
: i

: i

- , O A ~2 .71

C o ~ O : - ::: 1
p u r e r ~:x:

o f ~:he :-7 ~:

-d war<> ~;

a e h i e e gc
o w e v e r : 2
m." fo r Vi; : . ~

. . c - : , . ; , : ; @
) I (.:, t/~.3 ~:~r .. ; :4

)nsiderc'd:: i
o r ' s p c < ~
s of C<::,-{:

t flirt tic, : i~
, , ~ sex>>:,-+!

ogran : : ~>.-
÷\ R :VF~ V:-

~1 t i de * l ~, :';{
i r s t e:C<>-:
r e tatiwS_d~.
i r e Di~&:~:::_~.7
y t o ova:.:-:
t'e(? o:f k~.rA~}2

J ' ro~t-a .~ : ;7

lvsioat~v].:~!

i l i{ t~(' [' l . ; i l ~cJ ; ~ l ~ l (h]}li 'x. - i)Ol '[i i I" I" ('X[L[BIL)i(' " i l l })] ('

i ~ . : ~ I t (l l h i ~ . . . , :v ,{ ' " " ~ i - tOi i i (i }>,~ t l . S "ttY->l'tI Zk[(II]~ S'tt~): '- ' i ' i~M]I~O' - " " ~i " 1 ' V, '~ i " ~
- t " • - m - ~"

It~ };,qct ~.h(? mail~ t,,)i)ic]v.,::uii.>~s for a (,m,:-w,-~'k ('OBOi.
~'*!i].I'5(! (q) i .] (})O ~h (. i,)i]()WillL!~'" i • , :

t:~I>'~-\\-l.:l.:K. (1~: l{kiti{pm('t~{< 5i)('ci[icatiu,~x~, i,~,:._ ~ Ii~put-
/~mput [l~s~ru(qi~ms, !:~~ !M~a-tial~di ~g Instvuuti(ms, (i }
S l) (4 ' i M l l l a d l i i l 0 ('+)n~idr.raii+>~s, (;5~ ~4btlllI~)[(' i)r(iblen~.
M:u.hiiw h:'v('i).

£~:(:oy~,) ::N~, "lq-m:t~) \V~.:~5:K~. !) (",n~o~,: (:,) l']nvirou-
I l K ' l i t l)i\-i<i~)It, (~,), [)ata Di\-isiol-t, {t) l'roc('durc I)i\isiml,
{di Sample p;'M@'m; ('2)Bask- ('(m,.,L opii ms. (4")SaI,it)le
~ "(tbi(,[n.

l:ol-ti 'r!i \Vt:i.;K. ([) Mor(' advnnc('d ('cm()l. (.)pli(HIs~
")',.. . , l ' ! ' (t ~ l ' i t l l l t i l] l l ~ , . logic, i.,J"" To('hl] ieiucs, .=t) S-mipie
i)r()bl(.m.

At ~he 0(inclusion of the CoBol, p rogramming course ~he
stu(!o>:t siw)uld he familiar with the Coi~ol, compiler and
the veia~iot~,dfip between source and object program. He
should understand the importauee of the env i ronment and
tlztta descriptions in obtaining an efficient, object, program.

Tiw irainoo :hould he periodically evalua ted dur ing the
first six momhs afier complet ing the formM course. Th is
(':m }w doue hy iarading home ~tudy ass igmnents supplied
hy ttu- manufacturer. In addition, it is also incumbent on
.~hc mamffacturer lo supply his users with p r o g r a m m i n g
aid publications aud course mater ia ls which give the
programmer the tools necessary for cominued s tudy in
techniques and applications.

In summary, a won condumed four-week C o B o l pro-
gramming course should (,nat)le the graduate t.o e o m r i b u t e
immediatch ~ ta tt~c contp:my's p rogramming efforts.

An Advanced Input-Output System
Compiler

for a COBOL

C. A . B o u m a n

Radio Corporation o f America, Cherry Hill, N.J.

