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Abstract
Computed Tomography (CT) Image Reconstruction is an im-
portant technique used in a variety of domains, including medi-
cal imaging, electron microscopy, non-destructive testing and
transportation security. Model-based Iterative Reconstruction
(MBIR) using Iterative Coordinate Descent (ICD) is a CT al-
gorithm that produces state-of-the-art results in terms of image
quality. However, MBIR is highly computationally intensive
and challenging to parallelize, and has traditionally been viewed
as impractical in applications where reconstruction time is crit-
ical. We present the first GPU-based algorithm for ICD-based
MBIR. The algorithm leverages the recently-proposed concept
of SuperVoxels [1], and efficiently exploits the three levels of
parallelism available in MBIR to better utilize the GPU hard-
ware resources. We also explore data layout transformations to
obtain more coalesced accesses and several GPU-specific opti-
mizations for MBIR that boost performance. Across a suite of
3200 test cases, our GPU implementation obtains a geometric
mean speedup of 4.43X over a state-of-the-art multi-core im-
plementation on a 16-core iso-power CPU.
Categories and Subject Descriptors I.4.5 [Image Pro-
cessing and Computer Vision]: Reconstruction—Transform
methods; D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel Programming
Keywords Computed Tomography, Model Based Iterative
Reconstruction, Iterative Coordinate Descent, Graphics Pro-
cessing Units
⇤ Author conducted this work while at Purdue University

1. Introduction
Computed tomography (CT) is an imaging technique that
makes it possible to visualize the internals of an object (in-
cluding the human body) from a limited number of lower-
dimensional projections. Model-based iterative reconstruc-
tion, or MBIR [2, 3], is a CT technique in which a model
based upon the geometry of the equipment is used to perform
the reconstruction. MBIR, and more generally regularized
iterative reconstruction methods, are known to produce bet-
ter quality images compared to the alternative class of direct
methods, which are commonly referred to as filtered back
projection (FBP) [4, 5, 6, 7, 2, 3, 8]. Unfortunately, MBIR
can require up to two orders of magnitude more compute op-
erations than FBP, and is therefore regarded as impractical in
scenarios where reconstruction time is paramount.

The MBIR method we focus on in this work is based
on an Iterative Coordinate Descent (ICD) algorithm [2, 9,
10]. This algorithm iteratively updates voxels (3D-pixel) in
the reconstructed image. A voxel update requires reads and
writes of data that are shared among multiple voxels, and so
the ICD algorithm does not exhibit explicit data parallelism.
Fortunately, the iterative nature of the algorithm makes it
error resilient, and a careful choice of voxels allows them
to be updated in parallel [11, 12].

We are unaware of any previous effort to port ICD-based
MBIR to GPUs. We attribute this to the stringent require-
ments GPU architectures impose to obtain high perfor-
mance, such as the need for a high degree of parallelism,
coalesced memory accesses, and minimal synchronization
and control divergence.

The first challenge in porting MBIR to GPUs is par-
allelism exploitation. Broadly speaking, there are two key
levels of parallelism in MBIR: the computation of a sin-
gle voxel and the computation of different voxels in paral-
lel. The former involves reduction-style parallelism and the
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latter requires updating shared data structures; hence, it is
fair to say that MBIR lacks explicit, GPU-friendly data par-
allelism. The state-of-the-art parallel MBIR algorithm ex-
ploits inter-voxel parallelism on multi-core CPUs [1]. How-
ever, the CPU algorithm employs a much lower degree of
parallelism than is needed to exploit the thousands of cores
that GPUs offer. Restricting the synchronization cost in the
presence of high thread counts is a challenge. The first con-
tribution of this paper is a parallel algorithm that exploits
multiple levels of parallelism on the GPU so as to achieve
high GPU utilization.

The second challenge results from the irregular memory
access pattern. MBIR is known to be a memory bandwidth
intensive algorithm. Unfortunately, the memory accesses in
MBIR are inherently irregular. Each voxel accesses locations
within a 2D array in a sinusoidal pattern (Fig. 1), greatly lim-
iting the caching benefits. Past research [1] has shown that
grouping neighboring voxels into larger chunks, called Su-
perVoxels (SVs), and copying the data for a SuperVoxel into
a dedicated buffer, called an SVB, can greatly improve cache
locality and prefetching benefits on CPUs. GPUs, however,
do not benefit much from automatic caching because the
cache size per thread is very small. Moreover, GPUs lack
hardware prefetching. The second contribution of this pa-
per is a data layout transformation that obtains coalesced
accesses for MBIR on GPUs. This transformation involves
padding parts of the data, and obtains higher performance,
despite performing additional computations, due to signifi-
cantly improved GPU compute efficiency.

Since MBIR is a memory-bandwidth limited algorithm,
the third contribution of this paper is a set of GPU-specific
optimizations to improve memory bandwidth. First, a large
number of active threads are required to utilize memory
bandwidth. However, the MBIR GPU kernel requires a high
register count per thread, limiting the number of active GPU
threads. To overcome this issue, we migrate thread-local
variables from registers into the GPU shared memory (on-
chip programmer-managed L1 cache), and thereby obtain
higher multi-threading. We also explore the use of the tex-
ture cache and improve the bandwidth of L2 cache accesses.

Although we demonstrate an ICD-based MBIR imple-
mentation on GPUs, the aforementioned issues and solutions
are characteristic of ICD based optimization methods, which
are used in a broader range of applications [1].

In summary, the contributions of this paper are as follows:

• This paper presents GPU-ICD, the first GPU algorithm
for ICD-based MBIR, which exploits three levels of par-
allelism : i) inside a voxel’s computation, ii) across mul-
tiple voxels inside an SV, and iii) across multiple SVs.

• The paper proposes data layout transformations that sub-
stantially increase coalesced memory accesses.

• The paper proposes a set of GPU-specific optimizations
for MBIR.

With the above contributions, the GPU implementation
achieves a geometric mean speedup of 4.43X over the state-
of-the-art parallel implementation on an iso-power 16-core
CPU [1].

