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Abstract—A multigrid inversion approach that uses variable
resolutions of both the data space and the image space is pro-
posed. Since the computational complexity of inverse problems
typically increases with a larger number of unknown image pixels
and a larger number of measurements, the proposed algorithm
further reduces the computation relative to conventional multi-
grid approaches, which change only the image space resolution
at coarse scales. The advantage is particularly important for
data-rich applications, where data resolutions may differ for
different scales. Applications of the approach to Bayesian recon-
struction algorithms in transmission and emission tomography
with a generalized Gaussian Markov random field image prior are
presented, both with a Poisson noise model and with a quadratic
data term. Simulation results indicate that the proposed multigrid
approach results in significant improvement in convergence speed
compared to the fixed-grid iterative coordinate descent method
and a multigrid method with fixed-data resolution.

Index Terms—Computed tomography, emission tomography,
image reconstruction, inverse problems, multigrid algorithms,
multiresolution, transmission tomography.

I. INTRODUCTION

OVER the past decade, many important image processing
applications have been formulated in the framework of

inverse problems. However, a major barrier to the use of inverse
problem techniques has been the computational cost of these
methods, which typically require the optimization of high-di-
mensional, and sometimes nonquadratic, cost functions. These
computational challenges are only made more difficult by
concurrent trends toward larger data sets and correspondingly
higher resolution images in two and higher dimensions.

Multiresolution techniques have been widely investigated
as a method for reducing the computation required to solve
inverse problems. The techniques have ranged from simple
coarse-to-fine approaches [1]–[5], which initialize fine-scale
iterations with coarse-scale solutions, to more sophisticated
wavelet or multiresolution image model-based approaches,
which have been applied to image segmentation [6]–[9], image
restoration [10]–[15], and image reconstruction [16]–[22], [13],
[23], [24].

Multigrid methods [25]–[27], which are multiresolution
approaches originally developed for fast partial differential
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equation (PDE) solvers, have been recently applied to inverse
problems such as image reconstruction [28]–[39], optical flow
estimation [40]–[44], interpolation of missing image data [45],
[46], image segmentation [45], [47], [48], image analysis
[40], [49]–[51], image restoration [52], and anisotropic dif-
fusion [53]. Multigrid methods achieve fast convergence not
only because coarse-scale operations are much cheaper than
those at fine scale, but also because coarse grid corrections
typically remove low frequency error components more effec-
tively than fine-scale corrections. Furthermore, unlike simple
coarse-to-fine approaches, they provide a systematic method to
go from fine to coarse, as well as from coarse to fine, so that
coarse-scale updates can be applied whenever they are expected
to be effective. Since they operate directly in the space domain,
multigrid algorithms can also easily enforce nonnegativity
constraints, which are often necessary to obtain a physically
meaningful image in tomographic reconstruction problems.

Interestingly, most of the existing work on multigrid image
reconstruction has focused on applications that use a forward
model described by the solution to one or more PDEs. For
example, optical diffusion tomography (ODT) [32]–[34],
electrical impedance tomography [29], [54], [35], bioelectric
field problem [31], seismic tomography [55], and atmospheric
data assimilation [36] all use a forward model that depends
implicitly on the solution to a PDE. In these applications multi-
grid algorithms provide significant computational savings,
partly because good initialization is usually not available, and
partly because per iteration computation tends to be high. For
example, the application of our nonlinear multigrid inversion to
ODT showed the potential for very large computational savings
and robust convergence with respect to various operational ini-
tializations [34]. However, relatively little work has been done
on applying multigrid methods to emission and transmission
tomography problems [28], [30], [39].

