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Abstract—We present a method for noniterative maximum a pos-
teriori (MAP) tomographic reconstruction which is based on the
use of sparse matrix representations. Our approach is to precom-
pute and store the inverse matrix required for MAP reconstruc-
tion. This approach has generally not been used in the past because
the inverse matrix is typically large and fully populated (i.e., not
sparse). In order to overcome this problem, we introduce two new
ideas. The first idea is a novel theory for the lossy source coding of
matrix transformations which we refer to as matrix source coding.
This theory is based on a distortion metric that reflects the distor-
tions produced in the final matrix-vector product, rather than the
distortions in the coded matrix itself. The resulting algorithms are
shown to require orthonormal transformations of both the mea-
surement data and the matrix rows and columns before quantiza-
tion and coding. The second idea is a method for efficiently storing
and computing the required orthonormal transformations, which
we call a sparse-matrix transform (SMT). The SMT is a general-
ization of the classical FFT in that it uses butterflies to compute an
orthonormal transform; but unlike an FFT, the SMT uses the but-
terflies in an irregular pattern, and is numerically designed to best
approximate the desired transforms. We demonstrate the potential
of the noniterative MAP reconstruction with examples from optical
tomography. The method requires offline computation to encode
the inverse transform. However, once these offline computations
are completed, the noniterative MAP algorithm is shown to reduce
both storage and computation by well over two orders of magni-
tude, as compared to a linear iterative reconstruction methods.

Index Terms—Inverse problems, matrix source coding, noniter-
ative reconstruction, optical tomography, sparse matrix represen-
tation.

I. INTRODUCTION

S PARSITY is of great interest in signal processing due to
its fundamental role in efficient signal representation. In

fact, sparse representations are essential to data compression
methods, which typically use the Karhunen–Loeve (KL) trans-
form, Fourier transform, or wavelet transform to concentrate en-
ergy in a few primary components of the signal [1], [2]. Re-
cently, there has been increasing interest in exploiting sparsity
in the data acquisition process through the use of coded aperture
or compressed sensing techniques [3]–[6]. The key idea in these
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approaches is that the sparsity of data in one domain can lead to
a reduced sampling rate in another domain.

Interestingly, little work has been done on the sparse repre-
sentation of general transforms which map data between dif-
ferent domains. Nonetheless, the sparse representation of trans-
forms is important because many applications, such as iterative
image reconstruction and de-noising, require the repeated trans-
formation of high-dimensional data vectors. Although sparse
representation of some special orthonormal transforms, such as
the discrete Fourier transform and discrete wavelet transform
[7]–[9], have been widely studied, there is no general method-
ology for creating sparse representations of general dense trans-
forms.

Sparsity is of particular importance in the inversion of tomo-
graphic data. The forward operator of computed tomography
(CT) can be viewed as a sparse transformation; and reconstruc-
tion algorithms, such as filtered back projection, must generally
be formulated as sparse operators to be practical. In recent years,
iterative reconstruction using regularized inversion [10], [11]
has attracted great attention because it can produce substantially
higher image quality by accounting for both the statistical nature
of measurements and the characteristics of reconstructed images
[12]. For example, maximum a posteriori (MAP) reconstruction
works by iteratively minimizing a cost function corresponding
to the probability of the reconstruction given the measured data
[13]–[15]. Typically, the MAP reconstruction is computed using
gradient-based iterative optimization methods such as the con-
jugate gradient method. Interestingly, when the prior model and
system noise are Gaussian, the MAP reconstruction of a linear or
linearized system is simply a linear transformation of the mea-
surements. However, even in this case, the MAP reconstruction
is usually not computed using a simple matrix-vector product
because the required inverse matrix is enormous (number of
voxels by the number of measurements) and is also generally
dense. Consequently, both storing the required matrix and com-
puting the matrix-vector product are typically not practical.

In this paper, we introduce a novel approach to MAP recon-
struction based on our previous work [16], [17], in which we di-
rectly compute the required matrix-vector product through the
use of a sparse representation of the inverse matrix. In order to
make the large and dense inverse matrix sparse, we introduce
two new ideas.