File Con t ro l Processor

COBOL, and t)tsin(,ss-(~tiel led (:(mqg)uting [an~tia~(:,s in
~(quq'a.l, ha\c had a very salutary (ATe(:(¢)n [nput-Outplti
~ysicms, The v(wymu,'hinc-~wiento(t or applicati(m-ori-
(qaed in[m|-m_apul system has boon thrown to |he wind
and the truiy-pr,,blem-,rieated system has taken its place.
lleading ai ~he logical z'e<:ord rather ihazt the ma('hine
t,lo(.k love! has mad(' wh:a always has t)emt a comm(m
ilqJH1-OUlt)l/t retluir(qllellt ()f business-oriented l:)r¢)blcms
re,re fully re(.~,gnized. Need for ot)je('t tim(' eflicien(.y has
b(~eu realized and met [nero fully front understauding of
th(" total pr(pbh,[/l.

We at ttCA resolved t . g(q full value froln our (~(IBOL
iliI)ut-ouipul system for our (;(ll. colnpuler. We had se-
cured valuable insight into the needs of an l';ngli.~h
language inpui-out put system front implementation of ttJe
5(11 (.;(mot, Narrator compiler. We wished to lx~tain all of
!he desirable features of the 5(il I-O system, yet expand
greatly on the efficiency tam the range of the new system.
We elected to name this I-O system the File Control
[II'Ol'O s s o r ,

F u n (| a m c n t a l Object ives

Some of our fundamental objectives were:
t. Minimum object tirne mernorv.
2. Maximum object time speed.
3. Ability to use the system for implemenlalic, n of 601

Co(sol as well as a system for 601 COBOL object programs.
t . Ahility to incorporate the system into the 601

Assembly System to enable the Assembly System to

produce programs using the 1"lie Control Processor when
t h P (~ O B O [. v e r b s O | ' E N , R E A D , W R I T E a l l d C L O S E w e r e

eneountered in the program being assembled.
5. Ability to use the sys tem for implementa t ion of the

60[Assembly Sysiem.
(;. Ability to implement all types of batehing.
7. Ability to open any file in any direct ion a t any

lime.
One thing was dear. To achieve atl of these object ives,

iL would be necessary t.o have an interpret ive sys tem, i.e.,
a system of subroutines which would execute logical
reading or writing regardless of which file was be ing
manipulated. This presented problems of object t ime
speed to overcome which we needed to develop new
features, such as the Read Service and the M a s t e r Queuing
techniques which are described below. Use of the in terpre-
tive mode also presented problems of object ~ime m e m o r y .
To overcome this, the old technique of segmenta t ion w a s
used.

One reasou that it was desirable to have the p r o g r a m
interpretive was that the p rogram would need to be
implemented quickly so tha t it: would be avai lable for use
in building the Assembly Sys t em and the ConoL Compi ler .

A second and very impor t an t reason for hav ing the
program interpretive was beeause of segmenta t ion . W h e n
segmemat ioa is used, Lhere is no gain a c h i e v e d w h e n re-
ducing the size of any but, the largest segment occupying
a common memory area. i f generative techniques were
used, a separate r:rL~D a n d / o r %VRITE routine would exis t
for each file. This would require tha t the a m o u n t of

C o m m u n i c a t i o n s of t h e ACbI[2 7 3

memory involved could not be allocated until object time.
This prevents a balance from being achieved between the
sizes of separate segments and can, in the long run,
require as much as or more memory them interpretive
techniques.

Fundamental Object Time Functions

The fundamental object time functions required of an
I-O system are:

1. OPt,:N FiLE 4. CLOSE FILE
2. READ FILE 5. END REEL-INPUT (tape swap, etc.)
3. WRITE FILE 6. END REEL-OuTPVT

Frequency of execution of opening and closing of files
and end-of-reel procedures is extremely low for most
applications. When these functions are performed, it is
desirable to trade time for memory.

Assume a case where four files are to be opened, the
same four flies are to be closed, and two END REEL pro-
cedures are to be executed (the Master file is two reels
long so that one END REEL-INPUT procedure and one END
REEL-OUTPUT procedure is required). This case would
require a total of ten accesses to these routines. These
routines, on the other hand, require an aggregate of
approximately t000 words of memory. By calling in these
routines from the library tapes each time they are required
(segmentation), these 1000 words of memory can be saved.
This can be done at a cost of approximately 60/1000 of a
second (less in the case of successive calls) per call on the
601. The total time required for the example presented
where a total of ten accessed were required would be ~ 0
of a second for the run. This tradeoff is very desirable and
has been made in the 601 I-O system with great savings.

