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ABSTRACT

While MRF models have been widely used in the solution of inverse
problems, a major disadvantage of these models is the difficulty of
parameter estimation. At its root, this parameter estimation prob-
lem stems from the inability to explicitly express the joint distribu-
tion of an MRF in terms of the conditional distributions of elements
given their neighbors. The objective of this paper is to provide a
general approach to solving maximum a posteriori (MAP) inverse
problems through the implicit specification of a MRF prior. In this
method, the MRF prior is implemented through a series of quadratic
surrogate function approximations to the MRF’s log prior distribu-
tion. The advantage of this approach is that these surrogate functions
can be explicitly computed from the conditional probabilities of the
MRF, while the explicit Gibbs distribution can not. Therefore, the
Gibbs distribution remains only implicitly defined. In practice, this
approach allows for more accurate modeling of data through the di-
rect estimation of the MRF’s conditional probabilities. We illustrate
the application of our method with a simple experiments of image
denoising and show that it produces superior results to some widely
used MRF prior models.

Index Terms— Markov random fields, Inverse problems, Max-
imum a posteriori estimation.

1. INTRODUCTION

Model-based inversion methods, first introduced decades ago for the
solution of ill-posed inverse problems [1] have continued to gain im-
portance as their value in the solution of difficult and widely used in-
verse problems grows [2, 3, 4]. A classical approach to model-based
inversion is the computation of the maximum a posteriori (MAP)
estimate which is given by

x̂ = arg max
x≥0
{log p(y|x) + log p(x)} ,

wherep(y|x) is the forward model of the data vectory given the
unknown vectorx, andp(x) is the prior model forx. In many im-
portant applications,x is an image or 3D volume andp(x) is a prior
model for the image.

An alternative to the model-based inversion approach is direct
inversion methods which attempt to directly model the relationship
between the data,y, and the unknowns,x. So for example, methods
such as bilateral filters, kernel regression [5], non-local means [6],
BM3D [7], conditional Markov random fields [8], and scale mix-
tures [9] tend to focus on the direct estimation ofx from the avail-
able data. In other denoising approaches, such as dictionary [10]
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Fig. 1. The Hammersley-Clifford theorem states thatX is an MRF
with a strictly positive density if and only if it has a Gibbs distribu-
tion. However, the value of this very important theorem is limited by
the fact that there is generally no tractable method to construct the
Gibbs distribution from the conditional distributions.

and subspace-based methods, the image is modeled as belonging to
a low-dimensional manifold, and the estimatex is recovered by con-
strainingy to be from the appropriate estimated subspace.

While direct inversion methods can produce amazing results,
model-based inversion approaches have continued to be enormously
valuable in applications such as 3D reconstruction from X-ray com-
puted tomography (CT) data [11]. The great advantage of model-
based inversion over alternative methods is that it allows for the
explicit incorporation of a forward model. In applications such as
X-ray CT, microscopy, or astronomy, this is very important because
it is often possible to quantify the very complex forward model for
the physical measurements very precisely. And this precise forward
model can greatly improve the quality of inversion.

However, a weakness of the model-based inverse approach is
the fact that one must adopt an explicit, tractable, and accurate prior
modelp(x). Perhaps the most common choice of prior model has
been the Markov random field (MRF) because it limits the depen-
dencies inx so that

pθ(xs|xr r 6= s) = pθ(xs|x∂s) ,

wherexs is an element ofx, ∂s is the index set for the neighbors
of s, andθ is a parameter vector which can be used to fit the prior
distribution for specific application at hand.

Unfortunately, the conditional distributionpθ(xs|x∂s) does not
provide an explicit form for the prior distributionpθ(x) of the asso-
ciated MRF.1 The partial solution to this dilemma comes from the
celebrated Hammersley-Clifford Theorem [12] which states thatX
is an MRF2 if and only if its distribution can be expressed as a Gibbs

1This is in contrast to a Markov chain in which the conditionalprobabili-
ties can be simply multiplied to form the prior distribution.

