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a b s t r a c t 

Lorentz transmission electron microscopy (TEM) observations of magnetic nanoparticles contain informa- 

tion on the magnetic and electrostatic potentials. Vector field electron tomography (VFET) can be used 

to reconstruct electromagnetic potentials of the nanoparticles from their corresponding LTEM images. 

The VFET approach is based on the conventional filtered back projection approach to tomographic re- 

constructions and the availability of an incomplete set of measurements due to experimental limitations 

means that the reconstructed vector fields exhibit significant artifacts. In this paper, we outline a model- 

based iterative reconstruction (MBIR) algorithm to reconstruct the magnetic vector potential of magnetic 

nanoparticles. We combine a forward model for image formation in TEM experiments with a prior model 

to formulate the tomographic problem as a maximum a-posteriori probability estimation problem (MAP). 

The MAP cost function is minimized iteratively to determine the vector potential. A comparative recon- 

struction study of simulated as well as experimental data sets show that the MBIR approach yields quan- 

tifiably better reconstructions than the VFET approach. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

In a Lorentz transmission electron microscopy (LTEM) experi-

ent, an electron propagating through a thin specimen experi-

nces a Lorentz Force F L = −e (E + v × B ) [ 1 ] due to the sample’s

lectrostatic field, E , and magnetic field, B ; −e is the electron’s

harge and v its velocity. This (classical) force generates a deflec-

ion of the electron trajectory, which can be used to explain the

resnel and Foucault observation modes [2] . A more robust expla-

ation of the nature of the electron-specimen interaction involves

uantum mechanics, in which the electron is described by a wave

unction ψ(r ⊥ ) = a (r ⊥ ) e iϕ( r ⊥ ) [2] . Elastic scattering in the sample

roduces variations of the amplitude a ( r ⊥ ), whereas the electro-

agnetic potentials affect the phase ϕ( r ⊥ ) of the wave; r ⊥ is a

ector normal to the propagation direction. Aharonov and Bohm

3] showed, in 1959, that the phase of the exit wave function en-

odes information on the sample’ s electrostatic potential, V ( r ⊥ , z ),
∗ Corresponding author. 
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nd magnetic vector potential, A ( r ⊥ , z ), as follows: 

(r ⊥ ) = ϕ e (r ⊥ ) + ϕ m 

(r ⊥ ) = 

π

λE t 

∫ 
L 

V (r ⊥ , z) dz − e 

h̄ 

∫ 
L 

A (r ⊥ , z) · dr , 

(1) 

here � is the reduced Planck’s constant, E t is the total beam

nergy, and the integrals are carried out along the beam direc-

ion, L . The total phase shift, ϕ, consists of an electrostatic con-

ribution, ϕe , and a magnetic contribution, ϕm 

. The phases are

ot directly observable, but their effect on the image contrast can

e determined by considering the point spread function, T L (r ⊥ ) ,
f the Lorentz lens. The image intensity is then given by the

odulus-squared of the convolution product ψ(r ⊥ ) � T L ( r ⊥ ) [2] .

ence, characterization of the electromagnetic potentials begins

ith phase shift retrieval from the image intensities, using either

lectron holography [4] or the transport-of-intensity equation (TIE)

ormalism [5] , which is based on a through-focus series of Fres-

el images. We use the linearity of the TIE [6] and time reversal

ymmetry to retrieve the individual phases ϕe and ϕm 

. 

Characterization of the electromagnetic fields is then achieved

y performing scalar field and vector field tomographic recon-

http://dx.doi.org/10.1016/j.ultramic.2017.07.005
http://www.ScienceDirect.com
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Fig. 1. A flow chart illustrating the methodology to determine electromagnetic po- 

tentials of a magnetic nanoparticle sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. (a) Illustration of phase shift acquisition for an x -tilt series with the arrows 

representing the electron propagation direction and the curved arrow indicating 

counter-clockwise sample rotation. (b) Representation of the reference frame used 

to express the differential vector element d l . 
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structions to determine V ( r ) and A ( r ), respectively. We refer to

the use of vector field tomography to reconstruct the electromag-

netic potentials as Vector Field Electron Tomography (VFET) [7] . A

schematic of the operations performed to complete an electromag-

netic characterization task is shown in Fig. 1 . 

In this contribution, we primarily focus on vector field tomog-

raphy to reconstruct A ( r ). In recent years, the VFET approach em-

ployed the filtered back projection (FBP) approach to perform the

reconstructions [8,9] . Although FBP yields a good estimate with a

complete set of measurements, the typical missing wedge of TEM

data significantly diminishes the quality of the reconstructions

[10] . In addition, typical tilt series are obtained using an angular

step size of 2 °–5 ° to minimize the necessary pre-processing steps

(image alignments) and reduce beam damage. These limitations,

collectively, yield a reconstruction result that can exhibit substan-

tial artifacts. To alleviate these problems, we resort to a more ro-

bust and statistically based tomographic reconstruction framework

known as model-based iterative reconstruction (MBIR) to deter-

mine A ( r ). This approach has had considerable success in improv-

ing reconstruction quality in scalar tomography [11,12] . 

In Section 2 , we briefly outline conventional VFET and show

how we can reconstruct all three component of A ( r ) from just

two tilt series; we also perform an error analysis of the quality

of VFET reconstructions in the presence of a missing wedge. Next,

in Section 3 , we provide an overview of the MBIR framework, and

in Section 4 , we incorporate MBIR into the reconstruction of A ( r )

and compare the results with those from conventional VFET recon-

structions. 

