
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

10-2-2013

Formal Verification and Planning: An Evaluation
Rajesh Kalyanam
Electrical and Computer Engineering, Purdue University, rkalyana@purdue.edu

Tanji Hu
Electrical and Computer Engineering, Purdue University, hut@purdue.edu

Robert Givan
Electrical and Computer Engineering, Purdue University, givan@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Kalyanam, Rajesh; Hu, Tanji; and Givan, Robert, "Formal Verification and Planning: An Evaluation" (2013). ECE Technical Reports.
Paper 442.
http://docs.lib.purdue.edu/ecetr/442

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F442&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F442&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F442&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F442&utm_medium=PDF&utm_campaign=PDFCoverPages

Formal Verification and Planning: An Evaluation

Rajesh Kalyanam

Tanji Hu

Robert Givan

TR-ECE-12-12

October 2, 2013

School of Electrical and Computer Engineering

1285 Electrical Engineering Building

Purdue University

West Lafayette, IN 47907-1285

Formal Verification and Planning: An Evaluation

Rajesh Kalyanam and Tanji Hu and Robert Givan
Electrical and Computer Engineering, Purdue University, W. Lafayette, IN 47907

{rkalyana,hut,givan}@purdue.edu

Abstract
We explore the implications of improvements in hard-
ware and knowledge representation for the application
of automated reasoning systems to planning. We apply
a novel automated-reasoning system with no planning-
specific features to questions about the PDDL planning
domains Blocksworld and (no airports) Logistics. Our
system, with no human interaction and considering no
specific problem instances, is able to verify all the key
state invariants for both domains.
We propose organizing domain reasoning around
(currently hand-written) recursive state-predicate–
achievement macro-actions, such as a macro to achieve
clear(b) in the Blocksworld. Leveraging (somewhat)
limited human interaction, our system can completely
characterize the effects of executing such recursive
macros for each predicate in each domain. In addition,
with substantial human interaction, our system can
formally verify the solvability of arbitrary Blocksworld
and Logistics problems, verifying a human-written
generalized plan based on the macros. In each case, no
specific problem instances are considered.
We loosely meter and qualitatively characterize the hu-
man interaction required for the above verifications in
order to stimulate research to reduce this benchmark un-
til it is zero. We propose (and where possible estimate
the benchmark improvement for) plausible future ap-
proaches to reducing interaction, including eliminating
the need for hand-definitions of the recursive predicate-
achievement macros and generalized plans in these do-
mains. Finally, we contrast our reasoning system favor-
ably (for this task) with a widely used verification sys-
tem, Coq.

1 Introduction
Early artificial intelligence researchers envisioned the dream
of a question-answering system using logical entailment
to interact with human users (McCarthy 1963). Systems
using expressive representations and reasoning to derive
plans were among the first explored to respond to the ba-
sic challenges of automated planning (Green 1969; Newell,
Shaw, and Simon 1959; Fikes and Nilsson 1972). Decades
were spent in attempts to design practically effective plan-
ners around the use of entailment together with logical
representations of planning problems, e.g., (Reiter 1993;
Knoblock, Tenenberg, and Yang 1991; Chapman 1987).

And yet for decades since that era, computer memory and
time have become exponentially more available, year af-
ter year, making computer reasoning systems dramatically
more effective. In addition, novel developments in represen-
tations and algorithms have enabled an increasing number
of valuable applications involving reasoning systems (Bick-
ford, Constable, and Rahli 2012; Klein et al. 2010; Strecker
2002; Liu and Moore 2004; Moore, Lynch, and Kaufmann
1998). In particular, in the last decade the interactive veri-
fication system Coq has been widely used to affirm the cor-
rectness of a range of programs (often identifying bugs along
the way) (Leroy 2009; Ŝevčik et al. 2011).

In an interactive verification system, a formal proof of a
claim from premises is constructed semi-automatically with
the assistance of human interaction. The amount of human
interaction needed to demonstrate a claim can be taken as
a measure of how capable the automated system is on its
own (McAllester and Givan 1993).

In contrast to the dream of leveraging entailment in
expressive representations to find plans, heuristic search
with mostly propositional representations has dominated
AI planning research for decades, playing to the brute-
force strengths of computer hardware. Search-based pro-
grams provide the best known domain-independent solu-
tions to individual planning problems in most benchmarks.
Broader goals, however, such as finding and verifying plans
to solve entire domains (“generalized plans”), detecting do-
main invariants in expressive languages (like mathemati-
cal English), and recognizing many opportunities for prob-
lem decomposition have mostly eluded attack by heuristic
search. Also, domain-independent heuristic search methods
often fail to scale up to large problem instances as well as
easily available domain-specific human solutions.

In this work we use interactive verification techniques to
formally verify domain invariants and generalized-plan cor-
rectness in sample planning domains. The verified entail-
ments include:

• (Blocks World) Nine invariants of the action dynamics,
including:
– no cycle of blocks can be created,
– no block can have two blocks on it, or be on two blocks,
– at most one block is held, with nothing on it, and
– all blocks are exactly one of: held, on the table, or on a block.

• (Blocks World) For each state predicate, given a recursive
macro to achieve that predicate: automatically verify the
exact logical effects of the macro. For example, for the
macro make-clear(b):
– b and all blocks above b are clear, with the hand empty,
– all blocks above b and any held block are now on the table,
– all “on” relationships above b are no longer true, and
– all other state facts are preserved.

• (Blocks World) Any goal state can be reached from any
initial state, by checking a provided generalized plan.

