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A Local Update Strategy for Iterative
Reconstruction from Projections

Ken Sauer, Member, IEEE, and Charles Bouman, Member, IEEE

Abstract—Iterative methods for computing tomographic re-
construction are computationally costly relative to convolution
backprojection, but allow useful image reconstruction from
sparse and noisy data. We present a method for Bayesian re-
construction which relies on updates of single pixel values,
rather than the entire image, at each iteration. The technique
is similar to Gauss-Seidel (GS) iteration for the solution of dif-
ferential equations on finite grids. The computational cost per
iteration of the GS approach is found to be approximately equal
to that of gradient methods. For continuously valued images,
GS is found to have significantly better convergence at modes
representing high spatial frequencies. In addition, GS is well
suited to segmentation when the image is constrained to be dis-
cretely valued. We demonstrate that Bayesian segmentation us-
ing GS iteration produces useful estimates at much lower sig-
nal-to-noise ratios than required for continuously valued
reconstruction. This paper includes analysis of the convergence
properties of gradient ascent and GS for reconstruction from
integral projections, and simulations of both maximum-likeli-
hood and maximum a posteriori cases.

I. INTRODUCTION

MAGE reconstruction from projections has been ap-

proached in a variety of ways, with the method of
choice dependent on the quality and character of the data
set [1], [2]. Although convolution backprojection (CBP)
is the technique most frequently found in commercial ap-
plications of X-ray computed tomography with relatively
high signal-to-noise ratio and complete data sets, special
cases benefit from alternative algorithms. In many situa-
tions the quality and/or quantity of data is inadequate for
conventional CBP reconstruction. These cases arise, for
example, in low dosage medical imaging [3], nondestruc-
tive testing of materials with widely varying densities [4],
and applications with limited angle projections [5] or hol-
low projections [6].

Iterative methods have dominated techniques for the in-
version problem in sparse and noisy data. Some determin-
istic iterative algorithms consist of alternately enforcing
constraints imposed by consistency with data, and mem-
bership in sets of solutions possessing specific character-
istics. A familiar example is the algebraic reconstruction
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technique (ART), which forces the candidate solution to
satisfy one integral projection measurement at each iter-
ation. ART is one of a general class of algorithms known
as projection onto convex sets [7], with each set in ART
described by the value of the given projection measure-
ment. Other sets can be described by qualities such as
nonnegativity or upper limits on absorptive densities. The
behavior of deterministic methods is often unsatisfactory
if data is very noisy, and/or the solution is underspecified
by the observations and set memberships. The introduc-
tion of regularization in the form of a cost function pe-
nalizing local irregularity of the reconstructed surface may
improve performance, at the cost of resolution in the final
image [1].

Statistical methods of image reconstruction and resto-
ration may be quite similar to other iterative approaches
in their implementation, but seek the solution which best
matches the probabilistic behavior of the data. Maximum-
likelihood (ML) estimation selects the reconstruction
which most closely matches the data available, but may
yield solutions which do not have many of the properties
expected in the original function [8]. Bayesian estimation
allows the introduction of a prior distribution which re-
flects knowledge or beliefs concerning the types of images
acceptable as estimates of the original cross section. This
prior distribution weights the likelihood function and may
even impose hard constraints on the solutions. In the pre-
ponderance of previous work on the problem, the overall
cost function specified by the log likelihood for either ML
or Bayesian techniques has been assumed quadratic for
tomographic image reconstruction, allowing application
of gradient methods. For example, both the prior distri-
bution of the cross section and the distribution of the pro-
Jection measurements conditioned on the underlying im-
age function are assumed Gaussian in many reports [9],
[10].

In this paper, we develop a local update method to per-
form Bayesian reconstruction from projections. Our ap-
proach is similar to Gauss-Seidel (GS) iterations em-
ployed in the solution of differential equations on finite
grids [11], and we will use the same terminology.' Each
iteration of this method includes only the optimization

'A previous study of conjugate gradient for tomographic reconstruction
of very small (9 X 9 pixel) images [12] applied GS as an alternative opti-
mization method. However, this work did not formulate a statistical solu-
tion, develop fast numerical methods, or quantify convergence properties
of the GS method.
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with respect to a single pixel’s value. Since this update
strategy is local, it is well suited for use with typical prior
models for the cross section. The computational cost of a
single pass of local updates across the entire image is ap-
proximately the same as that of a single iteration of the
gradient approach. In addition, as is illustrated in the
analysis of Section IV, and the experimental work of Sec-
tion V, the GS approach has faster convergence in high
spatial frequencies for continuously valued images than
either simple gradient ascent, or conjugate gradient.

If a cross section is known to consist of only a few
distinct densities, then accurate reconstruction is possible
with very low SNR. Image estimation then consists of as-
signing each pixel to one of the known densities. The re-
sulting estimated cross section is a segmentation which
separates the image into discrete regions. The cost func-
tions which arise in this problem are generally nonconvex
and nondifferentiable, and therefore not amenable to gra-
dient approaches, which rely on partial derivatives of the
cost. However, the GS technique is well suited to this
segmentation problem, and finds an estimate very quickly.

We avoid using a Gaussian approximation for the error
in the projection measurements by deriving a quadratic
approximation to the log likelihood of the actual photon
counts. This approximation is shown to be reasonably ac-
curate even for very low photon counts (= 10 per detec-
tor). The simplification is useful since it allows analysis
of the convergence rate and reduces computation relative
to the exact log likelihood. The resulting cost functional
weights the residual error for each projection in propor-
tion to the count of photons reaching the corresponding
detector. In the limiting case of opaque projections, no
photons are collected and the observation is given no
weight. The algorithm is therefore applicable without
modification to the canonical missing-data problems, such
as limited-angle reconstruction, and truncated or hollow
projections.

II. MODEL OF PHYSICAL SYSTEM

The 2-D Radon transform maps a function of two var-
iables, which we denote by f(x, y), into a function in-
dexed by (8, 1) according to

p@.n = S_m S_m fex
6@ —xcosf —ysinf)dedy (1)

where 6( ) is an impulse function. Fig. 1 illustrates the

collection of projection data for a single value of 6. The:

value of p (, t) represents the integral of f (x, y) along the
ray at orientation § + w/2, at a displacement ¢ from the
center of the field. By the Fourier slice theorem [13], the
Fourier transform of each 1-D set of projection data forms
a sample P (8, w) passing through the origin of the Fourier
transform of f(x, y) at orientation 6.