2. Vector field electron tomography 

Vector field tomography is relatively new; it was not until

1988 when Norton [13] , for the first time, outlined a mathemat-

ical model to determine the 2D fluid field from acoustic time

travel measurements. Subsequent years saw extensions of 2D vec-

tor tomography to 3D cases; in particular, Juhlin [14] resolved the

solenoidal part of a divergence free flow field using ultrasound

Doppler measurements in 1992. In 2005, Lade et al. [8] presented

the VFET model to reconstruct 3D vector fields from longitudinal

and transverse measurements. In 2008, Phatak et al. [15] used the
FET approach to reconstruct the magnetic vector potential and in-

uction of magnetic nanoparticles. Since this VFET model is still

elevant for our new MBIR method, we devote this section to a

rief review of the VFET framework. 

Since tomographic reconstructions require a forward model to

roject the object being reconstructed, we begin by consider-

ng the computation of the magnetic phase shift. The relation

 m 

(r ⊥ ) = − e 
h̄ 

∫ 
L 

A (r ⊥ , z) · d r describes the magnetic phase shift ob-

ained at 0 ° tilt. To obtain the phase shift for a tilted sample we

onsider a tilt series around the x axis (counterclockwise); the new

oordinate vectors, t , can be expressed in terms of the original

nes, r , by r = R θ,x t where r = [ x y z] , t = [ u v w ] , and R θ , x is

he counter-clockwise rotation matrix ( Fig. 2 (a)). From Fig. 2 (b), the

ectorial line element, d l , of the projection line L ( v, θ ), can be writ-

en as d l = [ ̂  y sin (θ ) − ˆ z cos (θ )]d l. 

Writing A (r ) = A x (x, y, z) ̂ x + A y (x, y, z) ̂  y + A z (x, y, z) ̂ z , a generic

rojection equation for the x tilt series in Fourier space, ˜ ϕ m,x , can

e obtained as: 

˜  m,x (k u , k v ) = − sin θ ˜ A y (k u , k v cos θ, k v sin θ ) 

+ cos θ ˜ A z (k u , k v cos θ, k v sin θ ) ; (2)

 similar analysis for the y tilt series produces 

˜  m,y (k u , k v ) = − sin θ ˜ A x (k u cos θ, k v , k u sin θ ) 

+ cos θ ˜ A z (k u cos θ, k v , k u sin θ ) . (3)

qs. (2) and ( 3 ) represent the Fourier slice theorem for 3D vector

elds for x tilt series and y tilt series respectively. 

The formulation of the reconstruction procedure by means of

he VFET approach begins by imposing a gauge constraint on the

agnetic vector potential, i.e., ∇ · A = 0 . This constraint is written
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Fig. 3. (a) Prismatic MNP; (b) cylindrical MNP; (c) Vector plot showing uniform 

magnetization (identical in each z -plane for a magnetization direction of ˆ m = 

[ cos π
6 

, sin π
6 

, 0] . (d) Vector plot illustrating a counter-clockwise vortex state in each 

z -plane of the cylindrical MNP. 
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n Fourier space as: 

 . ̃  A = k x ̃  A x + k y ̃  A y + k z ̃  A z = 0 . (4)

ombining Eqs. (2) –( 4 ) and solving for the components of A ( k ) one

btains: 

˜ 
 x = 

k y k x k v ̃  ϕ m,x − k u (k 2 y + k 2 z ) ̃  ϕ m,y 

k z (k 2 x + k 2 y + k 2 z ) 
; (5) 

˜ 
 y = 

−(k 2 x + k 2 z ) k v ̃  ϕ m,x + k v k x k y ̃  ϕ m,y 

k z (k 2 x + k 2 y + k 2 w 

) 
; (6) 

˜ 
 z = 

k y k z k v ̃  ϕ m,x − k u k x k z ̃  ϕ m,y 

k z (k 2 x + k 2 y + k 2 w 

) 
. (7) 

n principle, one could interpolate the projection measurements

rom the polar grid to a Cartesian grid and perform an inverse

ourier transform (FT) to solve for A ( r ). However, this is a numer-

cally unstable approach and the filtered back projection formulae,

s outlined in ref. [16] , facilitate a more stable reconstruction. In

he present case, the FBP formulae become (the asterisk subscript

epresents x, y , or z ): 

 ∗(x, y, z) = 

π∫ 
0 

[ 
ϕ m,x, ∗(x, y cos θ + z sin θ ) + ϕ m,y, ∗(x cos θ

+ z sin θ, y ) 
] 

dθ, (8) 

here 

 m,x, ∗ = F 

−1 
2 

[ 

| k v | 
sin θ (k 2 u + k 2 v ) 

[ 

k u k v cos θ
−(k 2 u + k 2 v sin θ ) 

k 2 v cos θ sin θ

] 

˜ ϕ m,x (k u , k v ) 

] 

= 

[ 

ϕ m,x,x 

ϕ m,x,y 

ϕ m,x,z 

] 

, (9) 

 m,y, ∗ = F 

−1 
2 

[ 

| k u | 
sin θ (k 2 u + k 2 v ) 

[ −(k 2 v + k 2 u sin θ ) 
k u k v cos θ

k 2 u cos θ sin θ

] 

˜ ϕ m,y (k u , k v ) 

] 

= 

[ 

ϕ m,y,x 

ϕ m,y,y 

ϕ m,y,z 

] 

. (10) 

n Eqs. (9) and ( 10 ), | k u | and | k v | represent the filtering operation

nd F 

−1 
2 

the 2D inverse FT. The real-space vector quantities ϕm, x , ∗
nd ϕm, y , ∗ , are then used to determine the three components

f A ( r ) through an inverse Hough transform. The gauge condition

n A will be incorporated into the MBIR approach as well. How-

ver, we will replace the FBP formula of Eq. (8) with a Bayesian

nference-based objective function which will be described in more

etail in the next section. 