There are other reasons why segmentation of these
functions is desirable. Once these subsidiary functions are
segmented, it is of little significance how large they are as
long as they are smaller than the READ-WRITE segment.
The READ-WRITE segment is always in memory except
when opening, closing, etc. are being done. This allows
more space in the auxiliary segments for READ servicing,
complete operator instructions and error messages.

Minimization of Object Time

The COBOL language can be considered as the language
of a theoretical computer. A CoBoL compiler bridges the
gap between this theoretical computer and an actual one.
Each verb of this theoretical computer has, however, an
object-time operating speed depending on the compiler
and computer for which the program is compiled. The
state of the art in compiler design and demands on object-
program efficiency have increased greatly in the im-
mediate past and will continue to increase in the immediate
future. The I-O system for the 601 at tempts to minimize
the amount of object t ime required, not only by efficient
object-time logic, but also by conceptual advances which
can be used at the system level. Some of these advanced
techniques are described here.

1. Read Servicing. When files are opened and closed,
much work can be executed which would otherwise need
to be executed whenever each read occurred. This results
in significant :reductions in object rumfing time. One typo
of t~EAD servicing used in the 601 System is :aI~:AD-W:,~H'E
muit ipath switches. These switches are set in the pa-
rameters for a file which will direct, it to the correct logical
Rt,:AD or WalTE routine or an EXCEPTION routine, depending
on its state when used for reading or writing. Explicitly,
there are two switches---one for reading and one for
writing. A seematie is given in Figure 1.

Prior to opening a file, the switches in the file parameters
for that file are set to EXCEPTION SO that if either a READ
or a W~Ia'E occurred prior to opening, control would be
transferred to an EXCEPTION routine which would print
out the error condition. When opening ~ file as input, the
READ switch is set to the batehing routine called for by
file parameters. The WroTE switch remains set to EXCEP-
TION SO that a t tempts to execute logical ,writes when a
file is opened as input will result, in object-time error
printouts. When an optional file is opened as input and the
file is not present, the READ switch is also set to the
EXCEPTION routine. This technique eliminates all exception
ease burden time. I t also allows any file to be opened as
input forward, input reverse, or output at any given time.

2. Reading Reverse. Input files, in 601 COBOL, may be
read either forward or reverse. When a file is opened
without the reversed option, subsequent reads will supply
the next, logical record starting at the beginning of the
file. When a file is opened with the reversed option,
subsequent reads supply the previous logical record starting
at the end of the file.

3. Reopening Files. Consistent with implicit COBOL
definitions, files in 601 COBOL may be opened in any
manner, closed and' reopened in any manner. A file may
be opened as output , for example, written, closed and re-
opened as either input forward or input reverse. A second
example for its use would be where a file must be scanned

RD SW " " 2

RD SW 3

4

BATCH
READ X

FORWARD

BATCH
READ X

REVERSE

BATCH] BATCH
READ y READ Y

FWD REVERSE

BATCH BATCH

WRITE X WRITE Y

FORWARD FORWARD

RD-WR

EXCEPTION

ROUTINE

FIG. 1

274 Communications of the ACM

I (q os.?d.

is r e s u i ~
~I11~ • TVD2:

t h e ~a~
::t log~cM
epe~:~citn~
x p t i c k ~ y ~

O l t @ ~r.#

i
r f t IYle~ eL~

v e n i a l };~

. r id p r:ir!t
t p u t : , t:h~
d f o r bY

.EXCKP;
~ v h e n :~

r n e erra~
t ~ tnd O-:
.t t o tb:-
~xc-ept io~ ~
, p e n e d a.~
v e i l t lm¢

~.;
, I:fllly De
s (:)pel-~ed
i t l supp iy
~g o f tSe :
l op t io> ,
:1 s t arthur

}

t C o t~o~,
t i n aav

f i l e ma;-
d a n d re-
_zk see(m({

------1

l i:

. !