The rest of this paper is organized as follows. Section 2
describes CT, the MBIR method, and the fastest-known CPU
implementation. It also provides background on the architec-
tural and programming model for GPUs. Section 3 describes
our approach of mapping MBIR parallelism to GPUs, and
presents the corresponding algorithm. Section 4 details our
data layout transformations and GPU-specific optimizations.
Section 5 describes experimental results that evaluate the
proposed GPU implementation of MBIR. Section 6 dis-
cusses how GPU-ICD can be applied to a broader range of
applications. Section 7 discusses related work, while Sec-
tion 8 concludes the paper.

2. Background
This section begins with a brief description of the CT pro-
cess. Next, it presents an outline of the fastest CPU imple-
mentation. The section ends with an overview of the GPU
architecture and programming.

Fig. 1a illustrates a simple representative parallel beam
X-ray CT apparatus. An X-ray source and a sensor array that
detects X-rays are mounted on a rotating gantry, while the
object to be imaged remains stationary. For each view angle,
or ✓, the recorded measurements from the sensors (which
represent the attenuated X-rays that have passed through the
object) are stored in a single column of a data structure,
called the sinogram (Fig. 1b). Different sensors pick up data
for different sets of voxels according to the position of the
projection rays terminating on each sensor at each ✓.

2.1 Computed Tomography and MBIR
Fig. 1b shows the captured measurements for the voxels
V1 and V2 for different values of ✓. The trajectories of
the voxels in the sinogram show a sinusoidal pattern. The
objective of MBIR is to reconstruct the object from the
sinogram data.

Alg. 1 shows the mechanism to update a single voxel,
which forms the core of ICD [2, 9, 10], the algorithm tradi-
tionally used in MBIR. The algorithm computes two values,
theta1 and theta2. The error sinogram, e, represents y�Ax,
where y is the measurement sinogram, x is the image to be
reconstructed, and A represents the system matrix that en-
codes the CT equipment geometry. Intuitively, the A ma-
trix entries capture the radio density incident upon a voxel,
which is proportional to the distance from the X-ray source.
The weighing matrix, w, contains the inverse variance of the
scanner noise. The theta1 and theta2 values are then used to
find the new value of the voxel v, which belongs to x. Fi-
nally, the error sinogram is updated to reflect the changed
value of v. Alg. 1 repeatedly updates voxels until conver-
gence is reached. Faster convergence is achieved by updat-
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(a) CT Equipment Operation : Different sensors may collect data
belonging to a given voxel, depending upon ✓

(b) Data collected (sinogram) for voxels V1 and V2 : Only a
partial sinogram is shown here

Figure 1: Computed tomography geometry and measurement data organization

Algorithm 1: Updating Single Voxel (Foundation of all
ICD-based techniques)

Input: v - the voxel value to be updated, e- error sinogram, w
- weights, A - system matrix representing the CT
equipment geometry

Output: v - updated voxel value, e - updated error sinogram
1 theta1=0;
2 theta2=0;
// Calculate theta1, theta2

3 foreach i 2 ✓ do
4 foreach (j 2 sensors containing measurements for the

voxel at angle i) do
5 theta1 += -wij⇥ A[voxel number]ij⇥ eij ;
6 theta2 += wij⇥ A[voxel number]2ij ;
// func is computationally inexpensive

7 delta func(v, theta1, theta2, neighbors of v);
8 v v + delta; // update the voxel
// Update error sinogram

9 foreach i 2 ✓ do
10 foreach (j 2 sensors containing measurements for the

voxel at angle i) do
11 eij -= A[voxel number]ij⇥ delta;

ing voxels in a randomized order [13] and by zero-skipping,
i.e., skipping voxels whose values, along with all of their
neighbors, are zero.

2.2 Parallel MBIR on the CPU
Several challenges arise in obtaining high performance from
the ICD algorithm. We now describe the state-of-the-art
adaptation of ICD, Parallel SuperVoxel ICD (PSV-ICD) [1]
which was proposed to improve performance on multi-core
CPUs.

The sinusoidal access pattern (Fig. 1b) makes caching
and prefetching ineffective. Because neighboring voxels ac-
cess access neighboring sinogram data, PSV-ICD groups to-

Figure 2: SuperVoxel buffer (SVB): linearizes data ac-
cesses to a great degree, achieving better cache locality and
prefetching on CPUs

gether neighboring voxels into a SuperVoxel (SV). PSV-ICD
then creates an explicit buffer, the SuperVoxel buffer (SVB),
for each SV and copies the SV’s sinogram data into it. This
improves locality of the data, and increases the linearity of
accesses, which makes prefetching more effective. Fig. 2
shows a SuperVoxel, and it also displays the corresponding
sinogram accesses for the SuperVoxel. The weights also dis-
play the sinusoidal access pattern and are allocated in a simi-
lar data structure. When appropriately sized, SVBs can often
fit in the CPU’s L1 cache.

Multiple voxels can potentially be simultaneously up-
dated using multi-core parallelism; however, because of the
sinusoidal access pattern, any two voxels are bound to par-
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Algorithm 2: PSV-ICD Algorithm
Input: A - system geometry matrix, e - error sinogram, w -

weight sinogram
Output: Converged reconstructed image

1 Create SVs;
2 iter = 1;
3 while image not converged do
4 if iter == 1 then
5 setOfSVsToUpdate all SVs;
6 else if iter is even then
7 setOfSVsToUpdate top 20% SVs by the update

amount;
8 else
9 setOfSVsToUpdate random 20% SVs;

10 foreach sv 2 setOfSVstoUpdate do // done in
parallel on CPU cores

11 create weights SVBw;
12 create error SVBe;
13 SVBe’ SVBe;
14 foreach voxel in sv do
15 updateVoxel(voxel, SVBe, SVBw, A);
16 SVB�e SVBe’ - SVBe;
17 lock();
18 e e - SVB�e;
19 unlock();
20 iter++;

tially share error sinogram data, as shown by the fainter cells
in Fig. 1b. Therefore, simultaneous updates from different
voxels to the same sinogram entry must be performed in a
critical section. PSV-ICD parallelizes across different Super-
Voxels, while sequentially updating voxels within an SV, as
shown in Algorithm 2. Since each SV has a private SVB, up-
dating the error sinogram is deferred until all voxels in the
SV are done, and then the difference between the updated
error SVB and the original error SVB is computed and syn-
chronously added back to the original error sinogram.