" Given certain constraints on f(x, y) [14], the 2-D func-
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Fig. 1. Projection data for angle 6, resulting-in the one-dimensional func-
tion p (6, 0.

tion p (8, ) can be inverted by

1 (" (" . .
f(x, y) = g SO S P, w) |w| ejw(x0059+y51m9) dw db

@

or

T

fe,y) = S S_ p(@, Hh(x cos 9

+ ysin @ — ) dt do 3

0

where & (¢) is a one-dimensional backprojection filter. The
equality of (2) and (3) is due to the relationship of con-
volution to multiplication of Fourier transforms [13]. The:
filter A (¢) is in practice a low-pass version of the inverse
Fourier transform of |w|, whose design is based on an
estimated band limit for f(x, y) and the necessity for
suppression of high-frequency noise in the projection data.
The above inversion techniques are known as filtered
backprojection (FBP) and convolution backprojection
(CBP), respectively. ‘‘Convolution’* refers to the inner
integral in (3), and ‘‘backprojection’’ refers to the outer
integral. Most commercial tomographic imaging systems
employ CBP, with the choice of / the most important ele-
ment in the design of the reconstruction algorithm [15],

6]

In practice, reconstruction requires finite-dimensional
representation of both the observations, p (8, t), and the
modeled image, f (x, y), as the finite-dimensional vectors
p and f, respectively. In the case of CBP, a discrete ap-
proximation of (3) must be implemented. One approach
is to formulate the problem directly in a discrete domain.
To achieve this, we may represent f(x, y) as a sum of N ~
local components, w;(x, y), each modulated by the local
pixel value f; [1]: 2

f& ) = 2 fiwix, ).

In this notation, S denotes the set of N pixel locations,
and i is the pixel index. Generally, w;(x, y) will have the
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form
Wiy (X, ¥) = w0 — iy T, y = iy T) 4

where T is the spatial sampling period, and i = (i}, i,) is
the position in a 2-D lattice. The projections may be dis-
cretized by computing them for only a finite set of M pro-
jection rays, {(6;, £;)}/Z . The jth projection is then writ-
ten as p; = p(6;, ;). The Radon transform equations may
now be written in the discrete form

p=Af
where A is a sparse M X N matrix of line integrals.

A; = S S wi(x, ¥)8 (4 — x cos 6,
— y sin 6;) dx dy.

If the w; (x, y) represent constant-valued pixels, Aj; is sim-
ply the length of the intersection of projection ray j with
pixel i.

A. Statistical Analysis

In transmission tomography the projections p are not
measured directly. Instead, raw data are in the form of the
number of photons detected after passing through an ab-
sorptive material. This situation is illustrated in Fig. 2.
Input photon counts are Poisson-distributed random vari-
ables. Calibration allows the input rate to be approxi-
mated -‘well enough that we will assume it to be known,
and denote it by Ar. Given this assumption, the photon
count, A;, corresponding to projection j, is a Poisson dis-
tributed random variable with mean and variance

Arexp {—p (@, 1)}
The random vector of photon counts at all angles and dis-
placements is denoted by the upper case Greek letter A.
We will denote particular realizations of this random vec-
tor by the lower case A. Under the usual assumptions of
independence of photon counts among angles and dis-

placements, the conditional distribution of the photon
. counts A given f'is

P(A =\ J)

M
= I Ou) ™" exp (=hge™7) (e ™7y

where A+ is the jth row of A. The log likelihood function
reduces to ‘

M
LONSY = = 2 Dvre™7 + NAuf + log (WD) (6)

Using this form, the maximum likelihood (ML) estimate
may be computed by solving the following optimization
problem over the feasible set of solutions, Q:

f = arg max L(\| f). 0
‘ feQ

The quality of the reconstruction can be improved by
choosing the set { to constrain the solution based on prior
knowledge of feasible solutions.

Emitte\r)
O

i\ Ar

A0,1)

@

Fig. 2. Collection of photon count A(f, f). As is the input photon rate,
given by calibration.

The ML estimate does not incorporate reasonable prior
information about the behavior of the image. For in-
stance, the ML estimator may contain excessive high fre-
quency variation which we would not expect to exist in
the original image. If the number of samples taken is small
relative to the number of unknown pixel values, the so-
lution may also be underdetermined.

These difficulties may be addressed by treating the orig-
inal image as a random field F with prior distribution
g(f). Again, we use a lower case fto denote a particular
realization of the random vector F. The prior distribution
regularizes the optimization problem so that a unique so-
lution always exists [17]. The logarithm of the a poster-
iori distribution of F given A may be computed using
Bayes’ formula:

L,(fI\) & log P(Fe df|A.= N\
= L(Nf) + log g(f) — log P(A = N).

The maximum a posteriori (MAP) estimate is then the
value of f which maximizes the a posteriori density given
the observations A:

f = arg max L,(f|N
feQ

arg max {L(Nf) + log g(f)}

= arg max {L(\, f)}. (8)
feQ

The last equation indicates that the MAP estimate also
maximizes the log of the joint distribution, L(\, f) = log
P(F € df, A = \). MAP estimation is computationally
direct and has experimentally been shown to work well in
a variety of problems [18]-[22]. We will treat only the
MAP estimation problem, since the ML estimate is the
special case of a constant prior distribution.

In order to simplify and extend the theoretical analysis
of this paper, we will also introduce a quadratic approx-
imation to the log likelihood function given in (6). In Ap-
pendix A we derive the approximation

LN f) = =3 — AN)'D(P — Af) + (N 9)
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where p; and D are defined by
B = log (\r/N)
D = dlag {)\1, )\2, ey, )\M}

Since c¢(\) is independent of f, it may be ignored in the
ML and MAP estimation of . Note that this does not con-
stitute a Gaussian approximation of any of the densities
involved. The image fis equivalent to a parameter. vector
in this expression, and the log likelihood is of interest
simply as a function of f in our optimization. The entries
of \ appear in both D and p of (9) as indicated above,
making this approximation nonquadratic in .