2Technically, it must also have a strictly positive density, but in practice
some values ofX can occur with extremely low probability.



distribution

p(x) =
1

zθ

exp{−uθ(x)}

whereuθ(x) is the Gibbs energy function which is formed by a sum
of potential functions over neighborhood cliques, andzθ is the so-
called partition function. However, Figure 1 illustrates the limitation
of the Hammersley-Clifford theorem. While the proof that a Gibbs
distribution is an MRF is constructive, the proof that the MRF must
have a Gibbs distribution with potential functions limited to cliques
is not. Therefore, the Hammersley-Clifford Theorem does not pro-
vide a general trackable method for constructing the Gibbs distribu-
tion from the known conditional distribution,pθ(xs|x∂r). It simply
says that such a mapping exists.

Moreover, a major disadvantage of the Gibbs distribution is that
estimation of the parameters of a Gibbs distribution tends to be dif-
ficult due to the3 intractable nature of the partition functionzθ. In
practice, this means that model-based inversion methods typically
use very simplistic prior models with a very small number of param-
eters that can be estimated. This severely limits the expressiveness
of prior models, which consequently limits the accuracy of model-
based inversion.

The objective of this paper is to introduce a novel method for the
construction of prior models which is based on direct estimation of
the conditional distribution,pθ(xs|x∂s), of a MRF model. The ad-
vantage of this approach is that it offers the opportunity to construct
much more informative and accurate prior models through the use of
a wide array of modern methods for the accurate estimation of con-
ditional densities from training data. This is in contrast to traditional
MRF approaches which typically assume a Gibbs distribution with
simple potential functions controlled by a small number of parame-
ters.

In this paper, we introduce a novel approach to computing the
MAP estimate which does not require the Gibbs distribution to be
explicitly computed. Instead, we compute local successive approxi-
mations to the energy functionuθ(x) using a surrogate energy func-
tion u(x; x′) wherex′ is the point of approximation. As it turns
out, this surrogate energy function can be explicitly computed from
the MRFs conditional probabilities, whereas the underlying Gibbs
distribution remains implicit. The surrogate energy function works
in the same way as widely used majorization methods for optimiza-
tion [13, 14, 15, 16, 17]. The key novelty to our method is in how
we compute the surrogate energy function’s form from the known
(e.g. typically estimated from training data) conditional probabili-
ties,pθ(xs|x∂s). Using this method, we can then compute the MAP
inversion with a nested iteration: Each “outer loop” updates the point
of approximationx′, and each “inner loop” maximizes a surrogate
MAP optimization problem with a quadratic prior term. Moreover,
we show that, intuitively, the implicit prior can be thought of as a
non-homogeneous Gaussian MRF prior in which the neighborhood
weights of the GMRF are adapted to the local structure of the image,
x.

2. BAYESIAN INVERSION USING IMPLICIT PRIOR

Our approach to Bayesian inversion with an implicit prior is illus-
trated in Figure 2. First, a the conditional distribution,ps(xs|x∂s),
is either estimated from training data or simply selected based on
knowledge of the application. In our example, we assume that the

3The partition function does have a tractable form, for example, when the
prior distribution is Gaussian or whenX is a binary Ising MRF of infinite
extent, but we are primarily interested in more general cases.

u(x; x′)

x
′

Compute surrogate

energy function

Estimate MRF

conditional distribution

p(xs|x∂s)

x
′ ← arg minx {− log p(y|x) + u(x; x′)}

MAP estimate
Compute surrogate

Initialize

reconstruction

Fig. 2. Flow diagram illustrating the operations in MAP estimation
with an implicit prior.

MAP estimation with implicit prior

1. Initializex′

2. Repeat untilx′ has converged{ //Outer Loop

(a) Update surrogate energy functionu(x; x′)

(b) x′ ← arg min
x

˘

− log p(y|x) + u(x; x′)
¯

//Inner Loop

}

conditional density is shift invariant (i.e. the MRF is homogeneous
andps(xs|x∂s) = p(xs|x∂s)), so that the conditional density can
be easily estimated from training data. However, the method is fully
applicable to the non-homogeneous case. Any number of methods
can be used to model this conditional distribution, but we will adopt
a mixture distribution in this work.4

The challenge is then to use this conditional density function as
the basis for a prior model in MAP inversion. To do this, we will
use the known conditional density to compute a surrogate energy
function,u(x, x′), with the properties that

u(x′) = u(x′; x′) (1)

u(x) ≤ u(x; x′) , (2)

whereu(x) is the energy function of the MRF’s unknown Gibbs dis-
tribution. Once we obtain this surrogate energy function, we may use
it to iteratively minimize the MAP cost function with the following
procedure. Based on the theory of majorization, it is well known that
the two properties of equations (1) and (2) insure monotone conver-
gence of the MAP cost function with each iteration of the algorithm;
and if the functions areC2, then any fixed point of the algorithm
will be a point at which the gradient of the log posterior distribution
is zero.