2.3 GPU Architecture and Programming Model
We briefly describe the GPU architecture and programming
model using the example of NVIDIA’s Maxwell Titan X and
CUDA, which were used in our work.

The GPU’s cores are organized into 24 streaming mul-
tiprocessor units (SMMs), each having 128 CUDA cores.
High-performance GPU programs are typically written us-
ing the CUDA programming model, where the program-
mer offloads parallel sub-programs, called kernels, onto the
GPU. The CPU and GPU have separate memory spaces
among which programmers perform data transfers explic-
itly. Threads in a kernel are divided into threadblocks, which
are subdivided into warps. A warp represents the SIMD
width of the GPU. Threads of a threadblock can synchro-
nize using the __syncthreads() function call. There is no
such primitive available for threads belonging to different
threadblocks. Each thread in the kernel has access to regis-

ters, on-chip programmer-managed cache (shared memory),
and the device (global) memory. Multiple threadblocks exe-
cute on each SMM. Resources of each SMM, such as shared
memory, registers, etc. are partitioned among the thread-
blocks executing on it. Thus, larger requirements from the
threadblocks can constrain the maximum concurrent thread-
blocks executing on an SMM. Occupancy is the metric of the
achieved degree of multi-threading. It is the ratio of coexist-
ing GPU threads to the maximum number of threads that can
reside on the GPU.

GPUs have low cache sizes per thread. In the Maxwell
architecture, L1 cache and texture cache are unified, and
have a size of 24KB. The unified cache is shared among
the threads of an SMM. The unified cache can only possess
data that remains read-only across kernels. By default, only
the local data and textures are stored in the unified cache.
There is a common L2 cache for all SMMs, sized 3MB.
It caters to all global data accesses. If threads in a warp
access neighboring memory locations, these accesses may
get coalesced into only a single memory access, improving
memory bandwidth.

3. Mapping MBIR Parallelism to the GPU
This section describes the proposed mapping of MBIR par-
allelism to the GPU. Section 3.1 describes the levels of par-
allelism that we exploit. Section 3.2 presents our thread-
mapping scheme, and the resulting GPU-ICD algorithm.

3.1 Understanding the MBIR Parallelism
Three levels of parallelism exist in the processing of each
image through the MBIR algorithm.

Intra-voxel parallelism - Updating each voxel requires
computation of theta1 and theta2 (steps 3-6 of Algorithm 1).
This process requires a dot-product of size (number of
views) ⇥ (average channels per voxel per view), which is
large in practice (>2000). Reduction-style parallelism is ex-
ploited for this operation. Updating the error sinogram after
the new voxel value is computed (steps 9-11 of Algorithm 1)
can also be performed in parallel.

Intra-SV parallelism - Voxels inside a given SV can be
updated in parallel, as long as the updates to the error sino-
gram entries do not overlap. The number of voxels in an SV
can be high, e.g., an SV of side 30 would have 900 voxels,
allowing significant parallelism.

Inter-SV parallelism - Multiple SVs can be operated on
in parallel as well. However, the degree of available paral-
lelism along this dimension is modest, e.g., for an image of
512⇥512, an SV side of 30 would lead to 289 SVs.

The PSV-ICD algorithm only exploits the top-most level
of parallelism, i.e., inter-SV parallelism. As the number
of SVs in a typical reconstruction is higher than the CPU
core count, this approach provides sufficient parallelism. Al-
though SVBs can be larger than the CPU L1 cache, since
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Figure 3: GPU Parallelism Mapping - SuperVoxels with the same color belong to the same checkerboard group (marked
by circled numbers). They do not share any boundaries, and therefore can be concurrently updated. Assigning consecutive
threadblocks to the same SV increases achieved L2 bandwidth.

each CPU core has its own private L2 cache, SVBs for each
SV can fit in it, and high locality can be achieved. On the
other hand, intra-SV parallelism can lead to false sharing
among the CPU cores. The fine-grained intra-voxel paral-
lelism can be exploited by vector instructions, but the irreg-
ular memory access pattern hinders autovectorization.

In contrast to the CPU (where a few tens of threads
suffice), orders-of-magnitude more GPU threads must be
created to ensure that cores are utilized and memory latency
is effectively hidden. The number of SVs ranges in the low
hundreds. Hence, exploiting only inter-SV parallelism is
insufficient. The L1 cache size per thread is fairly small
on GPUs (making it difficult to contain an SVB), and no
hardware prefetching is present. Unlike CPUs, the L2 cache
latency is at least an order of magnitude higher than the L1
latency, lowering SVB caching benefits. One way to gain
benefits from inter-SV parallelism alone could be for each
SMM to operate on a single SV at a time, so that sufficient
L1 cache is available. However, this severely limits the GPU
occupancy, leading to poor performance.

Exploiting intra-SV parallelism alone faces similar is-
sues. The voxel count per SV is of the order of a few hun-
dreds, and fails to exploit sufficient GPU parallelism. Simi-
larly, intra-voxel parallelism has a low degree of parallelism.
One approach, therefore, would be to use both inter-SV and
intra-SV parallelism. Different threadblocks then may op-
erate on different SVs, while threads in a threadblock may
update individual voxels in parallel. However, this approach
eliminates any possibility of coalesced accesses to the sino-
grams. Our approach therefore employs all three levels of
parallelism, as we describe next.