Conventional tomography and many other inverse problems,
such as motion analysis and image deblurring, have large
measurement data sets which also can be decimated at coarse
scales. Some inversion approaches have used multiresolution
representations of this data. For example, wavelet decomposi-
tion of projection data has been used in filtered backprojection
[56]–[61] and MAP reconstruction [17], [62], [23], and a
multiscale forward projection equation solver used decimated
sinogram data for coarse-scale iterations [63]. Interestingly, the
ordered subset expectation-maximization (OSEM) algorithm
[64] does not use multiresolution data representation, but it
does use only a subset of the data in each iteration. Importantly,
existing multigrid methods, including our previous multigrid
inversion framework [34], do not exploit the possibility of
coarse representation of measurement data at coarser scales,
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and, thus, their computational gain comes only from a reduced
number of unknown variables by coarse discretization of the
image at coarser scales.

In this paper, we propose a multigrid method that has three
important features. First, it reduces computation by changing
the resolution of the data space as well as the image space.
Second, it formulates the multigrid inversion problem for
Bayesian reconstruction from transmission or emission data
with either a Poisson or Gaussian noise model. Third, it in-
corporates a novel adaptive multigrid scheme which allocates
computation to the scale at which the algorithm can best reduce
the cost [65].

As with our previous multigrid inversion method [34], our
new multigrid method formulates a consistent set of coarse-
scale cost functions and moves up and down recursively in res-
olution to solve the original finest-scale problem. However, the
important difference from our previous formulation is that the
measurement data as well as the image are coarsely discretized
at the coarse scale, and, thus, computation is further reduced.
This is especially advantageous in applications where the data,
as well as the image, have high dimensions.

An important feature of our formulation is that the choice of
decimator/interpolator for the data space is independent of the
choice of those for the image space. In many image processing
applications, such as motion analysis and image deblurring, a
measurement is available for each pixel of the image space,
so the same decimation/interpolation operators may be used
on both the data and images. However, in many applications,
including tomography, this is not true. Thus, the flexibility in
choosing the decimator/interpolator makes our proposed multi-
grid approach particularly suitable for tomographic image re-
construction problems.

Our simulation results show that our multigrid algorithms
using variable data resolution yield better convergence speed
than the iterative coordinate descent (ICD) method [66], [67]
and multigrid algorithms using fixed-data resolution.

II. MULTIGRID INVERSION WITH VARIABLE RESOLUTION

DATA AND IMAGE SPACES

In this section, we present a multigrid inversion approach
that changes resolutions of both data and image spaces. We first
present our approach for the case of measurements with additive
Gaussian noise, and we then generalize the method for inversion
with Poisson noise.

A. Quadratic Data Term Case

Let be a random vector of measured data, and let
be a discretized unknown image. Then, the expected

value of the measurement vector is given by

(1)

where is known as the forward model. Our task
is then to estimate the image which produced the observations

. A common approach for solving this problem is to solve an
associated optimization problem of the form

(2)

where is the probability density of given , and is
a stabilizing function designed to regularize the inversion [68],
[69]. If , where is the image prior prob-
ability density, this results in the maximum a posteriori (MAP)
estimate of .

If the measurements are conditionally Gaussian given
with noise covariance matrix , then the inverse is com-
puted by minimizing the cost function

(3)

where . By expanding the data term of (3), the
cost function may be expressed within a constant as

(4)

where is the transpose operator and .
Minimizing a function such as (4) can be very computation-

ally expensive, particularly when the image and data have
high dimension. Our approach to reducing computation will be
to formulate an approximate cost function using a coarse-scale
representation of the image and data. To do this, we require
methods for decimating and interpolating in both domains.

