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Abstract—Bright Field (BF) electron tomography (ET) has
been widely used in the life sciences for 3D imaging of biological
specimens. However, while BF-ET is popular in the life sciences,
3D BF-ET imaging has been avoided in the physical sciences due
to measurement anomalies from crystalline samples caused by
dynamical diffraction effects such as Bragg scatter. In practice,
these measurement anomalies cause undesirable artifacts in 3D
reconstructions computed using filtered back-projection (FBP).
Alternatively, model-based iterative reconstruction (MBIR) is a
powerful framework for tomographic reconstruction that com-
bines a forward model for the measurement system and a prior
model for the object to obtain reconstructions by minimizing a
single cost function.

In this paper, we present an MBIR algorithm for BF-ET
reconstruction from crystalline materials that can account for
the presence of anomalous measurements. We propose a new
forward model for the acquisition system which accounts for the
presence of anomalous measurements and combine it with a prior
model for the object to obtain the MBIR cost function. We then
propose a fast algorithm based on majorization-minimization
to find a minimum of the corresponding cost function. Results
on simulated as well as real data show that our method can
dramatically improve reconstruction quality as compared to FBP
and conventional MBIR without anomaly modeling.

I. INTRODUCTION

Bright Field (BF) electron tomography (ET) has been
widely used in the life sciences to characterize biological
specimens in 3D [1] using either a transmission electron
microscope (TEM) or a scanning transmission electron mi-
croscope (STEM) [2]. BF-ET typically involves focusing an
electron beam on a sample, acquiring images of transmitted
electrons corresponding to various sample tilts, and using
an algorithm on the acquired “tilt-series” to reconstruct the
object. In most cases due to the geometry of the acquisition
and mechanical limitations of the tilting stages, BF-ET is a
limited angle parallel beam transmission tomography modality.
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Further details of the ET acquisition and preprocessing are
discussed in [3].

While there are a few instances where BF-ET has been
used in the physical sciences [4]–[6], it has generally been
avoided [7], [8], due to the occurrence of contrast reversals [9]
from dynamical diffraction effects such as Bragg scatter [10].
Bragg scatter occurs when the crystal lattice is oriented in such
a manner that the incident electrons are elastically scattered
away from the direct path [10] leading to a measurement
uncharacteristic of attenuation due to thickness alone. We refer
to measurements which are not well modeled by attenuation
due to thickness alone as anomalous measurements. These
anomalies make interpretation of the individual BF images
complicated and result in strong artifacts if the BF tilt-
series is used for tomographic reconstruction using standard
reconstruction algorithms such as FBP [8]. Thus BF-ET has
generally been avoided in the physical sciences due to the
complicated nature of the data and the inability of the standard
reconstruction algorithms like FBP to handle such data.

Model-based iterative reconstruction (MBIR) provides a
powerful framework for tomographic reconstruction that uses a
probabilistic model for the measurement (forward model) and
a probabilistic model for the object (prior model) to obtain re-
constructions that are qualitatively superior and quantitatively
accurate for a variety of applications [11]–[16]. Typically
MBIR involves the design and minimization of a cost function
corresponding to the maximum a posteriori probability (MAP)
estimate with two sets of terms - one corresponding to a
likelihood for the data and the other corresponding to a prior
model for the object. While most efforts for BF-ET have used
the FBP algorithm [2], [4]–[6], [8] Levine [17] has developed
a MBIR algorithm for BF-ET in the case of thick specimens.
However his work deals with amorphous samples, for which
there are no anomalies due to dynamical diffraction in the
measurement.

In this paper, we present an MBIR algorithm for accurate
reconstruction of BF-ET data [18] containing anomalous mea-
surements that typically result from crystalline samples. Our
approach is based on a novel generalized Huber function that
is used in the forward model (i.e., log likelihood) to account
for the anomalous measurements due to Bragg or other errors.
The generalized Huber function is parameterized so that it can
model the heavy tailed distribution of the errors that are present
in anomalous measurements. Using this forward model, we
derive an MBIR cost function which allows for joint estimation
of both the unknown image, f , and a key parameter of the
generalized Huber function. This approach allows for adaptive
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Fig. 1. Illustration of the “anomalies” present in a real BF-TEM data set of Aluminum nanoparticles. The figure shows BF images corresponding to three
different tilts of the specimen. Note that certain spheres turn dark (fewer counts) and then again turn bright due to Bragg scatter (contrast reversal). These
effects make it challenging to directly apply standard analytic tomographic reconstruction algorithms to the data.

parameter estimation in the reconstruction process, which is
important in practical applications.

We also propose an optimization algorithm that is based
on majorization-minimization using a surrogate function [19],
[20] together with a fast multiresolution iterative algorithm
to find a minima of the MBIR cost function. The surrogate
function that we propose bounds the MBIR cost as a function
of both the unknown image, f , and the unknown model
parameters of the generalized Huber function. Consequently,
minimization of the surrogate function allows for efficient es-
timation of model parameters during the MBIR reconstruction
process.

Importantly, the surrogate function requires the introduction
of a binary auxiliary variable for each measurement. This
auxiliary variable has the interpretation of forming a binary
mask that classifies each measurement as either anomalous
or normal. During the reconstruction process, the anoma-
lous measurements are then attenuated relatively to normal
measurements. The resulting binary mask also contains po-
tentially important information about the Bragg scatter and
consequently the crystal orientation for each particle in the 3D
reconstruction. Therefore, we also propose an algorithm that
extracts a Bragg feature vector for each particle in the volume
by correlating the projection of each segmented particle with
the binary anomaly mask at each view angle. We conjecture
that the extracted Bragg feature vector for each particle can
provide useful information in applications.