• (Simplified Logistics) A similar set of verifications.
• (Branching-tower Blocksworld) Invariants are preserved.
These entailments are verified to hold independent of par-
ticular domain size, initial state, or trajectory of actions.
Also, we discuss how macros and generalized plans similar
to those provided can in many cases plausibly be automati-
cally generated in future work.

It is not surprising that this machine verification is feasi-
ble, and in principle such a verification has been feasible for
some time. Our result is significant because many of our ver-
ifications require only limited human interaction, and the re-
maining amounts of interaction can be (very loosely) bench-
marked and targeted for elimination—here, we qualitatively
characterize the remaining required interaction and propose
approaches to eliminate much of it.

Important properties to note regarding this effort in-
clude: (1) our interactive verification system guarantees
polynomial-time response at every interaction, and thus is
not properly thought of as using “search,” (2) the interac-
tion language is very expressive — similar to mathematical
English in expressiveness, and (3) the verification system is
general-purpose and has no built-in knowledge of planning.
The first two of these properties imply that the system can-
not do anything resembling complete inference at each in-
teraction step; however, the human/system pair is complete
in that any entailed claim can be interactively proven.

We loosely measure the amount of human interaction
needed to achieve such verification, thus providing a novel
estimate of the “planning IQ” of an automated system. Our
long-term goal is to eliminate the human interaction for
those entailments that are obvious to humans, driving this
estimate to zero, and field a system that automatically se-
lects and verifies obvious domain invariants and generalized
plans.

We conduct our interactive verifications in a recently de-
veloped general-purpose verification system, Ontic, release
12, with no planning-specific features.1 Part of our contri-
bution here is to demonstrate advantages of using the On-
tic system for this task in comparison with the more well-
known system Coq. We provide a direct comparison to Coq
as part of this work.

1Ontic is a descendant of a system by the same name created
around 1990 but not used for published work at that time. The
first version of Ontic was created by David McAllester (McAllester
1989; McAllester and Givan 1993). While very interesting, the
1990 system was generally too slow at that time to be effectively
applied. The current Ontic is recently significantly adapted by the
authors from that system but is based on the same principles.

The work reported here demonstrates that no domain-
specific knowledge of planning domains is necessary for
a reasoning system to verify many significant properties
of benchmark planning domains with limited human assis-
tance and no knowledge of planning apart from a mechanical
translation of PDDL domains to logical representation, in-
cluding some mechanically generated proofs about the trans-
lated PDDL.

Our verifications approach reasoning about planning do-
mains in part by analyzing provided macros for achieving
any single atomic formula. For example, we analyze a re-
cursive macro make-on(s, a, b) for the Blocksworld that ex-
ecutes actions in state s to achieve a state with a on b.
Part of our contribution here is to illustrate and discuss how
thinking/reasoning about planning domains can be struc-
tured around mostly automated program analysis (and po-
tentially generation) of such macros.

We summarize the representation language, proof lan-
guage, and algorithmic features of the Ontic system in Sec-
tion 2. We discuss the translation of PDDL (Planning Do-
main Description Language) domains into Ontic in Sec-
tion 3. We then discuss benchmarking human interaction
with Ontic, and evaluate Ontic’s “planning IQ” on a series
of planning-related verification problems in Section 4. We
describe in detail the human interaction needed for some of
the presented problems in Section 5, and discuss approaches
to attaining independence from this interaction. We justify
our choice to use Ontic by contrasting its benchmark perfor-
mance with that of the widely used Coq verification system
in Section 6. Finally, we compare our work with some recent
work in generalized planning in Section 7.

2 The Ontic Verification System
We conduct our verifications in the Ontic verification sys-
tem, release 12. For details on the original 1990 system, con-
sult the cited book and papers on that system. (McAllester
1989; McAllester and Givan 1993; McAllester 1991) Full
details of the Ontic release 12 system will be available in a
forthcoming technical report. Here, we summarize key as-
pects of Ontic.

Representing Premises and Claims in Ontic
For accessibility and space reasons, when Ontic expressions
are needed in this paper, we will present instead mathemati-
cal English translations. Full Ontic expressions for all verifi-
cations discussed herein are available upon request from the
authors. Here, we discuss the expressive language features
that make natural translations to and from mathematical En-
glish possible.

Class Expressions Formal claims made to the Ontic sys-
tem are represented in the Ontic language. The central con-
cept in the Ontic language is the class expression, an expres-
sion denoting a class of objects2.

2The most widely known class-based logics are description log-
ics (Baader et al. 2003).

Classes of objects naturally generalize both logical terms
(in Ontic, represented as classes containing exactly one ob-
ject) as well as the familiar programming-languages notion
of “type.” Ontic class expressions can represent no values
(the empty class of objects, such as “blocks that are on
themselves”), single objects (such as logical terms or plan-
ning domain states or objects), or many values (such as the
type “a tower of blocks in state s” representing all towers
present in the state s). The primary purpose for generaliz-
ing terms to classes is to enrich the polynomial-time decid-
able fragment of the logic by enriching the expressiveness of
the quantifier-free fragment (McAllester and Givan 1993);
quantifier-free assertions about classes require quantifiers to
express in standard predicate logic.

Single semantic values in Ontic are the logical domain
objects, of course. The logical domain is closed under the
formation of sets, sequences, and operators. In other words,
any set of domain objects is itself another domain object,
and likewise for sequences and operators34.

Thus, Ontic class expressions can denote classes of set
values, or classes of operator values, etc. For example, there
is an Ontic class expression representing the type of all oper-
ators from states and blocks to blocks. The operator select-
ing the “clear block above block b in state s”, i.e., the top
block of the tower, given a state s and a block b, is then a
single operator value of that type.