Let and denote representa-
tions of and at coarser resolution . In
order to convert between resolutions, we define the image do-
main decimation operator and the data do-

main decimation operator . Similarly, we
define the interpolation operators for image and data domains
as and , respectively.
Typically, we use either pixel replication or bilinear interpola-
tion operators and decimation operators, but the theory is appli-
cable to a wide range of choices. Notice that, in general,

and may be different.
We will assume that there is some natural way to define a

coarse-scale forward model which
maps the coarse-scale image to the coarse-scale data. In prac-
tice, can result from the method used to discretize the
physical problem, but, at this point, we will make few assump-
tions regarding its specific form. The most crucial assumption
in our formulation is that

(5)

Then, by replacing in the original finest-scale cost
function (4) with an interpolated forward model ,
we have an approximate coarse-scale cost function

(6)
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where the coarse-scale stabilizing function is chosen to
best approximate the original finest scale one, as described in
[34], and later in Section IV-A. By defining

(7)

(8)

(6) can be expressed as

(9)
The form of (9) is analogous to that of (4), but with quantities
indexed by the scale . As in our previous work [34], the forward
model and the stabilizing function use a coarsely
discretized image at each scale , and, thus, computations are
substantially reduced due to the reduced number of variables. In
this work, computation is further reduced since the dimension
of the forward model vector also changes with .

We adjust the coarse-scale cost functions (9) at each scale
to better match with the original fine scale one, and, thus, to
produce a consistent solution. To do this, we define an adjusted
cost function by appending an additional linear correction term.
This yields the adjusted cost function

(10)

where is a row vector used to adjust the function’s gradient,
the choice of which will be discussed later. At the finest scale,

is chosen so that .
With the set of coarse-scale cost functions of the form in (10),

the multigrid algorithm solves the original problem by moving
up and down in resolution [33], [34]. Let be the current
solution at grid . We would like to improve this solution by first
performing iterations of fixed-grid optimization at the coarser
grid , and then using this result to correct the finer grid
solution. This coarse grid update is

(11)

where is the updated value, and the operator
is any fixed-grid update algo-

rithm designed to reduce the cost function starting with
the initial value . In (11), the initial condition

is formed by decimating . We may now use this result to
update the finer grid solution. We do this by interpolating the
change in the coarser-scale solution.

(12)

In order to ensure updates which reduce the fine-scale cost,
we would like to make the fine and coarse-scale cost functions
equal within an additive constant. This means we would like the
equation

(13)

to hold for all coarse-scale updated values of . Our objec-
tive is then to choose a coarse-scale cost function which matches
the fine cost function, as described in (13). We do this by se-
lecting to match the gradients of the coarse and fine cost
functions at the current values of and .
More precisely, we enforce the condition that

(14)

where is the row vector formed by the gradient of the
function [33]. This condition (14) is essential to assure that
the optimum solution is a fixed point of the multigrid inversion
algorithm [33], and we can show how this condition can be used
along with other assumptions to ensure monotone convergence
of the multigrid inversion algorithm [34]. Note that in (14), the
interpolation matrix , which comes from the chain rule of
differentiation, actually functions like a decimation operator be-
cause it multiplies the gradient vector on the right. Importantly,
the condition (14) holds for any choice of decimation and inter-
polation matrices. The equality of (14) can be enforced at the
current value by choosing

(15)

By evaluating the gradient for the cost function (4), (15) is com-
puted by

(16)

where and are the gradients of the unadjusted cost
function at the fine and coarse scales, respectively, given by

(17)

(18)

where denotes the gradient of the forward model or Fréchet
derivative given by

(19)

(20)

Assuming that

(21)

the coarse-scale cost function parameters (7)–(8) can be com-
puted iteratively by

(22)

(23)
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Fig. 1. Pseudo-code specification of (a) the main routine for multigrid inversion
and (b) the subroutine for the Multigrid-V inversion.

The computations of (22) and (23) are inexpensive and, in ad-
dition, can be precomputed since they are independent of the
image .

The pseudocode in Fig. 1(b) shows the Multigrid-V algorithm
to solve the minimization of (4). Multigrid-V recursion is a stan-
dard multigrid method, which calls itself recursively in resolu-
tion. More specifically, it replaces the coarse-scale fixed-grid
update of (11) by a recursive call of a multigrid algorithm. We
solve the problem through iterative application of the Multi-
grid-V algorithm, as shown in Fig. 1(a). See [25]–[27], [33],
and [34] for the details of Multigrid-V recursion.