The key to the behavior of (9) is found in the matrix D.
The matrix more heavily weights errors corresponding to
projections with large values of A;. These projections pass
through less dense objects, and consequently have higher

- signal-to-noise ratio. In the limit of opaque projections
where no photons pass through the material, the approx-
imation simply applies no weight to the measurement. All
of the algorithms which will be derived in this paper may
be implemented using the more accurate likelihood func-
tion, (6), without dramatically changing the computa-
tional requirements or analytical properties of the meth-
ods.? In particular, (6) is convex so global convergence
properties will be consistently retained. However, we will
use (9) because it is a good approximation for most real-
istic cases, and it will be used as the basis of an analysis
which gives significant insight into the problem. Fig. 3
shows the comparison of the actual log-likelihood func-
tion and the approximation over two orders of magnitude
in photon count.

B. Prior Distributions and Problem Constraints

As mentioned earlier, it is desirable and often necessary
to apply prior distributions and hard constraints in re-
covering the estimate f. This prior information will have
one of two forms, depending on whether the goal is re-
construction of a continuously valued f or segmentation
of finto a discrete set of known densities. In either case,
estimates benefit from prior distributions which reflect the
high correlation of spatially adjacent pixels. The Markov
random field (MRF) model [23] has proven very useful in
image estimation problems such as ours. The MRF is
characterized by localization of pixel interactions, and
consequent simple optimization operations.

Under some weak technical conditions, a random field
is a MRF if and only if it has a probability distribution
corresponding to a Gibbs distribution [23], [24]. This re-
sult, which is known as the Hammersley-Clifford theo-
rem, may be used to express the likelihood function
log g(f). While the theory of MRF’s is quite extensive
[25]-[27], we will restrict our attention to a simple model
based on at most an 8-point neighborhood. Similar models

2Some minor differences in the following material are that the conjugate
gradient method will no longer converge in N iterations, and the GS update
method will only strictly increase the posterior probability with each update
instead of maximizing it with respect to a pixel’s value.
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Fig. 3. Plots of the log-likelihood as a function of a single projection across
the reconstructed image. The exact Poisson model (dashed lines) and the
quadratic approximation (solid lines) are each ploited for three values -of
. Each of these plots covers a confidence interval of 0.99 for a maximum-
likelihood estimate of the projection value.

have been successfully applied to image segmentation
[19], [21], [22]).

1) Gaussian Markov Priors: When F is continuously
valued, we will generally assume that it is a Gaussian ran-
dom vector, and therefore has a log probability density
function with the quadratic form

logg(f) = —2fRf +c (10)

where R is symmetric, and (1/ v)R™! is the covariance

matrix for F. We will further assume that R is equal to 1
on its diagonal, and that, ignoring boundary effects, mul-
tiplication by R has the effect of convolution with a sta-
tionary kernel, 7 . The constant y~' is equal to the pre-
diction variance of a pixel given its neighbors in the prior
model. This is equivalent to assuming that F is a Gaussian
Markov random field (MRF) with 2-D power spectral
density given by

1
AT

where @ = (w;, w;), and R(@) is the 2-D discrete time
Fourier transform (DTFT) of 7, ;, [28], [23], [29]. In par-
ticular, we will make the common assumption that R has
the form of a discrete 5-point approximation to a Lapla-
cian: :

(11

1 ifi=j=0
rep =41/4 if{i=0andj= %1}
or {i=+landj = 0}.
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This results in the assumed power spectral density
1
y(I —1/2cos w, — 1/2 cos )’
This prior distribution may be used in conjunction with
(9) to form an approximate MAP estimation criterion:

f = arg max L(\, f)
feQ

Gr(w) =

= argmax {-B - 4D - Af) — +f'Rf} (12)

When Q = IR", the solution to this optimization problem
may be found by differentiating with respect to f The re-
sultlng equation has the form

b=H+yRf (13)
where H = A'DA and b = A'Dp. This equation will play
a central role in our analysis.

2) Non-Gaussian Priors: A second distinct case re-
sults when © is a proper subset of IR". This may occur due
to a variety of hard constraints on the solution’s form. An
important special case occurs when this set is convex. For
example, it is often reasonable to assume that f must be a
nonnegative function. In this case, { is a convex set and
there is a unique global maximum to (12). The difficulty
of enforcing such a convex constraint will vary with the
type of optimization technique used. By projecting solu-
tions onto the convex feasible set, many algorithms may
be modified to enforce the constraint [7]. However, we
will develop an algorithm in Section III-A that can more
efficiently implement this type of convex constraint.

Enforcing hard constraints becomes more difficult when
the feasible set is not convex, as is the case when each
pixel is assumed to have one of a fixed number of known
densities. Reconstruction then corresponds to choosing
each pixel from a discrete and finite set O of possible
densities. This segmentation process can be performed
more accurately than continuously valued reconstruction
when the signal-to-noise ratio (SNR) is low.

We choose a discrete MRF model for F which is often
used in segmentation problems [18], [21],
model encourages neighboring pixel to have the same
densities. To define the model, we must first define two
simple functions, #,( f) and £,( f). #,(f) is the number of
horizontally and vertically neighboring pixel pairs with
different densities in f, and £,( f) is the number of diago-
nally neighboring pixel pairs with different densities in f.
The discrete density function for f € O" is then assumed
to be of the form

log (/) = 1)

<t1(f) + N ) tlog(2) (14)

where Z is a constant. Substituting this form into (8), we
obtain the optimization criterion

f = arg max {— (b — Af)D(p — Af)
feON

<t1(f) + tz?)} (15)

[32]. This
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III. OpPTIMIZATION TECHNIQUES

The objective of this section is the development of a
new iterative reconstruction technique, based on local
Gauss-Seidel (GS) updates, for efficiently solving the op-
timization problems of (12) and (15). We show that this
method can efficiently solve the quadratic problem of (12),
and a wide variety of problems that incorporate hard con-
straints on Q. This is particularly important in the seg-
mentation problem of (15) since the gradient-based algo-
rithms implicitly require that Q be a continuous convex
set. We analyze the convergence performance of GS for
the case of the Gaussian prior, and compare it to two well-
known numerical optimization techniques, gradient as-
cent (GA) and conjugate gradient (CG), which are di-
rectly applicable to quadratic optimization of (12). These
comparisons also include computational expense per it-
eration of each method.