We apply our method to simulated data containing Bragg
scatter like anomalies as well as real TEM data from crys-
talline particles. Results from the simulated as well as the
real data set show that MBIR with anomaly modeling can
significantly improve the reconstruction quality compared to
FBP and conventional MBIR, suppressing the artifacts that
arise due to the anomalous measurements. We also use our
new method to extract a Bragg feature vector for each particle
and demonstrate how this feature vector can potentially pro-
vide useful information about the crystal orientation for each

particle in the 3D volume. The source code along with a GUI
application implementing our method is publicly available at
the website - www.openmbir.org.

The organization of the rest of the paper is as follows.
In section II we introduce a new statistical model for the
measurement system and formulate the MBIR cost function. In
section III we propose an efficient algorithm to minimize the
cost function. In section IV we present results from a simulated
data set, followed by results from a real data set. Finally, in
section V we draw our conclusions.

II. STATISTICAL MODEL AND COST FORMULATION

The goal of BF-ET is to reconstruct an attenuation coeffi-
cient at every point in the sample. The attenuation coefficient
is related to the ability of the material to scatter the incident
beam away from the direct path which is dependent on the
differential cross section, geometry of the detector, density of
the material and incident electron energy. An electron beam
is focused on the material and the electrons that are scattered
by the sample through small angles are captured by a BF
detector to obtain a single image. The sample is then tilted
along a fixed axis and the process is repeated. Thus, at the end
of the acquisition, we obtain a collection of BF images that
can be used for tomographic reconstruction of the attenuation
coefficients.

In order to reconstruct the attenuation coefficients associated
with the sample, we use an MBIR framework. The reconstruc-
tion in the MBIR framework is typically given by the joint-
MAP [21] estimate

(f̂ , φ̂) = argmin
f,φ

{− log p(g|f,φ)− log p(f)} (1)

where g is the vector of measurements, f is the vector
of unknown voxels (attenuation coefficients), φ is a vector
of unknown calibration parameters (nuisance parameters),
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Fig. 2. Illustration of the generalized Huber function βT,δ used for the likelihood term with T = 3 and δ = 0, 0.5 and 1. When δ = 1 the function reduces
to the Huber function. Large model mismatch errors are penalized by restricting their influence on the overall cost function.

p(g|f,φ) is the likelihood (forward model) and p(f) is the
prior probability for the unknown voxels.

In order to develop a forward model for BF-ET that accounts
for the anomalous effects, we start with the simple case
when there are no anomalies. Let λk,i be the electron counts
corresponding to the ith measurement at the kth tilt and λD,k

be the counts that would be measured in the absence of the
sample at that tilt (blank scan). We model the attenuation of the
beam through the material using Beer’s law. Thus, an estimate
of the projection integral corresponding to the ith measurement

at the kth tilt is given by log
(

λD,k

λk,i

)

. Notice that unlike in

high-angle annular dark field electron microscopy [12], the BF
case requires a log operation to be applied to a normalized
version of the measurement. There can be cases in which the
blank scan, λD,k, is not measured, and we can include it as
an unknown parameter in the MBIR framework and estimate
it as a part of the reconstruction. If gk is a M × 1 vector
with gk,i = − log(λk,i), f is an N × 1 vector of unknown
attenuation coefficients of the material and, dk = − log(λD,k),
then, assuming λk,i’s are conditionally independent Poisson
random variables it has been shown that [22] the conditional
mean of gk,i can be approximated by Ak,i,∗f + dk and the
conditional variance is proportional to 1

[λk,i]
, where Ak is a

M × N forward projection matrix and Ak,i,∗ is the ith row
of Ak. Modeling the conditional density of the measurements
as a Gaussian distribution [23] results in a probability density
function (pdf),

p(g|f, d,σ) =

1

Zl
exp

{

−1

2

K
∑

k=1

M
∑

i=1

(gk,i −Ak,i,∗f − dk)
2 Λk,ii

σ2

}

(2)

where K is the total number of tilts, g = [gt1 · · · gtK ]t is a
KM × 1 data vector, Λk is a diagonal matrix with entries set

so that σ2

Λk,ii
is the variance of the measurement gk,i with σ2

being a proportionality constant, d = [d1 · · · dK ] is a vector
containing the offset parameters, and Zl is a normalizing
constant. For such a transmission tomography model it has
been shown that Λk,ii = [λk,i] ≈ λk,i [24]. We note that
our formulation can account for more sophisticated physics
models as introduced in [25], but in this paper we focus on
using Beer’s law as it has been found to be accurate for a class
of materials and thickness typically studied using BF-ET [25].

A. Generalized Huber Functions for Anomaly Modeling

Bragg scatter from crystalline material can cause the BF-ET
measurements to vary substantially from the model of equation
(2). Fig. 1 shows an example of three tilts from a BF tilt series
with regions having significant anomalies.

A precise way of accounting for these anomalies would
require identifying 3D regions of the object that consist of
a single crystal, and modeling the associated crystal structure.
While possible, this would be a highly ill-posed inverse
problem to recover from a single 2D tilt series due to the
unknown 3D orientation of the crystals. Furthermore, model-
ing other classes of anomalies such as Fresnel fringes [26] and
extinction contours involve more complex physics making the
data more difficult to invert. Therefore, instead of modeling
the complicated physics of dynamical diffraction that leads to
anomalies, we will use an alternate approach.