3.2 Parallelism Mapping
Fig. 3 shows our parallelism mapping scheme, and Alg. 3
describes the corresponding GPU-ICD algorithm. Unlike
PSV-ICD, our mapping employs all three levels of paral-
lelism (intra-voxel, intra-SV, and inter-SV) identified above.
For each SV, multiple CUDA threadblocks are launched,
partitioning the voxels in the SV among themselves. Zero-
skipping (Sec. 2) can lead to load imbalance among the dif-
ferent threadblocks, therefore our algorithm performs dy-
namic scheduling of voxels among threadblocks. Adjacent
SVs share boundary voxels, as in PSV-ICD, to obtain faster
convergence.

Since SVB size is much larger than the L1 cache size
on GPUs, achieving good cache locality via L1 cache or
shared memory is impossible. Fortunately, SVB sizes are
small enough to fit in the GPU L2 cache. Although GPU
L2 latencies are high, our parallelism mapping scheme in-
creases the obtained L2 bandwidth by launching multiple
consecutive threadblocks per SV to make the most of the
L2 temporal locality. The amount of parallelism in this di-
mension is limited by the bound on the exploitable intra-SV
parallelism.

Each threadblock updates one voxel at a time, exploiting
intra-voxel parallelism to compute the theta1 and theta2 val-
ues. The partial values computed by each thread are stored
into the shared memory, and then reduced using a fast tree-
style reduction [14]. Only a single thread of the threadblock
updates the voxel value. Writing back to the error sinogram
is again performed in parallel by the threads of a thread-
block. However, as different threadblocks may be writing to
the same sinogram locations, this write-back requires atomic
updates.
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Algorithm 3: GPU-ICD Algorithm
Input: A - system geometry matrix, e - error sinogram, w -

weight sinogram
Output: Converged reconstructed image

1 Function MBIR_GPU_Kernel(SVBs, A)
// Each kernel thread executes this

2 tid thread identifier;
3 svID getSVId(tid);
4 while (voxel atomicFetch(svId)) do // all

threads in a threablock get the same
voxel

5 Calculate partial theta1 and theta2 and store them in
shared memory;

6 __syncthreads();
7 Perform tree-style reduction for theta1 and theta2;
8 __syncthreads();
9 if tid==0 then

10 Update voxel value;
11 __syncthreads();
12 Atomically write back to the error SVB;
13 __syncthreads();

14 Create SVs;
15 iter 1;
16 while image not converged do
17 if iter == 1 then
18 setOfSVsToUpdate all SVs;
19 else if iter is even then
20 setOfSVsToUpdate top 25% SVs by the update

amount;
21 else
22 setOfSVsToUpdate random 25% SVs;
23 cb makeCheckerBoardGroups(setOfSVsToUpdate);
24 for (k=0; k<4; k++) do

// Launch GPU kernels, each having
BATCH_SIZE SVs

25 for (i=0; i< cb[k].SVCount; i+= BATCH_SIZE) do
26 if (cb[k].SVCount - i) < threshold then
27 break;

// done in parallel via GPU kernel
28 Create SVBs for the batch in the GPU memory;
29 MBIR_GPU_Kernel(SVBs, A);

// done in parallel via GPU kernel
30 Atomically update error sinogram for all SVs in the

batch;
31 iter++;

A key distinction of the GPU-ICD algorithm is that un-
like PSV-ICD, where the error sinogram is updated with par-
tial deltas (SVB�e in line 18 Algo. 2), immediately after
each SV is updated all error sinogram updates are performed
once voxel updates across all SVs in a GPU kernel have
finished. Similarly, all SVBs are created prior to the exe-
cution of the MBIR_GPU_Kernel. The GPU-ICD algorithm
does this to avoid cache pollution engendered by SVB�e and
SVB0

e accesses during the execution of MBIR_GPU_Kernel.

Instead, SVB generation and error sinogram write-backs are
performed via separate individual GPU kernels.

Since SVs share boundaries, simultaneous updates of
neighboring SVs may lead to erroneous voxel values on
the boundaries. This occurs since the error sinogram and
the voxel value lose the necessary correspondence. The
PSV-ICD algorithm updates fewer SVs in parallel at a time
(~16) and does not exploit intra-SV parallelism, making the
chances of a boundary voxel being updated simultaneously
in parallel negligible. However, the GPU-ICD algorithm
generally updates a higher number of SVs concurrently and
employs intra-SV parallelism, and therefore is more likely
to perform simultaneous boundary voxel updates. To avoid
this, the GPU-ICD algorithm partitions SVs into four sets in
a checkerboard pattern, as shown in Fig. 3. SVs in a given
group, marked by the same color in Fig. 3, cannot be neigh-
bors and can be updated in parallel.

Load imbalance is the last issue overcome by the GPU-
ICD algorithm. The algorithm launches up to BATCH_SIZE
SVs at a time on the GPU. However, randomization in the
SV ordering, paired with the distribution into four checker-
board sets, may result in fewer SVs than BATCH_SIZE get-
ting launched in a GPU kernel. This results in GPU under-
utilization. To overcome this issue, the GPU-ICD algorithm
increases the fraction of SVs to be updated to 25% in each
iteration, compared to 20% in the PSV-ICD algorithm. This
increases the SV availability in each of the four groups. Fur-
thermore, GPU-ICD only launches a kernel if the number of
SVs to be launched is above a threshold, which is set to be
BATCH_SIZE/4.

4. Performance Optimizations for GPU-ICD
In this section, we describe additional optimizations that
were explored to improve the performance of GPU-ICD.
Section 4.1 presents a data layout transformation to achieve
coalesced accesses. Section 4.2 presents a mechanism to
exploit the GPU shared memory, while Section 4.3 describes
our approach to increase the achieved memory bandwidth.

4.1 Data Layout Transformations to Obtain Coalesced
Accesses

The accesses made per voxel to an SVB are not completely
linear, as seen in Fig. 4a. For each location in the sinogram
associated with a voxel, an associated A-matrix element
needs to be accessed. All these A-matrix elements, across all
views, are placed in memory in a contiguous fashion, using
a sparse matrix format. The data in both the A-matrix and
the SVBs are stored in a sensor-channels-major order. In our
first naive implementation, threads in a threadblock operate
on these data in a sensor-channels-major order as shown by
the highlighted cells in Fig. 4a, and therefore fail to obtain
coalesced accesses. Moreover, the starting location for each
view for each voxel must be pre-calculated and then read
before the SVB could be accessed.
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(a) Original data layout - Lighter cells contain data for a
given voxel in the SVB. Accesses to both the SVB and

A-matrix are in the sensor-channels order, and hence are
uncoalesced.