Ontic class expressions are written in a non-deterministic
programming language (non-deterministic LISP), where the
class represented is all possible non-deterministic values of
the program expression. (Not all expressions are strictly ex-
ecutable, as the programming language is extended with
declarative representational features.)

Ontic class expressions are formed compositionally from
other class expressions and formulas recursively using oper-
ations with semantics such as union and intersection, filter-
ing by a formula (keep only values making the formula true),
and conditional choice between classes. A key case is the ap-
plication of an operator to a class, collecting the image of the
class members under that (possibly non-deterministic) oper-
ator. To illustrate the ability of this type of expression to con-
struct interesting types concisely, consider the natural class
“brothers of policemen” as applying the non-deterministic
function “brothers-of” to the class of “policemen.”

More advanced constructions to form class expressions
include (dependently) typed recursive and non-recursive op-
erator definitions, where the types are themselves arbitrary
Ontic class expressions, as well as inverse and transitive clo-
sure applied to operators. Base case class expressions are the
object constants and variables, denoting singleton classes.

The full language of class expressions allows the natu-
ral representation of nearly any class of objects that can be
specified naturally in mathematical English. The ability to

3Ontic representations and inference are carefully designed to
avoid Russell’s paradox, instead providing objects only when the
axioms of ZF set theory imply their existence

4Operators are typed (using Ontic class expressions as types),
and the typings can be dependent (with the type of a later argument
depending on the value of an earlier argument).

compose operator applications, conditionals, and recursion
enables the definition of complex non-deterministic func-
tions similar to LISP programming. We use this ability to
create and analyze planning macros and generalized plans.

Throughout this paper, we will use mathematical English
in discussing Ontic rather than giving a formal presentation
of the Ontic language here, for reasons of space and to allow
reader focus on the planning-related issues.

Formulas The primary Ontic atomic formula is the binary
“is” formula, testing the subset relation between the classes.
An “is” formula makes a typing or sub-typing assertion that
one class is contained within another, generalizing the pred-
icate logic equality test to classes. If both classes in the as-
sertion are singleton (single-valued), then the “is” typing test
reduces to the standard predicate-logic equality test. This en-
richment of predicate logic to typing is vital to Ontic’s per-
formance.

Other atomic formulas are provided to assert that a class is
non-empty, or that a class is deterministic (has at most one
value). Boolean operators combining atomic formulas are
provided, as well as universal and existential quantification
(for convenience, as quantification is already representable
using the atomic formulas together with the rich class ex-
pression language.)

Interactive Verifications in Ontic
Ontic supports the interactive development of verifications
by providing a sound polynomial-time procedure for check-
ing specific entailment claims. In one view, this base rea-
soning procedure models the human notion of what is “ob-
viously entailed” (McAllester 1991). The procedure is sound
but not complete; i.e., a possible response is “I don’t know.”

Ontic provides a very simple “Socratic proof sys-
tem” (McAllester and Givan 1993) that enables a human
user to prove any entailed claim by verifying a sequence of
entailment claims with the base reasoner. The core of the
Socratic proof system is that previously checked claims join
the premise set automatically in future verifications, so that
Ontic can verify a claim in two steps that cannot be veri-
fied in one step. The Socratic proof system also enables the
user to specify case analyses, combining previously checked
entailments, as well as universal generalization.

In this work, we will meter the length of a interactive
proof by counting the number of base-reasoner Socratic
proof steps needed to verify the final claim of the proof.
Many of the verifications claimed in this paper require only
one base-reasoner invocation, and thus no human interaction
beyond posing the question.

While formally our Socratic proof system is a sequent
system, with one sequent rule devoted to introducing base-
reasoner-checked claims, Ontic provides a user interface
for converting natural-style mathematical proofs into se-
quent proofs automatically. As a result, human-written On-
tic proofs are exceptionally readable and similar in style to
the informal proofs found in mathematics textbooks. See
Figure 5 for a brief example. Informal proofs in textbooks
expect the reader to “leap” between statements (entailment

claims), filling in detail; Ontic proofs require the base rea-
soner to make similar leaps.

The base reasoner is implemented by a set of forward-
chaining inference rules embodying the central basic prop-
erties of the syntactic constructs of the language. (For exam-
ple, the rules implement the transitivity of subset, the simpli-
fication of conditionals when the test is known, the relation-
ship between union and subset, etc.) These rules are used in a
restricted forward-chaining procedure to answer entailment
queries. The key restriction is that rules may fire only when
no new expressions are introduced (all expressions appear
in the premises or proposed conclusion, i.e., in the “query”);
this restriction ensures a polynomial worst-case runtime (Gi-
van and McAllester 1992).

This basic forward-chaining reasoning with the given ex-
pressions is enriched by multiple carefully-controlled mech-
anisms for limited introduction of new expressions into the
forward-chaining reasoning. The most important of these
is a novel matching-driven method for automatic quantifier
instantiation, subsumption matching, that selects universal
facts for instantiation when the resulting instance will pro-
vide a new type for an expression in the current query.

This instantiation method allows Ontic expressions in
the query to be “type-checked” effectively during the
polynomial-time basic reasoning, even though the “types”
involved are general Ontic class expressions, so that the type
language is undecidable5.

Full source and executable for Ontic, release 12, is avail-
able upon request from the authors.

3 Translation from PDDL into Ontic
Automatic translation of PDDL domain descriptions into the
Ontic language is generally straightforward. It is important,
however, to select a translation that exploits the class-based
reasoning available in Ontic. Rather than represent state in-
formation using predicates, the translation we use represents
state information using Ontic operators and classes.

We mechanically translate single argument PDDL state
predicates such as ontable(b) into non-deterministic Ontic
operators from states to blocks. So, for instance, we have
an Ontic class expression (ontable-in s) denoting the
blocks that are on the table in state s.