In order to account for anomalous effects like Bragg scatter,
we propose a modified likelihood function that models the
anomalies as outliers of a pdf

p(g|f, d,σ) =

1

Z
exp

{

−1

2

K
∑

k=1

M
∑

i=1

βT,δ

(

(gk,i −Ak,i,∗f − dk)

√

Λk,ii

σ

)}

(3)

where βT,δ : R→ R such that

βT,δ(x) =

{

x2 |x| < T

2δT |x|+ T 2(1− 2δ) |x| ≥ T

and Z is a normalizing constant. We call βT,δ the generalized
Huber function. Fig. 2 shows the generalized Huber function
for three different values of δ. Notice that δ controls the tail
behavior of the density function while T controls the threshold
beyond which a measurement is considered anomalous. When
δ = 0, βT,δ corresponds to the weak-spring potential [27]
used for image modeling and results in a function with the
heaviest tails among the three cases. However, when δ = 0
we cannot jointly estimate the calibration parameters because
the likelihood is not a valid density function since it does not
integrate to 1. When δ = 1, βT,δ reduces to the Huber function
[28] which is a convex function and corresponds to a pdf with
the lightest tail among the three cases. When T is very large
then βT,δ is effectively a quadratic function and the likelihood
reduces to the standard transmission tomography model in (2).
Thus the generalized Huber function can be adjusted to have
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heavier tails than the density function in (2) to account for the
various anomalies in the data set.

Restricting 0 < δ ≤ 1 and using the fact that
∫

p(g|f, d,σ)dg = 1

we can show that the normalizing constant has the form

Z = σMK × Constants.

Hence, the modified log-likelihood function for the BF-ET
case is given by

− log p(g|f, d,σ) =

1

2

K
∑

k=1

M
∑

i=1

βT,δ

(

(gk,i −Ak,i,∗f − dk)

√

Λk,ii

σ

)

+MK log(σ) + Constants (4)

Each term in the summation corresponds to a penalty on
the ratio of the data mismatch error (gk,i − Ak,i,∗f − dk)

to the noise standard deviation

(

σ√
Λk,ii

)

. Thus T has the

interpretation that if the data fit error is greater than T times
the noise standard deviation then that measurement is likely to
be an anomaly. Notice that typically σ is not known and hence
we will jointly estimate it as a part of the reconstruction.

B. MBIR Cost Formulation

Combining the statistical model in (4) with a prior model
of the form

p(f) =
1

Zf
exp {−s(f)} (5)

where Zf is a normalizing constant, the reconstruction is
obtained by minimizing the cost

c(f, d,σ) =
1

2

K
∑

k=1

M
∑

i=1

βT,δ

(

(gk,i −Ak,i,∗f − dk)

√

Λk,ii

σ

)

+MK log(σ) + s(f). (6)

Alternately, we can define hk,i : R
N+K+1 → R to be a

function such that

hk,i(f, d,σ) = (gk,i −Ak,i,∗f − dk)

√

Λk,ii

σ
.

The cost function can then be written as

c(f, d,σ) =
1

2

K
∑

k=1

M
∑

i=1

βT,δ(hk,i(f, d,σ))+MK log(σ)+s(f).

(7)

Additionally, we will constrain f ≥ 0, as it is physically mean-
ingful to have positive values of the attenuation coefficients.
Thus, the MBIR BF-ET reconstruction is given by

(

f̂ , d̂, σ̂
)

← argmin
f≥0,d,σ

c(f, d,σ)

The cost function (7) is non-convex in general, and thus finding
the global minimum is computationally expensive. Therefore

we will present an algorithm to find a local minimum of
the cost. Furthermore, since the likelihood term of (7), is
not differentiable, gradient-based methods can not be directly
applied. Hence, we use a majorization-minimization strategy
[19], [20] combined with alternating minimization to find a
minimum of the cost.

III. OPTIMIZATION ALGORITHM

Our optimization approach is based on the repeated mini-
mization of a differentiable surrogate function. The function
q(z; z′) is a surrogate function for the function t(z) at the
point z′ if the following two conditions hold.

q(z; z′) ≥ t(z)

q(z′; z′) = t(z′) (8)

If Q(f, d,σ; f ′, d′,σ′) is a surrogate function to c(f, d,σ)
at the point (f ′, d′,σ′), our algorithm consists of repeating
the following steps until convergence

(i) For each voxel j

f ′
j ← argmin

fj≥0,fk=f ′

k∀k ̸=j

Q(f, d′,σ′; f ′, d′,σ′)

(ii) d′ ← argmin
d

Q(f ′, d,σ′; f ′, d′,σ′)

(iii) σ′ ← argmin
σ

Q(f ′, d′,σ; f ′, d′,σ′)

The algorithm is terminated if the ratio of the average
change in the magnitude of the reconstruction to the average
magnitude of the reconstruction is less than a preset threshold.
In addition we use a multiresolution initialization [29] to
speed up the convergence of the algorithm and prevent the
method from getting stuck in undesirable local minima. In
multi-resolution initialization, we perform a reconstruction at
a coarser resolution (larger voxel sizes) and use this result to
initialize a finer resolution reconstruction. This transfers the
computational load to the coarser scale where the optimization
can be done quickly due to the reduced dimensionality of the
problem.

Note that the surrogate function approach ensures mono-
tonic decrease of the original cost function (7) with each
update; so the sequence of costs must be convergent. In
addition we have empirically observed that the reconstructions
also converge. While theoretical convergence proofs exist for
majorization techniques with alternating minimization [30],
[31], we have no formal proof of convergence in this case
due to the complicated nature of the cost function.

To derive the exact updates for the above algorithm we will
first design a surrogate function to the original cost assuming
any general prior model s(f). Next we will present a specific
s(f) and derive a surrogate for this case and use it to derive
the update equations for each iteration.