B. Poisson Data Case

Some inverse problems, such as transmission and emission
tomography, use Poisson measurement noise models [70], [71].
In the Poisson noise model, we assume (1) holds with the ele-
ments of being independent Poisson random variables. In this
case, the negative log likelihood of the Poisson data is given by

(24)
where is the number of measurements and is a realization
of , and its corresponding regularized inverse can be solved
by minimizing the cost function

(25)

We first compute coarse-scale measurement data using data
domain decimation

(26)

In addition to (5), we also make a few assumptions, which are
satisfied for most choices of data domain decimation and inter-
polation operators. First, we assume that the interpolated coarse-
scale data approximate the fine-scale data. More formally, we
say

(27)

Second, we assume that

(28)

where is the th element of matrix . In order

to understand this assumption, notice that, when is

nonzero, and indicate the corresponding data at different
resolutions. So, in this case, we would expect the two data to
be approximately equal. Third, we assume that

(29)

which insures that the average value of and are the
same.

The negative logarithm of the Poisson data likelihood (24)
can then be approximated as (30), shown at the bottom of the
next page, where the second line comes from (5) and (27), the
third from the element-by-element expansion of the data domain
interpolation, the fourth from (28), the fifth from the summation
order exchange, and the last from (29). Thus, an approximate
coarse-scale cost function with a reduced resolution data and
forward model may be expressed as

(31)

The adjusted coarse-scale cost is then obtained by adding the
gradient correction term

(32)

where is computed by (16) with

(33)

(34)
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where denotes the th row of the matrix . With this
choice of coarse-scale cost functions, multigrid inversion works
by the procedure specified in Fig. 1.

III. ADAPTIVE COMPUTATION ALLOCATION

The MultigridV subroutine in Fig. 1(b) specifies that
fixed-grid iterations are performed before each coarse grid up-
date, and iterations are performed after the update. The
convergence speed of the algorithm can be tuned through the
choices of and at each scale. In practice, the best choice
of these parameters also varies with the number of MultigridV
iterations. For example, coarse fixed-grid optimization is typi-
cally more important in initial iterations, while fine fixed-grid
optimization is more important during later iterations when the
solution is close to its final value. For this reason, we can further
improve convergence speed by adaptively changing the values
of and with time instead of fixing the parameters to
predetermined values.

In this section, we describe how to adaptively allocate com-
putation to the scale at which the algorithm can best reduce the
cost [65]. In our adaptive scheme, we do not fix the and

parameters in advance. Instead, we perform fixed-grid up-
dates as long as they continue to effectively reduce cost. This
adaptive approach can further improve convergence speed and
eliminates the need to select these parameters.

First, we would like the image updates to begin at the coarsest
scale since this is usually more effective when the solution is
far from the optimum. To do this, we initially set ,
so that when proceeding from fine to coarse scale in the first
multigrid-V cycle, we do not update the image and only update
the vector.

Second, when proceeding from coarse to fine scale in the first
multigrid-V cycle, we perform the fixed-grid iterations until the
change in the cost function falls below a threshold. More specif-
ically, fixed-grid iterations are applied as long as the condition

(35)

is satisfied, where is a state variable containing the reduc-
tion in cost that resulted from the most recent application of the
fixed-grid optimization at grid resolution , is a state
variable containing the maximum value that has taken on,
and is a threshold which we set to the value 0.1 in this paper.
If the condition is not satisfied, the algorithm proceeds to the
next scale.

Once the first multigrid cycle is complete, the adaptive multi-
grid algorithm compares the computational efficiency at the cur-
rent scale and at the next grid scale denoted by , and per-
forms the fixed-grid iteration at scale only if it is likely to be
more effective than moving to scale . More specifically, be-
fore each fixed-grid update, a conditional test, , is evaluated.
If the test is true, the fixed-grid update is performed; but if it is
false, then the algorithm proceeds to the next grid scale .
This condition is given by

(36)

where is the computation required for a single fixed-
grid update at scale . Importantly, since and
are state variables, these values are saved from the previous pass
through grid resolutions and .