A. Gauss-Seidel

Gauss-Seidel iteration is a well-known technique for
solving partial differential equations (PDE) using finite
element methods [11]. The strategy of GS iterations in
PDE’s is to sequentially enforce the conditions of the dif-
ferential equation at points in the solution. Each pixel up-
date is chosen in sequence to minimize a global cost func-
tion. This is in contrast to methods such as gradient ascent
(GA), which update all points simultaneously. We will
use the local minimization interpretation as the basis for
our development of GS.

Our objective in the case of the Gaussian prior is to pick
the value of a single pixel, f;, which minimizes the pos-
terior log likelihood function of (12) as a 1-D function of
the single entry, given the current state of the remainder
of f. The updates are most simply viewed in terms of the
Radon transform domain error. Changing the value of fat
the point i by the amount Af;, changes the projection error
p — Afin the following way:

é =e — A Af (16)

where A,; is the ith column of A and ¢ is the new value
of the projected error. Therefore, the equation for the new
log likelihood is

. [7}
LN ) = LN f) + 6,Af — 52 @af  an

where f. = f. + Af; and the values 0y, 0, are defined by
01 = A’*iDe (18)

6, = At*iDA*i- (19)
We can now add the log likelihood for the prior distri-
bution to the expression of (17). If we use a Gaussian
prior distribution, the optimum value for Af; is given by

6, — yRixf

. 20
0, + YR; 0

Af; =
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The complete update equations for the point at position i
are given in Fig. 4.

The GS method will also be used to solve the segmen-
tation problem of (15). For this discrete problem gradient-
based methods are not applicable. However, the GS
method may still be applied by choosing each pixel’s value
to minimize the a posteriori probability. Since the log of
the prior distribution (14) depends only on the number of
neighboring pixels with differing density, the best choice
for pixel i will depend only on the neighbors of f;, which
we denote fy;. Specifically, the updated value is chosen
using the formula

R 60
fi=arg max {Bl(x -f) - f(x -

where O is the set of feasible densities for a pixel, v(x,
f) counts the number of horizontal and vertical neigh-
bors of f; which do not have density x, and v,(x, f;) counts
the number of diagonal neighbors of f; which do not have
density x. Since O = OV is not convex, determining a
global maximum will generally not be possible. How-
ever, it is possible to guarantee convergence to a local
minimum by changing the density of a pixel only when it
strictly reduces the value of (21).

For the discrete problem, the GS algorithm is essen-
tially the same as the iterated conditional modes (ICM)
method proposed by Besag [21]. The only difference is
that the ICM method uses the ML estimate as the initial
starting point of the algorithm, while we use the pointwise
segmentation of the thresholded CBP, since it generally
gives a good initial starting point. Of course, the GS up-
date algorithm of (21) is still essential, since it gives a
specific method of implementing ICM (for the transmis-
sion tomography problem) which we will show is com-
putationally efficient. Similarly, this same update algo-
rithm can be used to implement stochastic optimization
techniques such as simulated annealing. These methods
can improve the quality of the reconstruction by deter-
mining a solution closer to the global optimum. Unfor-
tunately, this improvement is at the cost of additional
computation [20], [31]. Deterministic multiscale optimi-
zation methods may also be adaptable to this problem
[22], [32] and have been shown to reduce computation
and improve performance.

(21)

B. Gradient Methods

Gradient ascent (GA) is an iterative scheme in which
successive values of the reconstruction are given by

f(n+l) = f(n) + anLp(f("), N
=" — (A'DAf" — p) + YRF™). (22)

This method is closely related to the numerical method of
weighted Jacobi iterations (also known as the simultane-
ous overrelaxation method or JOR) used in solving finite
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6:(i) = ADA fi= fi+Ofi
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Fig. 4. The equations for the Gauss-Seidel update of the pixel at location
i. The values 8, and Af; are temporary constants. f and & are the updated
values of state vectors.

element approximations to partial differential equations
[11].

Conjugate gradient (CG) is a general method for max-
imizing differentiable functions. It is closely related to GA
since it uses the computed gradient to determine the di-
rection of change at each iteration. The critical difference
is that CG requires d" ", the direction of minimization
in iteration n + 1, to be conjugate to the previous direc-
tion of minimization under the H + yR inner product [33],
[34]. '

@™V (H + yR)d™ = 0.

GC generally converges much faster than GA because
successive corrections do not interfere with one another.
The update and initialization equations for CG are given
in Fig. 5.

C. Computational Costs

At this point, it is not clear that individual GS iterations
may be performed with reasonable computation. To com-
pare relative computational cost of the methods, we will
determine the number of multiplies required for one com-
plete iteration of GS, GA and CG. Table I summarizes
the results and indicates that one iteration of any of the
three methods has computational complexity on the order
of a single application of convolution backprojection.

The computational requirements of projection and
backprojection (represented by Af and A'p, respectively),
are equal since multiplication by A’ and A have equivalent
complexity. If we assume that no computation is required
in evaluating the elements A; (lookup tables may be used),
then the number of multiplies required to compute Af is
M,yN, where M, is the average number of projections
which pass through a single pixel, and N is the number of
pixels. .

If the length of the filter in CBP is denoted N, the num-
ber of multiplies required for filtering is MN,,. Backpro-
jéction of the filtered data in CBP normally involves av-
eraging or interpolation, with cost approximately equal to
that of the product A'p. This results in a total of MyN +
N, M multiplies for CBP, with the first term usually the
larger.

The basic operation of the GS method is the computa-
tion of Af; using (20). The computational cost of this op-
eration is dominated by the evaluation of 6, and 6,. 6,
does not depend on Af; so it may be precomputed for each
pixel. Since an average column of A contains M, nonzero
elements, the number of multiplies required to compute
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Fig. 5. The equations for conjugate gradient search using the quadratic
approximation.