A. Construction of Surrogate Function

We design surrogate functions for each function
βT,δ(hk,i(f, d,σ)) in (7) at a given point (f ′, d′,σ′)
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Fig. 3. Illustration of the surrogate function, QT,δ , to the generalized Huber

function with T = 3 and δ =
1

2
. The surrogate function is plotted for two

cases : one when x′ = 2 and the other when x′ = 5. The surrogate function
in each case is a quadratic function thereby simplifying the subsequent
optimization.

and sum them up to form a surrogate to the overall cost
function. In order to design a surrogate function, note
that each term in the summation in (7) is a composition
between the generalized Huber function βT,δ and the function
hk,i. Therefore, we first design a surrogate function to the
generalized Huber function, βT,δ , and then use this function
along with a composition property to design a surrogate
function to the composition βT,δ ◦ hk,i.

In particular

QT,δ(x;x
′) =

{

x2 |x′| < T

δT
|x′|x

2 + δT |x′|+ T 2(1− 2δ) |x′| ≥ T

is a surrogate function to βT,δ(x). Fig. 3 shows the construc-
tion of a surrogate function to the generalized Huber function
for the case when T = 3 and δ = 0.5. Notice that while the
generalized Huber function is non-differentiable, the surrogate
function is quadratic and hence differentiable in x.

Next, we will use the composition property of surrogate
functions to design a surrogate function for each βT,δ ◦
hk,i in (7). The composition property of surrogate function
states that if q(z; z′) is a surrogate function to t(z) at z′

then q(h(z);h(z′)) is a surrogate function to t(h(z)) at
z′ (proof in Appendix A). Using the composition property
of surrogate functions, the composition of QT,δ with hk,i,
QT,δ(hk,i(f, d,σ);hk,i(f ′, d′,σ′)) is a surrogate function to
βT,δ(hk,i(f, d,σ)) in (7).

Using the surrogate function for each βT,δ(hk,i(f, d,σ)),

Q̃(f, d,σ; f ′, d′,σ′) =

1

2

K
∑

k=1

M
∑

i=1

QT,δ(hk,i(f, d,σ);hk,i(f
′, d′,σ′))

+MK log(σ) + s(f) (9)

is a surrogate function to the original cost (7). Hence, even
though the terms corresponding to the generalized Huber func-
tion in the original cost function may be non-differentiable, we
have constructed a surrogate function which overcomes this
difficulty and makes the optimization tractable.

B. Prior Model and Surrogate Function

We use a special case of the q-generalized Gaussian Markov
random field (qGGMRF) [32] for the prior, resulting in

s(f) =
∑

{j,k}∈N

wjkρ(fj − fk)

ρ(fj − fk) =

∣

∣

∣

fj−fk
σf

∣

∣

∣

2

c+
∣

∣

∣

fj−fk
σf

∣

∣

∣

2−p

N is the set of pairs of neighboring voxels (e.g. a 26 point
neighborhood), and p, c and σf are qGGMRF parameters. The
weights wjk are inversely proportional to the distance between
voxels j and k, normalized to 1. We fix c = 0.001 and restrict
1 ≤ p ≤ 2 similarly to [12].

In order to simplify the optimization, we also introduce a
surrogate function for the prior with the form

ρ(fj − fk; f
′
j − f ′

k) =
ajk
2

(fj − fk)
2 + bjk. (10)

The values of ajk and bjk can be derived as shown in [12]
and are given by

ajk =

⎧

⎨

⎩

ρ′(f ′

j−f ′

k)

(f ′

j−f ′

k)
f ′
j ̸= f ′

k

ρ′′(0) f ′
j = f ′

k

(11)

bjk = ρ(f ′
j − f ′

k)−
ajk
2

(f ′
j − f ′

k)
2 (12)

Thus a surrogate function to s(f) at f = f ′ is given by

s(f ; f ′) =
∑

{j,k}∈N

wjkρ(fj − fk; f
′
j − f ′

k). (13)

Substituting (13) into (9) results in the final surrogate function
given by

Q(f, d,σ; f ′, d′,σ′) =

1

2

K
∑

k=1

M
∑

i=1

QT,δ(hk,i(f, d,σ);hk,i(f
′, d′,σ′))

+MK log(σ) +
∑

{j,k}∈N

wjkρ(fj − fk; f
′
j − f ′

k). (14)

In order to simplify the subsequent updates, we define the
following binary indicator variable,

b′k,i =

⎧

⎨

⎩

1 |(gk,i −Ak,i,∗f
′ − d′k)

√
Λk,ii

σ′ | < T

0 |(gk,i −Ak,i,∗f
′ − d′k)

√
Λk,ii

σ′ | ≥ T

(15)

Intuitively b′k,i indicates if a given measurement is classified
as anomalous or not, based on the current state of the recon-
struction. If we define the error ek,i = gk,i−Ak,i,∗f −dk and
e′k,i = gk,i −Ak,i,∗f

′ − d′k we can rewrite (14) as

Q(f, d,σ; f ′, d′,σ′) =

1

2

K
∑

k=1

M
∑

i=1

e2k,i
Λk,ii

σ2

(

b′k,i + (1− b′k,i)
δTσ′

|e′k,i|
√

Λk,ii

)

+MK log(σ) +
∑

{j,k}∈N

wjkρ(fj − fk; f
′
j − f ′

k)

+ Terms not dependent on (f, d,σ) (16)
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function [f̂ , d̂, σ̂]← RECONSTRUCT(g, f ′, d′,σ′)
%Inputs: Measurements g, Initial reconstruction f ′,

Initial offset d′, Initial variance parameter σ′

%Outputs: Reconstruction f̂ and nuisance parameters
(d̂,σ̂)

e′ = g −Af ′ − d′ ◃ Initialize error vector
while Stopping criteria is not met do

for each voxel j do ◃ Voxel updates
Compute θ1 and θ2 using (17)
for k ∈ Nj do

Compute surrogate function parameter ajk
using (11)

end for
Compute u∗ using (18)
fj ← max(u∗, 0)
e′ ← e′ − (fj − f ′

j)A∗,j

f ′
j ← fj

Update b′ using (15)
end for
d′ ← Update d using (20) ◃ Offset parameter

update
Update e′

Update b′ using (15)
σ′ ← Update σ using (21) ◃ Variance parameter

update
Update b′ using (15)

end while
(

f̂ , d̂, σ̂
)

← (f ′, d′,σ′)

end function

Fig. 4. MBIR algorithm for BF data with anomalies. The algorithm works by
constructing a surrogate to the original function based on the current values
of the voxels and nuisance parameter and minimizing this surrogate function
with respect to each variable. The process is then repeated. The algorithm can
be efficiently implemented by keeping track of the error sinogram, e′, and
the anomaly classifier vector, b′.