The adaptive MultigridV algorithm is schematically summa-
rized in Fig. 2. While some adaptive multigrid algorithms have
been developed for PDE solvers [72], our adaptive scheme is
unique because it uses the cost change as the criterion for adap-
tation. This is possible because our multigrid inversion method
is based on an optimization framework [33], [34], in contrast to
conventional multigrid methods which are formulated as equa-
tion solvers.

IV. APPLICATIONS TO BAYESIAN EMISSION

AND TRANSMISSION TOMOGRAPHY

In this section, we apply the proposed multigrid inversion
method to iterative reconstruction for emission and transmission

(30)
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Fig. 2. Adaptive multigrid-V scheme. (Color version available online at http://ieeexplore.ieee.org.)

Fig. 3. (a) True phantom. (b) CBP reconstruction for emission tomography. (c) CBP reconstruction for transmission tomography.

tomography. The algorithms are formulated in a Bayesian re-
construction framework using both the quadratic data term and
the Poisson noise model.

A. Multigrid Tomographic Inversion With Quadratic Data
Term

Emission tomography and transmission tomography use pro-
jected photon counts to reconstruct the image , which con-
sists of a cross-sectional emission rate map and a cross-sectional
attenuation map, respectively. The MAP image reconstruction
problem is reduced to a minimization problem with the cost
function [66], [67]

(37)

where, for the emission case, we have

(38)

(39)

and, for the transmission case, we have

(40)

(41)

where is the forward projection matrix, is the photon
dosage per ray in the transmission case, and plays a role sim-
ilar to in (3).

Notice that, since (37) has the form of (3), we can use
the multigrid inversion algorithm described in Section II-A
to compute the MAP reconstruction. However, to do this we
must specify the coarse-scale forward models, , and the
coarse-scale stabilizing functions, .

The fine-scale forward model is given by the linear transfor-
mation

(42)

The coarse-scale forward model also has the linear form

(43)

where is an coarse-scale projection matrix
given by

(44)

Note that in (44) can be precomputed and stored since
it is independent of the images.
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Fig. 4. Convergence in emission tomography with quadratic data term in terms of (a) cost function and (b) image rms error.

Fig. 5. Convergence in emission tomography with the Poisson noise model in terms of (a) cost function and (b) image rms error.

Fig. 6. Convergence in transmission tomography with quadratic data term in terms of (a) cost function and (b) image rms error.

Although, in principle, our multigrid inversion framework

can work with any choice of data domain interpolator

and decimator , we need to choose them carefully to re-

tain computational efficiency. We choose so that each

row has only one nonzero element, and, thus, the resulting
coarse-scale weight matrix given by (22) is diagonal. For
this reason, we interpolate using pixel replication along both
the displacement and angle dimensions of the sinogram data.
In other words, interpolates the sinogram data with the
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Fig. 7. Convergence in transmission tomography with the Poisson noise model in terms of (a) cost function and (b) image rms error.

Fig. 8. Reconstructions for emission tomography with quadratic data term: Fixed-grid algorithm with (a) seven iterations, (b) 14 iterations, (c) 28 iterations, and
(d) 50 iterations. (e) Multigrid algorithm with fixed-data resolution (7.79 iterations) and (f) multigrid algorithm with variable data resolution (5.94 iterations).

one-dimensiona l interpolation matrix

...
...

...
. . .

...
...

(45)

along both the angle and displacement axes. We choose the dec-
imator to have the adjoint form of the interpolator, giving

(46)

Note that some other interpolation matrices, including the pop-
ular bilinear interpolator, do not preserve the sparsity of weight
matrix at coarse scales.
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Fig. 9. Reconstructions for emission tomography with the Poisson noise model: Fixed-grid algorithm with (a) seven iterations, (b) 14 iterations, (c) 28 iterations,
and (d) 50 iterations. (e) Multigrid algorithm with fixed-data resolution (8.06 iterations) and (f) multigrid algorithm with variable data resolution (5.31 iterations).