The first idea is a novel theory for the lossy source coding
of matrix transformations, which we refer to as matrix source
coding. Source coding of matrix transforms differs from source
coding of data in a number of very important ways. First, min-
imum mean squared error encoding of a matrix transformation
does not generally imply minimum mean squared error in a
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resulting matrix-vector product. Therefore, we first derive an
appropriate distortion metric for this problem which reflects
the distortions produced in matrix-vector multiplication. The
proposed matrix source coding algorithms then require or-
thonormal transformations of both the measurement data and
matrix rows and columns before quantization and coding. After
quantization, the number of zeros in the transformed matrix can
dramatically increase, making the resulting quantized matrix
very sparse. This sparsity not only reduces storage, but it also
reduces the computation required to evaluate the matrix-vector
product used in reconstruction.

The second idea is a method for efficiently storing and com-
puting the required orthonormal transformations, which we call
a sparse-matrix transform (SMT). The SMT is a generalization
of the classical fast Fourier transform (FFT) in that it uses butter-
flies to compute an orthonormal transform; but unlike the FFT,
the SMT uses the butterflies in an irregular pattern and is nu-
merically designed to best approximate the desired transforms.
Furthermore, we show that SMT can be designed by minimizing
a cost function that approximates the bit-rate at low reconstruc-
tion distortion, and we introduce a greedy SMT design algo-
rithm which works by repeatedly decorrelating pairs of coordi-
nates using Givens rotations [18].

The SMT is related to both principal component analysis
(PCA) [19], [20] and independent component analysis (ICA)
[21]–[24], which sometimes use Givens rotations to parame-
terize orthonormal transformations. However, the SMT differs
from these methods in that it uses a small number of rotations to
achieve a fast and sparse transform, thereby reducing computa-
tion and storage. In fact, the SMT can be shown to be a general-
ization of orthonormal wavelet transforms [25], and is perhaps
most closely related to the very recently introduced treelet trans-
form in its structure [26]. Moreover, we have recently shown that
the SMT can be used for maximum-likelihood PCA estimation
[27].

Our noniterative MAP approach requires an offline compu-
tation in which the inverse transform matrix is compressed and
encoded. However, once this offline computation is complete,
the online reconstruction consists of a very fast matrix-vector
computation. This makes the method most suitable for appli-
cations where reconstructions are computed many times with
different data but the same geometry.

We demonstrate the potential of our noniterative MAP recon-
struction by showing examples of its use for optical diffusion
tomography (ODT) [28]. For the ODT examples, which are nor-
mally very computationally intensive, the noniterative MAP al-
gorithm reduces online storage and computation by well over 2
orders of magnitude, as compared to a traditional iterative re-
construction method.

II. NONITERATIVE MAP RECONSTRUCTION FRAMEWORK

Let denote the image to be reconstructed,
be the surface measurements, and be the linear or
linearized forward model, so that

(1)

where is zero mean additive noise.
For a typical inverse problem, the objective is to estimate

from the measurements of . However, direct inversion of
typically yields a poor quality solution due to noise in the mea-
surements and the ill-conditioned or noninvertible nature of the
matrix . For such problems, a regularized inverse is often com-
puted [29], or in the context of Bayesian estimation, the MAP
estimate of is used, which is given by

(2)

where is the data likelihood and is the prior model
for the image . In some cases, non-negativity is required to
make physically meaningful.

If we assume that is zero mean Gaussian noise with co-
variance , and that is modeled by a zero mean Gaussian
random field with covariance , then the MAP estimate of
given is given by the solution to the optimization problem

(3)

Generally, this optimization problem is solved using gradient-
based iterative methods. However, iterative methods tend to be
expensive both in computational time and memory requirements
for practical problems, especially when is not sparse, which
is the case in some important inverse problems such as in optical
tomography.