Before we outline the MBIR framework, we illustrate the nu-

erical implementation of the VFET approach using uniformly

nd non-uniformly magnetized simulated magnetic nanoparticles

MNPs); in particular, we use a uniformly magnetized prismatic

article and a circular disk with a vortex state. The prismatic

anoparticle (NP) has dimensions of [50 × 50 × 30] nm and mag-

etization direction, m = 

[
cos π6 , sin 

π
6 , 0 

]
. The circular disk has a

iameter of 60 nm, a height of 30 nm, and exhibits a counterclock-

ise magnetization state with a sharp vortex [17,18] . Both particles

ave a saturation magnetization of B 0 = 1 T. The two geometries

nd their magnetization states are depicted in Fig. 3 . 

Starting from the magnetization states, the Fourier transform

f the magnetic vector potential can be expressed in terms of the

hape function formalism of Ref. [17] as: 

 (k ) = − i B 0 

k 2 
D (k )( ̂  m × k ) , (11)
here D ( k ) is the shape amplitude. This expression allows for the

omputation of the magnetic phase shifts for two orthogonal tilt

eries around the x and y axes. In one series we use projections

ver the full tilt range [ −90 ◦, +90 ◦] with a 2 ° step size while

n a second series, with a missing wedge, we use the sub-range

f [ −70 ◦, +70 ◦] . After application of the VFET approach described

bove we compare the reconstructed potentials with their corre-

ponding known values (i.e., ground truths), in terms of a normal-

zed root mean square error (NRMSE) between the reconstructed

esult, ˆ φ, and the ground truth, φ, as ( φ represents one of the

omponents of the vector potential): 

RMSE = 

1 

φmax − φmin 

√ 

1 

N 

N ∑ 

i =1 

( ̂  φi − φi ) 2 . (12) 

Alternative comparison metrics have been proposed in the lit-

rature; Al-Afeef et al. [19] describe the use of the Peak Signal-to-

oise Ratio (PSNR) and the Structural Similarity Index (SSIM) for

uantitative comparison between ground truth and reconstructions

n the context of a dictionary-based approach. In addition, they

mploy a Normalized Euclidean Distance (NED) metric to assess

he fidelity of the reconstruction both in image and sinogram do-

ains. While these metrics, and also others like the Visual Signal-

o-Noise Ratio (VSNR) [20] can be used to assess similarities, in the

resent paper we opt for the use of the NRMSE to assess the re-

onstruction quality locally, for instance in planar sections through

he object. 

Fig. 4 compares sections of reconstructed vector potentials with

heir ground truths, and lists the corresponding NRMSE values.

lurring at edges and ring artifacts are clearly more prominent in

he reconstructions from the missing wedge data set, which has a

igher NRMSE value than the reconstruction using the full tilt se-

ies. Fig. 5 shows the NRMSE values corresponding to the y planes

n the range [ −35 , 35] . These plots indicate that the reconstruction

educed from the missing wedge data set exhibits a higher level

f deviation from the ground truth than its full range counterpart

y about 5–25%. In the following section, we will replace the filter

ased analytical relation of Eq. 8 with a Bayesian statistics-based

umerical relation. 
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Fig. 4. Reconstructed magnetic vector potential from full range [center row] and missing wedge [bottom row] projection data sets. The top row depicts the ground truth or 

theoretical vector components. The left column plots correspond to the plane ( x , 18, z ) of the prismatic NP while the right column plots correspond to the plane ( x , 15, z ) of 

the cylindrical NP. 
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3. The MBIR framework 

We introduce the MBIR approach by first formulating its frame-

work for a generic tomography problem. Let x ∈ R 

N be the dis-

crete vector of an unknown image and y ∈ R 

M be the discrete vec-
or of projection measurements of x at a variety of angles. Then

he MBIR approach performs a reconstruction by maximizing the

oint probability distribution resulting from the likelihood function,

(y | x ) , and the prior distribution, P(x ) . This methodology is more

ommonly known as the maximum-a-posteriori (MAP) estimation
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Fig. 5. Planar NRMSE plots of magnetic vector potential retrieved using the VFET approach on the missing wedge projection set (line with circle) and the full range projection 

set (line with diamond). The left column, (a)-(c), shows NRMSE planar plots for the prismatic NP while the right column, (d)-(e), shows the NRMSE planar plots for the 

cylindrical NP. 
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echnique [21] . Mathematically, the MAP estimate is expressed as:

ˆ 
 MAP = argmin 

x 
{ − log P(y | x ) − log P(x ) } . (13) 

e use the Poisson probability mass function to model the likeli-

ood term. We use a second order Taylor series expansion of the

ogarithm of the Poisson distribution [22] to approximate the first

erm of Eq. (13) as: 

og P(y | x ) ≈ −1 

2 

(y − Hx ) T W (y − Hx ) + f (y ) , (14)

here H is the forward projection matrix, W is a diagonal noise

eighting matrix and f ( y ) is a term independent of the optimiza-

ion variable x . Additionally, H is an orthogonal matrix such that

 

T = H 

−1 ; hence, H 

T denotes the back projection operator. 

The prior term in Eq. (13) is modeled using a Markov Random

ield (MRF) in: 

og P(x ) = −
∑ 

{ i, j}∈C 
b i j ρ(x i − x j ) , (15)

here C denotes the set of neighboring pixels, b ij is a non-causal

ymmetric weighing filter that is normalized such that 
∑ 

b i j = 1 ,

nd ρ( ·) is the potential function. The choice of the MRF as the
rior model is due to its proven usefulness in image processing as

ell as in tomographic reconstructions [23,24] . In the present pa-

er, we resort to a class of MRFs called the q -Generalized Gaussian

arkov Random Field ( q -GGMRF) to model the prior. Accordingly,

he potential function in Eq. (15) is given by: 

(	) = 

| 	| p 
pσ p 

x 

( ∣∣ 	
T σx 

∣∣q −p 

1 + 

∣∣ 	
T σx 

∣∣q −p 

) 

, (16) 

here 	 = x i − x j , and p , q , σ x and T are the q -GGMRF parameters.

ypically, 1 ≤ p ≤ q ≤ 2 is used to ensure strict convexity of the

otential function and, subsequently, of the MAP optimization [25] ;

n this paper we use q = 2 . When p is set to 2, the potential func-

ion is quadratic and the prior model facilitates a reconstruction

ith smooth edges. On the other hand, when p is close to 1, the

rior model performs sharp edge preserving reconstructions. Sim-

larly, σ x is the variance of the prior distribution and its value is

et to achieve a balance between noise and resolution. Finally, the

onstant T determines the approximate threshold of transition be-

ween low and high contrast regions. 