Binary PDDL state predicates such as on(a, b) are also
mechanically translated to non-deterministic operators. This
construction is somewhat less familiar: given a block as in-
put, along with the state, the operator yields a class col-
lecting all related blocks under the binary predicate. So, the
class ((on-in s) a) denotes the class of all blocks on the
block a in the state s. The PDDL translation does not include
any information about on being functional—this is one of
the invariants our system verifies upon request.

PDDL abstract action definitions are mechanically trans-
lated to Ontic operators mapping values for the action pa-

5Please note that we are not claiming to solve an undecidable
typing problem in polynomial time. Rather, the type checking is
incomplete. However, many interesting typing facts within the rich
class language can be automatically discovered by the polynomial-
time basic reasoner (Givan 1997).

1. 9 statespace invariants are preserved by 4 Blocksworld actions

a. At most one block is held. b. Nothing is on the held block.
c. At most one block is on a block. d. At most one block is under a block.
e. No block on the table is held. f. No block on a block is held.
g. No block on the table is on a block. h. No block is transitively on itself.
i. Every block is either on the table, on a block, or held.

2. Exact effects of make-clear(s, b) in Blocksworld.

a. Executing the macro results in a single reachable state.
b. The type “blocks on the table” adds any held block and all blocks above b.
c. The type “clear blocks” grows, adding b and all blocks above b in s.
d. The type “held blocks” becomes empty.
e. For each block d, the type “blocks on d” is unchanged, except when d is

the block b or a block above b , when it becomes empty.

3. Exact effects of make-held(s, b) in Blocksworld.

a. Executing the macro results in a single reachable state.
b-e. Four claims characterizing the state predicates, similar to make-clear.

4. Exact effects, make-ontable(s, b), Blocksworld (5 claims).

5. Exact effects of make-on(s, a, b) in Blocksworld.

a. Executing the macro results in a single reachable state.
b. The type “held blocks” becomes empty.
c. For each d, the type on(d) becomes empty if d is a, above a, or above b;

the type becomes a if d = b; the type is otherwise unchanged.
d. “Blocks on table” adds any held block, and all above a or b, but excludes a.
e. The type “clear blocks” adds a, and the blocks above a or b, but excludes b .

6. Two provided generalized plans are fully correct.
a. A plan to reach any goal state without ever picking up correct blocks.
b. A plan to place all blocks on the table.

7. 8 statespace invariants hold in branching tower Blocksworld.

Figure 1: Verifications conducted for Blocksworld

rameters to concrete actions. The action preconditions and
effects of concrete actions are mechanically axiomatized fol-
lowing the PDDL action definition so that the class expres-
sion (apply-action (pickup b) s) denotes the state
that results from picking up block b in state s.

The frame problem is handled by choosing the form
of these mechanically-generated (from the PDDL) action-
definition axioms carefully. Our action-definition axioms
state, for each predicate, an equation between the class of
objects defining the predicate before the action and the new
class of objects after the action. For instance, for ontable
and putdown, the axiom used states that the blocks on the
table after executing a putdown action in state s are exactly
the blocks on the table in state s with the first argument of
the action added:

(forall ((s (a-state))
(a (a-putdown-action)))

(= (ontable-in (apply-action a s))
(either (ontable-in s) (first-arg a))))

and the axiom for on and unstack states that the blocks on
a given block d after executing an action unstack(b, c) in
state s are the blocks on d in s with b removed, if d and c are
equal, and are exactly the blocks on d in s, otherwise:

(forall ((s (a-state))
(a (a-unstack-action))
(d (a-block-of s)))

(= ((on-in (apply-action a s)) d)
(if (= d (second-arg a))

(except ((on-in s) d) (first-arg a))
((on-in s) d))))

In addition to axioms for each predicate and each ac-
tion, capturing the frame and add/delete effects of each

8. 5 statespace invariants are preserved by 3 Logistics ac-
tions
a. No package is in two trucks. b. No object is at two locations.
c. Each truck is at a location. d. No package is in a truck and at a location.
e. Each package is either in a truck or at a location.

9. Exact effects of make-attruck(s, t, l) in Logistics.
a. Executing the macro results in a single reachable state.
b. For each location l′, the type at(l′) is unchanged, except at(l) gains t

and at(at−1(t)) loses t.
c. For each truck t′, the type in(t′) is unchanged.
d. For each object o, location(o) is unchanged, except location(t) = l.

10. Effects of make-atpkg(s, p, l) in Logistics.
a-d. Like the other macros, except that which truck is used is left unspecified.

11. Exact effects, make-in(s, p, t), Logistics (4 claims).
12. A provided generalized plan is correct.
Figure 2: Verifications done for Simplified Logistics (trucks only)

action, the translation from PDDL instructs Ontic to per-
form some simple domain-independent verifications regard-
ing the action definitions just created. These brief verifi-
cations serve to ensure that Ontic sees the basic domain-
independent properties of the above-described axioms and
definitions. Also included are a few basic planning defini-
tions such as “reachable-state”. Complete Ontic translations
of the studied domains are available upon request from the
authors.

The PDDL translation is the only source of planning-
specific information used in our system apart from the me-
tered human interaction, as Ontic is otherwise a general-
purpose system designed for arbitrary mathematics, not
planning.

4 Planning-related Verifications in Ontic
In Figures 1 and 2, we present in English the entailments
we have verified with the Ontic system. We provide numeric
benchmarks on the number of human interaction steps (So-
cratic questions/steps contributed by the human in the So-
cratic proof) needed to achieve each verification in Table 1.
The numeric benchmark does not count the invocation at the
top level, so if a verification is fully automatic, the bench-
mark is zero.