(b) Transformed layout - The SVB and A-matrix are both transposed. Data
accesses are now in the view order. The A-matrix is zero-padded. Each
chunk in an SVB and its corresponding A-matrix chunk are now perfect

rectangles.
Figure 4: Data layout transformation to obtain coalesced accesses

To obtain coalesced accesses, we first transpose the SVB,
i.e., data is stored in a view-major order instead of in the
sensor-channels-major order. This naturally increases the
run-length (length of contiguous accesses per row). How-
ever, the number of elements in each row to be operated on is
highly variable because of the sinusoidal access pattern, and
distributing them fairly among threads becomes difficult.
Our scheme overcomes this issue. First, we make the SVB
perfectly rectangular by zero-padding, as shown in Fig. 4b,
and place each row at an aligned address. Next, the SVB
data required per voxel can be conceptually thought of being
split into chunks of a given width. Each chunk is a rectan-
gular block, containing few non-voxel-related elements. The
next layout transformation zero-pads the A-matrix data so
that each SVB chunk can be mapped to an equivalent A-
matrix chunk. The computation now simply involves read-
ing each row from the chunks of the SVB and A-matrix, and
performing an element-by-element multiplication, achiev-
ing coalesced accesses. The zero-padding of the A-matrix
ensures that non-voxel-related elements in the SVB do not
affect the computation correctness. Although zero-padding
increases the amount of computation, and requires additional
data to be read, the benefits obtained by coalesced accesses
outweigh these costs. In the voxel update mechanism, the
chunks get distributed among the warps of the threadblock
that is updating the voxel. To do so, only the starting lo-
cations and the number of rows for each chunk need to be
pre-computed and accessed, overcoming the penalty of per-
view starting location look-ups in the naive implementation.

4.2 Achieving High Occupancy via Register Spilling to
Shared Memory

GPUs hide their longer (than CPU) memory latency by
bringing in a new warp whenever a running warp is waiting
on a memory access. Because MBIR performance is largely
limited by memory accesses, a large number of warps must
be available on each SMM.

Our initial GPU-ICD implementation used 44 registers
per thread. Since registers in an SMM are partitioned among
threadblocks of the SMM, occupancy is limited by the high
register requirement. For a threadblock of 256 threads, oc-
cupancy was being restricted to 50%. To achieve higher oc-
cupancy, we used the maxRegCount flag with nvcc and
restricted the register count to 32 per thread, achieving 100%
occupancy. We observed only a 6% performance improve-
ment by doing this. This was because restricting the register
count led to increased accesses to the GPU L1 cache, and the
L1 cache hit rate remained poor (30%). The spilled regis-
ters were frequently being fetched from the L2 cache, whose
high latency was limiting performance.

To address this issue, we manually placed some of the
variables from each thread into shared memory. This allowed
the MBIR_GPU_Kernel to be compiled with 32 registers per
thread. We again achieved 100% occupancy, and obtained a
significant performance boost, as will be shown in Section 5.

4.3 Increasing Achieved Memory Bandwidth
Since MBIR is a memory bound algorithm, achieving high
memory bandwidth is essential to obtaining high perfor-
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mance. The primary way to achieve high bandwidth is to
increase locality, resulting in higher cache hit rates. On the
GPU, this is typically achieved by storing reusable data in
the shared memory. Shared memory is partitioned across
threadblocks. Hence, the larger the shared memory require-
ment, the smaller the number of concurrent threadblocks. In
GPU-ICD, SVBs are the key data structures to be consid-
ered for placement in the shared memory owing to their high
reuse. Unfortunately, the SVBs are large, and placing them
in the shared memory would severely lower the obtained oc-
cupancy. e.g., an SV of side 6 voxels results in an SVB of
size 135KB for 720 views, which goes beyond the shared
memory size. For an SV of side 4, the SVB would require
90KB. As the shared memory size on an SMM is 96KB, only
a single threadblock can execute on the SMM. The maxi-
mum number of threads a threadblock could meaningfully
use is limited by the number of views, i.e., 720, in our case.
Hence, the achieved occupancy would only be 35%. Further,
since such an SV would have only 16 voxels, intra-SV paral-
lelism, as well as the reuse frequency would get diminished
significantly. Therefore, we had to place SVBs in the global
memory. To improve the achieved memory bandwidth, we
next present two techniques.

4.3.1 Reading the A-Matrix through Texture Cache
The A-matrix is a read-only data structure. Therefore, it
makes sense to read it via the combined Texture memory/L1
cache datapath on the Maxwell architecture. This is achieved
by explicitly marking the data as read-only, and specifying
the __restrict keyword that allows the compiler to read
the data via the texture cache.

Since A-matrix accesses have little temporal locality, they
consume high memory bandwidth, forming a bottleneck.
The A-matrix data is stored as floats, requiring four bytes
per entry. To reduce the memory bandwidth consumed, our
scheme converts this data into unsigned chars, needing
only a byte per entry. Each A-matrix entry is normalized to
a byte-long equivalent A-matrix entry as follows:

newAEntry= (unsigned char) (AEntry/maximum of all
A-matrix entries for the voxel)*255 + 0.5

The division by the maximum performs normalization,
while the multiplication by 255 brings out the MSBs in the
8-bit unsigned char. The normalization allows for more
bits in the float entry to get transferred to the char.
Adding 0.5 achieves rounding instead of truncation. The
maximum A-matrix entry per voxel needs to be stored and
referred to when calculating the original float value back
from the char, prior to the actual computation. The over-
head of storing and reading this extra data gets compensated
for by the reduction in the total data read, as will be shown
in Section 5.