TABLE 1
NUMBER OF MULTIPLIES AND DIVIDES REQUIRED FOR ONE ITERATION OF
EACH METHOD

Convolution backprojection
Gradient ascent

Conjugate gradient
Gauss-Seidel

MN + N,M

@My + NN + M
@My + Ng + )N + M
(3My + N + DN

N is the number of points in the image, M is the number of projections,
M, is the average number of projections passing through a pixel in the
image, N, is the number of points in the CBP filter, and Ny is the number
of points in the regularizing kernel. The iterative methods assume the use
of a Gaussian prior distribution.

6, is either M, or 2M,, depending on whether we assume
that A%; D is computed or stored in a table. The update of
the projected error vector in (16) requires M, multiplies,
and computation of Af; requires a single divide and Ng
multiplies, where Ng is the number of points in each
neighborhood of the MRF represented by R. Therefore,
the total number of multiplies and divides for a complete
update of the GS method is (2M, + Ny + 1)N if a lookup
table is used and (3M, + Ny + 1)N otherwise.

Each iteration of GA as given in (22) requires the com-
putation of a projection, a backprojection and multipli-
cation by the matrices D and R. This yields a total of (2M,
+ Np)N + M multiplies. The computational requirements
of CG are comparable to those of GA. Operations are
dominated by the projection and backprojection required
in multiplication by H. As in the case of GA, this requires
(2M, + Np)N + M multiplies. In addition, 6N multiplies
are needed for computing inner products and scaling vec-
tors. Therefore, the total number of multiplies per itera-
tion of CG is given by 2M, + Ng + 6)N + M.

Table I summarizes the computational requirements of
CBP and the three iterative reconstruction methods. As-
suming that M, >> N, the GS update method requires
more multiplies than GA and CG for a single full update
(assuming -that a second lookup table is not available).
However, we have found that the computational cost is
largely governed by the communications and indexing as-
sociated with a single pass through the projected data set.
In this less quantitative sense, the three methods are
equivalent since the gradient based methods require a pro-
jection and then back projection operation and the GS
method requires the computation of 6§, and then an update
of the projection error. In practice, we have found that a
single iteration of GS runs as fast as GA and CG on a
general purpose serial computer.

IV. CONVERGENCE ANALYSIS

To make the comparison of computational expenses
meaningful, we must ascertain good convergence behav-
ior for GS. Both GS and GA are amenable to analysis,
and we compare their convergence performance in terms
of spatial frequencies. Analysis is difficult in the general
case, but we will gain insight into the problem by study-
ing convergence when D = ¢ 21 (i.e., the variances of
all projections are equal) and the projections are uni-
formly spaced in both 6 and . CG is not so tractable, but
is compared to GS and GA experimentally.

A. Gauss-Seidel

The GS update for pixel f; may be computed by setting
the derivative of the log-likelihood with respect to f; equal
to zero:

_dL(\ f)

= —Ffi

= [V,L(N\ )

=b; — (H + yR)if.

0

The notation (H + yR);« denotes the ith row of the matrix.
We may use this single equation to specify the best value
of f; in terms of the remaining values of f.

A sequential update of all the pixels can be formulated
in a matrix expression. For this purpose, the matrix H +
vR must be separated into its lower triangular, diagonal
and upper triangular parts which we denote by L, K, and
U respectively. Assuming that the points are replaced in
the order of their index i, the update equation for the pixel
f: has the form

by = Lif """ + Kuaf "V + Unf ™ (23)

where f () is the nth complete update. This equation holds
for all values of i, so the complete update equation may
be written as

FOrD =

The update equation (24) has the form of a discrete time
system where n indexes time. It is well known that the
convergence behavior of such a system is determined by
the eigenvalues of the update matrix, (K + L)~' U.

To extend this analysis, we must first make some ob-
servations about the matrix H = ¢ 2A’A from which the
update matrix is derived. In Appendix B, we show that H
is approximately Toeplitz-block-Toeplitz (if f is indexed
in raster order, and both ¢ and ¢ are sampled uniformly).
This means that each row of H represents a spatially
shifted version of a single kernel 4;; ;. In general, we will
refer to the function which specifies the rows of a Toe-
plitz-block-Toeplitz matrix as the kernel of the matrix.
Therefore, multiplication of f™ by H is equivalent to
convolving the function £ with the 2-D kernel h_; _;
and retaining the result in the finite spatial window cor-

—(K + L)Y'Uf™ + (K + L)"'b. (24)
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responding to the pixel lattice S. Multiplication by a Toe-
plitz-block-Toeplitz matrix is then approximately equiv-
alent to convolution with the corresponding spatially
reversed kernel. :

The form of H indicates it is symmetric and positive
semidefinite. This implies that the function A ; will be
symmetric and, ignoring boundary effects, will be real and
positive semidefinite (i.e., have a nonnegative Fourier
transform). In fact, we can experimentally measure the
function h j by computing the projections of a single
point and then backprojecting the result. Since we can
only do this over a finite window, we apply a Bartlett
weighting to our measured kernel to retain the positive
semidefinite property.

If R is chosen to be Toeplitz-block-Toeplitz, L, K, and
U will have the same property. Since K is diagonal, K =
KyI. The interpretation for L is that its kernel will be the
causal part of the kernel of H + yR minus the origin. Fig.
6 shows the kernel of the experimentally measured matrix
L when y = 0. Notice that it is nonzero only at points
occurring before the origin in raster scan order. Similarly,
the kernel of U will include only points after the origin.

Since the matrices in (24) are Toeplitz-block-Toeplitz,
they are approximately equivalent to linear. spatially in-
variant filters. Therefore, we may apply frequency anal-
ysis methods by taking the 2-D DTFT of the matrix up-
date equation,

—L* (@)

()
X +L(a)f (@)

@ =
-1

T

(25)

where L(@) is the DTFT of the spatially reversed kernel
for L, and U(@) = L*(w) by the time reversing property
of the DTFT.