See Figure 3 for examples of the predicate-achievement
macro definitions analyzed here. For each predicate-
achievement macro, there is verified claim stating the effect
on each state predicate as well as a claim of well-definedness
(implying that all actions taken are applicable when taken,
termination, etc.). This results in five verified claims for each
macro in the Blocksworld and four for each macro in Logis-
tics.

Our Blocksworld has four actions (stack, unstack,
pickup, putdown) and four state predicates (on, ontable,
held, and derived clear). Our (simplified) Logistics has
three actions (load, unload, drive) and three state pred-
icates (attruck, atpkg, in), and no airports or airplanes.
Branching-tower Blocksworld, is the same as Blocksworld
except that clear is not required for stack and the invari-

make-clear(s, b)— If the type (holding-in s) is occupied, then take putdown
on its occupant. Then, if the type ((on-in s) b) is occupied by block a, i.e.,
there is a block a on b in s, then recursively make-clear(a), take unstack a,
and take putdown a.

(define (make-clear (s (a-state)) (b (a-block-of s)))
(if (there-exists (holding-in s))

(make-clear (take (putdown (holding-in s)) s) b)
(if (not (there-exists ((on-in s) b)))

s
(take (putdown ((on-in s) b))

(take (unstack ((on-in s) b) b)
(make-clear s ((on-in s) b)))))))

make-on(s, a, b)— Make b clear, then make a held, then stack a on b.

(define (make-on (s (a-state))
(a (a-block-of s))
(b (a-block-of s) such-that (not (= a b))))

(take (stack a b) (make-held (make-clear s b) a)))

Figure 3: Example Predicate-achievement Macros in English. On-
tic source is shown only for reference, not fully explained.

ant “at most one block is on a block” is lost.
Some comments on the benchmark in Table 1 are in or-

der. First, this measurement is necessarily vague. The num-
ber of interactions required will depend heavily on the ex-
pertise and effort of the human user. This issue is somewhat
addressed by seeking a minimal number for each verifica-
tion, over multiple users. Second, simply counting the inter-
actions needed does not reflect the difficulty for the user in
finding the necessary Socratic query to advance the proof.
In our system, the natural proof style helps mitigate this
issue—the necessary input will nearly always be a natural
statement about the proof context. A user who could con-
vince a mathematician can generally also convince our sys-
tem. Also, in practice, we find that a low number of neces-
sary interactions nearly always indicates an easier proof to
construct, with the system providing excellent support. We
note that the brevity of explanation needed by a human lis-
tener is a meaningful measure of his or her intelligence.

5 Discussion and Directions for Improvement
Our primary goal has been to report an evaluation of un-
specialized, general-purpose verification as a planning tool;
specifically, of Ontic as a planning tool. However, we have a
secondary goal of describing the resulting verifications qual-
itatively and suggesting/evaluating potential directions of
improvement for verification systems, with the eventual tar-
get of fully automating the verifications we evaluated. These
directions of improvement include both possible general-
purpose reasoning methods as well as directions for adding
planning-specific features to reasoners. In this section, we
discuss our verifications for this purpose.

We note that, in general, our verifications (available upon
request) can be used by anyone to reveal which steps in a
proof current systems are not finding automatically and to
inspire general methods that will find these steps. Here, we
discuss and estimate the benchmark improvements for the
most readily indicated directions.

First, we observe that the greatest difficulty was encoun-
tered in verifications 2a, 5c, 5e, and 6. Here, we discuss the
main difficulty in each of these.

2a The challenge in showing make-clear (see Figure 3)

is well-defined is primarily that we must show a lemma
that every block is under a clear block (so the base case
is reached). Examination of the macro definition reveals
that this lemma statement could be extracted automati-
cally. The lemma itself follows from the lack of cycles
(invariant 1h) and the finiteness of the set of blocks.

5c & 5e The analysis of make-on (again see Figure 3) re-
quires composing the analysis of make-clear and that
of make-held. This composition amounts to progressing
state through a sequence of macro-actions, a much more
difficult analysis than PDDL progression, and is discussed
briefly below. Future work on separating frame and non-
frame effects of macros automatically (very easy in PDDL
actions, but harder for arbitrary macros) is needed here.
In addition, a stronger library of general-purpose lemmas
about transitive closures would reduce the key difficulty
here, especially when reasoning about clear.

6 The verification of a Blocksworld generalized plan that
does not move correct blocks requires all the types of hu-
man interaction discussed in this section and more, and
remains clearly beyond full automation today. Our veri-
fication demonstrates that the easily accessible ideas for
reducing interaction discussed below can directly reduce
the interaction in this proof to 370 interaction steps. Fur-
ther ideas are needed and can be motivated by examining
these steps; by no means is the system optimized with re-
gard to general techniques that may minimize many of
the interactions involved. Fully automating this verifica-
tion would be a very significant accomplishment standing
on its own, for future work.
We observe that our system easily verifies all the key

statespace invariants in the domains tested, with no human
interaction, having eliminated the human interactions re-
quired by Coq as discussed in Section 6.

Although we have assumed here that the invariant state-
ments are provided, note that the monotonicity of entailment
implies that we can equally provide any superset of these
invariants and a straightforward filtering process will nar-
row the set to those for which preservation under the ac-
tions can be verified. (Simply repeatedly drop those invari-
ants for which preservation cannot be verified.) So a method
that generates candidate invariants by pattern matching can
replace the human input as long as it generates a superset of
these invariants.