For the image prior model, we use the generalized Gaussian
Markov random field (GGMRF) model [73], which is known
to effectively enforce smoothness while preserving edges in to-
mographic reconstruction. In this case, the stabilizing function
is given by

(47)

where is a normalization parameter, controls the
degree of edge smoothness, the set consists of all pairs of ad-
jacent pixels, and is a weight given to the pair of pixels
and . We use the corresponding coarse-scale stabilizing func-
tions [34]

(48)

where is given by , and is the
dimensionality of the problem. The gradient terms of the stabi-

lizing function used in (17), (18), (33), and (34) are computed
by

(49)

B. Multigrid Tomographic Inversion for Poisson Data Model

In the emission case, the photon count for the th de-
tector or detector pair is known to be described by the Poisson
distribution (24) with mean and variance

(50)

where is the th row of the matrix . For this case, the
MAP image reconstruction problem is reduced to minimizing
the cost function (25) with the Poisson mean (50). We also use
the coarse-scale projection matrix of (44).

A similar method can be used for the transmission case, but
with the Poisson mean given by

(51)
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Fig. 10. Reconstructions for transmission tomography with quadratic data term: Fixed-grid algorithm with (a) seven iterations, (b) 14 iterations, (c) 28 iterations,
and (d) 50 iterations. (e) Multigrid algorithm with fixed-data resolution (7.48 iterations) and (f) multigrid algorithm with variable data resolution (5.81 iterations).

We use the coarse-scale Poisson mean vector computed by

(52)

where is once again given by (44).
Both emission and transmission cases use the same interpola-

tion/decimation matrices and coarse-scale stabilizing functions
as described in Section IV-A.

V. NUMERICAL RESULTS

In this section, we compare three algorithms: the proposed
multigrid algorithms with variable data resolution; the multi-
grid algorithms with fixed-data resolution; and the fixed-grid
ICD algorithm [66], [67]. The multigrid algorithms with fixed-
data resolution here means a special case of the algorithms pro-
posed in Sections II–IV, where all resolutions used the same
data by simply using identity matrices for and
for all . We tested the algorithms for Bayesian reconstruction
in emission and transmission tomography using the modified
Shepp–Logan phantom [74] shown in Fig. 3(a). The width and
the height of the bounding rectangle was 20 cm, and the two-di-
mensional region was discretized with 513 513 pixels. In the

emission case, the brighter regions correspond to higher emis-
sion; and in the transmission case, the brighter regions corre-
spond to higher absorption, with a peak absorption coefficient of
0.05 cm . Projection data was simulated using 180 uniformly
spaced angles, each with 512 uniformly spaced projections. The
projection beam was assumed to have a triangular beam profile
with a width of two times the projection spacing. In the emis-
sion case the total photon count per projection data was approx-
imately 1.68 photons. In the transmission case, the dosage

per ray was 800 photons. Measurements were simulated as
independent Poisson random variables. The same data set was
used for both the quadratic data term-based reconstruction and
the Poisson model-based reconstruction.

Reconstructions were performed on 513 513 pixels.
All three algorithms were initialized with the convolution
backprojection (CBP) reconstructions shown in Fig. 3(b)
and (c). The CBP algorithm was implemented for a general-
ized Hamming reconstruction filter with frequency response

for , where
is the ideal ramp filter. The cutoff frequency

was chosen to yield minimum image root-mean-square error
(RMSE), which was for transmission tomography
and for emission tomography.
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Fig. 11. Reconstructions for transmission tomography with the Poisson noise model: Fixed-grid algorithm with (a) eight iterations, (b) 16 iterations, (c) 32 it-
erations, and (d) 50 iterations. (e) Multigrid algorithm with fixed-data resolution (9.06 iterations) and (f) multigrid algorithm with variable data resolution (6.46
iterations).

