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Outline
Markov Decision Processes defined (Bob

• Objective functions

• Policies

Finding Optimal Solutions (Ron)

• Dynamic programming

• Linear programming

Refinements to the basic model (Bob)

• Partial observability

• Factored representations
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Stochastic Automata with
A Markov Decision Process (MDP) mode
contains:

• A set of possible world states S

• A set of possible actions A

• A real valued reward function R(s,a)

• A description T of each action’s effe

We assume the Markov Property: the eff
taken in a state depend only on that stat
prior history.



 Utilities
l

cts in each state.

ects of an action
e and not on the
MDP Tutorial - 4

Stochastic Automata with
A Markov Decision Process (MDP) mode
contains:

• A set of possible world states S

• A set of possible actions A

• A real valued reward function R(s,a)

• A description T of each action’s effe

We assume the Markov Property: the eff
taken in a state depend only on that stat
prior history.



ns

action

te and action we
 next states.
a).

0.4
0.6
MDP Tutorial - 5

Representing Actio
Deterministic Actions:

•  T :   For each state and 
 we specify a new state.

Stochastic Actions:

• T : For each sta
specify a probability distribution over
Represents the distribution P(s’ | s,

S A× S→

S A× Prob S( )→
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Representing Solutions
A policy π is a mapping from S  to A



 resulting from
ystem
MDP Tutorial - 8

Following a Policy
Following a policy π:

1. Determine the current state s
2. Execute action π(s)
3. Goto step 1.

Assumes full observability:  the new state
executing an action will be known to the s
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Evaluating a Polic
How good is a policy  in a state s ?

For deterministic actions just total the
rewards obtained... but result may be infin

For stochastic actions, instead  expected 
obtained–again typically yields infinite val

How do we compare policies of infinite va

π
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Objective Function
An objective function maps infinite seque
to single real numbers (representing utilit

Options:
1. Set a finite horizon and just total th
2. Discounting to prefer earlier reward
3. Average reward rate in the limit

Discounting is perhaps the most analytica
most widely studied approach
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Discounting
A reward n steps away is discounted by
rate .

• models mortality:  you may die at an

• models preference for shorter solutio

• a smoothed out version of limited ho

We use cumulative discounted reward as

(Max value   <=

γ
0 γ 1< <

M γ M⋅ γ2 M ....+⋅+ + =
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Value Functions
A value function  : represents 

expected objective value obtained

following policy  from each state in S .

Value functions partially order the policies

• but at least one optimal policy exists

• all optimal policies have the same va

V π S ℜ→

π
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V π s′( )⋅

′) γ V * s′( )⋅ ⋅ 
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Bellman Equation
Bellman equations relate the value functio
the problem dynamics.

For the discounted objective function,

In each case, there is one equation per s

V π s( ) R s π s( ),( ) T s π s( ) s′, ,( ) γ⋅
s′ S∈
∑+=

V * s( ) =
MAX

a A∈
R s a,( ) T s a s, ,(

s′ S∈
∑+
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Finite-horizon Bellman E

Finite-horizon values at adjacent horizons
the action dynamics

V π 0, s( ) R s π s( ),( )=

V π n, s( ) R s a,( ) T s a s′, ,( ) γ⋅ ⋅
s′ S∈
∑+=
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Relation to Model Che
Some thoughts on the relationship

• MDP solution focuses critically on ex

• Contrast safety properties which foc

• This contrast allows MDP methods t
sampling and approximation more a
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Large State Space
In AI problems, the “state space” is typica

• astronomically large

• described implicitly, not enumerated

• decomposed into factors, or aspects

Issues raised:

• How can we represent reward and a
in such MDPs?

• How can we find solutions in such M
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A Factored MDP Repres
• State Space S — assignments to sta

• Partitions — each block a DNF form

• Reward function R — labelled state-

On-Mars?, Need-Power?, Daytime?,..etc...

Block 1: not On-Mars?
Block 2: On-Mars? and Need-Power?
Block 3: On-Mars? and not Need-Powe

Block 1: not On-Mars? . . . . . . . . . . . . . . .
Block 2: On-Mars? and Need-Power? . .
Block 3: On-Mars? and not Need-Power
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Factored Representations 
• Assume: actions affect state variables

e.g.....Pr(Nd-Power? ^ On-Mars? | x, a)
              = Pr (Nd-Power? | x, a) * Pr (On-M

• Represent effect on each state variab
partition:

1. This assumption can be relaxed.

Pr(Nee
Block 1: not On-Mars?  . . . . . . . . . . . . . . . . . 
Block 2: On-Mars? and Need-Power?  . . . . 
Block 3: On-Mars? and not Need-Power?  

Effects of Action Charge-Battery on variab
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Representing Bloc
• Identifying “irrelevant” state variable

• Decision trees

• DNF formulas

• Binary/Algebraic Decision Diagrams
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Partial Observabili
System state can not always be determin

     ⇒  a Partially Observable MDP  (POM

• Action outcomes are not fully observ

• Add a set of observations O to the m

• Add an observation distribution U(s,

• Add an initial state distribution I

Key notion: belief state, a distribution ove
        representing “where I think I am”
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POMDP to MDP Conv
Belief state Pr(x) can be updated to Pr(x’
rule:

     Pr(s’|s,o)  =  Pr(o|s,s’) Pr(s’|s) / Pr(o|s

                      = U(s’,o) T(s’,a,s)  normaliz

     Pr(s’|o) = Pr(s’|s,o) Pr(s)

A POMDP is Markovian and fully observa
the belief state.

⇒ a POMDP can be treated as a continu
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Belief State Approxim
Problem: When MDP state space is astr
states cannot be explicitly represented.