Thus we observe that the surrogate function can be easily
constructed by maintaining an error vector, e′, based on the
current values of the unknowns, and the indicator variable, b′.

C. Update Equations Corresponding to the Surrogate Func-

tion

1) Voxel Update: The voxels are updated in random order
similarly to [11] in order to speed up the overall convergence
of the algorithm. To speed up the implementation of the algo-
rithm the voxel updates are parallelized along the y-direction
similar to [33], which also ensures a monotonic decrease of the
cost function. To minimize the surrogate function with respect
to voxel j, we can fix fk = f ′

k ∀k ∈ {1, · · · ,M}\{j}, d = d′

and σ = σ′ in (16). The cost function to minimize is

c̃sub(u) = θ1u+
θ2
2

(

u− f ′
j

)2
+
∑

k∈Nj

wjkρ(u− f ′
k; f

′
j − f ′

k)

where Nj is the set of all neighbors of voxel j and

θ1 = −
K
∑

k=1

M
∑

i=1

Ak,i,j

√

Λk,ii

σ′

[

b′k,ie
′
k,i

√

Λk,ii

σ′
+(1−b′k,i)δT

e′k,i
|e′k,i|

]

θ2 =
K
∑

k=1

M
∑

i=1

A2
k,i,j

√

Λk,ii

σ′

[

b′k,i

√

Λk,ii

σ′
+ (1− b′k,i)

δT

|e′k,i|

]

.

(17)

Since ρ(u − f ′
k; f

′
j − f ′

k) is quadratic in u, the minimum of
c̃sub(u) has a closed form and is given by

u∗ =

∑

k∈Nj

wjkajkf
′
k + θ2f

′
j − θ1

∑

k∈Nj

wjkajk + θ2
. (18)

Enforcing the positivity constraint, the update for the voxel is

f ′
j ← max (u∗, 0) (19)

2) Offset Parameter Update: In order to minimize the
surrogate function with respect to the offset parameter
d, we take the gradient of the surrogate function (16)
Q(f ′, d,σ′; f ′, d′,σ′) with respect to d and set it to zero. This
gives the optimal update as

d′k ← d′k+

K
∑

k=1

√

Λk,ii

[

e′k,ib
′
k,i

√

Λk,ii

σ′
+ δT

e′k,i
|e′k,i|

(1− b′k,i)

]

K
∑

k=1

√

Λk,ii

[

b′k,i

√

Λk,ii

σ′
+

δT

|e′k,i|
(1− b′k,i)

] .

(20)

3) Variance Parameter Update: In order to update the
variance parameter we minimize the surrogate function (16)
with respect to σ setting f = f ′ and d = d′. This gives the
optimal update as

σ′ ←

√

√

√

√

√

√

K
∑

k=1

M
∑

i=1

e′2k,iΛk,iib
′
k,i +

K
∑

k=1

M
∑

i=1

(1− b′k,i)δT |e′k,i|σ′
√

Λk,ii

MK
.

(21)

The MBIR BF-ET algorithm for a single resolution is sum-
marized in Fig. 4.

D. Initialization

Since the MBIR cost function is non-convex, initializing
the algorithm with a reasonable initial estimate is important.
We use a multi-resolution initial condition to prevent the
algorithm from becoming stuck in undesirable local minima.
We initialize the values of f to 0 nm−1 at the coarsest scale.
The value of d and σ are initialized from a region of the image
where there is no sample present. Furthermore, at the coarsest
scale we perform a few iterations (typically 10) over the voxels
with the value of T set to be very large in order to obtain
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TABLE I
COMPARISON OF THE ROOT MEAN SQUARE ERROR OF THE

RECONSTRUCTION WITH RESPECT TO THE ORIGINAL PHANTOM FOR

VARIOUS SCENARIOS. MBIR WITH ANOMALY MODELING PRODUCES

QUANTITATIVELY MORE ACCURATE RECONSTRUCTIONS.

Algorithm RMSE (×10−4 nm−1)
FBP 13.90

MBIR 4.95
MBIR-AM (T = 3, δ = 0.5) 4.30

MBIR-AM-PE (T = 3, δ = 0.5) 4.31

TABLE II
COMPARISON OF THE ROOT MEAN SQUARE ERROR (×10−4NM−1) OF

THE RECONSTRUCTION WITH RESPECT TO THE ORIGINAL PHANTOM

WHEN VARYING T AND δ. A VALUE OF T = 3 AND δ = 0.5 PRODUCES

THE LOWEST RMSE RECONSTRUCTION.

T δ 0.1 0.5 1

1 4.50 4.42 4.44
3 4.40 4.31 4.60
5 4.33 5.09 5.14
20 5.06 5.06 5.06

a reasonable initial condition for the overall multiresolution
algorithm. Since the size of the voxels is large at the coarse
scales, this initialization is computationally inexpensive to
perform.