The system can also verify many of the macro effects
without human interaction (2b, 2c, 2d, 2e, 5b) and the rest
require very limited human interaction (except 5c and 5e dis-
cussed above). We now focus on what clearly automatable
interactions the macro analysis verifications revealed.

Many of the human interactions required by Ontic in our
evaluation fall into categories that appear automatable by ex-
tending the reasoner in the following directions. Only the
first item is general-purpose, with the others being planning
specific:
Type checking 28 interactions directed Ontic to verify that

an action a in an expression take(a, s) is applicable in s.
This expression is a special case of typed function appli-
cation with expressive types (arbitrary class expressions),

Verif. # # Steps Reduced Steps English name
1 0 0 9 blocks invariants

2a 21 10 make-clear well-defined
2b-e 0 0 make-clear effects
3a 4 0 make-held well defined

3b-e 11 5 make-held effects
4 9 0 make-ontable, 5 claims
5a 11 0 make-on well defined
5b 0 0 effect on held

5c 24 24 effect on on

5d 9 6 effect on ontable

5e 28 21 effect on clear

6a 418 370 generalized plan for any goal
6b 14 14 gen. plan to put all blocks on table
7 0 0 8 branching-tower blocks invariants
8 0 0 5 logistics invariants

9a 2 0 make-attruck well defined
9b-d 1 0 effects of make-attruck
10a 6 1 make-atpkg well defined

10b-d 8 8 effects of make-atpkg
11a 9 4 make-in well defined

11b-d 3 3 effects of make-in
12 25 24 generalized plan

Table 1: Counts of Human Interactions for Each Verification Eval-
uated. The “verification number” refers to the line number in Fig-
ure 1 or Figure 2. The “reduced steps” column refers to the reduc-
tion achievable by eliminating interactions listed in Section 5.

and we naturally envision a system that automatically
attempts to show well-typedness of any application ex-
pression explicit in a proof. Ontic should, but currently
does not, automatically attempt to prove that argument
expressions for a function meet the declared type restric-
tion of the function, noting that in the Ontic language this
is an undecidable question. 58 interactions would by ex-
amination be eliminated by adding such a (not planning-
specific) system.

PDDL Type invariance 16 interactions were required to
make explicit the invariance of the type meanings (i.e., no
new blocks appear). While our system can handle richer
domains with block creation, we believe a planning-
specific modification to the reasoner can inexpensively
automatically eliminate all these interactions.

Precondition checking and regression assistance While
type checking can automatically direct the system to
check applicability of an action, a more planning-specific
adaptation of the reasoner would be even more aggressive
in this case and specifically logically regress this test into
an attempt to show that each precondition is satisfied.
In the case where a composition of actions or macros
is present, the reasoner could be designed to continue
this regression (on explicit expressions only, not as an
exploration of statespace). Implementing this further
change would appear to eliminate 20 further interactions.

Reachability 20 interactions directed Ontic to verify that
macros and action applications return reachable states. A
planning-specific reasoner could conceivably be designed
to automatically try such verifications without direction

when actions or macros are being applied.

We believe fully implementing the above ideas would
substantially reduce the interaction needed in the evaluated
verifications, resulting in the improved (not yet achieved)
benchmark shown in the final numeric column of Table 1.
One purpose of this evaluation has been to identify and mo-
tivate this further work.

Human-written macros and plans Our verifications re-
quire human-written predicate-achievement macros and
generalized plans. However, note that any process for au-
tomatically constructing such macros and plans would be
tremendously aided by the ability to automatically analyze
candidate definitions.

We note that, for simple domains like Blocksworld, nat-
ural techniques can propose mutually recursive predicate
achievement macros for analysis, automatically. For in-
stance, for any action that adds a predicate, one can construct
a predicate-achievement macro that seeks to achieve the
preconditions of that action (using recursive calls to other
predicate-achievement macros) and then takes that action.
This is precisely the structure of most of our macros. Anal-
ysis can then be used to determine a successful ordering for
the precondition achievement calls. A first step towards such
a method is automating the verifications presented herein.

Similarly, analysis of the predicate achievement macros
can suggest or imply orderings for achieving conjunctive
goals, leading to a provably correct generalized plan. This is
currently further out of reach, but the predicate-preservation
properties of the macros proven in our analysis do imply
directly that block towers must be built bottom-up and this
could be the basis for a future method for automatically con-
structing the generalized plan.

6 Planning-related Verifications in Coq
There are a number of published reasoning systems that
could be considered for performing similar verifications to
those reported here, e.g., (Bickford, Constable, and Rahli
2012; Klein et al. 2010; Strecker 2002; Liu and Moore 2004;
Moore, Lynch, and Kaufmann 1998), with varying amounts
of human interaction required. Here we discuss brief exper-
iments conducting planning verifications using the Coq sys-
tem and compare the resulting verifications with our Ontic
verifications.

We limit our discussion here to comparing Coq and Ontic
representational features and their effects on reasoning about
planning, in particular on verifying Blocksworld invariants.
Our experiments have shown a requirement for more human
interaction in conducting the Coq verifications. 6

We presented nine statespace invariants that are preserved
by the four Blocksworld actions in our representation. There
are thus 36 preservation theorems stating that a given action

6In principle, Coq and other systems can be adapted to conduct
these verifications with similar results to ours with Ontic; one pur-
pose of this paper is to stimulate research in the application of a
variety of systems to planning domains for comparison, system de-
velopment, and expected reduction over time of the required human
input.