However, the problem remains of how to determine the surro-
gate energy function,u(x; x′), from the known conditional densities,
ps(xs|x∂s). Since we do not have an explicit form for the energy
function,u(x), we will need to determine the surrogate energy func-
tion’s form implicitly. To do this, we first adopt a surrogate energy
function with the form

u(x; x′) =
1

2
(x− x′)tB(x− x′) + dt(x− x′) + c , (3)

whereB is a symmetric matrix,d a column vector, andc a scalar,
all of which are assumed to be functions ofx′. We note that the

4It should be noted that a particular conditional density,ps(xs|x∂s), may
not (typically does not) correspond to a consistent global density,p(x). How-
ever, for the purposes of our analysis we will assume that sucha consistent
global density does exist. In practice, some corrections mustbe made exper-
imentally to account for this fact, which are described latter.



quadratic form of the function makes solution of the surrogate MAP
optimization problem straight forward using a wide range of stan-
dard optimization methods.

Without loss of generality, we can simply assume thatc = 0 be-
cause the value ofc does not affect the result of optimization. Alter-
natively, we can always assume thatu(x′) = 0 through appropriate
renormalization of the partition function.

The values of the parameter vectord can be easily computed
from the gradient of the conditional densities as

ds = − ∂

∂xs

log ps(xs|x∂s)

˛

˛

˛

˛

x=x′

. (4)

Appendix A provides a derivation of this result, but intuitively, the
relationship is required by the fact that the functionsu(x; x′) and
u(x) must be tangent at the pointx = x′.

It only remains to choose the symmetric matrixB sufficiently
large so thatu(x; x′) upper bounds the true energy function. How-
ever, ifB is chosen to be too large, then convergence of the algorithm
will be slow; so it is best to select aB which represents as tight an
upper bound as possible. Therefore, our approach is to first find
strong necessary conditions thatB must satisfy, and then present a
method to compute a matrixB that satisfies these conditions for our
specific choice of the conditional distribution. Once this is done, we
can then scale the magnitude ofB or its diagonal as is necessary to
insure an upper bound.

The following three conditions must hold for any matrixB
which satisfies the equations of (1) and (2). (See proofs in Ap-
pendix B.)

Condition 1: The symmetric matrixB must be positive definite.
Condition 2: It must be the case thatB ≥ H, i.e. B−H must be

a positive semi-definite matrix, whereH is the Hessian of the energy
functionu(x) atx = x′. Moreover, the elements ofH are given by

Hs,r = − ∂2

∂xs∂xr

log ps(xs|x∂s)

˛

˛

˛

˛

x=x′

. (5)

Condition 3: It must be the case thatBs,s ≥ Ds,s whereD is a
diagonal matrix with entries

Ds,s = 2 sup
xs 6=x′

s



− log ps(xs|x′
∂s) + log ps(x

′
s|x′

∂s)−∆sds

∆2
s

ff

(6)
where∆s = xs − x′

s andds is from equation (4). Furthermore, it is
the case thatDs,s ≥ Hs,s.

For our particular example, we will use a homogeneous condi-
tional distribution with the form of a mixture distribution

p(xs|x∂s) =
X

k

γk√
2πσk

exp



− 1

2σ2
k

(xs −Akx∂s − βk)2
ff

,

where Ak is a row vector,βk and σk are constants, andγk =
p(k|x∂s). So by computing the partial derivative with respect toxs

we obtain

− ∂

∂xs

log p(xs|x∂s) =
X

k

1

σ2
k

(xs −Akx∂s − βk)p(k|xs, x∂s)

where

p(k|xs, x∂s) =

γk√
2πσk

exp
n

− 1
2σ2

k

(xs −Akx∂s − βk)2
o

P

j

γj√
2πσj

exp



− 1
2σ2

j

(xs −Ajx∂s − βj)2
ff .