IV. RESULTS

In this section we compare four algorithms for BF-ET: FBP,
conventional model-based iterative reconstruction (MBIR), the
proposed MBIR with anomaly modeling and known parameter
values (MBIR-AM), and the proposed method with anomaly
modeling and parameter estimation (MBIR-AM-PE). We ap-
ply the methods to simulated data as well as real data. For the
simulated data we will compare results from all four methods
while in the real data, since we do not know the parameters,
we will not consider the MBIR-AM case. Finally, we will
present a method for using the anomalies identified by our
method to associate a Bragg feature vector for each particle
in the reconstructed volume.

The FBP reconstructions are performed in Matlab using the
iradon command and the output is clipped to be positive.
For the MBIR reconstructions with anomaly modeling, we
set T = 3, δ = 0.5, and p = 1.2. The value of σf is
chosen to obtain the lowest root mean square error (RMSE)
for the simulated data set and is chosen to obtain the best
visual quality of reconstruction for the real data set. Since
our prior behaves similar to a GGMRF [34], we adapt the
scaling parameter σf according to Eq.28 in [35] for the
multi-resolution reconstructions. The offset parameter for each
tilt, dk, is initialized to the mean value of the log of the
measurements from a void region in the sample. The variance
parameter, σ2, is initialized as the ratio of the mean value of
the log measurements to the mean value of the measurements
from a void region in the sample.

A. Simulated Data Set

We use a 3-D cubic phantom containing spheres of varying
radii with an attenuation coefficient of 7.45 × 10−3 nm−1 to
generate the simulated data set. The phantom has a dimension
of 256 nm × 512 nm × 512 nm (z−x− y respectively). It is
projected at 36 tilts in the range of −70◦ to +70◦ in steps of
4◦ about the y axis with a dosage λD,k = 1865 counts using
the Beer’s law model with Gaussian noise having variance
equal to the mean of the signal. The value of σ is set to 1.
At certain tilts the attenuation of a fraction of the spheres are
adjusted to simulate Bragg scatter like effects (Fig. 5) as in a
real data set.

Fig. 6 (a) and (b) shows a single x − z and x − y cross-
section from the original phantom. Fig. 6 (c) - (j) shows
the corresponding cross-section from the reconstructed vol-
ume using the different algorithms. The FBP reconstruction
(Fig. 6(c), (d)) has strong streaking artifacts in the x−z cross
section and noise in the x− y cross section. The conventional
MBIR (Fig. 6 (e), (f)) shows prominent streaking artifacts in
the x − z cross section even though there are fewer artifacts
than in FBP. Furthermore, there is some underestimation at
the center of the spherical particles. However MBIR with
anomaly modeling (MBIR-AM) (Fig. 6(g)-(h)) produces a re-
construction which effectively suppresses these artifacts. In the
x− y cross section, we notice that the MBIR reconstructions
are less noisy as compared to FBP and that the anomaly
modeling significantly improves the reconstruction. Next, we
evaluate the performance of the proposed MBIR algorithm
with parameter estimation (MBIR-AM-PE). Fig. 6 (i) and (j)
show that the MBIR-AM-PE can accurately reconstruct the 3D
volume suppressing the artifacts despite the unknown nuisance
parameters. The value of σ upon termination of the algorithm
is 1.770. We note that this value is not the final converged
value of the parameter since our stopping criteria depends only
on the relative change in voxel values. However we still get
a good reconstruction at this termination point. In addition
to the qualitative improvements shown in Fig. 6, Table I
shows that MBIR with the anomaly modeling (MBIR-AM
and MBIR-AM-PE) significantly improves the quantitative
accuracy of the reconstruction compared to FBP as well as
conventional MBIR. The wall-clock time taken for the MBIR-
AM-PE reconstruction (256× 512× 512 voxels) using a node
with two 2.60 GHZ Intel Xeon-E5s (total of 16 cores) was
approximately 11 minutes.

Finally, we study the sensitivity of the MBIR reconstruc-
tions to the choice of parameters T and δ. Fig. 7 shows an
x−z cross section from the reconstructions for different values
of T when δ = 0.5. Notice that as T increases, streak artifacts
start to appear in the reconstruction. This is because some of
the anomalous measurements are misclassified. Fig. 8 shows
the binary classifier mask, b′, corresponding to three successive
tilts from simulated data upon completion of the reconstruc-
tion. This variable indicates which measurements are classified
as anomalous based on the generalized Huber function used
for the reconstruction. Notice that when T = 1, several non-
anomalous measurements are classified as anomalous (false
alarms). When T = 5 the algorithm misses certain anomalies.
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Fig. 5. Simulated BF data corresponding to a 3D phantom of spheres for three successive tilts. The arrows in the figure show example locations with the
simulated Bragg scatter obtained by increasing the attenuation coefficient of a few spheres in the phantom. We model these as anomalies in the projection
data as they can cause artifacts in the reconstructions produced using the standard reconstruction techniques.

When T = 20, all the measurements are classified as non-
anomalous leading to large errors in the reconstruction. A
value of T = 3 provides a good tradeoff and is intuitively
appealing because this implies that if the data fit error for a
measurement is less than 3 times the standard deviation of the
noise, then that measurement is non-anomalous. Thus the trade
off between false positives and missed detection of anomalies
can be varied via the parameter T in the algorithm. Table II
shows the RMSE when we vary δ for the different values of
T . The value of δ controls the influence of the anomalous
measurements on the reconstruction. A value of δ close to 0
implies the anomalous measurements are weighted less in the
cost function, while δ = 1 implies the anomalies are weighted
significantly. For this particular simulation, we get the lowest
RMSE for the T = 3 and δ = 0.5 case.