Both multigrid algorithms used a three level multigrid-V
recursion, and used the fixed-grid ICD algorithm [66], [67]
with random-order pixel updates. We chose the parameters
in Fig. 1(b), which control the number of fixed-grid update
iterations at each scale, adaptively, as described in Section III.
For fair comparison, we scaled the iteration number by the
theoretical computational complexity. A detailed description
for the conversion can be found in the Appendix. The CBP
computation is not included in the computational complexity
since the CBP initialization is of negligible cost compared with
the ensuing computation.

The image prior model parameters used were an eight point
neighborhood GGMRF with , and
for nearest neighbors and for diagonal
neighbors. We chose the image prior variance parameter to be

cm in the transmission case and cm
in the emission case. These values were lower than the optimal
parameters yielding minimum image RMSE, but they resulted
in qualitatively better reconstructions in spite of a slightly larger
RMSE.

Figs. 4(a), 5(a), 6(a), and 7(a) compare the convergence speed
of the algorithms in terms of the cost function. For both imaging
modalities and both data likelihood functions, the multigrid al-
gorithm with variable data resolution converged at least twice

as fast as the multigrid algorithm with fixed-data resolution. Im-
portantly, although the convergence of the fixed-grid ICD algo-
rithms in the initial few iterations is comparable with that of the
multigrid algorithms with fixed-data resolution, they eventually
require many more iterations ( iterations) to reduce the
cost to the value to which the multigrid algorithms with variable
data resolution converged in iterations.

Figs. 4(b), 5(b), 6(b), and 7(b) compare the convergence
speed of the algorithms in terms of RMSE of reconstructed im-
ages. For all the cases, the multigrid algorithm with variable data
resolution converged fastest. The fixed-grid algorithm behaved
poorly at the first iteration, and it produced some salt and pepper
noise by overshooting in some image pixel updates. Again,
the fixed-grid algorithm required about iterations to
reduce image RMSE to the value that the multigrid algorithms
converged to in iterations. Since the convexity of the cost
function excludes the possibility of being trapped into a local
minimum, the difference in convergence speed is probably due
to the fact that there are some error components which the
fixed-grid optimization cannot effectively remove.

The convergence plots show that all the algorithms eventually
converged to the same cost and RMSE, which should be a nat-
ural consequence of the convex optimization function. However,
although the cost decrease rate of the multigrid algorithms and
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the fixed-grid algorithm were similar for the initial iterations,
the RMSE convergence results indicate that they converged fol-
lowing different optimization trajectories. The trajectory of the
multigrid algorithms are perhaps more favorable because they
yielded significantly smaller RMSE image error before full con-
vergence.

Figs. 8 and 9 show the reconstructed images for emission
tomography with the Poisson noise model and the quadratic
approximation of data likelihood, respectively, and Figs. 10
and 11 show the reconstructed images for transmission to-
mography. For all cases, the final reconstruction quality was
quantitatively and qualitatively almost the same for the three
algorithms. However, the fixed-grid algorithm yielded poorer
image quality even with twice or four times the computation
that the multigrid methods required to converge. For example,
the fixed-grid reconstructions in Fig. 9(b) and (c) with 14 and 28
iterations, respectively, were visually worse than the multigrid
reconstructions with only 8.06 or 5.31 iterations, which are
shown in Fig. 9(e) and (f). Fig. 12 shows corresponding region
of interest (ROI) images from Fig. 9. We adjusted the contrast
of Fig. 12 linearly from Fig. 9 so that the ROI images show
the visual differences more clearly. Comparing Figs. 9–12 with
Fig. 3, the reconstructions by all the statistical methods improve
the image quality compared to the CBP reconstruction.