Substituting the log-likelihood expression of Eq. (14) and the

rior model of Eq. (15) into Eq. (13) , and considering W as the

dentity matrix, one obtains the MAP reconstruction to be the so-
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Fig. 6. Schematic of the intuition behind the formulation of the substitute function 

of the non-quadratic potential function. 
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lution of the following optimization problem: 

ˆ x MAP = argmin 

x 

{ 

1 

2 

‖ 

y − Hx ‖ 

2 + 

∑ 

{ i, j}∈C 
b i j ρ(x i − x j ) 

} 

, (17)

where the cost (objective) function being minimized is given by 

c(x ) = 

1 

2 

‖ 

y − Hx ‖ 

2 + 

∑ 

{ i, j}∈C 
b i j ρ( x i − x j ) . (18)

Before proceeding with the minimization of the cost function, it

should be noted that differentiating the cost function with respect

to x i and setting the derivative to zero does not yield a closed form

solution. Accordingly, one needs to make use of numerical meth-

ods, e.g., the Newton–Raphson method or the line search method,

to determine the MAP estimate [22,26] . However, these numerical

methods can be computationally expensive to implement. Thus, we

introduce the substitute or surrogate function to derive a closed

form solution of the MAP estimate and subsequently facilitate a

faster implementation [27] . A visual depiction of the intuition be-

hind the substitute function is shown in Fig. 6 . In accordance to the

figure, symmetric bond method is employed to construct a substi-

tute function, ρ( 	; 	′ ), as an upper bound to the original func-

tion, ρ( 	), such that minimizing the substitute function results in

a lower value of the original function [28] . Accordingly, the po-

tential function in Eq. (15) is upper bounded by a symmetric and

quadratic function of 	. Then its substitute form can be expressed

as: 

ρ(	;	′ ) = 

a 2 
2 

	2 , (19)

where a 2 is a function of 	′ . Here, a 2 is determined by matching

the gradient of ρ( 	) and ρ( 	; 	′ ) at 	 = 	′ to yield: 

a 2 = 

ρ ′ (	′ ) 
	′ . (20)

Substituting the value of a 2 in Eq. (19) results in the following

symmetric bound substitute function: 

ρ(	;	′ ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

ρ ′ (	′ ) 
2	′ 	2 if 	 � = 0 

ρ ′′ (0) 

2 

	2 if 	 = 0 

, (21)

where the limiting value of a 2 = ρ′′ (0) is used when 	 = 0 . Sub-

sequently, we obtain the new MAP cost function as: 

c(x ; x ′ ) = 

1 

2 

‖ 

y − Hx ‖ 

2 + 

∑ 

{ i, j}∈C 
˜ b i j ( x i − x j ) 

2 , (22)
here 

˜ 
 i j = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

b i j 

| x ′ 
i 
−x ′ 

j 
| p−2 

2 σ p 
x 

∣∣∣∣ x ′ 
i 
−x ′ 

j 
Tσx 

∣∣∣∣
q −p (

q 
p + 

∣∣∣∣ x ′ 
i 
−x ′ 

j 
Tσx 

∣∣∣∣
q −p )

(
1+ 

∣∣∣∣ x ′ 
i 
−x ′ 

j 
Tσx 

∣∣∣∣
q −p )2 for 	 � = 0 

b i j 
1 

pσ p 
x 

for 	 = 0 

. (23)

he surrogate cost function in Eq. (22) is quadratic and so its mini-

um can be expressed in closed form. We use the Iterative Coordi-

ate Descent (ICD) method to numerically minimize the surrogate

ost function [27] . ICD works by sequentially minimizing the cost

unction of Eq. (22) with respect to each pixel. The convergence

f the ICD technique to solve the optimization problem can be in-

erred from the fact that the surrogate cost function in Eq. (22) is

trictly convex so that any locally optimal point is also globally op-

imal. Thus, we proceed to differentiate the surrogate cost function

nd solve for the minimum x i to yield each pixel update as: 

 i ← 

H 

T y + 2 

∑ 

{ i, j} εC 
˜ b i j x j 

1 + 2 

∑ 

{ i, j} εC 

˜ b i j 

. (24)

A pseudocode to minimize the surrogate cost function for a

ixel wise update using the ICD technique is listed in Algorithm 1 .

lgorithm 1 Fourier Transform-based MBIR method for scalar to-

ography. 

1: initialize u ← FBP (y ) 

2: v ← H 

T y 

3: while not converged do 

4: for i = 1 to N do 

5: for { i, j} ∈ C of u i determine ˜ b i j using eq. 23 

6: u i ← (v i + 2 
∑ 

{ i, j}∈C 
˜ b i j u j ) / (1 + 2 

∑ 

{ i, j}∈ C 
˜ b i j ) 

7: end for 

8: e ← y − Hu 

9: u ← u + H 

T e 

10: end while 

ote that, in contrast to the widely observed MBIR practice of up-

ating the error sinogram, e , after each pixel update, we resort,

nstead, to updating e after all N pixels have been modified. This is

rimarily due to the fact that we will be using a Fourier-based for-

ard model instead of a Radon based forward model [12] to min-

mize the cost function. The Fourier-based forward model is cho-

en to make the framework compatible with imposing a Coulomb

auge constraint when we extend it for the reconstruction of A ( r ). 