However, if we neglect the possible positivity constraint, then
the MAP reconstruction of (3) may be computed in closed form
as

(4)

Therefore, if we precompute the inverse matrix

(5)

then we may reconstruct the image by simply computing the
matrix-vector product

(6)

The noniterative computation of the MAP estimate in (6)
seems very appealing since there are many inverse problems in
which a Gaussian prior model (i.e., quadratic regularization) is
appropriate and positivity is not an important constraint. How-
ever, noniterative computation of the MAP estimate is rarely
used because the matrix can be both enormous and nonsparse
for many inverse problems. Even when is a sparse matrix,
will generally not be sparse. Therefore, as a practical matter, it
is usually more computationally efficient to iteratively solve (3)
using forward computations of , rather than computing
once. Moreover, the evaluation of is not only a computa-
tional challenge but it is also a challenge to store for large in-
verse problems. Our objective is to develop methods for sparse
representation of so that the matrix-vector product of (6) may
be efficiently computed, and so the matrix may be efficiently
stored.
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III. LOSSY SOURCE CODING OF THE INVERSE MATRIX

A. Encoding Framework

For convenience, we assume that both the columns of and
the measurements have zero mean.1 For the 3-D tomographic
reconstruction problem, the columns of are 3-D images cor-
responding to the reconstruction that results if only a single
sensor measurement is used. Since each column is an image,
the columns are well suited for compression using conventional
lossy image coding methods [30]. However, the lossy encoding
of will create distortion, so that

(7)

where is the quantized version of and is the quan-
tization error. The distortion in the encoding of produces a
corresponding distortion in the reconstruction with the form

(8)

B. Distortion Metric

The performance of any lossy source coding method depends
critically on the distortion metric that is used. However, conven-
tional distortion metrics such as the mean squared error (MSE)
of may not correlate well with the MSE distortion in the ac-
tual reconstructed image, , which is typically of primary
concern. Therefore, we would like to choose a distortion metric
for that relates directly to .

Assuming the measurement is independent of the quanti-
zation error , we can obtain the following expression for the
conditional MSE of given .

Theorem 1:

(9)

where and .
Proof:

(10)

From this result, we have the following immediate corollary.
Corollary 1: If , then

(11)

Corollary 1 implies that if the measurements are uncorrelated
and have equal variance (i.e., are white), then the reconstruction
distortion is proportional to the Frobenius error in the source

1Let the row vector � be the means of the columns of � , and let �� be the
mean of the measurements. Then the reconstructed image can be expressed as
�� � ����� ������� � ����� ������� ���, where � denotes the
column vector with all elements being 1. Once �� is computed, the quantity
�� � � �� � �� ��� can be added to account for the nonzero mean.

coded matrix. This implies that it is best to whiten the measure-
ments (i.e., make ) before lossy coding of , so that the
minimum MSE distortion introduced by lossy source coding of

leads to minimum MSE distortion in reconstruction of .
In order to whiten the measurement vector , we first form

the eigenvalue decomposition of given by

(12)

where is a matrix of eigenvectors and is a diagonal ma-
trix of eigenvalues. We next define the transformed matrix and
whitened data as

(13)

(14)

Notice that with these definitions , and . As
in the case of (8), the distortion in due to quantization of
may be written as

(15)

where denotes the quantization error in . Using the result
of Corollary 1 and the fact that is whitened, we then know that

(16)

This means that if we minimize , we obtain a recon-
structed image with minimum MSE distortion.

C. Transform Coding for

Our next goal is to find a sparse representation for . We do
this by decorrelating the rows and columns of using the or-
thonormal transformations and . More formally, our goal
is to compute

(17)

where has its energy concentrated in a relatively small
number of components.

First notice that if and exactly decorrelate the rows
and columns of , then this is essentially equivalent to singular
value decomposition (SVD) of the matrix of , with corre-
sponding to the diagonal matrix of singular values, and and

corresponding to the left and right singular transforms [31].
In this case, the matrix is very sparse; however, the trans-
forms and are, in general, dense, so we save nothing in
storage or computation. Therefore, our approach will be to find
fast/sparse orthonormal transforms which approximate the exact
SVD, thereby resulting in good energy compaction with prac-
tical decorrelating transforms.