From this we can compute,

ds =
X

k

1

σ2
k

(x′
s −Akx′

∂s − βk)p(k|x′
s, x

′
∂s) (7)

Hs,r
∼
= H̃s,r =

X

k

1

σ2
k

(δs=r − δs 6=rAk,r)p(k|x′
s, x

′
∂s) ,(8)

where the Hession is efficiently computed using the approximation
that ∂

∂xr
p(k|xs, x∂s) is small. We also note that it may be the case

that the computed value of̃H is not symmetric, so we impose sym-
metry by computingH̃ ← (H̃ + H̃t)/2.5

Using the 1D case of the lemma below (proved in Appendix C),
we can see that̃Hs,s ≥ Ds,s; so Condition 3 is met. It is important
that B be positive definite (i.e. that Condition 1 holds) in order to
insure that the inner loop is convergent. If this is not the case, then
we can enforce Condition 1 by selectingB so that

B = H̃ + α diag{H̃} , (9)

where diag{H̃} is the positive-definite matrix formed by the diag-
onal of H̃, andα ≥ 0 is a positive constant. Notice that from the
form of (9) and with the approximation of (8), then Condition 2 is
met.

Lemma: Surrogate functions for exponential mixtures
Let f : R

N → R be a function which takes the form,

f(x) =
X

k

wk exp{−uk(x)} (10)

wherewk ∈ R
+,
P

k wk > 0, anduk : R
N → R. Furthermore

∀(x, x′) ∈ R
N × R

N define the function

Q(x; x′) , − log f(x′) +
X

k

π̃k(uk(x)− uk(x′))

whereπ̃k = wk exp{−uk(x′)}
P

j wj exp{−uj(x′)} . ThenQ(x; x′) is a surrogate func-

tion for− log f(x), and∀(x, x′) ∈ R
N × R

N ,

Q(x′; x′) = − log f(x′)

Q(x; x′) ≥ − log f(x)

3. ESTIMATION OF MRF CONDITIONAL PROBABILITY

The advantage of the implicit prior approach is the ability to build
a prior model based on accurate estimates of the MRF conditional
probability,p(xs|x∂s). This can be done in many different ways, and
the machine learning field includes many examples of techniques
for density estimation [18]. In the paper, we will use a conditional
probability model that is based on the use of Gaussian mixture dis-
tributions. This model has been successfully used over many years
in applications such as image interpolation [19], noise reduction and
medical image enhancement [20].

The model uses a conditional distribution with the form

p(xs|x∂s) =

M
X

k=1

p(xs|x∂s, k)pk|z(k|z) (11)

5Theoretically, the matrixH should be symmetric. However, in prac-
tice the estimated conditional distribution may not correspond to a consistent
MRF model, so it may be the case that for the Hession computed using equa-
tion (5),Hs,r 6= Hr,s.



wherez = f(x∂s) is a feature vector extracted from the neighbor-
hoodx∂s, and

p(xs|x∂s, k) =
1√

2πσk

exp



− 1

2σ2
k

{xs − (Akx∂s + βk)}2
ff

(12)
and

pk|z(k|z) =
exp

“

− 1
2σ2

c
||z − z̄k||2

”

πk

M
X

l=1

exp

„

− 1

2σ2
c

||z − z̄l||2
«

πl

. (13)

The feature vector,z, is computed by first forming an 8-dimensional
column vector,z′, from the3 × 3 window of neighboring pixels to
xs, and subtracting the mean value from the vector. The vectorz′ is
then rescaled using a factorp = 0.50.

z =

(

z′‖z′‖p−1 if z′ 6= 0

0 else
(14)

Notice that the full set of parameters for the model is then given by
θ =

`

{σ2
k, Ak, βk, z̄k, πk}Mk=1, σ

2
c

´

.
Intuitively, the conditional probability models each pixel as a

Gaussian mixture withM components. For each component, the
conditional distribution ofxs givenx∂s is assumed to be Gaussian
with fixed varianceσ2

k and a mean which is a linear function of the
neighboring pixels given by(Akx∂s + βk). The feature vector,z,
is modeled as a Gaussian mixture with fixed covarianceσ2

cI and
component means given bȳzk. The references [19, 20] describe the
details of the models construction and derive the EM algorithm for
efficient parameter estimation ofθ.