4.3.2 Obtaining Higher L2 Bandwidth
The SVBs, which are placed in the global memory, get ac-
cessed through the L2 cache. The L2 cache is large enough
to hold multiple SVBs. Although the SVB accesses achieve
a high hit rate on the L2 cache, it is essential to obtain high
L2 bandwidth in order to gain high performance. We found
that accessing data through L2 as type float only obtained
50% of the L2 bandwidth on the Titan X GPU. However, we
found that accessing the data as type double can achieve
100% of the L2 bandwidth. In the GPU-ICD algorithm, we
read the SVB data in this manner. The error sinogram up-
dates, however, are read-and-write atomic operations con-
ducted via CUDA atomic addition functions, and hence can-
not be performed as double.

5. Experiments
5.1 Experimental Setup
Inputs: The benchmark data set used in this evaluation com-
prises 3200 test cases obtained from an Imatron C-300 scan-
ner from ALERT Task Order 3 (TO3) [4]. The slices in this
dataset are generated using parallel beam projection, and
have reconstruction image size of 512x512. The data is gen-
erated using 720 uniformly distributed views between 0 and
180 degrees. The number of sensor array channels used was
1024.

System setup: Our GPU experiments are performed with
Nvidia CUDA Titan X GPU which comprises 24 SMMs,
each having 128 cores, clocked at 1127 MHz. The GPU has a
device memory of 12GB. The GPU node contained an Intel
i7-6700K CPU with 16GB RAM. The GPU program was
compiled with nvccwith -O3 option. The CPU experiments
were conducted on a node with two sockets, each containing
Intel Xeon E5-2670 CPU, running at 2.6GHz. The total
number of cores was 16, with 64GB RAM. The CPU code
was compiled with icc with -O3 option. The TDP of the
CPU (230W) is comparable to that of the GPU TDP (250W).

5.2 Overall Performance
Table 1 presents the execution time comparison between the
CPU and GPU versions of MBIR. Owing to zero-skipping,
neither PSV-ICD, nor GPU-ICD update all voxels in each
iteration. Hence, we measure convergence using equivalent
iterations or equits. An update of N voxels, where N is
the total number of voxels in the image, is one equit. We
first obtain the golden output image by executing the tra-
ditional ICD algorithm for 40 equits, by when it is known
to converge. For PSV-ICD and GPU-ICD, we evaluate al-
gorithmic convergence by measuring the root-mean-square
error (RMSE) with respect to the golden image in Hounsfield
Units1. We report execution time when the RMSE goes be-
low 10HU, since previous work [15] has found that no visi-
1 The Hounsfield Unit (HU): a CT measurement unit of the object’s radio
density compared to the radio density of distilled water.
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Table 1: Comparison of PSV-ICD and GPU-ICD MBIR Performance.
Mean Ex-
ecution
Time (s)

Mean
Speedup over
Sequential
ICD

Std. Dev.
of Exec.
Time

SV Side
Used

Average
#Equits to
Converge

Time per
Equit (s)

Other parameter
values

PSV-ICD
(CPU) 138.26X 1.801 0.535 13 4.8 0.41

GPU-ICD 0.407 611.79X
(4.43X over
PSV-ICD)

0.083 33 5.9 0.07 Chunk Width: 32,
#Threadblocks/SV:
40, #SVs/batch: 32

ble artifacts remain at this level. Sequential ICD refers to the
publicly available, single-core MBIR implementation [16].
The geometric mean speedup achieved by GPU-ICD over
the sequential ICD is 611.79X, while over PSV-ICD is
4.43X. The PSV-ICD time per equit is 5.86X higher than
for GPU-ICD. However, GPU-ICD requires more equits to
converge. Table 1 also shows that the standard deviation in
PSV-ICD runs is much higher than in the GPU-ICD ones.
We suspect that GPU-ICD is being limited by the span, low-
ering the deviation.

Fig. 5 compares the convergence speeds of GPU-ICD
and PSV-ICD on a representative image. GPU-ICD achieves
convergence much rapidly compared to PSV-ICD.

Figure 5: Convergence of PSV-ICD (CPU) and GPU-ICD
Algorithms

Table 1 presented several parameters used in the GPU-
ICD execution. We tuned these parameters on a representa-
tive image, and used those values for rest of the images. We
observed however that the best performing parameter val-
ues differ across images, with a significant execution time
variation. Therefore, the GPU performance in Table 1 can
be improved with image-specific parameter selection. Next,
we present performance analysis of these parameters on our
representative image. To do so, we change one parameter
value at a time, while retaining the other parameter values as
shown in Table 1.

Figure 6: Speedup obtained by data layout transformed
code vs. a code with the default data layout

5.3 Performance Impact of the Optimizations
Fig. 6 shows the performance benefits obtained by the pro-
posed data layout transformation (Sec. 4.1). The speedup is
calculated over the naive GPU code where the default data
layout was employed. For smaller widths, data chunks for
a voxel are small in size, lowering the total achieved coa-
lesced access count. For larger chunk widths, the penalty of
additional computation and memory accesses becomes pro-
hibitive. The chunk width of 32 performs the best, obtaining
a speedup of 2.1X. Widths that are multiples of warp size
(i.e 32) perform better because they achieve aligned mem-
ory accesses.

Table 2: Impact of shrinking the A-matrix and reading it
via Texture cache

Reading A-matrix
from (memory,
type)

Execution
Time (s)

Achieved Band-
width of Unified
L1/Texture Cache
(Hit Rate%)

(Global, float) 0.48
(Texture, float) 0.45 519GB/s (41.78)
(Global, char) 0.44
(Texture, char) 0.41 702GB/s (60.36)

Table 2 summarizes the benefits of compressing and read-
ing the A-matrix via unified L1/texture cache. Shrinking the
A-matrix lowers the memory footprint and achieves higher

215



hit rate on the unified L1/texture cache, achieving a 1.17X
speedup.