In summary, the proposed multigrid algorithm significantly
saved computation as compared with the fixed-grid ICD al-
gorithm initialized with the CBP reconstruction. It was also
found that in intermediate iterations of the multigrid algorithms
yielded images that appeared to have better subjective visual
quality than the fixed-grid ICD algorithm. Since the optimiza-
tion functions were all convex in the problems we considered,
the fully converged reconstructions were, as expected, approxi-
mately the same for all the algorithms. However, in nonconvex
optimization problems, such as ODT [34], or seismic tomog-
raphy [55], multigrid algorithms may have the potential to
provide better image quality than fixed-grid algorithms [34].

VI. CONCLUSION

The multigrid inversion methods with variable resolution
data and image spaces were proposed. In formulating a set
of optimization functions at different scales, the algorithm
changes grid resolution of both measurement data space and
image space, and, thus, improves computational efficiency
further than the previous multigrid inversion methods which
changes resolutions in the image space only. Application to
conventional transmission and emission tomography problems
demonstrated substantially reduced computation relative to the
fixed-grid ICD algorithm and our previous multigrid inversion
with fixed-data resolution.

APPENDIX

COMPUTATIONAL COMPLEXITY

In this Appendix, we analyze the computational cost of the
multigrid inversion algorithms. We use the number of multipli-
cations/divisions (and the number of additional exponentiations
in the Poisson transmission case) as a measure of computational
complexity.

Fig. 12. ROI comparison for Fig. 9: (a) Original image; fixed-grid algorithm
reconstructions with (b) seven iterations, (c) 14 iterations, (d) 28 iterations, and
(e) 50 iterations. (f) Multigrid algorithm reconstruction with fixed-data resolu-
tion (8.06 iterations) and (g) multigrid algorithm reconstruction with variable
data resolution (5.31 iterations).

For simplicity, we make three assumptions. First, all the data-
independent vectors and matrices, such as , , and , are pre-
computed and stored. Second, the ratio is approximately
constant across resolutions, where is the average number of
nonzero projections associated with each image pixel. Finally,
we neglect the computational cost required for decimation and
interpolation. In other words, we assume that the main compu-
tational cost at resolution consists of the fixed-grid update on

and the computation of .
The ICD iteration typically has complexity of ,

where is the number of pixels. Thus, one ICD iteration at
scale requires only times the computations at the finest
scale for the variable data resolution case, and times the
computation at the finest scale for fixed-data resolution case.
This is also true for the computation, which is computed
only once when the inversion proceeds from scale to .

Then, in a similar manner to [34], the complexity of one
MultigridV iteration is given by

(53)

for the variable data resolution case and

(54)
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Fig. 13. Comparison between the theoretical complexity and the measure CPU time for the multigrid algorithms with (a) fixed-data resolution and (b) variable
data resolution.

for fixed-data resolution case, where is the complexity
for one ICD iteration at the finest scale, is the com-
plexity for updating vector at the finest scale, and

is the number of iterations of fixed-grid update at
scale . The ratio of to is 2/3 for the quadratic
cases, 2/5 for the Poisson emission case, and 1 for the Poisson
transmission case, where we conservatively assume that the ex-
ponentiations dominate the complexity. The formulas (53) and
(54) were used to scale the iteration number in Section V.

Fig. 13 compares the theoretical complexity, computed with
(53) and (54), with a measured experimental complexity in
terms of the CPU time. The experimental complexity is the
elapsed CPU time divided by the average CPU time for one
iteration of the fixed-grid ICD algorithm. The elapsed CPU
time was measured for every iterations on all grid resolutions.
It was measured on a linux machine with an AMD 2.0-GHz
Athlon CPU and 2-GByte memory. The experimental com-
plexity for multigrid algorithms was consistently a little lower
than the theoretical complexity. Interestingly, we found that
the coarse-scale ICD iterations took substantially shorter time
than the theoretical complexity anticipates, which might be an
effect of the better cache locality when solving the small-scale
problem.f
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