Consequence:  MDP conversion of POM

Solution: Represent belief state approxi

• Typically exploiting factored state rep

• Typically exploiting (near) conditiona
properties of the belief state factors


	An Introduction to Markov Decision Processes
	Bob Givan Ron Parr Purdue University Duke University

	Outline
	Markov Decision Processes defined (Bob)
	• Objective functions
	• Policies

	Finding Optimal Solutions (Ron)
	• Dynamic programming
	• Linear programming

	Refinements to the basic model (Bob)
	• Partial observability
	• Factored representations


	Representing Actions
	Deterministic Actions:
	• T : For each state and action we specify a new state.

	Stochastic Actions:
	• T : For each state and action we specify a probability distribution over next states. Represent...


	Representing Actions
	Deterministic Actions:
	• T : For each state and action we specify a new state.

	Stochastic Actions:
	• T : For each state and action we specify a probability distribution over next states. Represent...


	Representing Solutions
	A policy p is a mapping from S to A

	Value Functions
	A value function : represents the expected objective value obtained following policy from each st...
	Value functions partially order the policies,
	• but at least one optimal policy exists, and
	• all optimal policies have the same value function,


	Bellman Equations
	Bellman equations relate the value function to itself via the problem dynamics.
	For the discounted objective function,
	In each case, there is one equation per state in S

	Finite-horizon Bellman Equations
	Finite-horizon values at adjacent horizons are related by the action dynamics

	Relation to Model Checking
	Some thoughts on the relationship
	• MDP solution focuses critically on expected value
	• Contrast safety properties which focus on worst case
	• This contrast allows MDP methods to exploit sampling and approximation more aggressively


	Large State Spaces
	In AI problems, the “state space” is typically
	• astronomically large
	• described implicitly, not enumerated
	• decomposed into factors, or aspects of state

	Issues raised:
	• How can we represent reward and action behaviors in such MDPs?
	• How can we find solutions in such MDPs?


	A Factored MDP Representation
	• State Space S — assignments to state variables:
	On-Mars?, Need-Power?, Daytime?,..etc...
	• Partitions — each block a DNF formula (or BDD, etc)

	Block 1: not On-Mars?
	Block 2: On-Mars? and Need-Power?
	Block 3: On-Mars? and not Need-Power?
	• Reward function R — labelled state-space partition:

	Block 1: not On-Mars? Reward=0
	Block 2: On-Mars? and Need-Power? Reward=4
	Block 3: On-Mars? and not Need-Power? Reward=5

	Factored Representations of Actions
	• Assume: actions affect state variables independently.
	e.g.....Pr(Nd-Power? ^ On-Mars? | x, a) = Pr (Nd- Power? | x, a) * Pr (On-Mars? | x, a)
	• R epresent effect on each state variable as labelled partition:

	Pr(Need-Power? | Block n)
	Block 1: not On-Mars? 0.9
	Block 2: On-Mars? and Need-Power? 0.3
	Block 3: On-Mars? and not Need-Power? 0.1

	Representing Blocks
	• Identifying “irrelevant” state variables
	• Decision trees
	• DNF formulas
	• Binary/Algebraic Decision Diagrams

	Partial Observability
	System state can not always be determined
	ﬁ a Partially Observable MDP (POMDP)
	• Action outcomes are not fully observable
	• Add a set of observations O to the model
	• Add an observation distribution U(s,o) for each state
	• Add an initial state distribution I

	Key notion: belief state, a distribution over system states representing “where I think I am”

	POMDP to MDP Conversion
	Belief state Pr(x) can be updated to Pr(x’|o) using Bayes’ rule:
	Pr(s’�|s,o) = Pr(o|s,s’�) Pr(s’�|s) / Pr(o|s)
	= U(s’,o) T(s’,a,s) normalized
	Pr(s’�|o) = Pr(s’�|s,o) Pr(s)
	A POMDP is Markovian and fully observable relative to the belief state.
	ﬁ a POMDP can be treated as a continuous state MDP

	Belief State Approximation
	Problem: When MDP state space is astronomical, belief states cannot be explicitly represented.
	Consequence: MDP conversion of POMDP impractical
	Solution: Represent belief state approximately
	• Typically exploiting factored state representation
	• Typically exploiting (near) conditional independence properties of the belief state factors


	Following a Policy
	Following a policy p:
	1. Determine the current state s
	2. Execute action p(s)
	3. Goto step 1.
	Assumes full observability: the new state resulting from executing an action will be known to the...


	Evaluating a Policy
	How good is a policy in a state s ?
	For deterministic actions just total the rewards obtained... but result may be infinite.
	For stochastic actions, instead expected total reward obtained–again typically yields infinite va...
	How do we compare policies of infinite value?

	Objective Functions
	An objective function maps infinite sequences of rewards to single real numbers (representing uti...
	Options:
	1. Set a finite horizon and just total the reward
	2. Discounting to prefer earlier rewards
	3. Average reward rate in the limit
	Discounting is perhaps the most analytically tractable and most widely studied approach


	Discounting
	A reward n steps away is discounted by for discount rate .
	• models mortality: you may die at any moment
	• models preference for shorter solutions
	• a smoothed out version of limited horizon lookahead

	We use cumulative discounted reward as our objective
	(Max value <= )

	Stochastic Automata with Utilities
	A Markov Decision Process (MDP) model
	contains:
	• A set of possible world states S
	• A set of possible actions A
	• A real valued reward function R(s,a)
	• A description T of each action’s effects in each state.

	We assume the Markov Property: the effects of an action taken in a state depend only on that stat...

	Stochastic Automata with Utilities
	A Markov Decision Process (MDP) model
	contains:
	• A set of possible world states S
	• A set of possible actions A
	• A real valued reward function R(s,a)
	• A description T of each action’s effects in each state.

	We assume the Markov Property: the effects of an action taken in a state depend only on that stat...