Table 3: Impact of several GPU-specific optimizations
Optimization Turned Off Slowdown
Reading Sinogram as double 1.053X
Placing Variables on the Shared Memory 1.124X
Exploiting Intra-SV Parallelism 6.251X
Dynamic voxel distribution 1.064X
Setting threshold for batch sizes 1.099X

Table 3 measures impact of five optimizations. The im-
pact is measured in terms of the slowdown caused when op-
timizations were turned off. The first two are i) reading sino-
grams as double, and ii) spilling registers on the shared
memory in order to increase occupancy. These optimiza-
tions were described in Section 4. The prior increased the
achieved L2 bandwidth from 395 GB/s to 472 GB/s. The lat-
ter increased the achieved shared memory bandwidth from
398 GB/s to 456 GB/s. The achieved unified L1/Texture
cache bandwidth was 702 GB/s, while for the device mem-
ory, it was 152 GB/s. Summed up, the total bandwidth
achieved is 1802 GB/s, which is 5.36X that of the maxi-
mum device memory bandwidth (336 GB/s) for the Titan
X GPU. Achieving such high memory bandwidth reduces
the memory access bottleneck known to exist in MBIR. The
third optimization in Table 3, i.e., intra-SV parallelism, has
the highest performance impact measuring about 6X. Ex-
ploiting intra-SV parallelism is therefore crucial on GPUs.
The last two optimizations (from Section 3) deal with load
imbalance issues. The dynamic distribution of voxels of an
SV among threadblocks overcomes the load imbalance that
arises in static distribution owing to the zero-skipping. Set-
ting a threshold on the number of SVs to be launched in
a batch removes the GPU underutilization penalty in cases
where only a few SVs are launched.

5.4 Performance Impact of Tuning Parameters
Unlike PSV-ICD, where only the SV side length impacts the
achieved performance, several parameters affect the GPU-
ICD performance. Fig. 7a measures execution time for dif-
ferent SuperVoxel side lengths. Smaller SV sides result in
higher contention during the atomic updates in GPU-ICD.
The intra-SV parallelism exploitation worsens this behavior
compared to PSV-ICD. For larger SV sides, the SVBs be-
come too large, reducing the L2 caching benefits. An SV
side of 33 performs the best, since it achieves the highest
L2 throughput. The secondary vertical axis in Fig. 7a dis-
plays the number of equits required for each SV side. This
number increases with the SV side because updates to the er-
ror sinogram occur at coarser granularity, slowing down the
algorithmic convergence. We also suspect that the intra-SV
parallelism slows the convergence.

Fig. 7b shows the impact of exploited intra-SV granular-
ity. The performance improves with the number of thread-

blocks used per SV, i.e., intra-SV parallelism. A moderately
high number of threadblocks per SV achieves higher L2
temporal cache locality. The performance saturates after 32
threadblocks.

Fig. 7c evaluates performance impact of the exploited de-
gree of intra-voxel parallelism. This degree is determined by
the number of threads in a threadblock. Occupancy, which
gets affected by the number of threads in a threadblock,
plays an important role in the achieved performance, e.g.
384 threads per threadblock result in lower occupancy, lead-
ing to lower performance. However, occupancy is not the
only factor to consider, e.g., with 64 threads per block, al-
though the occupancy is 100%, the small threadcount per
block results in larger active threadblock count. This results
in more SVBs being accessed simultaneously, leading to L2
conflicts. A larger threadcount per block (e.g. 512) leads to
asymmetric work distribution of the 720 views involved, and
increases the reduction cost, resulting in lower performance.

Fig. 7d measures the impact of the (maximum) number
of SVs updated in a batch (individual GPU kernel). The
lower this number, the higher the total number of kernel
launches, resulting in higher overheads occurring from ker-
nel launches. If the number gets too high, then updates to
error sinogram start taking place at coarser granularity, lead-
ing to slower algorithmic convergence.

6. Generalization
This section discusses how GPU-ICD generalizes to a
broader range of applications. The algorithmic techniques,
as well as the GPU-specific optimizations proposed in this
paper, are applicable to these classes of applications.

For many important sensing problems (such as syn-
chrotron imaging [17], machine learning [18], geophysics
sensing [19], radar sensing [20]), it is necessary to minimize
a convex cost function given by the following general set of
quadratic equations:

f(x) = ky �Axk2⇤ = (y �Ax)t⇤(y �Ax) (1)

where y is a M ⇥ 1 vector, A is a very large M ⇥ N

matrix, ⇤ is a diagonal matrix of weights, and x is a N ⇥ 1
vector. To find x

⇤ such that f(x⇤) is minimized, we can solve
Equation (1) by numerical iterative algorithms.

ICD algorithms have received increasing attention as an
effective approach to compute the solution to the general op-
timization problem in Equation (1) because of their fast and
robust convergence [2, 1, 10, 11]. In conventional ICD algo-
rithms, every element, xj 2 x, is cycled through and updated
exactly once in each iteration. The update of each element,
xj , is designed to decrease the value of f(x), so ICD algo-
rithms result in a monotonically decreasing sequence of cost.
Under appropriate technical conditions, the ICD algorithms
asymptotically reach the value limn!1 f(xn) = f(x⇤).

Importantly, each update generally requires the evalua-
tion of A⇤,jxj , and this requires an access to a single col-
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(a) SuperVoxel side length impacts both performance and
convergence. The numbers above bars indicate L2 throughput in

GB/s

(b) Number of threadblocks used per SV determines the exploited
intra-SV parallelism granularity

(c) Number of threads in a threadblock determine the exploited
intra-voxel parallelism granularity

(d) Varying number of SVs processed per kernel launch (batch)

Figure 7: Performance impact of various tuning parameters: values of these parameters can significantly affect the achieved
performance

umn of the matrix A. While ICD algorithms have been of
great theoretical interest, they have been generally assumed
to be unsuited for GPUs because of what appears to be their
intrinsically serial nature as well as the restriction on how
columns of the A matrix are accessed. The GPU-ICD intro-
duced in this paper demonstrates that ICD algorithms can be
efficiently implemented on GPUs. Not only does the GPU-
ICD show that a large number of parallel operations can run
simultaneously for ICD algorithms, but the GPU-ICD algo-
rithm also shows that ICD algorithms can efficiently reuse
the GPU memory.