In this work, we will choose to be a 3-D orthonormal
wavelet transform. We do this because the columns of are 3-D
images, and wavelet transforms are known to approximate the
KL transform for stationary random processes [32]. In fact, this
is why wavelet transforms are often used in image source coding
algorithms [33], [34]. Therefore, we will see that the wavelet
transform approximately decorrelates the rows of the matrix
for our 3-D reconstruction problems.
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Fig. 1. Illustration of matrix source coding procedure. �� is a transformed representation of� using both KL and wavelet transforms. The gray regions represent
the effective nonzero entries in the matrices. Notice that the two transforms concentrate the energy in �� toward the upper left hand corner, so that quantization
results in a very sparse matrix. This procedure is performed offline, so that online reconstruction can be very fast.

We can exactly decorrelate the columns of by choosing
to be the eigenvector matrix of the covariance .
More specifically, we choose so that

(18)

where is the orthonormal matrix of eigenvectors and is
the diagonal matrix of eigenvalues.

In summary, the transformed inverse matrix and data vector
are given by

(19)

(20)

where is defined as

(21)

with , and given in (12) and (18), respectively. Using
and , the reconstruction is computed as

(22)

Finally, the sparse representation is quantized and en-
coded. Since is orthonormal, the vector has covariance

, and by Corollary 1 minimum MSE quantization of
will achieve minimum MSE reconstruction of . Since the

objective is to achieve minimum MSE quantization of , we
quantize each entry of with the same quantization step size
and denote the resulting quantized matrix as . A variety of
coding methods, from simple run-length encoding to the Set
Partitioning In Hierarchical Trees (SPIHT) algorithm [35] can
be used to entropy encode , depending on the specific pref-
erences with respect to factors such as computation time and
storage efficiency. Of course, it is necessary to first compute
the matrix in order to quantize and encode it. Appendix A
discusses some details of how this can be done.

In summary, the noniterative reconstruction procedure re-
quires two steps. In the first offline step, matrix source coding
is used to compute the sparse matrix . In the second on-
line step, the approximate reconstruction is computed via the
relationship

(23)

By changing the quantization step size, we can control the accu-
racy of this approximation, but at the cost of longer reconstruc-

tion times and greater storage for . Of course, the question
arises of how much computation will be required for the evalu-
ations of the matrix-vector product . This question will be
directly addressed in Section IV through the introduction of the
SMT transform.

Importantly, matrix source coding is done offline as a pre-
computation step, but the operations of (23) are done online
during reconstruction. Fig. 1 illustrates the procedure for
the offline step of matrix source coding, and Fig. 2(a) lists
a pseudo-code procedure for its implementation. The gray
regions of Fig. 1 graphically illustrate nonzero entries in the
matrices, assuming that the eigenvalues of the KL transforms
are ordered from largest to smallest. Notice that the transforms
tend to compact the energy in the matrix into the upper
lefthand region.

Fig. 2(b) lists the pseudo-code for the online reconstruction
of (23). Notice, that since the matrix is very sparse, the
computation required to evaluate is dramatically reduced.
Also, notice that the inverse wavelet transform is only applied
once, after is computed in order to reduce computation.

IV. SPARSE MATRIX TRANSFORM

Step 1 of the online reconstruction procedure in Fig. 2(b) re-
quires that the data vector be first multiplied by the transform

. However, is generally not sparse, so multiplication by
requires order storage and computation. If the number

of measurements is small compared to the number of voxels
, this may represent a small overhead; but if the number of

measurements is large, then storage and multiplication by
represents a very substantial overhead.

In this section, we develop a general method to approximately
whiten the measurements and decorrelate the inverse matrix
using a series of sparse matrix transforms (SMT). We will see
that the advantage of the SMT is that it can be implemented with
many fewer multiplies than multiplication by the exact trans-
form, , while achieving nearly the same result. More specif-
ically, we approximate the exact transform using a product
of sparse matrices, so that

(24)

where every sparse matrix, , operates on a pair of coordinate
indices . Notice that since each operates on only two
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Fig. 2. Implementation of noniterative MAP reconstruction. (a) The offline
processing algorithm for the matrix source coding of the the inverse matrix� .
(b) The online processing to compute the reconstruction from the matrix-vector
product.