We may draw some immediate conclusions about the
properties of the convergence rate

by applying the local minimization interpretation. With
each pixel replacement, (12) is reduced (unless f'is at the
global minimum). If the kernel of H + YR is positive
definite, then the norm of the difference between the cur-
rent and the MAP estimate may not increase indefinitely.
This implies that |P(@)| < 1 for all @. Since the solution
of the MAP estimation problem is unique if and only if
the kernel of H + R is positive definite, we see that a
positive definite kernel implies that |P(@)| =< 1.

Fig. 7 shows the two-dimensional function |P ()| when
v = 0. (The convergence is generally better for larger
values of v.) It is not surprising that the function is an-
isotropic since the order of the pixel updates gives an ori-
entation to the convergence behavior. The function has a
wide but flat main lobe. This means that a narrow band
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Fig. 6. The causal kernel of the Toeplitz-block-Toeplitz matrix L. The
kernel was measured from projection and backprojection of a point.

Fig. 7. The two-dimensional convergence rate |P(w)| when no regulari-
zation is used (y = 0). The raster scanning is assumed to occur along rows
in the w, direction.

of spatial frequencies will not converge rapidly. In prac-
tice that is not a serious problem, since complete updates
may alternate between horizontal and vertical raster or-
dering. Fig. 8 shows two one-dimensional plots of the
maximum of |P(@)| along the w; and w, dimensions. Fig.
9 shows the corresponding maximum number of iterations
required to achieve 99% reduction of error energy at each
frequency. Fig. 10 show experimental results and theo-
retical predictions for the convergence of 2-D sinusoids
(with a Bartlett window to localize frequency content).
This was done by initializing the photon counts to be A;
= A, and measuring number of iterations required for the
sinusoid to decay. In the scanning direction, and experi-
mental and theoretical results agree well. The direction
perpendicular to the scan is, as mentioned above, less
critical. These plots indicate that the convergence is rapid

for the high spatial frequencies.

B. Gradient Ascent

In order to understand the convergence properties of
GA, we rewrite the update equation (22) in the form of a
discrete time system.

U = U~ a(A'DA + 4RI + aADp
I — aH + yRIf” + ab®.

(26)

The convergence of this equation depends on the eigen-
values of the matrix multiplying £, which in turn de-
pend on the eigenvalues of the matrix H + yR.



542 IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 41, NO. 2, FEBRUARY 1993

05 \ Along scanning direction
’ Perpendicular to scanning direction

Convergence Rate

0.2+ 4

0.1+ E

3 2 -1 0 1 2 3
Frequency

Fig. 8. The two one-dimensional convergence rate functions max,,,,,

[P (@, wy)| and max,,,, |P(w,, w,)| when no regularization is used (y =

0). The best convergence occurs along the w, direction since this corre-

sponds to the direction of the updates. The large values in the w, direction

are caused by the thin main lobe.
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Fig. 9. The maximum number of iterations required for 99% error reduc-
tion when no regularization is used (y = 0). The best convergence occurs
along the w; direction since this corresponds to the direction of the updates.
The large values in the w, direction are caused by the thin main lobe. This
poorer convergence rate may easily be corrected by alternating the direc-
tion of updates.

As noted above, multiplication by H is approximately
equivalent to convolution when D = ¢7>L If the pixel
lattice is large, the effect of convolution may be approx-
imated by multiplication in the spatial frequency domain.
The 2-D DTFT of (26) yields the frequency domain equa-
tion

[MP@ =11 - aH@)
+WR@I"@) + ab@) 27

where H(w) is the 2-D DTFT of the kernel for H, and
R(w) is as in (11). The convergence properties of (27) are
clear. Error in f corresponding to spatial frequency @ will
be attenuated or amplified by the factor

P@ =1- a(H@w + yR(@))
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Fig. 10. Experimental measurements of the number of iterations required
for 99% error reduction when no regularization is used (y = 0). Symbols
indicate experimental convergence along (*) and perpendicular to (+)
scanning direction. Continuous plots are theoretically predicted conver-
gence.

with each iteration. Again, H (%) and R(w) must be posi-
tive functions of w since they correspond to positive semi-
definite matrices.

We may derive an approximate form for P (w) by using
a second result of Appendix B. The kemel of H is ap-
proximately proportional to a filtered and sampled version
of the function 3 /d where d is the distance of a pixel from
the origin and 8 is a constant defined in Appendix B. Since
the Fourier transform of 1/d is 1 /||@l|, the DTFT of the
kernel of H will also be approximately 8/ wl||. This im-
plies that the rate of convergence at frequency w will be
approximately given by

(fa+ -3
Pw)=1—af{— + vyl — <cosw
[l

2
1
_ECOS Wy .

Fig. 11 shows the DTFT of the experimentally measured
kernel. Its form corresponds well to the predicted 1/ ||l
shape. The value at @ = 0 is theoretically infinite, but is
limited by the size of the window (in this case 128 X
128).

From (27), we see that stable convergence requires that
|P(@)| = 1 for all . This implies that

0 < a<2(max{H® + YR@H .

(28)

Since for large windows the value of maxg;H (w) is large,
a small value of « will be needed to insure stability and
convergence. However, small values of « will cause the
convergence to be slow for large values of ||| since the
corresponding values of P (w) will be close to 1. The con-
clusion is that the convergence of GA is poor at high spa-
tial frequencies.



SAUER AND BOUMAN: LOCAL UPDATE STRATEGY

Fig. 11. Fourier transform of Bartlett weighted kernel resulting from pro-
jection and backprojection of a point. The shape corresponds to the theo-
retically expected shape of 1/[|wll.

V. EXPERIMENTAL RESULTS

We have applied the methods discussed in Section III
to synthetic phantoms with parameters corresponding to
sizes and densities within the range encountered in med-
ical X-ray tomographic imaging. This choice is intended
only to attach some physical significance to the function
f(x, y), not to suggest primary applications are likely to
be medical diagnostics. Experimental data presented here
result from very low photon dosages relative to most sys-
tems. The input photon rate (A7) for each ray in our trials
was 2000, orders of magnitude below dosages of com-
mercial medical CT scanners [1]. Our goals in terms of
reconstructed image quality, however, are also much more
modest.

