
M6.6 
Bayesian Estimation from Projections 

with Low Photon Dosages 

Ken Sauer 
Department of Electrical Engineering 

University of Notre Dame, Notre Dame, IN 46556 

Abstract 

We present a method for Bayesian reconstruction from pro- 
jections which updates single pixel values, rather than the entire 
image, at each step. The technique is similar t o  Gauss-Seidel 
(GS) iteration for the solution of differential equations on finite 
grids. The computational cost per iteration of the GS approach 
is found t o  be approximately equal to that of gradient methods. 
For continuously valued images, GS is found to have significantly 
better convergence a t  modes representing high spatial frequen- 
cies. In addition, GS is well-suited to segmentation when the 
image is constrained to be discrete-valued. 

1 Introduction 

Although convolution backprojection (CBP)[l] is the most com- 
mon technique for computed tomography, in many situations the 
quality and/or quantity of data is inadequate for conventional 
CBP reconstruction[2]. Bayesian estimation allows weightings or 
hard constraints on solutions which reflect knowledge concerning 
acceptable estimates. In the most previous work on the problem, 
the overall cost function specified by the log likelihood for either 
maximum likelihood (ML) or Bayesian techniques has been as- 
sumed quadratic for tomographic image reconstruction(see ref. 
in [2]). 

In this paper, we develop a local update method to perform 
a Bayesian segmentation from projections. Our approach is sim- 
ilar to Gauss-Seidel(GS) iterations employed in the solution of 
differential equations on finite grids[3], and we will use the same 
terminology. Each step includes only the optimization with re- 
spect to a single pixel's value, making its application very simple 
if we follow a monotone increase in likelihood. Reconstruction 
of cross-sections which are known to consist of a few distinct 
densities is possible with very low SNR when formulated as a 
segmentation task for GS. The cost functions in this problem 
are generally nonconvex and nondifferentiable, and therefore not 
amenable to gradient approaches, which rely on partial deriva- 
tives of the cost. 

Bayesian estimation by GS is also applicable t o  the recon- 
struction of continuously-valued functions. The computational 
cost of a single pass of local updates across the entire image is ap- 
proximately the same as that of a single iteration of the gradient 
approach. In addition the GS approach has faster convergence 
in high spatial frequencies for continuously-valued images than 
either simple gradient ascent(GA), or conjugate gradient(CG). 

2 Model of Physical System 

In practice, reconstruction requires finite-dimensional represen- 
tation of both the projection data, p ,  and the modeled image, f. 
The Radon transform equations may be written in the discrete 
form 
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P = A f  
where A is a sparse M x N  matrix with Aji equal t o  the length of 
the intersection of projection ray j and pixel i. 

In transmission tomography the projections, p ,  are not mea- 
sured directly. Instead, raw data are in the form of the-number 
of photons(X) detected after passing through an absorptive ma- 
terial. In order to simplify theoretical analysis, we will also intro- 
duce a quadratic approximation t o  the log likelihood of photon 
counts given the image f, resulting from a series expansion of the 
exact log likelihood: 

where @; and D are defined by 

for input photon count AT. The key to the behavior of (1) is 
found in the matrix D. The matrix more heavily weights errors 
corresponding to projections with large values of X i .  These pro- 
jections pass through less dense objects, and consequently have 
higher signal-to-noise ratio. In the limit of opaque projections 
where no photons pass through the material, the approximation 
simply applies no weight t o  the measurement. 

The maximum a posteriori (MAP) estimate under prior dis- 
tribution g ( f )  is the value which maximizes the a posteriori den- 
sity given the observations A: 

Here, R is the set of feasible solutions, a n d  upper case letters 
denote random entities. The ML estimate may be derived as the 
special case where the prior distribution is constant. 

When F is continuously valued, we will assume that it is a 
Gaussian random vector, yielding the MAP estimation criterion: 

f = argmax { -($ - Af)'D(@ - Af) - yf'R f }  (3) f a  

where R is symmetric, and 5R-I is the covariance matrix for F.  
We will assume that, ignoring boundary effects, multiplication by 
R has the effect of convolution with a stationary kernel. When 
R = @" the solution to this optimization problem may be found 
by differentiating with respect to f. The resulting equation has 
the form 

where H = A'DA and b = A"@. 
A second distinct case results when R is a proper subset of 

EN due t o  hard constraints on f .  If R is a convex set, there 

b = (H t yR)f (4) 
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= -  f @I 
where 2 is a constant. 
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Figure 1: The maximum number of iterations required for 99% 
error reduction, as a function of spatial frequency, when no reg- 
ularization is used (7 = 0). 