ROUTT" ~ !
J

:: : ~.

r,.,.ice, ill ~hi.~ case it !:o~iid be opened forward, read,
ei,,sod. '.:h(ul opeited reverse, read and closed. A third
~,xampie would l)e where ah islpur file is later used as an
~it!plK, as ill a serf. This eiimhmtes redescribing the file
~i.!Id at!tO (?OllS(q'VC£ Ill(~lll(}I'} ".

-t. ;ll~dliq~[e Rc,l.m Xlany times it is quite desirable to
have one tape contain ntol'(' LiiP!I/ olle file of informal.ion.
A muhi-file reel mav take the form of files going to elf-line
devices, files used for intemtediate resuhs between runs,
small reference files, or eombinat.ion~ of the three. This is
a feature which, in many cases, has not been fully ex-
ploited in previous compilers. It has its most significant
value where a mutiple run .qystem is employed. An inven-
tory system, for example, may have a number of files to
be printed or punched after all runs for the system are
completed. I t may be desirable, on a system of this sort,
to save the original transaction file. Where this is the ease,
files containing intermediate or final results can be de-
scribed as second or successive files on the back of tiffs
same reel of tapes. This reduces the amount of tape
loading and unloading and reduces the number of tape
drives required.

5. Master Oueuinq Techtdques. When it is determined
dmt a machine buffer has become available, it is necessary
to determine whether an alternate area is available which
can accept a new physical block from an external meditmt
or an alternate area is full which earl be written to an
external nmdium. Repeated testing of these conditions
for each file in the program whenever a machine buffer
beconws available is normMly quite costly in machine
dine and takes away from the gain achieved by keeping
input-output devices moving. An adwmced technique for
programmed scanning using jump switches has been de-
veloped for the 60:l system which eliminates approxi-
mately 90 percent of this scanning time. A schematic of
this is given ill Figure 2.

File Parameter I

SCAN
ENTER

p i

<> .Y ,

SCAN
EXIT

Fro. 2

GIVE

RD S...WR

RESET X n

Whenever a machine buffer bec.me~ available, transfer
of control is given to scAN l.:x'r~-:m Swi~('h X~ contains a
jump to Xe if no alternate area is available. If an alternate
area is available, X~ contain.* a jmnp to Y~. Y~ stores Xl
as an exii to the romine which gives tile physical mcxD or
WRITE i n s t r u c i i o [| an({ g i v e s c o l N r o l i o I h e physical m,>~D-
WI(ITE routine. The Physical IIEAD-Wli/TE routine, after
giving the instruction and resetting the switch to "no
ahernate area available" transfers control back to X~.
This reduces time on the 601 from 37jasee to 3/usee per file
scanned. This is very significant in large programs where
many titles are frequently described.

6. File Priorities. Many production runs of COI~OL
object programs feature processing against reference or
master files. Where this is true, it, is desirable to have the
nmster file read and \vritten at maximmn speed where al~
all possible. Subsidiary files such as transaction files can
then be sandwiched between master file reads and writes
when the progrmn becomes compute bound, when the
balance between reading and writing of the master file is
not uniform, or where a secondary machine input-output
channel is available. The 601 COBOL input-output system
provides this feature.

7. Address Modifier Assignment. Minimum data move-
ment in tim 601 I-O system is allowed through Address
Modifier Assigmnent. Address Modifiers allow logical
records to tie accessed in tile area where they are read into
from the external nmdia or front where ttmy are to be
written out to an external medium (Mternate areas). I t is
a means by which the logical record areas for input; and
output files are "floated". A schematic of this is given in
Figures 3 and 4.

When no address modifiers are assigned to an input file,
the record is moved by tile I-O systein to a logical record
area designated for that file each time a READ verb is
executed for a COBOL progrmn.

When art address modifier is assigned to art input file,
no movemeni~ of data takes place on the logical RE:tD.
Instead, the address modifier assigned is updated to con-
tain the addresses of the left-hand-end and the right-
hand-end of the record area by the I-O system. The
record is then accessed directly from the read-in area
using the address modifier assigned. This technique elimi-
nates moving data except for the transfer from inpui~ to
output record areas.

I t is import.ant to note, regarding this technique, tha t
one data movement~ is always required to control input-
output for regrouping of batehed files regardless of machine
features involved. Optional assignment of address modi-
tiers requires that a machine feature be assigned for this
purpose only where the size of the file and/or the amount
of other computing time involved make this assignment
desirable.