We are principally concerned with reconstruction/seg-
mentation from a set of projections uniformly spaced in
both 8 and . A CBP reconstruction will serve as a good
initial starting point in most cases. Since all the algo-
rithms we will analyze involve iterative computation of
-projections and/or backprojections, the relative compu-
tational expense of CBP is small. The residual error left
by the CBP algorithm often has substantial high frequency
content. This is a good match for the GS update method,
which is shown above to be particularly effective at sup-
pressing high frequency error components.

The phantom is shown in Fig. 12, and contains only
two non-zero densities. The background is of absorptivity
0.2 cm™', while the four high-density regions -are 0.48
cm™'. The physical diameter of the phantom is 20 cm. At
the given photon dosages, rays passing through the larger
high-density regions are essentially blocked, making the
given trials similar to hollow projection reconstruction. In
each case, the number of raysums collected per angle was
128, making At equal to the dimension of a pixel. The
low-pass filter incorporated into CBP was a raised cosine
rolloff in frequency response, with the cutoff frequency
chosen for the best visual quality. We chose a single value
for a in (22) for all applications of GA, based on the best
experimental convergence across the set of simulations.
All reconstructions will be presented at a resolution of
128 x 128 pixels.
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Fig. 12. Original phantom at 128 x 128 resolution. Increasing brightness
corresponds to higher X-ray absorptivity.
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Fig. 13. Convergence comparison for constant weighting matrix D.

Initial trials were used to verify the analysis of Section
IIL, and were therefore performed with y = 0 cm?in (12),
corresponding to ML estimation. Fig. 13 illustrates con-
vergence in terms of log likelihood as expressed in (9),
with D diagonal, corresponding to an assumption of sta-
tionarity in photon counting noise. In order to avoid slow
convergence of the frequencies represented by the ridge
in Fig. 7, the orientation of the GS update scan alternated
between vertical and horizontal patterns. CG and GS are
comparable in convergence rates, with GS showing an ap-
preciable advantage. Nearly 50 iterations are required for
the two to reach the same log likelihood value. Both are



544 [EEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 2, FEBRUARY 1993

0e+00 - T " r .

I
~
o
o
el
=
& -let04 4
|
ap
Q
-
~2e+04 L L — L
0 10 20 30 40 50

Iterations

Fig. 14. Convergence comparison for real projection weighting matrix D.

much faster than GA. Our analysis predicted this behavior
for high frequencies in the difference between the CBP
starting point and the Bayesian estimate. The error image
was of predominately high frequency spectral content in
this case.

When the diagonal of D is filled with photon counts,
similar behavior is observed, with convergence taking
place significantly more slowly (Fig. 14). The slower
convergence is likely due to the fact that with wide vari-
ation in the entries of D, eigenvalues of A’ DA have sim-
ilarly greater range, and large differences in the conver-
gence rates among various modes. Here, GS shows an
advantage over CG which is not erased after 50 iterations,
and both again perform better than GA. This behavior
agrees qualitatively with expectations from the analytical
results in light of the error, which was again relatively
high frequency.

The above simulations support the analysis of the com-
parative properties of the three iterative approaches. GS
appears more useful than the gradient methods for prob-
lems where the difference between the starting state and
the optimal estimate is dominated by high frequencies.
Detail enhancement at higher SNR [35], for example, is
a candidate application. But it is the high frequency char-
acteristic in the evolution of the ML estimate which makes
it questionable in some settings. ML estimates often have
excessive high frequency content, in contrast to the im-
ages typical of most ensembles of practical interest. The
ML estimate images whose convergence was discussed
above, in fact, are of very poor visual quality.

Regularization both speeds convergence, and prevents
excessive oscillation in the estimate. Typical convergence
rates are shown in Fig. 15 for MAP estimation with the
same optimization methods and y = 100 cm?®. (This cor-

—le+04 . T T T T

—2e+04

Log Likelihood

—3e+04 Ll
o 10 20 30 40 50
Iterations

Fig. 15. Convergence comparison for real projection weighting matrix D
and regularization using a Gaussian prior.

responds to a standard deviation of a pixel given its neigh-
bors of 0.1 cm_z, which is consistent with densities rang-
ing from 0.2 cm™' to 0.48 cm™'.) The associated error
spectrum has substantial energy at very low frequencies,
plus an approximately flat spectral content across the
higher frequencies. Here CG enjoys a slight advantage in
convergence rate, and both CG and GS are essentially
completely converged at fewer than 15 iterations. GA is
much slower, as expected. Trials with larger vy yielded
still faster convergence, but very similar relationships
among the three techniques.

Fig. 16 shows the images resulting from the Bayesian
enhancement of the CBP reconstruction. The artifacts of
Fig. 16(a) are ameliorated substantially, with varying de-
grees of smoothing according to the choice of y. Note that
we have applied a particularly simple prior here (4-point
neighborhood); improvement is possible with more ac-
curate choices.

Useful tomographic estimates can be achieved from still
lower SNR if we can use more restrictive priors on
f(x, y). If an object is known to consist of only a few
distinct densities, we can perform an approximate MAP
segmentation as an enhancement of the CBP starting
point. As discussed earlier, this case presents the problem
of non-convexity in the log likelihood function, making
true MAP estimation by known methods impractical. The
gradient methods are not directly applicable to this prob-
lem.

The GS algorithm is well suited to this problem. With
a binary-valued prior for f (x, y) evaluation of (21) is par-
ticularly simple. Because lexicographic updates produce
directional dependencies, we implement GS in the dis-
crete-valued reconstruction case with a scan consisting of
four interlaced 2 X 2 decimated patterns. Experimental
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Fig. 16. (a) CBP reconstruction from 128 X 128 noisy projections. (b) Bayesian estimate with v = 100, (c) ¥ = 200,
(d) y = 500. .

results for a projection data set consisting of 128 rays at
each of 16 equally spaced angles.appear in the images of
Fig. 17. The phantom and dosage per ray are the same as
in the previous simulations. The CBP reconstruction us-
ing a raised cosine filter with a rolloff factor of 1.0 is
shown in Fig. 17(b), with the result of the thresholding
midway between the two known densities in Fig. 17(c).
After less than three full iterations, GS produced the seg-
mentation of Fig. 17(d). Nearly all the artifacts resulting
from the radio-opaque regions of the object are removed.