GS 

Computation is dominated by the first term- in the numerator, 
which for a single scan of the image(one iteration), has at  most 
50%moie multiplies per pixel than GA. In practice, however, we 
have found that a single iteration of GS runs as fast as GA on a 
general purpose serial computer. 

The GS method will also be used to  solve the segmentation 
problem. For this discrete problem the gradient based methods 
of GA and CG are not applicable. However, the GS method may 
still be applied by choosing each pixel's value to minimize the 
a posteriori probability. The best choice for pixel i will depend 
only on the neighbors of fi, and the updated value is chosen from 
the feasible set of densities R. Since R is not convex, determining 
a global maximum will generally not be possible. However, it is 
possible to guarantee convergence to a local minimum by chang- 
ing the density of a pixel only when it  strictly increases the log 
likelihood. 

4 Experimental Results 

Experimental data presented here result from very low photon 
dosages relative to most systems. The input photon count (A,) 
for each ray in our trials was 2000, orders of magnitude below 
dosages of commercial medical CT scanners[l]. Our goals in 
terms of reconstructed image quality, however, are also much 
more modest. CBP will serve as a good initial starting point for 
the iterations in most cases. The phantom is shown in Fig. 6(a), 
and contains only two non-zero densities. The background is 
of absorptivity 0.2cm-l, while the four high-density regions are 
0.48cm-I. The physical diameter of the phantom is 20cm. At 
the given photon dosages, rays passing through the larger high- 
density regions are essentially blocked, making the given trials 
similar to hollow projection reconstruction. In each case, the 
number of raysums collected per angle was 128. We chose a 
single value for Q in (6) for a l l  applications of GA, based on 
the best experimental convergence across the set of simulations. 
Both methods were compared to conjugate gradient (CG), which 
has about the same per-iteration cost as GA, and generally sig- 
nificantly faster convergence. 

Initial trials were used to verify the analysis of Sec. 3, and 
were therefore performed with 7 = 0 in (3), corresponding to 
ML estimation. For results presented here, however, the diago- 
nal entries of D are photon counts. Fig. 2 illustrates convergence 
in terms of log likelihood as expressed in (1). CG and GS are 

comparable in convergence rates, with GS showing an apprecia- 
ble advantage. Both are much faster than GA. Our analysis 
predicted this behavior for high frequencies in the difference be- 
tween the CBP starting point and the Bayesian estimate. As is 
illustrated in the periodogram spectral estimate of Fig. 3, the er- 
ror image was of predominantly high frequency spectral content. 
Similar relative convergence behavior appeared when D was di- 
agonal. GS appears more useful than the gradient methods for 
problems where the difference between the starting state and the 
optimal estimate is dominated by high frequencies. But ML es- 
timates may have ercessioe high frequency content, in contrast 
to many images of practical interest. The ML estimate images 

Figure 2: Convergence comparison for real projection weighting 
matrix D 

whose convergence was discussed above, in fact, are of very poor 
visual quality. 

Regularization both speeds convergence, and prevents exces- 
sive oscillation in the estimate. For the following results, we use 
an R with the form of a discrete 5-point Laplacian. Typical 
convergence rates are shown in Fig. 4 for MAP estimation with 
the same optimization methods and 7 = 100cm2. (This corre- 
sponds to  a standard deviation of a pixel given its neighbors of 
O.lcm-') The associated error spectrum has substantial energy at  
very low frequencies, plus an approximately flat spectral content 
across the higher frequencies. Here CG enjoys a slight advantage 
in convergence rate, and both CG and GS are essentially com- 
pletely converged at  fewer than 15 iterations. GA is much slower, 
as expected. .Trials with larger 7 yielded still faster convergence, 
but very similar relationships among the three techniques. 

Fig. 5 shows the images resulting from the Bayesian enhance- 
ment of the CBP reconstruction. The artifacts of 5(a) are amelio- 
rated substantially, with varying degrees of smoothing according 
to the choice of 7. Note that we have applied a particularly sim- 
ple prior here (4-point neighborhood); improvement is possible 
with more accurate choices. 

If an object is known to consist of only a few distinct densi- 
ties, we can perform an approximate MAP segmentation as an 
enhancement of the CBP starting point. While gradient methods 
are not directly applicable, the GS algorithm is well-suited to this 
problem. Experimental results for a projection data set consist- 
ing of 128 rays a t  each of 16 equally spaced angles appear in the 
images of Fig. 6. The phantom and dosage per ray are the same 
as in the previous simulations. The CBP reconstruction is shown 
in 6(b), with the result of thresholding midway between the two 
known densities in 6(c). After less than 3 full iterations, GS pro- 
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Figure 3: 32 x 32 periodogram of difference between CUP recon- 
struction and NIL estimate. Center of plot is (0,O). 
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