8. Variable Length Batchin 9 Techniques. (a) Variable
Length Records--Significant advantages in tape passing
time can be achieved through elimination of leftmost zeros
of numeric fields and rightmost spaces of alphabetic and

Comnnlnications of tile ACM 275

alphanumeric fields. This is accomplished in the RC.A, fi01
computer , as in other PICA compmers , by raachine-
oriented features which make handling of these fields
efficient.. Records of this type are termed Variable Lerqflh
Record.s.

(b) Mixed Ileeord Files-+-Handling of files containing
variable length records is a separate problem, however,
from handling of the records containing variable length
fields. When any record within a file can be larger or
smaller than any other regardless of whether any specific
type of record can itself vary in size, the input-output
system must do the work. Files of this nature are usuMlv
termed Mixed Record Files, or more simply, Mixed Files.

(e) Mixed Record File Batching--: l 'he fundamental
problem in files of this nature is batching. If two types of
fixed length records are within a file and one record is 100
characters in length while the other is 1000 characters in
length, it would be very inefficient to speeify batehing as
two records per batch. The ineffieieney arises because it,
is not known in advance which mix of records is to occupy
a batch. Because of this, memory would need to be allo-
cated for the worst ease---two records of 1000 characters
each for a total of 2000 eharaeters. If two sueeessive

N O ADDRESS MODIFIER ASSIGNED

AREA 1

RECORD A

I I

" C

" b

LOGICAL
RECORD AREA

FIG. 3

AREA 2

RECORD E

.

" G

" H

ADDRESS MODIFIER ASSIGNED

276

AREA 1

RECORD A

" B

" C

" g

Fro. 4

Commnnieations of the ACM

AREA 2

RECORD E

" F

" G

n H

records of I00 characters each were to be otttpttt, 1he
batch size would be 200 characters and memory space,
tape space and tape time would be wasted.

]:Nieieot methods have been developed for the 601
input-outpitt system whieh will pack these records into a
batch area until there is room for no more in the area.
Twen ty records of 100 characters eaeh or two records of
1000 characters each, or a combination of both, for
example, can be packed atttomaticMly by the input-output
system without requiring the length of the record within
the record itself. This is, of course, in addition to ahnost
every other eoneeivable type of hatching.

Timing Objectives

Coinpute t ime for handling input-output of magnetic
tape operations is an important factor in the evaluation
of any input-output system. A programmer who codes his
own input-output routines for a particular program
normally makes a point of not t iming the resultant speed
partieularly if it might not look too good. He is quick to
forget tha t da ta movement should be included in the
amount of compute time for input-output servicing. I l e
also does not normally count the compute t ime required
to provide the max imum use of s imultaneity simply be-
cause he does not make this type of provision.

Speed objectives for t.he 601 input -output system are
based on the total compute t ime to trEaD or win'tic a
batched file, ineluding one com,:t~E of a 16-eharaeter
criteria field. The actual formula for speed evaluation is
as follows:

L R T -4- 2*+ + bst + + 2 * * - / n c r rb -4- BT CT

(ne r - rb) t t c + gt T T

* Comparing is by each logical read. No compar ing is needed
for writing.

** Because the system requires only one da t a movement for
regrouping of ba tehed files, moving may be done on each logienl
read or each logical write, but not both.

where
LRT = LOGICAL RECORD TIME/RECORD
bst = MACHINE BUFFER SERVICE

TIME/CHARACTER
CMT = CHARACTER MOVE TIME/CHARACTER
ner = NO. CHARACTERS PER RECORD
RCT = RECORD COMPARE TIME/RECORD
rb = RECORDS PER BLOCK
BT = BLOCK TIME/BLOCK
tte = TAPE TIME PER CHARACTER
gt = GAP TIME
CT = TOTAL COMPUTE TIME
TT = TOTAL TAPE TIME

While LRT, R C T and B T vary in actual application,
these variances are not great and an average can be taken
for each. C M T varies based on whether the record is
character, half-word (four characters), or word (eight
characters) oriented. Because records should be word
oriented when speed of processing is desired, word transfer
t ime is used.

o t-ait)~< t!:...-: :

e ¢" or([s i:ti;) a

o f b,.'~r},., :{(,--

"OC" (al'({ uii~;{7.