We conclude this section with the implementation of the MBIR

ethodology to a 2D scalar tomography problem. We make use

f the standard Shepp–Logan head phantom [29] to illustrate our

esults. The phantom or ground truth is depicted in Fig. 7 (a); it is

256 × 256] pixels in size and has values ranging from 0 to 1, which

e map on a blue-red color scale. In addition to the result from

he MBIR approach ( Fig. 7 (e)), we also show results from other re-

onstruction techniques, such as back projection (BP) in Fig. 7 (b)

nd FBP in Fig. 7 (c). We used a band-limited Ram-Lak ramp filter

s our filtering function [30,31] . The result from an implementa-

ion of a conventional iterative tomography method known as the

imultaneous Iterative Reconstruction Technique (SIRT) is shown in

ig. 7 (d). 

Table 1 lists the root mean square error (RMSE) between the re-

onstructed results, φ, and the true phantom, ˆ φ, for several tomo-

raphic reconstruction methods. Mathematically, the RMSE is ex-
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Fig. 7. Illustration of reconstructions from different tomographic methods for the 

purpose of qualitative, (b)–(e), and quantitative, (f), comparisons. The ground truth 

Shepp-Logan phantom (a) is projected in an angular range of ±90 ° and recon- 

structed using several tomographic approaches: (b) Back Projection (BP); (c) Filtered 

Back Projection (FBP); (d) Simultaneous Iterative Reconstruction Technique (SIRT); 

and (e) Model Based Iterative Reconstruction (MBIR). (For interpretation of the ref- 

erences to color in the text, the reader is referred to the web version of this article.) 

Table 1 

Root mean square error (RMSE) analysis between the Shepp-Logan phantom and 

the reconstructions for different tomographic approaches. 

Tomographic method RMSE 

Back-projection (BP) 0.4635 

Filtered back-projection (FBP) 0.1536 

Simultaneous iterative reconstruction technique (SIRT) 0.0793 

Model-based iterative reconstruction (MBIR) 0.0213 

p

R

T  

v  

c  

a  

0  

Fig. 8. Illustration of minimization of surrogate cost function using the ICD tech- 

nique to deduce the MBIR estimate of reconstructed Shepp-Logan phantom in 

Fig. 7 (e). 

s  

r  

T  

t  

a

x  

w  

t  

o  

t  

i  

s  

w

 

t  

b  

i  

3  

e  

e  

n  

d  

a  

t  

o  

t  

H  

c  

t  

r  

v

4

 

a  

e  

w  

d  

t  

e  

m  

v  
ressed as: 

MSE = 

√ 

1 

N 

N ∑ 

i =1 

( ̂  φi − φi ) 2 . (25) 

he RMSE value of the BP result was 0.4635; such a high RMSE

alue was expected as the BP method is the simplest form of re-

onstruction technique and does not incorporate any filter or iter-

tive technique in its model. The RMSE value decreases to about

.1586 for the FBP approach. Reconstruction by the SIRT method
hows further improvement as the ring artifact, seen in the FBP

esult, is entirely eliminated, resulting in an RMSE value of 0.0793.

he effectiveness of the SIRT approach over analytical method like

he FBP approach stems from the fact that the SIRT algorithm iter-

tively minimize the error sinogram as [32] : 

 

( new ) ← x ( old ) + λH 

T W (y − Hx ( old ) ) (26)

here λ > 0 is a relaxation parameter. However, the ill-posed na-

ure of the tomography problem limits the SIRT strategy to exhibit

nly semi-convergence [32,33] . Accordingly, improvements seen in

he first few SIRT iterations start to deteriorate as the number of

terations increases due to noise propagation. In our analysis, we

how a locally converged SIRT result obtained after 10 iterations

ith λ = 0 . 25 and W set as the identity matrix. 

The MBIR reconstruction is obtained by iteratively minimizing

he surrogate cost function of Eq. (22) which, in turn, is achieved

y following Algorithm 1 . The q -GGMRF parameters used in this

mplementation were p = 1 . 1 , T = 0 . 001 and σx = 0 . 8 . We used a

 × 3 non-causal weighting matrix, b ij , to incorporate the influ-

nce of two nearest neighbors for any given pixel. The first near-

st neighbors are weighted by a factor of 1/6 while the second

earest nearest neighbors are weighted by a factor of 1/12. The

ecreasing trend of the surrogate cost function over several iter-

tions is shown in Fig. 8 . An important point to note here is that

he decreasing trend of the surrogate cost is a direct consequence

f its strictly convex nature. Convergence after the cost minimiza-

ion means that the reconstruction is globally minimal and unique.

ence, the coarseness seen along the inner region of the locally

onverged SIRT result is no longer visible in the MBIR result. Also,

he superiority of the MBIR approach over any of the other tomog-

aphy methods can be discerned from the RMSE analysis which re-

eals an error of only 0.0213. 

. MBIR-based vector field reconstruction 

The MBIR framework for vector field reconstruction revolves

round solving an optimization problem similar in form to the one

xpressed in Eq. (13) . Specifically, we seek to formulate a frame-

ork that will iteratively work to minimize the sum of the squared

ifferences between the data and its estimated forward projec-

ion, in combination with a regularizing prior function, P(x ) . How-

ver, in contrast to scalar tomography, vector reconstruction entails

easurements from more than one tilt series; each tilt series in-

olves a contribution from different components of A ( r ). We also
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Algorithm 2 MBIR method to reconstruct magnetic vector poten- 

tial. 