Fig. 3. Structure of a pair-wise sparse transform � . Here, all the unlabeled
diagonal elements are 1’s, and all the unlabeled off-diagonal elements are 0’s.
� , � and �� have similar structures.

coordinates, it can be implemented with no more than 4 multi-
plies. So, if , then the total computation required for
the SMT will be much less than that required for multiplication
by . Therefore, our objective will be to design the SMT of
(24) so that we may accurately approximate with a small
number of ’s.

Since each sparse matrix only operates on the coordinate
pair , it has a simple structure as illustrated in Fig. 3. In
general, any such pair-wise transform can be represented in
the form

(25)

Fig. 4. Structure of SMT implementation. Every �� is a “butterfly” that can
be computed using 2 multiplies. In addition, multiplications by normalization
factors is required in the end for a total of ���� multiplies when� butterflies
are used in an� -point transform. The irregular structure of the SMT makes it
a generalization of the FFT and allows it to be used to accurately approximate
a general orthonormal transform.

where and are Givens rotations [18], and is a diag-
onal normalization matrix.2 A Givens rotation is simply an or-
thonormal rotation in the plane of the two coordinates, and

. So the matrices and can be represented by the rota-
tion angles and , respectively. More specifically, and

have the form

(26)

(27)

where is defined as

if or
if and
if and
otherwise.

(28)

Given the form of (26) and (27), it is clear that multiplica-
tion by and should take no more than 4 multiplies corre-
sponding to the four nonzero entries in shown in (28). How-
ever, we can do better than this. In Appendix B, we show that the
SMT of (24) can always be rewritten in the form

, where is a diagonal matrix and each pair-wise
sparse transform requires only two multiplies.

In fact, it is useful to view the SMT as a generalization of
the FFT [36]. In order to illustrate this point, Fig. 4 graphically
illustrates the flow diagram of the SMT, with each sparse ma-
trix serving the role of a “butterfly” in the traditional FFT.
Using the result of Appendix B, each butterfly requires only 2
multiplies; so a -butterfly SMT requires a total of
multiplies (including normalization factors) for a -dimen-
sional transform.

A conventional -point FFT can be computed using approx-
imately butterflies. Therefore, one might
ask how many butterflies are required for an SMT to compute
a desired orthonormal transform? It is known that an arbitrary

orthonormal transform can be computed using but-
terflies [37], which means that the exact SMT implementation
of a general orthonormal transform requires multiplies, the
same as a conventional matrix-vector product.

2Note also that (25) represents the singular value decomposition of � .
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However, our objective will be to use a much lower order
SMT to adequately approximate . Later, we will show that

butterflies can be used to accurately approxi-
mate the ideal KL transforms for some important example appli-
cations. Thus, we argue that the SMT can serve as a fast approx-
imate transform for some important applications which require
nontraditional or data dependent orthonormal transforms, such
as the KL transform.

A. Cost Function for SMT Design

In order to accurately approximate by the SMT trans-
form of (24), we will formulate a cost function whose value is
related to the increased bit-rate or distortion incurred by using
the SMT transform in place of . The SMT is then designed
using greedy minimization of the resulting cost function.

In order to derive the desired cost function, we first generalize
the definitions of and from (19) and (20) as

(29)

(30)

where is the SMT transform of (24), and
. First notice, that is defined so that the

variance of each component of is 1. Second notice, that when
, then (29) and (30) reduce to (19) and (20) because

in this case; and as before, the image can be exactly
reconstructed by computing .

The disadvantage of using is that the columns of
and the components of will be somewhat correlated. This

remaining correlation is undesirable since it may lead to inferior
compression of . We next derive the cost function for SMT
design by approximating the increased rate due to this undesired
correlation. Using (29) and (30), the covariance matrices for
and are given by

(31)

(32)

where . If is a good approximation to ,
then will be approximately white, and by Corollary 1 we have
that , where is the quantization
error in .