VI. CONCLUSION

We have proposed, analyzed, and simulated the appli-
cation of a Gauss—Seidel algorithm for iterative image
reconstruction from projections using Bayesian criteria.
We applied the GS method to the problems of reconstruct-
ing both continuously valued images and images which
were constrained to have discrete values. This latter prob-
lem is equivalent to the direct segmentation of the image
using the projected data. This paper also includes results,
both analytic and experimental, concerning the gradient

methods of CT reconstruction which to our knowledge
were not previously available.

The GS method shows very good convergence proper-
ties, and is applicable to a broad class of optimization
problems. In the case of continuously valued reconstruc-
tion, these convergence advantages are due to its excel-
lent suppression of high frequency error. The GS method
did not show the fastest convergence in all cases, but an
important augmentation of the process awaits investiga-
tion. Lower frequency components can be forced to con-
verge much more quickly by multi-grid implementation
[36]. Solving the same optimization problem on a coarser
resolution image will effectively shift lower frequencies
upward. The interpolated lower resolution image can then
serve as a starting point on a finer grid. We envision a
similar generalization of the discrete-valued version of
GS. Performing greedy minimization at multiple resolu-
tions has shown promise in other applications to image
segmentation [22], [32], in terms of both computational
efficiency and quality of segmentation. We are also cur- -
rently investigating the use of a more general class of sta-
tistical models which offers possible improvements in re--
construction quality [37].
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Fig. 17. (a) Original phantom. (b) CBP reconstruction from 16 x 128 noisy projections. (c) Threshold segmentation of CBP
image. (d) Gauss-Seidel approximation of MAP estimate.

APPENDIX A
The quadratic approximation to (6) may be obtained by
expanding each term of the sum in a second-order Taylor
series. This is done using the relation p; = A;.f, and ex-
panding each term about the value p; = log (A;/\;):

M
— 23 [Ne ™M+ NALS + log (AD)]

j=1

L(N f)
M
= —j; IAre ™ + Njp; + log (N 1]
M
~ _j.:Zl [NA + p) + log (N
A .
+ 5 (pj = p)]
M
= _j§1 [N+ py) + log (N
)\j

+ 0} (B — Aif)]

M
1 L
= =5 lp - Af |3 - «21 (NA + B
=

+ log (N D]
where D = diag {N\;, Ny, * * © , Ay }-

APPENDIX B
The continuous-variable mapping from Radon trans-
form space into image space analogous to the matrix op-
erator A', is the backprojection operation given by

i

g, v) S S p@, 6 — ucos — vsinb) dt do
(4] —o0

I

S S p@, Dh(, t, u, vy dr df.
0 -

The function h (6, ¢, u, v) is the kernel of both the projec-
tion and backprojection transformations. The kernel for
the combined projection, backprojection operation may be
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computed as

kx, y, u, v) = S S h@,t, x, Y)h(8, t, u, v) dt do

0

I

S S §(@ — x cos § — ysin 0)
0 —

-5(t—ucosf)—vsin0)dtd9

S S 5 — (x — u)cos 6

0

— (y — v) sin )8(r) dr df

5(d cos (¢ — 0)) df
0

g 8((x — u) cos 0 + (y — v) sin 6) df
0

29

QUi —

where (x — u) = d cos ¢ and (y — v) = d sin ¢. Gilbert
[38] derived a similar result with frequency-domain meth-
ods.

Given this result, we would expect that the matrix A’A
should have an approximately Toeplitz-block-Toeplitz
form with a kernel proportional to 1/d. Specifically, if
{6,3M and {1}/, are the values of angle and displace-
ment for which the projections are computed, then the
components of A may be written A (i, j, m, n) where i and
j are the angle and displacement index for the projections
of pixel (m, n). (Note the difference between the present
use of subscripts i and j, and that in the main text.) We
will also assume that the sampling in both 6 and 7 is uni-
form with periods A6 and At, respectively, and that the
spatial sampling period is 7

M M

A’A = igl jz:l A(l,_}, m, n)A(i’jy k9 l)

My M
Z sz W(m‘n)(x’ y)h(en tja X, Y) dx dy

i=1j=1

Il

: S Wan (s, Wh(B;, 8, s, u) ds du
R2

1
Af At

u

SO SIR SIRZ W(m,,,)(x, )’)h(o, t, X, y) dx dy

. SIRZ wa. (s, wWh(0, t, s, u) ds du dt df
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_ 1
TOAf At

SIRZ SIR2 Wn, n) x, ¥) W(k,l)(s, u)

S S R, t, x, Yh(8, t, s, u) dt df
0 JRr

< dxdydsdu

1
Af At

SIRZ SIRZ Win, ny x, y) W(k,l)(sa u)

1
\/(x - s)2 +(y — u)2

dx dy ds du.

The third equation approximates the sums by integrals,
and the last equation uses the result of (29).

To establish that this form of A’A is Toeplitz-block-
Toeplitz, we must use the fact of (4) that the functions
Wn.m (%, y) are simply shifted versions of a single kernel.

Then writing v(x — 5)* + (y — )" as d we have

1
A§ At

A'A = S g wo.0x — mT, y — nT)
R JIR?

1
- wo,0(s — kT, u — IT) ;dedy ds du

1
T A8 Ar sz sz wo,00 (%, ¥)

1
“wo,n6 — Gk —mT,u— (- n)T)a
dx dy ds du.

The last integral has the form of two 2-D convolutions.
This may be written formally as

1
Af At

A'A =

1
: <W(o,0) * W,0) * c—l> [k —m)T, ( — nT].
(30)

So the kernel of A’A is formed by filtering the continuous
function 1 /d and then sampling the result. Since the com-
ponents of the matrix A’A only depend on the differences,
k — m and [ — n, the matrix must be approximately Toe-
plitz-block-Toeplitz. - The accuracy of this approximation
is affected only by At, the period of the sampling in ¢.

If the pixels (m, n) and (k, [) are distant, then the in-
tegrand will be approximately constant, and the followmg
approximation holds:

B
Jom =07 + (0 = 1)

A'A(m, n, k, 1) =
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where

2
<§IR2 W(m,n)(xr )’) dx dy>
A At T

B =
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