In order to control the level of regularization, we added a tunable
parameter,λ, to the conditional distribution model so that

p(x) =
1

z
exp



− 1

λ2
u(x)

ff

, (15)

which is simply implemented by scaling the implicit prior by1/λ2

at each step.

4. EXPERIMENTAL RESULTS

(a) Ground truth imagex (b) Noisy imagey

Fig. 3. (a) Ground truth image, (b) image with additive white noise
standard deviationσw = 20

In order to better understand the implicit prior method, we per-
formed simulations for the very simple inverse problem of removing
additive white Gaussian noise from an image. More specifically, we
generated a noisy observed image,y, from the “ground truth” image
x by

y = x + w ,

wherew is i.i.d. Gaussian noise with distributionN(0, σ2
w) with

σw = 20. Figure 3 shows the ground truth imagex, noisy image

y. The 25 grayscale training images were taken from a set of natu-
ral scene photos, and the ground truth image used in testing was not
contained in the set of training images. The images were captured
by a Nikon D90 camera, the RGB values were converted to the luma
values, and then the images were filtered and subsampled down to
approximately363 × 288 resolution, so as to be most suitable for
illustrating results in this publication. Parameters of the MRF con-
ditional probability density,p(xs|x∂s), were estimated as described
in Section 3 usingM = 32 andp = 0.50.

In addition to using the implicit prior, we also ran comparisons
with a range of different parameter values for the generalized Gaus-
sian MRF (GGMRF) [21], and with the more general qGGMRF [11]
which represents the current state-of-the-art in MRF priors for in-
verse problems such as tomography. The energy function of the form
is

u(x) =
1

PσP

X

{i,j}
bi−jρ(∆) (16)

ρ(∆) =
|∆|P

1 + |∆
C
|P−Q

(17)

where∆ = xi − xj , and the parameter constraints are1 ≤ Q ≤
P ≤ 2 and C is a positive threshold. The sum is over all pairs
{i, j} such thati andj are 8-point neighbors and the coefficientsbi

sum to 1, and the ratio ofbi/bj =
√

2 wheni is a 4-point neighbor
andj is an 8-point neighbor. We usedP = 2 and the two values
of Q = 1.0 andQ = 1.2 to illustrate a typical non-Gaussian MRF
prior. If we setP = Q, then this is the form of the generalized Gaus-
sian MRF (GGMRF). In all cases, we adjusted the scale parameter,
σ, to minimize the root mean squared error (RMSE) between the
reconstruction and the ground-truth image. For constancy, we also
adjusted the value ofλ from equation (15) for the implicit prior in
order to achieve minimum RMSE.

Figure 4 shows the root mean squared error (RMSE) of the im-
plicit prior method as a function of the number of iterations. The blue
line shows the RMSE between the restored image and the ground-
truth image; and the black lines shows the RMSE between the re-
stored image and the converged result of the algorithm. The plot
indicates that the MAP estimate converges after about 20 iterations.
In practice, smaller values ofα tend to result in faster convergence;
however, ifα is chosen to be too small then the convergence may not
be robust. In this case,α = 0.45 was larger than necessary, but we
found this value consistently produced robust convergence in a wide
array of examples.

Figure 5 attempts to graphically illustrate the values in the ma-
trix Bs,r after 20 iterations. For a pixels, the color was set to green
= 255∗Bs,s+(0,−1)/Bs,s and red= blue= 255∗Bs,s+(−1,0)/Bs,s,
wherer = s + (0,−1) is the pixel immediately to the left ofs, and
r = s+(−1, 0) is the pixel immediately aboves. This image shows
how the local weights in the surrogate energy function adapt to the
local edge structure in the image.