Definition det_holding (s : state) := Defining the invariant:
forall b1 b2, holding b1 s -> at most one block is

holding b2 s -> b1 = b2. being held in state s

Theorem pickup_det_holding :
forall x s,

osr s (take (pickup x) s) Hypothesis: (take (pickup x) s)
is one step reachable from s

-> det_holding s Hypothesis: holding at-most-one
block in s

-> det_holding (take (pickup x) s). Theorem: After taking
(pickup x), will hold

at-most-one block
Proof.

intros x s Hosr Hprev. Names variables and hypotheses
inversion Hosr. Regress one step reachable hypothesis

to action preconditions of pickup
-->results in H2, used below

unfold det_holding. Expand the definition of det_holding
in the proof goal

intros b1 b2 Hb1 Hb2. Names for variables and hypotheses
generated in the previous step

apply pickup_holding in Hb1. Apply the action dynamics
to get b1=x ∨ holding b1

apply pickup_holding in Hb2. Apply the action dynamics
to get b2=x ∨ holding b2

unfold handempty in H2. Expand the definition of handempty

assert (not (holding b1 s)) by apply H2. Instantiate H2 on b1

assert (not (holding b2 s)) by apply H2. Instantiate H2 on b2

intuition. Figure out propositional tautologies
congruence. Prove b1 = b2 based upon b1 = x and b2 = x

Qed.

Figure 4: An example proof in Coq. The red lines (unfold, as-
sert) are domain-specific human inputs. Green lines (inversion, ap-
ply) could easily be automated in a planning-specific system. Both
count as interactions here for comparison to Ontic.

(suppose-there-is ((s (a-legal-state)) Invariants assumed in s
(a (an-applicable-action-in s)))

(suppose (is a (pickup (a-block-of s)))
(show (at-most-one (holding-in (take a s))))))

Figure 5: The Ontic proof corresponding to Figure 4.

preserves a given invariant. Each of these theorems is proven
without human interaction by the Ontic system. None of
these 36 theorems is accepted without interaction by the Coq
system, even if we presume that common tactics such as
“auto” and “simpl” are automatically tried.

The needed human interaction varies between the 36 veri-
fications and requires human expertise to generate. Typically
a small number of carefully human-specified theorem in-
stantiations are required. Over the entire set of 36 invariant-
preservation verifications, our Coq work required 237 hu-
man proof interactions, not counting stating the 36 theorems
or any human invocations of the tactics intros, auto, simpl,
intuition (when no subgoals are generated), and unfolding
of definitions appearing in the theorem, which we assume
can be easily automated. We also made sure to create tactics
for common interaction sequences in order to count them as
one interaction when invoked. We show one example Coq
verification in Figure 4 and the corresponding Ontic proof
in Figure 5.

We discuss dimensions along which Ontic provides what
appear to be qualitative advantages over Coq for our plan-
ning verifications.

Taxonomic Representations Due to the class-based syn-
tax used in Ontic, as discussed above, the quantifier-
free fragment of the Ontic language is more expres-
sive than that of Coq. Ontic can state formulas such as
∀x∃y ontable(y) ∧ on(x, y) → clear(x) without quan-
tifiers (as the formula (is (on ontable) clear) stating
a subtyping relationship between the type “on a block on
table” and the type “clear block”). This quantifier-free ex-
pressiveness reduces the number of theorem instantiations
the system needs to find, and thus reduces the human inter-
action in assisting in finding such instantiations.

Type-based Automatic Quantifier Instantiation Ontic
includes a general-purpose mechanism, subsumption match-
ing, for automatically selecting instances of universal theo-
rems when those instances will help provide new typings
for expressions in the targeted theorem. This mechanism is
much richer than simply instantiating theorems with con-
clusions that match pieces of the desired theorem—the ef-
fect of the “auto” tactic applied to a desired theorem (some-
what simplified). As a result, again, fewer human-selected
instantiations are needed for the Ontic proofs in our verifi-
cations than the Coq proofs. 146 of the 237 human interac-
tions needed in our verifications of the invariants in Coq are
human-selected instantiations, where no human interactions
were needed in Ontic.

Automated Case Analysis Ontic includes an automated
case analysis mechanism that automatically introduces a va-
riety of case splits when the target entailment is “obvious” to
the basic reasoner on one side of the split. Because one side
is checked in polynomial-time without further case analy-
sis, this method has an overall linear cost in the number of
potential case splits considered. This mechanism eliminates
the need for human interaction to select case splits for the
analysis. This issue did not limit Coq in the invariant proofs
but can in other settings contribute significantly to human
interaction requirements for Coq in comparison to Ontic.

Declarative vs Procedural Proof Style The use of So-
cratic proof in Ontic results in a style of interactive proof
in which the human tries simpler and simpler claims about
the proof context until a claim is found that the system can
verify but did not already know, and then repeating this pro-
cess in the presence of the new theorem, until the target the-
orem is accepted. This process is roughly analogous to the
process a human teacher might use to teach by asking So-
cratic questions. The resulting Ontic proofs are declarative
in nature and consequently quite natural for humans to read,
understand, and learn to generate.

In contrast, the Coq interface expects the user to iden-
tify a “tactic” that can be used to reduce a current goal to
subgoals. Thus the user is expected to identify a procedu-
ral approach to the proof, and can even write such procedu-
ral approaches by writing tactics. We believe this interface
encourages the development of more and better tactics, by
users and implementors, but does not lead to a focus on au-
tomatically deploying and combining tactics effectively in

a domain-independent manner. As a result, Coq proofs of-
ten rely heavily on the human for selecting and combining
tactics. Because of the procedural style of human-Coq inter-
action, the resulting proofs do not resemble human proofs
and are readable only to Coq users as specifications of the
procedures needed to conduct the verification 7.