1: Evaluate A (r ) ← VFET 

2: F (r ) ← VFET 

3: while not converged do 

4: for i = 1 to N do 

5: Determine corresponding ˜ b i j for { i, j} ∈ C of A x (i ) using 

eq. 23 

6: A x (i ) ← 

F x (i )+2 
∑ 

{ i, j}∈C 
˜ b i j A x ( j) 

1+2 
∑ 

{ i, j}∈ C 
˜ b i j 

7: end for 

8: Update A y and A z in a similar manner similar 

9: Forward project A (r ) using eqs. 2 and 3 to determine U x and 

U y , respectively 

10: Determine the error sinogram for the two series as: 

e _ ϕ m,x = ϕ m,x − U x ;
e _ ϕ m,y = ϕ m,y − U y . 

11: Use the results of imposing gauge constraint from 

eqs. 9 and 10 on e _ ϕ m,x and e _ ϕ m,y to determine 

e _ ϕ m,x,x , e _ ϕ m,x,y , e _ ϕ m,x,z , e _ ϕ m,y,x , e _ ϕ m,y,y and e _ ϕ m,y,z 

12: Update the components of the vector potential as 

A x ← A x + H 

T (e _ ϕ m,x,x + e _ ϕ m,y,x ) ;
A y ← A y + H 

T (e _ ϕ m,x,y + e _ ϕ m,y,y ) ;
A z ← A z + H 

T (e _ ϕ m,x,z + e _ ϕ m,y,z ) . 

13: end while 
impose a gauge constraint to reconstruct all three components of

vector potential from just two tilt series. Accordingly, our generic

MBIR framework from Section 3 needs to be expanded to account

for input measurements from two tilt series and imposition of a

gauge constraint. 

We begin MBIR based vector reconstruction by representing the

input data by ϕ m 

= [ ϕ m,x , ϕ m,y ] , and subsequent estimates of the

magnetic vector potential by x = [ x x , x y , x z ] . Let H = [ H x , H y ] where

H x and H y are operators for the forward projection of the magnetic

vector potential for the x and y tilt series (counter-clockwise), in

accordance with Eqs. (2) and ( 3 ), respectively. Then the forward

projection of x yields, Hx = [ H x , H y ] x = [ U x , U y ] . We define a de-

convolution operator, D = [ D x , D y , D z ] , which will serve to evaluate

the contributions of the magnetic phase shift ( Eqs. (9) and ( 10 ))

to each component of vector potential A ( r ) separately. Thus any of

the components D 

∗ of the deconvolution operator, when applied

to the phase shift, yields D ∗ϕ m 

= [ D ∗ϕ m,x , D ∗ϕ m,y ] = [ ϕ m,x, ∗, ϕ m,x, ∗] ;

and its application to A ( r ) yields D ∗A (r ) = A ∗. 

Next, we define the prior model analogous to the one defined

in Section 2 . We use a q -GGMRF as the potential function that min-

imizes the cost function for a given voxel based on the difference

with its neighboring voxels. However, contrary to the 2D MBIR ap-

proach, we incorporate the influence of three nearest neighbors

for any given voxel while evaluating the potential function ρ( ·
). Accordingly, the non-causal weighting matrix, b ij , now contains

3 × 3 × 3 values with first, second and third weighing factors as-

signed as, 9/132, 9/264, and 9/396, respectively. Finally, we again

make use of the surrogate majorization technique such that the q -

GGMRF potential function assumes a quadratic form for p � = 2. 

Having defined all the pertinent variables, we can now express

MBIR-based vector reconstruction as the solution to the following

optimization problem: 

ˆ x = argmin 

x 

{ 

1 

2 

‖ 

D ϕ m 

− D (Hx ) ‖ 

2 + 

∑ 

{ i, j}∈C 
˜ b i j D (x (i ) − x ( j)) 2 

} 

(27)

where ˜ b i j is determined using Eq. (23) . In practice, we do not di-

rectly solve Eq. (27) . Instead, we make use of the deconvolution

operator, D , and de-convolve Eq. (27) into three MAP estimation

problems as follows: 

ˆ x x = argmin 

x 

{ 

1 

2 

‖ 

D x ϕ m 

− D x (Hx ) ‖ 

2 + 

∑ 

{ i, j}∈C 
˜ b i j D x (x (i ) − x ( j)) 2 

} 

, 

(28)

ˆ x y = argmin 

x 

{ 

1 

2 

‖ 

D y ϕ m 

− D y (Hx ) ‖ 

2 + 

∑ 

{ i, j}∈C 
˜ b i j D y (x (i ) − x ( j)) 2 

} 

, 

(29)

ˆ x z = argmin 

x 

{ 

1 

2 

‖ 

D z ϕ m 

− D z (Hx ) ‖ 

2 + 

∑ 

{ i, j}∈C 
˜ b i j D z (x (i ) − x ( j)) 2 

} 

. 

(30)

Next, we identify the cost function associated with each of the po-

tential estimates in Eqs. (28) –( 30 ). For instance, the surrogate cost

associated with the MAP estimate of x x is expressed as: 

c(x , x x ; x ′ x ) = 

1 

2 

‖ 

D x ϕ m 

− D x (Hx ) ‖ 

2 + 

∑ 

{ i, j}∈C 
˜ b i j D x (x (i ) − x ( j)) 2 . 

(31)

Then we use the ICD algorithm, as detailed in Section 3 , to

minimize the surrogate cost function of Eq. (31) . Differentiating
q. (31) with respect to x ( i ) and setting the result equal to zero,

e obtain: 

 x (i ) ← 

(
H 

T 
x ϕ m,x,x + H 

T 
y ϕ m,y,x 

)
+ 2 

∑ 

{ i, j}∈C 
˜ b i j x x ( j) 

1 + 2 

∑ 

{ i, j}∈C 
˜ b i j 

. (32)

n a similar manner, we solve for minimum x ( i ) corresponding to

urrogate the cost functions of ˆ x y and ˆ x z in Eqs. (29) and ( 30 ) to

btain: 

 y (i ) ← 

(
H 

T 
x ϕ m,x,y + H 

T 
y ϕ m,y,y 

)
+ 2 

∑ 

{ i, j}∈C 
˜ b i j x y ( j) 