To map such numerical algorithms onto GPUs, not only
should vector operations, such as A⇤,jxj , be parallelized,
but different elements of x should be updated simultane-
ously. GPU-ICD can be perceived as a generalized parallel
update framework for such numerical iterative algorithms.2
Each element of x, xj , can be perceived as a voxel, as dis-
2 Note that if f(x) is a linear system of equations, GPU-ICD is analogous
to the parallel Gauss-Seidel algorithm.

cussed in Section 1. Therefore, the intra-voxel parallelism in
GPU-ICD can be generalized for the vector multiplication
between A⇤,j and xj . A group of xj , denoted as S, can then
perceived as a SV. Voxels of the same SV are chosen to max-
imize their statistical correlation, so that voxels’ updates can
exploit cache locality. In other words, if xi, xj 2 S, thenPM

k=1 |Ak,i| · |Ak,j | is maximized. The intra-SV parallelism
discussed in Section 3.1 describes how to map the updates
for a group of xj onto a GPU. At the same time, voxels of
different SVs are chosen to minimize their statistical cor-
relation, lowering the synchronization overhead. Namely if
xi, xj belong to different groups, then

PM
k=1 |Ak,i| · |Ak,j |

is minimized. The inter-SV parallelism discussed in the pa-
per can be generalized for mapping the updates for different
groups of xj onto a GPU.

7. Related Work
CT image reconstruction techniques can be classified into
two major categories: direct methods, such as filtered back
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projection (FBP), and iterative methods. The iterative method
considered in this paper i.e., Model Based Iterative Recon-
struction (MBIR) [2, 3], is known to create higher quality
images than FBP methods. Past research has studied this
for various domains, including medical imaging [2, 3], ex-
plosive detection systems (EDS) [4, 5, 6, 7], scientific and
materials imaging [8].

There are two prominent approaches to iterative recon-
struction. The first approach comprises non-regularized
methods, such as Simultaneous Iterative Reconstruction
Technique (SIRT) [5, 21, 22] and Algebraic Reconstruction
Techniques (ART) [23]. SIRT work by iteratively projecting
an entire volume to be reconstructed into the measurement,
while ART work by iteratively solving a system of linear
equations. However, non-regularized methods lack concrete
convergence criteria and rely on stopping times. The other
approach is of regularized methods, who generally possess
well-defined convergence criteria and generate higher qual-
ity images than FBP. Among the regularized methods, Penal-
ized Least Squares (PLS) [24], Penalized Maximum Likeli-
hood (PML) [25], and Model Based Image Reconstrustion
(MBIR) are popular. The regularized methods need to min-
imize a cost function, which is computationally expensive.
Two optimization approaches exist to that end. The first is
simultaneous methods, which work by using forward/back-
ward projectors. Simultaneous methods are usually slow,
and hence need pre-conditioning [26] to converge faster,
which is scanner geometry dependent. Ordered subsets [26]
is another approach to speed up simultaneous methods. The
second approach is of coordinate decent (CD), where meth-
ods such as Iterative Coordinate Descent (ICD) [2, 9, 10]
and Gradient Coordinate Descent (GCD) [11, 12] are used.
The CD methods are preferable since they converge faster
than the simultaneous methods, and are geometry agnostic.
We consider ICD over GCD in this paper, since it has been
highly optimized for multi-core CPUs [1].

Many previous GPU-based efforts of CT reconstruc-
tion [27, 28, 29, 30, 31] are based upon the FBP method,
since it is easier to parallelize [32]. Cho et. al. [33] present
a simultaneous method based on ordered subsets. Flores et.
al. [34] show a non-regularized approach where reconstruc-
tion is formulated as a least square solver problem and is
solved using standard GPU libraries. McGaffin et. al. [35]
present an alternating tomography and denoising based reg-
ularized MBIR approach on the GPU. In [35], McGaffin and
Fessler investigate the use of GPUs for multi-slice helical
scan CT reconstruction in medical applications. Their ap-
proach uses projection based optimization, rather than ICD,
for the tomographic portion of the optimization, and couples
it with a separate TV denoising portion for the prior. Impor-
tantly, their approach is also based on ordered subset (OS)
methods, which are not generally compatible with the sparse
view tomography methods that are crucial in many scientific
and NDE applications [36, 37, 7].

None of the above approaches have exploited ICD on
GPUs. While ICD and its variants have been shown to be
robust and rapidly converging algorithms [38] for perform-
ing the MBIR reconstruction, there is a belief that ICD can
not be efficiently mapped to highly parallel GPU architec-
tures [11, 12]. This paper shows that fast converging ICD
optimization algorithms can be efficiently implemented on
GPUs. Furthermore, since ICD is an optimization technique,
methods employed in this work for MBIR are also applica-
ble to PLS/PML techniques.

8. Conclusion and Future Work
Although ICD-based MBIR (Model-based Image Recon-
struction) is known to produce high quality CT reconstruc-
tion images, it suffers from a heavy computational cost. This
paper presented GPU-ICD, the first GPU-based highly par-
allel algorithm for this kind of MBIR. The algorithm ex-
ploits multiple levels of parallelism in MBIR, namely, intra-
voxel parallelism, intra-SV parallelism, and inter-SV par-
allelism. The paper presented a data layout transformation
that obtains coalesced accesses on GPUs. The paper also
presented the following GPU-specific optimizations: i) in-
creasing occupancy by spilling registers on the shared mem-
ory; ii) compressing system matrix and reading it via tex-
ture cache; and iii) obtaining higher L2 bandwidth by read-
ing the data as type double. The massive parallelism ex-
ploitation combined with the above optimizations results in
a mean speedup of 4.43X over the best-known parallel CPU
implementation on an iso-power 16-core CPU.

Section 5 showed that various parameters can greatly
impact the performance of GPU-ICD. The best values of the
parameters are sensitive to the input, and hence are often
not catered to by auto-tuning systems [39, 40]. In future,
we plan to build a model that automatically selects input-
specific high performing parameter values.
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