B. Real Data Set

In order to evaluate our approach on real data, we use a
data set of approximately 700 nm thick crystalline aluminum
nanoparticles in a carbon support. We used a FEI Titan TEM
with a 300 kV accelerating voltage, and a spot size 1 of 5.
The exposure time was set to 1 second, magnification was
set to 100 kX, the frame size set to 2048 × 2048, with a
pixel size of 0.83 nm × 0.83 nm. The detector used was a
CCD with a 30 µm objective aperture resulting in a detector
which captures electron scattered in the 0 − 15 mrad range.
The BF-TEM data consists of 33 tilts in the range of −70◦
to +70◦. We use a ≈ 580 nm ×580 nm section of the
projection images for reconstruction. The dimensions of the
reconstructed volume are set so as to account for all the voxels
contributing to the projection data. In presenting the results
we only show voxels that can be reliably reconstructed from
the projection data [12]. We reconstructed the data set using
our algorithm (MBIR-AM-PE), FBP and conventional MBIR
without anomaly modeling. All reconstructions are performed
with voxels of size 0.83 nm× 0.83 nm× 0.83 nm.

1The spot size is a manufacturer dependent unit-less parameter that refers
to the size of the condenser aperture and controls the electron flux on the
sample.

Fig. 9 (a) and (b) show an x − z and x − y cross-section
reconstructed from the data using FBP. The reconstruction has
strong streaking artifacts in the x − z plane and noise in the
x−y plane similar to the simulated data set. The reconstruction
using the conventional MBIR algorithm (Fig. 9 (c)-(d)), also
has streaking artifacts in the x − z plane that are similar
to those in the simulated data set of Fig. 6. However, the
conventional MBIR result also significantly reduces streaking
artifacts as compared to FBP. This is likely do to the fact that
MBIR reduces the weighting of the highly attenuated projec-
tions corresponding to measurements with anomalous Bragg
scatter. Fig. 9 (e) shows that using the anomaly modeling and
parameter estimation reduces streaking in the x−z plane. The
arrows in Fig. 9 (d) and (f) indicate regions where the MBIR
with anomaly modeling reduces the under-estimation as well
as other artifacts in the x − y cross-section compared to the
conventional MBIR.

The wall-clock time taken for the proposed MBIR recon-
struction (844 × 4516 × 1008 voxels) using a node with two
2.60 GHZ Intel Xeon-E5s (total of 16 cores) was approxi-
mately 9 hours and 40 minutes.

Fig. 10 shows the binary classifier mask b′ along with 3
successive tilts from the real data upon termination of the
reconstruction algorithm (MBIR-AM-PE). Notice that most of
the anomalous measurements are successfully identified by the
generalized Huber function at the end of the reconstruction.
Similar to the simulated data set a few of the noisy measure-
ments are also classified as anomalous but this does not effect
the final quality of the reconstruction significantly.

C. Bragg Feature Extraction

While the particles that undergo Bragg diffraction in a
given tilt result in anomalous measurements, the Bragg scatter
event contains potentially useful information about the crystal
structure and the orientation of the particles. For this reason
it is advantageous to correlate the anomalous Bragg event
identified in the acquired data with the particle in which it
occurred, to produce a Bragg feature vector for each particle.
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Phantom FBP Conventional MBIR

(a) (c) (e)

(b) (d) (f)

Proposed MBIR (T = 3, δ = 0.5) Proposed MBIR with parameter estimation (T = 3, δ = 0.5)

(g) (i)

(h) (j)
Fig. 6. Comparison of BF reconstructions for a data set with Bragg scatter like anomalies. (a) and (b) show a single x− z and x− y cross-section from the phantom used. The
horizontal direction represents the x axis. (c) and (d) show the corresponding cross sections from a FBP reconstruction. (e) and (f) show the conventional MBIR reconstruction.
The reconstruction has streaks because of Bragg scatter but much lesser compared to FBP. (g) and (h) show the cross-section from MBIR with anomaly modeling (T = 3 and
δ = 0.5). The method effectively suppresses the artifacts in (c) - (f), and produces a more accurate reconstruction. Finally (i) and (j) show the reconstruction using MBIR with
anomaly modeling and nuisance parameter estimation. The reconstructions are comparable to the MBIR-AM case showing that the algorithm can work well despite of the unknown
parameters. All images are scaled in the range of 0 − 7.45 × 10−3 nm−1.
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(a) T = 1, δ = 0.5 (b) T = 5, δ = 0.5 (c) T = 20, δ = 0.5

Fig. 7. Illustrates the impact of varying anomaly threshold T on the proposed MBIR reconstructions. (a) shows an x − z cross section from the 3-D
reconstruction when T = 1. (b) and (c) shows the corresponding slices when T = 5 and T = 20. Notice that for (b) and (c) there are visible streaking
artifacts. A value of T = 3 as shown in Fig. 6 produces an accurate reconstruction.

Data and anomaly classifier as T is varied

T=3

T=5

T=20

T=1

Data

Fig. 8. Data (top row) and corresponding anomaly classifier upon termination of the algorithm for three tilts from the phantom data set corresponding
to different values of T . The white regions indicate areas classified as non-anomalous and the black regions correspond to the anomalies identified by the
algorithm. As the value of T increases the algorithm starts to misclassify anomalies. A value of T = 3 provides a good trade off between the false alarms
and missed detections.
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FBP Conventional MBIR MBIR with anomaly modeling

(a) (c) (e)

(b) (d) (f)

Fig. 9. A single x − z and x − y cross-section reconstructed using different algorithms from a BF-TEM data set of Aluminum sphere nanoparticles. The
horizontal direction represents the x axis. The FBP reconstruction (a)-(b) has very strong streaking artifacts in the x− z cross-section, and noise in the x− y
cross-section suggesting why it has been avoided for BF-ET. The MBIR algorithm with the anomaly modeling and parameter estimation (T = 3 and δ = 0.5)
(e)-(f) is superior to the conventional MBIR (c)-(d), suppressing the streaking artifacts seen in (c). In the case of MBIR, the circular cross section of the
spherical particles are clearly visible compared to FBP. All images are scaled in the range of 0− 6.0× 10−3 nm−1.

