathemati
s and Biology andthe M.S. Degree in Computer S
ien
e fromStanford University in 1987; and the Ph.D.degree in 1996 from the Massa
husetts Insti-tute of Te
hnology, where he held both Na-tional S
ien
e Foundation and Fannie and JohnHertz Foundation fellowships. After a one yearpost-do
toral position at Brown University, hejoined the S
hool of Ele
tri
al and ComputerEngineering at Purdue University in August,1997. His interests are in ma
hine learning, planning, representation,and reasoning in the �eld of arti�
ial intelligen
e. He re
eived theNSF CAREER Award in February, 2001.