The Socratic proof system of Ontic forces Ontic imple-
mentors to provide a single reasoning tool, the basic no-
tion of “obvious entailment”, i.e., the Ontic base reasoner,
that is as strong as possible. This forces implementors to
automate tradeoffs and interactions between strategies such
as case analysis, Skolemization, and universal instantiation.
This can be a drawback when considering the power of the
human/machine combination, as often the human can handle
the tradeoff in making tactic selections better than the cur-
rent Ontic would. However, this structure does encourage
the study of the reduction/elimination of human input.

7 Related Work
Here we compare briefly to the generalized planning work
of (Srivastava et al. 2011). This very nice work provides a
domain-independent approach to automatically constructing
a verified generalized plan for a class of domains that in-
cludes both the Blocksworld and Logistics. The work ex-
ploits a role-based abstraction to represent a generalized
plan and detect loop termination by decreasing role counts.

There are several respects in which this prior work is not
directly comparable to our work. First, their method assumes
domain invariants rather than verifying them. Second, the
applicability of their method is unclear outside of FC3 do-
mains, where the role-based abstraction can represent the
choices needed. We show our results on the branching-tower
Blocksworld statespace invariants, a non-FC3 domain, to
briefly demonstrate how easily our approach moves outside
that restriction. Third, we note that our class expressions
provide a richer abstraction than roles and will support a
wider range of analyses. Finally, the reliance on role-based
abstraction leads to sensitivity to the introduction of irrele-
vant predicates, which can be difficult to detect. Our verifi-
cations reported here may also be affected, but less so; an
irrelevant predicate can generally be expected to have no ef-
fect due to the monotonicity of entailment.

The Srivastava et al. methods should be considered for
incorporation as planning-specific methods with a general-
purpose reasoner to improve its planning IQ benchmark.

8 Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No. 0905372.

References
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P. 2003. The description logic handbook:

7A declarative account of the subgoals generated could be au-
tomatically extracted, but would not be an account of the choices
made by the human user and would contain more detail than a hu-
man reader would expect.

Theory, implementation and applications. Cambridge Uni-
versity Press.
Bickford, M.; Constable, R.; and Rahli, V. 2012. The logic
of events, a framework to reason about distributed systems.
Technical report, arXiv: 1813: 28695, CIS, Cornell Univer-
sity.
Chapman, D. 1987. Planning for conjunctive goals. Artifi-
cial intelligence 32(3):333–377.
Fikes, R., and Nilsson, N. 1972. Strips: A new approach
to the application of theorem proving to problem solving.
Artificial intelligence 2(3):189–208.
Givan, R., and McAllester, D. 1992. New results on local
inference relations. In Principles of Knowledge Representa-
tion and reasoning: Proceedings of the Third International
Conference (KR92), 403–412.
Givan, R. 1997. Obvious properties of computer programs.
In Proceedings of the Fourteenth National Conference on
Artificial Intelligence.
Green, C. 1969. Theorem-proving by resolution as a ba-
sis for question-answering systems. Machine Intelligence
4:183–205.
Klein, G.; Andronick, J.; Elphinstone, K.; Heiser, G.; Cock,
D.; Derrin, P.; Elkaduwe, D.; Engelhardt, K.; Kolanski, R.;
Norrish, M.; Sewell, T.; Tuch, H.; and Winwood, S. 2010.
seL4: formal verification of an operating-system kernel.
Communications of the ACM 53(6):107–115.
Knoblock, C. A.; Tenenberg, J. D.; and Yang, Q. 1991. Char-
acterizing abstraction hierarchies for planning. In Proceed-
ings of the Ninth National Conference on Artificial intelli-
gence - Volume 2, AAAI’91, 692–697. AAAI Press.
Leroy, X. 2009. Formal verification of a realistic compiler.
Communications of the ACM 52(7):107–115.
Liu, H., and Moore, J. 2004. Java program verification via a
JVM deep embedding in ACL2. Theorem Proving in Higher
Order Logics 117–125.
McAllester, D., and Givan, R. 1993. Taxonomic syntax for
first order inference. Journal of the ACM 40(2):246–283.
McAllester, D. 1989. Ontic: A Knowledge Representation
System for Mathematics. MIT Press, Cambridge, MA.
McAllester, D. 1991. Observations on cognitive judgments.
In Proceedings of the Ninth National Conference on Artifi-
cial Intelligence, 910–915. Morgan Kaufmann Publishers.
McCarthy, J. 1963. Programs with common sense. Defense
Technical Information Center.
Moore, J. S.; Lynch, T.; and Kaufmann, M. 1998. A mechan-
ically checked proof of the correctness of the kernel of the
AMD5K86 floating-point division algorithm. IEEE Trans-
actions on Computers 47(9):913–926.
Newell, A.; Shaw, J.; and Simon, H. 1959. Report on a
general problem-solving program. Rand Corporation.
Reiter, R. 1993. Proving properties of states in the situation
calculus. Artificial Intelligence 64:337–351.
Ŝevčik, J.; Vafeiadis, V.; Zappa Nardelli, F.; Jagannathan,
S.; and Sewell, P. 2011. Relaxed-memory concurrency and
verified compilation. ACM SIGPLAN Notices 46(1):43–54.

Srivastava, S.; Immerman, N.; Zilberstein, S.; and Zhang, T.
2011. Directed search for generalized plans using classical
planners. In Proc. of the International Conference on Auto-
mated Planning and Scheduling, Freiburg, Germany, 226–
233.
Strecker, M. 2002. Formal verification of a Java compiler in
Isabelle. Automated Deduction—CADE-18 135–163.

	Purdue University
	Purdue e-Pubs
	10-2-2013

	Formal Verification and Planning: An Evaluation
	Rajesh Kalyanam
	Tanji Hu
	Robert Givan