Our objective is then to select a transform which minimizes
the required bit-rate (i.e., the number of bits per matrix entry)
at a given expected distortion . To do this, we will
derive a simplified expression for the distortion. In information
theory, we know that if
are independent Gaussian random variables, then the rate and
distortion functions for encoding the ’s is given by [38]

(33)

(34)

where we assume MSE distortion and is an independent pa-
rameter related to the square of the quantization step size. Since

the wavelet transform approximately decorrelates the rows of
, we can model the rows as independent Gaussian random

vectors, each with covariance . However, we further assume
that the encoder quantizes elements of the matrix independently,
without exploiting the correlation between elements of a row. In
this case, the rate-distortion performance is given by

(35)

(36)

where . If the distortion is sufficiently low
so that , then (36) reduces to .
In this case, the rate in (35) can be expressed as the following
function of distortion:

(37)

Therefore, minimization of corresponds to min-
imizing the bit-rate required for independently encoding the
columns of at low distortion. Consequently, our objective is
to minimize the cost function , defined by

(38)

Substituting in the expression for from (32) and the defini-
tion into (38) yields

(39)

The cost function of (39) is also justified by the fact that the
exact transform of (21) achieves its global minimum (see
Appendix C). Our goal is then to find a sparse matrix transform

that minimizes the cost function .

B. SMT Design Using Greedy Minimization

In this subsection, we show how the SMT may be designed
through greedy minimization of the cost function of (39). More
specifically, we will compute the sparse matrices in sequence
starting from and continuing to . With each
step, we will choose to minimize the cost function while
leaving previous selections of for fixed.

Our ideal goal is to find such that

(40)

where each is a pair-wise sparse transform. Given that we
start with the covariance matrices and , the th itera-
tion of our greedy optimization method uses the following three
steps:

(41)



CAO et al.: NONITERATIVE MAP RECONSTRUCTION USING SPARSE MATRIX REPRESENTATIONS 2091

(42)

(43)

where “ ” indicates assignment of a value in pseudocode. For
a specified coordinate pair , the cost function in (41) is
minimized when both the measurement pair and the

th columns of are decorrelated. Appendix D gives the
solution of (41) for this case and also the ratio of the minimized
cost function to its original value which is given by

(44)

where and are the indices corresponding to the pair-wise
transform of . Therefore, with each iteration of the greedy
algorithm, we select the coordinate pair that reduces the
cost in (41) most among all possible pairs. The coordinate pair
with the greatest cost reduction is then

(45)

Once and are determined, can be obtained
by computing , and , as derived in Appendix D. Specif-
ically, we first normalize the variances of the components of
to 1, as shown in line 2 of Fig. 5. Then as shown in Appendix D,

is given by

where (46)

is given by

if

if

if and
if ;

(47)
and

(48)

where

(49)

Fig. 5. Pseudo-code implementation of the greedy algorithm used for the SMT
design.

and denotes the four quadrant arctangent function.3

The final SMT operator is then given by

(50)

Fig. 5 shows the pseudo-code for the greedy SMT design.
Naive implementation of the design algorithm requires op-
erations for the selection of each Givens rotation. This is be-
cause it is necessary to find the the two coordinates, and ,
that minimize the criteria of (45) with each iteration. However,
this operation can be implemented in order time by storing
the minimal values of the criteria for each value of the index .
At the end of each iteration, these minimum values can then be
updated with order complexity. Using this technique, SMT
design has a total complexity of order for known

and .

C. Relation of SMT to PCA and ICA

The SMT has an interesting relationship to methods which
have been used in PCA and ICA signal analysis. In fact, Givens
rotations have been used as a method to parameterize the or-
thonormal transforms used in both these methods [19]–[21],
[39], [40]. However, these applications use or more Givens
rotations to fully parameterize the set of all orthonormal trans-
forms. In the case of the SMT, the number of Givens rotations
is limited so that the transform can be computed with a small
number of multiplies and can be stored with much less than
values. In practice, we have found that can be chosen as a
constant multiple of in many applications, so the resulting

3Here, we use ���� ��� �� � ���� ����� when � and � are positive. By
using the four quadrant inverse tangent function, we can put the decorrelated
components in a descending order along the diagonal.
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SMT can be computed with order complexity. While ICA
methods often use a cost minimization approach, the cost func-
tions are typically designed for the very different application of
minimizing the dependence of data.

The SMT is perhaps most closely related to the recently in-
troduced treelet [26] in that both transforms use a small number
of Givens rotations to obtain an efficient/sparse matrix trans-
form. However, the treelet is constrained to a hierarchical tree
structure and uses at most Givens rotations. Also, it is
constructed using a selection criteria for each rotation instead
of global cost optimization framework. More recently, we have
shown that a minor modification of the cost function we propose
for SMT design can also be used for maximum likelihood PCA
estimation [27].