,) : i rn;i~_., - {;.

t C " C?va~} l~ . f i (~

v h e e0d{~ h;;

~<:) is c~ti{d- _o

[, lcled i;;tb

: i I] T t O ! - e / i t r.i"

% " - 5 i [I f i D i 7 {7:-

i

{: %3s~ei~ >-
o r w;:;'{,:

(>\+g~.l.cla'.,ka 75 :

T:

- P/t ' <,.p
: t :,~

. z ~ + . _

; T i

{ .
I2 I<'~ (j . ~ 'e! l{t :{ >. { E:7

} l " t .c~g{e[} i{:2: ; i :

2 7 ! : ' :kJT-C._TP. . r : i~ ' -4G Ok:~":~

227'- L[7 T:,a£

/5¢c
:: ;] ; : : + " : (5 /

2- } a-;

i

: 9 2.9 30 -:0 50

?iD.LORD5 FE,: BLOCK

Fie. 5

This [eaves fix-{,, variables. The variables nor aim rb vary
by In ' iype Of b~i|ehing. The variables bst, tte and gt vary
b,: the type of tat)e (B6I(C or 120KC).

An Introduction

Approximate iigures for I,I}T, i ICT BT and C M T are
as follows :
LIlT = 75us I ICT = 30us BT = 500#s C M T = A-us
For 120KC Tape:

ttc = ~.o~s ~o't = 7400#s bsi = ~#.xs
For B6KC Tape:

ite - 15.0us gt -- 5500#s bst = 9us
I:or 120KC iape, the formula reduces to

(90 + 9ncr)rb + 500 COMPUT1); T I M E

(tler-rb)8.::3 + 7400 TAPE T I M E

which can be graphed as shown in 1,'igure 5. The graph
66K(1 tape takes the same basic form except that the
percentages are less because the tape is not as fast.

I t must be pointed out= that the graph and formula
shown in(,lude machine buffer servi{,e time in addition to
basic input-output, service time and one contparison of a
criterie field. Mthough inachine troffer service time is not
programmed, it is a function of tape time and is therefore
included. Formulas and graphs of this sort. are an exeellenB
method for evaluating whether a given I-O system fits a
given computer.

M e m o r y R e q u i r e m e n t Objec t ives

By tying the I-O System into the library tape (segmen-
tation), very reduced nmmory requirements are realized.
Because of this fact this extended system requires only
an approximate 500 words of memory.

to a Machine-Independent Data
J. P. Mull in

Radio Corporation of America, Cherry Hill, N. J.

Division

22-F [i:R

:}

XVord {eig!:: }
B4.: T~' :B~

c%-(.,~:.(I 42r

i i?

tJf all ihe prohlenls facing COBOL in the future, perhaps
<he most challenging is establishing a maehine-independenl,
lla!a DMsion. A~ the present time, COBOL provides a
~el'tain anlloullt of flexibility in describing data so that
{he fealtlres of particular computers can be employed to
aAAeve efticient object programs. While this approach
provides a method for optimizing COBOL programs,
progranuner knowledge of individual computers is re-
quired in order thai the merits of certain hardware features
".vn<'hronization, fixed vs. variable length data design,

e,<:.) can be adequately measured.
In approaching the question of a machine-independent

Data l)ivision, the initial objectives of any system should

(A) A uf in imum of information required of the pro-
g r a m m e r

(B) X o mac'hine-oriented phrases needed in the souree
language

(C) A computer process to autonmtically determine
(1) the sequence in which elementary items are

arranged
(2) whether fixed or variable length techniques

should be used
(3) the need for synchronization and other data

design conventions 0t.em separators, word
marks, etc.) which permit, opt imum use of
the object computer.

The relative efficiency of data design is a function of the
procedures which operate on the data. The current concept
of compiling, however, does not provide a mechanism for
analyzing the frequency with which each procedural state-
ment is performed at object time. One approach to permit-
ring a compiler to determine where efficient data design
is desirable could include some indication in the Procedure
Division to indicate the nmin flow of the object program.
Based on this information, a compiler could determine the

C o m m u n i c a t i o n s o f t i l e A C M 2 7 7