Figure 6 shows the comparison of MAP image reconstructions
using the implicit prior and the qGGMRF prior with(P = 2.0,
Q = 1.2) in Figure 6(c), and(P = 2.0, Q = 1.0)(d) in Fig-
ure 6(d). In each case, the thresholdC and the regularizationσ were
chosen to achieve the minimum RMSE. The implicit prior result is
slightly sharper with slightly better detail than both the qGGMRF
cases. This conclusion is supported by the objective measures of
RMSE presented in Figure 7 where the implicit prior techinique has
the smallest value among the three techniques. The RMSE of the
qGGMRF prior technique is plotted as a function of the tresholdC



(a) Ground truth (b) Implicit prior

(c) qGGMRF (P = 2, Q = 1.2, C = 0) (d) qGGMRF (P = 2, Q = 1.0, C = 1.5)

Fig. 6. The image restoration comparison between the implicit prior technique andqGGMRF prior technique (P = 2, Q = 1.2, C = 0) and
(P = 2, Q = 1.0, C = 1.5). In each case, the thresholdC and regularization parameter were chosen to achieve the minimum RMSE.

Fig. 4. Convergence of RMSE Fig. 5. The matrixBs,r entry.

while the RMSE of GGMRF prior technique is plotted as a func-
tion of P values. Notice that the result ofC = 0 for the qGGMRF
with P andQ is equivalent to the result ofP = Q for GGMRF
because in both these cases the prior corresponds to the prior term
ρ(∆) = |∆|P , within a multiplicative constant. Interestingly, the
total-variation prior does not produce the minimum RMSE recon-
struction, but it does achieve a value near the minimum .

5. CONCLUSIONS

We introduce a new method of MAP inversion which allows for the
use of a Gibbs distribution which is only implicitly specified through
the conditional probabilities of an MRF. The advantage of this ap-

(a) Comparison with GGMRF (b) Comparison with qGGMRF

Fig. 7. These plots compare the RMSE of the implicit prior with
the RMSE of the GGMRF and qGGMRF priors, respectively. Each
plot varies a parameter of the model. In each case, the regularization
parameter was chosen to achieve the minimum RMSE.

proach is that it allows for the use of a much wider range of MRF
models, which can in turn allow for more accurate modeling of data.
The key to our approach is a method for explicitly computing lo-
cal approximation to the energy function of the Gibbs distribution.
These local approximations serve as a series of surrogate energy
functions in the computation of the MAP inversion.

We provide a simple example of image denoising, but the
method is generally applicable to any continuously valued MRF
prior model, and could be combined with more sophisticated meth-
ods for estimation of the MRF’s conditional distribution. Further-



more, the method has the potential for continuous improvement as
methods for estimation of the MRF’s conditional densities improve.

APPENDIX

A. CALCULATION OF D PARAMETER VECTOR

Assuming that bothu(x; x′) and u(x) are continuously differen-
tiable functions ofx, then the conditions of of (1) and (2) imply
that the functionsu(x; x′) and u(x) must be tangent atx = x′.
Therefore, we have that

∇xu(x; x′)
˛

˛

x=x′
= ∇xu(x)|x=x′ .

Using the form of (3), it is easily shown that

∇xu(x; x′)
˛

˛

x=x′
= d .

Now the partial derivative ofu(x) with respect toxs can be evalu-
ated by using the fact that

1

z
exp {−u(x)} = p(x) = ps(xs|x∂s)p(xr, r 6= s).

It is given by

∂u(x)

∂xs

=
∂

∂xs

{− log p(x)− log z}

=
∂

∂xs

{− log (ps(xs|x∂s)p(xr r 6= s))}

= − ∂

∂xs

log ps(xs|x∂s)−
∂

∂xs

log p(xr r 6= s)

= − ∂

∂xs

log ps(xs|x∂s)

So equating the two expressions, we obtain the result.

ds = − ∂

∂xs

log ps(xs|x∂s)

˛

˛

˛

˛

x=x′

.

B. NECESSARY CONDITIONS ON B

Proof of Condition 1

There must existµ andc such that

u(x; x′) =
1

2
(x− µ)tB(x− µ) + c .