1 + 2 

∑ 

{ i, j}∈C 
˜ b i j 

, (33)

 z (i ) ← 

(
H 

T 
x ϕ m,x,z + H 

T 
y ϕ m,y,z 

)
+ 2 

∑ 

{ i, j}∈C 
˜ b i j x z ( j) 

1 + 2 

∑ 

{ i, j}∈C 
˜ b i j 

. (34)

Note that the MAP estimate of each component of the vec-

or potential, ˆ x ∗, is determined by performing element-wise mini-

ization of its associated cost function from Eqs. (28) –( 30 ) with

espect to the overall magnetic vector potential, x ( i ), instead of

he individual component, x ∗ ( i ). This is primarily due to the fact

hat each component is reconstructed with the aid of two tilt se-

ies, ϕ m, x and ϕ m, y , which in turn have contributions from all three

omponents of the vector potential, A ( r ). Hence, each ICD iteration

onsists of simultaneously evaluating Eqs. (32) –( 34 ) and then mak-

ng use of the forward model and the deconvolution operator to

pdate the estimates of the vector component as: 

x ← Dx + H 

T (D ϕ m 

− D (Hx )) . (35)

 summary of the MBIR-based A ( r ) reconstruction is illustrated

n the form of pseudo code in Algorithm 2 . In the next two sub-

ections we make use of this MBIR algorithm to reconstruct the
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Fig. 9. Reconstructed magnetic vector potential of the prismatic NP deduced from the VFET approach (center row) and the MBIR approach (bottom row) with the aid of 

projections in the range [ −70 ◦, 70 ◦] . The top row depicts the ground truth. Plots in the left column correspond to the plane ( x, y , 20) while the ones in the right column 

correspond to the plane ( x , 22, z ). 
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agnetic vector potential of synthetic as well as experimental data

ets. 

.1. Synthetic data set 

In this section, we apply the MBIR algorithm to the reconstruc-

ion of A ( r ) for the cylindrical and prismatic MNPs discussed in
ection 2 . The reconstruction was performed making use of the

issing wedge projection set since this set replicates the limited

ngular scenario typical of TEM based experimental measurements.

he q -GGMRF parameters used for the reconstruction comprised of

p = 1 . 001 , T = 0 . 01 and σx = 0 . 8 . Selected results retrieved from

he MBIR approach are depicted in Figs. 9 and 10 . These figures

lso include corresponding plots from the ground truth and the



140 K.C. Prabhat et al. / Ultramicroscopy 182 (2017) 131–144 

Fig. 10. Reconstructed magnetic vector potential of the cylindrical NP from the VFET approach (center row) and the MBIR approach (bottom row) with the aid of projection 

in the range [ −70 ◦, 70 ◦] . The top row depicts the ground truth. Plots in the left column correspond to the plane ( x , 24, z ) while the ones in the right column correspond to 

plane ( x, y , 10). 
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Fig. 11. Planar NRMSE plots of the magnetic vector potential retrieved using the VFET approach (line with circle) and the MBIR approach (line with asterisk). The left column 

shows the NRMSE planar plots for the prismatic NP while the right column displays the NRMSE planar plots for the cylindrical NP. 
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Fig. 12. Holographic contour map of the magnetic phase shift, cos (100 ϕm ), of a 

Permalloy square lattice sample at 0 ° tilt; the phase (in radians) has been multiplied 

by 100 to enhance the contours and one pixel equals 6 nm. 
FET approach for the purpose of qualitative comparison of recon-

truction accuracy between the two approaches. We also present

 quantitative comparison between the two methods in terms of

RMSE plots in Fig. 11 . 

A review of the plots in Figs. 4, 9 , and 10 reveals that the low

patial resolutions, protrusions, ring artifacts and edge artifacts evi-

ent in the VFET reconstructions are significantly suppressed in the

BIR-based reconstructions. In case of the prismatic MNP, we note

hat the MBIR-based reconstruction displays values in closer prox-

mity to the ground truth than the ones obtained from the VFET

econstructions, as shown in Fig. 9 (a-c). This is confirmed by the

RMSE plots in Fig. 11 a and c which show that the MBIR approach

etermines A x and A z with 10 to 20% less planar error (in y axis)

han those derived from the VFET approach. On planes, such as ( x ,

8, z ), shown in Fig. 4 (a–c), where the reconstructed vector poten-

ial suffers from strong edge artifact as a direct consequence of the

imited angular range of projection measurement, the MBIR recon-

truction performs significantly better than the VFET approach. In

ig. 9 f, we observe that, although MBIR suppresses the ring arti-

act, the blurred edges persist; the loss of information due to the

issing wedge is such that even an advanced algorithm as MBIR
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Fig. 13. Reconstructed magnetic vector potential, A ( r ), of a Py square lattice from the VFET approach (left column) and the MBIR approach (right column). The units for A ( r ) 

are T-px where 1 pixel equals 6 nm. 
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is unable to completely remove the artifacts observed in the VFET

based reconstruction. This conclusion is also substantiated by the

NRMSE plot in Fig. 11 b which reveals that the gain in reconstruc-

tion accuracy having adopted the MBIR approach is merely 1 to 2%

compared to the VFET approach. 

For the cylindrical MNP, we see that the MBIR approach pre-

serves the spatial resolution and retrieves vector potential values
n closer proximity to the ground truth than the VFET approach, as

epicted in Fig. 10 (d–f). Accordingly, the NRMSE for y planes of all

hree components of A ( r ) are less by about 10% for MBIR recon-

tructions as compared to VFET reconstructions, as illustrated in

ig. 11 (d–f). Also, edge and ring artifacts observed in the VFET re-

onstruction are substantially diminished in the MBIR reconstruc-
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Fig. 14. (a) Magnetic induction map of the 0 ° phase shift shown in Fig. 12 . (b) Schematic of islands enclosed inside the solid white lines and 3D magnetic vector potential 

corresponding to the dotted lines in (a). (For interpretation of the references to color in the text, the reader is referred to the web version of this article.) 
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ion, as shown in Fig. 10 (a–c). However, both MBIR and VFET re-

ults exhibit protrusion effects due to the missing wedge. 