V. NUMERICAL RESULTS

In this section, we illustrate the value of our proposed
methods by applying them to two inverse problems in optical
imaging: optical diffusion tomography (ODT) and fluorescence
optical diffusion tomography (FODT). Both these techniques
use near infrared (NIR) or visible light to image deep within
living tissue [28], [41], [42]. This is done by modeling the
propagation of light in the tissue with the diffusion equation
[42]–[44], and then solving the associated inverse problem to
determine the parameters of light propagation in the tissue.
Typically, parameters of importance include absorption, ,
and diffusivity, , which is related to the scattering coefficient.

A. ODT Example

1) Description of Experiment: Fig. 6 illustrates the geom-
etry of our ODT simulation. The geometry and parameters of
this simulation are adapted from [45], where two parallel plates
are used to image a compressed breast for the purpose of de-
tecting breast cancer. There are nine light sources modulated at
70 MHz on one of the plates, and there are 40 detectors on the
other. This results in a total of complex mea-
surements, or equivalently 720 real valued measurements. We
treat the region between the two plates as a 3-D box with a size
of cm . For both the forward model computation
and reconstruction, the imaging domain was discretized into a

uniform grid having a spatial resolution of 0.25
cm in the plane and 0.1875 cm along the coordinate.
The bulk opitcal parameters were set to cm and

cm for both the breast and the outside region in the
box, which can be physically realized by filling the box with
intralipid that has optical characteristics close to breast tissue
[46]. The measurements were generated with a spherical het-
erogeneity of radius 1 cm present at the position with the
coordinate (5,8,3) cm. The optical values of the heterogeneity
were cm and cm. Additive noise was
introduced based on a shot noise model, giving an average SNR
of 35.8 dB [47].

For reconstruction, we assumed the bulk optical parameters,
and , were known. Our objective was then to reconstruct

the image , which is a vector containing the change in the ab-
sorption coefficients, , at each voxel
. Accordingly, is the measurement perturbation caused by

Fig. 6. Measurement geometry for optical breast imaging. (a) Imaging ge-
ometry. (b) Source-detector probe configuration. The open circles indicate the
source fiber locations and the solid circles indicate the detector fiber location.
Source fibers and detector fibers are connected to the left and right plates,
respectively, and are on 1-cm grid (adapted from [45]).

the absorption perturbation . The measurements, , and the ab-
sorption perturbations, , are related through the linearized for-
ward model, . So this yields the relationship that .
Using a Gaussian Markov random field (GMRF) prior model
[48] with an empirically determined regularization parameter
and the shot-noise model for noise statistics, we computed the
matrix so that , where is the MAP reconstruction.
The covariance matrix of the measurement was constructed
as , where an i.i.d. model was used
as the covariance matrix of the image. The inverse matrix
had rows and 720 columns, which
required a memory size of 765.9 Mbytes using double preci-
sion floats. The inverse matrix was then transformed using the
KL transform along the rows and wavelet transform along the
columns, as described in Section III. The wavelet transform was
constructed with biorthogonal 9/7 tap filters (which are nearly
orthonormal) using a symmetric boundary extension [33], [49].
The transformed inverse matrix was quantized and coded
using a run-length coder (see Appendix E for details). The nu-
merical experiments were run on a 64-bit dual processor Intel
machine.

2) Discussion of Experimental Results: Fig. 7 shows the re-
constructed images of the absorption at cm using
the compressed inverse matrix at different bit-rates where the
KL transform is used both for data whitening and matrix decor-
relation. The distortion is calculated in terms of the normalized
root mean squared error (NRMSE), defined as

(51)

Fig. 8 shows a plot of the distortion (NRMSE in the recon-
structed image) versus the rate (number of bits per matrix entry
in ), with different transform methods for data whitening and
matrix decorrelation. From Fig. 8 we can see that applying the
KL transform to both the data and matrix columns dramatically
increases the compression ratio as compared to no whitening or
decorrelation processing. However, it is interesting to note that
simple whitening of the data without matrix column decorrela-
tion works nearly as well. This suggests that data whitening is a
critical step in matrix source coding.