So therefore we know that

u(x) ≤ u(x; x′)

1

z
exp{−u(x)} ≥ 1

z
exp{−u(x; x′)}

Z

p(x)dx =

Z

1

z
exp{−u(x)}dx ≥

Z

1

z
exp{−u(x; x′)}dx

So therefore we know that ifB is not positive definite, then
Z

p(x)dx ≥
Z

1

z
exp{−1

2
(x− µ)tB(x− µ)}dx +

c

z

≥
Z

1

z
exp{−1

2
xtBx}dx =∞ ,

which is a contradiction.

Proof of Condition 2

First we evaluate that the Hessian of the energy function. We can do
this by using the fact that

1

z
exp {−u(x)} = p(x) = ps(xs|x∂s)p(xr, r 6= s) .

Then the partial derivatives ofu(x) with respect toxs andxr are
given by

Hs,r =
∂2u(x)

∂xs∂xr

=
∂

∂xs∂xr

{− log p(x)− log z}

=
∂

∂xs∂xr

{− log (ps(xs|x∂s)p(xr r 6= s))}

= − ∂

∂xs∂xr

log ps(xs|x∂s)−
∂

∂xr



∂

∂xs

log p(xr r 6= s)

ff

= − ∂

∂xs∂xr

log ps(xs|x∂s) .

We next prove that when equations of (1) and (2) hold, then
B ≥ H. So it is enough to show that if the matrixE = B − H is
not positive semi-definite then equations of (1) and (2) are violated.
Define the functiong(x) = u(x; x′) − u(x). Then there exists a
vector,v, such thatvtEv < 0, which implies that

∂2g(x′ + αv)

∂α2

˛

˛

˛

˛

α=0

= vtEv < 0 .

Now we break the proof into two cases. First consider the case when
∂g(x′+αv)

∂α
6= 0. In this case, there exists anǫ such thatg(x′+ǫ) < 0,

and the equations of (1) and (2) are violated. In the second case,
∂g(x′+αv)

∂α
= 0. For this case, since we know that∂2g(x′+αv)

∂α2 < 0,
then we know that for someǫ > 0, g(x′ + ǫ) < 0. This also violates
the equations of (1) and (2), so the result is proved.

Proof of Condition 3

We know that when equations of (1) and (2) hold, then in particular
∀xs and forxr = x′

r for r 6= s u(x; x′) must also upper bound
u(x). This means that∀xs, we know that

1

2
∆2

sBs,s + ∆sds ≥ − log ps(xs|x′
∂s) + log ps(x

′
s|x′

∂s)

where∆s = xs − x′
s andds must be chosen according to equa-

tion (4). Solving forBs,s yields

Bs,s ≥ 2
− log ps(xs|x′

∂s) + log ps(x
′
s|x′

∂s)−∆sds

∆2
s

.

Since we know that this inequality must hold∀xs, then we have that

Bs,s ≥ Ds,s = 2 sup
xs 6=x′

s



− log ps(xs|x′
∂s) + log ps(x

′
s|x′

∂s)−∆sds

∆2
s

ff

Now observe that

Hs,s = − ∂2

∂x2
s

log ps(xs|x∂s)

= lim
xs→x′

s

2



− log ps(xs|x′
∂s) + log ps(x

′
s|x′

∂s)−∆sds

∆2
s

ff

Which implies thatBs,s ≥ Ds,s ≥ Hs,s.



C. SURROGATE FUNCTIONS FOR EXPONENTIAL
MIXTURES

Proof of Lemma

log f(x) = log f(x′) + log

„

f(x)

f(x′)

«

= log f(x′) + log

 

X

k

wk

f(x′)
exp{−uk(x)}

!

= log f(x′) + log

 

X

k

„

wk exp{−uk(x′)}
P

k′ wk′ exp{−uk′(x′)}

«

× exp
˘

−uk(x) + uk(x′)
¯´

= log f(x′) + log

 

X

k

π̃k exp{−uk(x) + uk(x′)}
!

≥ log f(x′) +
X

k

π̃k{−uk(x) + uk(x′)}

The last inequality results from Jensen’s inequality. Taking the neg-
ative of the final expression results in

− log f(x) ≤ − log f(x′)+
X

k

π̃k{uk(x′)−uk(x)} = Q(x; x′) .

and evaluating this result forx = x′ results in− log f(x′) =
Q(x′; x′).
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