.2. Experimental data set 

In this final section we make use of a real data set to demon-

trate the gain in reconstruction quality from making use of the

BIR approach. A 2D lattice of elongated Ni 80 Fe 20 (permalloy/py)

slands (“stadia”) was used for the comparative study of the MBIR

nd VFET techniques. The sample was fabricated on a JEOL 9300

lectron beam lithography system. A single layer of ZEP resist of

00 nm thickness was coated on a Si/SiN substrate, followed by

atterning of a square lattice with element shape parameters of

 Lx = 290 nm, 2 Ly = 130 nm, and a lattice spacing of a = 390 nm.

 Py film of 20 nm thickness was deposited on a seed layer of Cr

3 nm) using dc magnetron sputtering at 3 mTorr pressure and 50

 power. The pattern was transferred by a lift-off process. This

as followed by optical lithography and wet-etching of Si to create

lectron transparent windows on 3 mm square grids, which could

e loaded directly into the TEM for observation. The microscopy

as performed using the JEOL 2100F TEM equipped with a dedi-

ated Lorentz lens and a spherical aberration corrector [34] . 

The projection measurements acquired for tomographic recon-

truction consist of x and y tilt series with angles ranging from

50 ◦ to +50 ◦ at a step size of 1 °. Fig. 12 depicts one of the pro-

ections as a holographic plot, cos (100 ϕm 

), of the magnetic phase

hift of the sample at 0 ° tilt. Each phase map has a resolution

f 256 × 256 pixels (6 nm per pixel). We implemented our tomo-

raphic reconstruction on a 3D voxel grid with 256 3 nodes. First,

e employed the VFET approach (as discussed in Section 2 ) to de-

ermine an estimate of A ( r ) of the Py sample. These results are

hen used to initialize the MBIR algorithm. The q -GGMFR parame-

ers used in the MBIR algorithm are q = 2 . 0 , p = 1 . 001 , T = 0 . 01 ,

nd σx = 0 . 8 . The cost function in Eq. (27) was then monotonically

ecreased over 35 iterations to determine a MAP estimate of A ( r )

f the Py sample. The forward model calculation for each itera-

ion was distributed over 24 parallel threads using OpenMP and

equired about 18 min to complete the iteration. Some of the A ( r )

esults obtained from the VFET and MBIR approaches are depicted

n Fig. 13 . 

A comparison of the plots deduced from the two methods re-

eals that the MBIR results show a significant gain in spatial res-

lution. The coarseness of the VFET result is substantially reduced

n the MBIR result. Moreover, we see appropriately segmented and

moothly transitioning A ( r ) values in the MBIR results. The blur-
ing artifacts observed in some of the VFET reconstruction sec-

ions are considerably diminished in the MBIR results. These re-

onstruction gains in the MBIR-based A ( r ) results are observed

hroughout the 3D spatial region when compared to their VFET

ounterparts. 

Since the reconstructed quantity is a 3D vector field, we con-

lude this section with a 3D rendering ( Fig. 14 ) of the magnetic

ector potential A ( r ) resulting from the MBIR reconstruction ap-

roach. Fig. 14 (a) shows a color-coded integrated (along the beam

irection) magnetic induction map, derived from the magnetic

hase shift by a gradient operation. The white rectangle delin-

ates the region used for the 3D rendering of the vector field in

ig. 14 (b). To reduce the complexity of the 3D rendering, the field

ectors (shown as small cones with the appropriate orientation)

re only drawn for the horizontal center plane going through the

y islands and four vertical planes corresponding to the dashed

ines in Fig. 14 (a). The yellow arrow indicates the viewing direction

or the 3D rendering in Fig. 14 (b). The individual islands are colored

ccording to the in-plane direction of the integrated magnetic in-

uction following the color wheel in (a). Note that the induction

irections, which are oriented along the local curl of the magnetic

ector potential, are properly oriented; i.e., the opposite rotation

f the vector field around the green and red islands is clearly vis-

ble, and application of the right-hand rule for the curl results in

he correct direction of the integrated magnetic induction. Further-

ore, the square of islands on the left front of the image, and the

wo squares in the back, are all in a vortex state, i.e., the mag-

etization of the islands circulates clockwise or counterclockwise.

he corresponding section through the vector field shows vectors

hich are all blue ( A pointing down) or all orange ( A pointing up).

or the square on the front right, however, two of the islands are

lue, so that there is no closed vortex and the vector field is much

ore complex in this area, reflecting the local frustrated state of

he magnetization pattern. 

. Conclusion 

In this contribution, we have incorporated the Bayesian

nference-based MBIR technique into the tomographic reconstruc-

ion process for the 3D magnetic vector potential. The MBIR model

s formulated by combining a vector slice-based forward model

nd a q -GGMRF-based prior model. An objective function was con-

tructed and minimized using the Iterative Coordinate Descent

echnique to determine a MAP estimate of A ( r ). The MAP estimate

hows diminished edge, ring and blurring artifacts when directly
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compared to reconstructions carried out with the more traditional

filtered back-projection reconstruction from the VFET methodol-

ogy. This qualitative conclusion is confirmed by the NRMSE values

for simulated magnetic nan-particles with uniform as well as non-

uniform magnetization configurations and prismatic and cylindri-

cal particle shapes. We have implemented the MBIR technique to

reconstruct the magnetic vector potential A ( r ) of a 2D array of Py

islands. The resulting vector field was compared to an integrated

magnetic induction map derived from the magnetic phase shift

and is in good agreement. 
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