We will use the binary classifier mask, b′, produced by our
algorithm along with the reconstructed volume to associate a
particle in the volume to an identified anomaly. In order to
extract the Bragg feature vector for each particle we apply the
following algorithm :

1) Segment the reconstructed volume into individual parti-
cles. We use a fixed threshold for segmentation followed by a
watershed transformation [36] to separate the fused particles.

2) Identify the connected components (CC) of the anomaly
classifier.

3) For each identified CC in the anomaly classifier, project
each particle, binarize the projection and find its similarity
with that CC. Fig. 11 illustrates how to find the similarity
between the binarized projection of a single particle and a
particular CC anomaly at a given tilt. If pk is a binarized
version of the projection of a given particle at tilt k and bk is
the binary anomaly classifier with the relevant CC segmented

out, we define the similarity score as

Sk = 1− ∥p
t
k b̄k∥1 + ∥p̄tkbk∥1
∥pk∥1 + ∥bk∥1

(22)

where b̄k and p̄k refers to the binary complement operator and
∥.∥1 is the l1 norm.

4) For a given CC anomaly (at tilt k), find the particle that
has the maximum similarity score with it. If this score is higher
than a threshold, we label that particle as being in the Bragg
condition at tilt k.

In this manner we can associate a binary Bragg feature
vector with each segmented particle from the MBIR recon-
struction. In order to test our algorithm we apply it to the
simulated data set as well as the real data presented earlier.
Fig. 12 (a) shows the result of segmentation from a single
reconstructed slice of the MBIR-AM-PE reconstruction in
IV-A. In our simulation we had set the particle labeled 2 to be
in the Bragg condition at tilts indexed by 17, 19, 27, 29, 30 and
36. Fig. 12 (b) shows the estimated Bragg feature vector for the
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Data and anomaly classifier (MBIR-AM-PE)

Fig. 10. Data and corresponding anomaly classifier upon termination of the algorithm for the real data set corresponding to three different tilts. The white
region in the classifier correspond to non-anomalous measurements and the black regions indicate an anomaly. While the classifier selects certain non-anomalous
regions notice that the regions in the data with anomalies are accurately classified by the algorithm.

Fig. 11. Illustration of calculation of the similarity score between a certain
anomaly and the projection of a given segmented particle in the 3D volume.
The projection is binarized and the score is then computed as the extent of
overlap between the anomaly and the projection using (22).

particle labeled 2 by using the above algorithm. We observe
that this matches the ground truth, illustrating the potential of
the proposed technique.

Fig. 13 (a) and (b) show a similar result from the real data
set. Note that in this case segmentation of the particles are very

(a) Cross section from segmentation (MBIR-AM-PE)
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Fig. 12. Illustration of Bragg feature identification for the simulated data set.
(a) shows the output of segmentation from a single slice of the reconstruction.
The particle labeled 2 was simulated to be in the Bragg condition at tilts
indexed by 17, 19, 27, 29, 30 and 36. (b) shows the estimated Bragg feature
vector for the particle labeled 2 using the proposed algorithm. In this case the
estimated Bragg feature vector matches the ground truth indicating that the
Bragg condition can be accurately identified.
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(a) Cross section from segmentation (MBIR-AM-PE)
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Fig. 13. Illustration of Bragg feature identification for a single particle in
a real data set. (a) shows the output of segmentation from a single slice of
the reconstruction. (b) shows the Bragg feature vector for the particle labeled
(1). While we do not have ground truth for this, we visually observed that the
Bragg feature extracted matches what can be seen in the acquired tilt series.

challenging. However for the particle labeled 1 we are still able
to recover the Bragg feature vector and this matches our visual
observation from the tilt series data. The results of Fig. 13
show that it is possible to extract potentially useful informa-
tion about when a single particle is in the Bragg scattering
condition. However, the method depends on the assumptions
that the volume can be accurately segmented into individual
particles corresponding to single crystal orientations.

V. CONCLUSION

In this paper we presented a MBIR algorithm for BF-ET
which can significantly decrease the artifacts in the recon-
struction due to anomalies such as Bragg scatter. Our method
works by modeling the image formation and the sample being
imaged to formulate a cost function that lowers the influence of
measurements that do not fit the model accurately. Results on
simulated and real data demonstrate that our method can effec-
tively suppress the artifacts due to the anomalies, producing
qualitatively and quantitatively accurate reconstructions. We
also proposed a simple method for extracting a Bragg feature
vector for each particle in a volume that contains potentially
useful information about crystal orientation.

APPENDIX A
COMPOSITION PROPERTY OF SURROGATE FUNCTIONS

Theorem 1: Composition property - Let q(z; z′) be a sur-
rogate function for the minimization of t(z) on A ⊂ RN ; and

let h : A→ A. Then define

t̃(z) ! t(h(z))

q̃(z; z′) ! q(h(z);h(z′))

Then q̃(z; z′) is a surrogate function for t̃(z).
Proof: The theorem can be proved by verifying the

sufficiency coditions for surrogate functions in (8). Notice that
at z = z′, q̃(z′; z′) = t̃(z′) because q is a surrogate function
to t. Furthermore, for any z ⊂ A, q̃(z; z′) ≥ t̃(z) by the
construction of q i.e., q(z; z′) ≥ t(z) for z ⊂ A. Therefore
the compostion is still a surrogate function because it satisfies
the sufficiency conditions in (8).
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