Table I compares the computational complexity of the
three methods: iterative MAP using conjugate gradient; non-
iterative MAP with no compression; and noniterative MAP
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Fig. 7. Reconstructed images of � ��� at � � � cm using the compressed �
matrix based on KL transform (used both for data whitening and matrix decor-
relation). The compression ratios in (c) and (d) are 4267:1 and 1982:1, respec-
tively. Here “bpme” stands for bits per matrix entry.

Fig. 8. Distortion versus rate for compression using KL transforms for data
whitening and matrix decorrelation for the ODT example. Notice here simply
whitening the data yields close distortion-rate performance to the theoretically
optimal KL transforms. The performance drops significantly with the other three
methods that do not perform data whitening.

with the KLT compression. The noniterative MAP with KLT
compression used the KL transform for both data whitening
and matrix decorrelation. The compression was adjusted to
achieve a distortion of approximately 10% in the reconstructed
image, which resulted in a compression ratio of 1808:1 using a
run-length coder. The total storage includes both the storage of

(0.4 Mbyte) and the storage of the required transform
(4.0 Mbyte). From the table we can see that both the online
computation time and storage are dramatically reduced using
the compressed inverse matrix.

B. FODT Example ( is Close to )

1) Description of Experiment: In the ODT example, the di-
mension of the measurements is much less than the dimen-
sion of the image to be reconstructed, , therefore, the overhead
required for the computation and storage of the transform ma-
trix is not significant. However, in some cases, the number
of measurements may be large. This is especially true in some
optical tomography systems where a CCD camera may be used
as the detector. In this situation, SMT might be preferred over

the KL transform since the SMT’s sparse structure can reduce
both storage and computation for the required transform ma-
trix. In order to illustrate the potential of the SMT, we consider
the numerical simulation of a fluorescence optical diffusion to-
mography (FODT) system [42] which uses reflectance measure-
ments. The measurement geometry for this system is shown in
Fig. 9, where a cm cm probe scans the top of a semi-infi-
nite medium. Such a scenario is useful for a real-time imaging
application, which would require very fast reconstruction. The
probe contains 4 continuous wave (CW) light sources and 625
detectors that are uniformly distributed, as shown in Fig. 9, re-
sulting in a total of 2500 real measurements. A similar imaging
geometry has been adopted for some preliminary in vitro studies
[50]. The reflectance measurement is clinically appealing, how-
ever, it also provides a very challenging tomography problem
because it is usually more ill-conditioned than in the case of
the transmission measurement geometry. In FODT, the goal is
to reconstruct the spatial distribution of the fluorescence yield

(and sometimes also the lifetime ) in tissue using
light sources at the excitation wavelength and detectors fil-
tered at the emission wavelength .

In this example, the bulk optical values were set to
cm and cm, where the

subscripts and represent the wavelengths and , re-
spectively, and the bulk fluorescence yield was set to

cm . The measurements were generated with a spherical het-
erogeneity of radius 0.5 cm present 2 cm below the center of
the probe. The optical values of the heterogeneity were

cm , cm , cm ,
and cm . The size of the imaging domain is

cm , which was discretized into
voxels, each with an isotropic spatial resolution of 0.25 cm.
Additive noise was introduced based on the shot noise model
yielding an average SNR of 38.7 dB [47].

For reconstruction, we assumed a homogeneous medium with
cm and cm set

to the values of the bulk parameters. Our objective is to recon-
struct the vector whose elements are the fluorescence yield

at individual voxels . The measure vector is then
composed of the surface light measurements at wavelength .
The two quantities are related by the linear forward model ,
so that . Using a GMRF prior model with an empir-
ically determined regularization parameter and a uniform-vari-
ance noise model, we computed the matrix so that ,
where is the MAP reconstruction. The covariance matrix of
the measurement was modeled by , as in the pre-
vious example. The inverse matrix had
rows and columns, which required a memory
size of 353.1 Mbytes using double precision floats. The inverse
matrix was then transformed using the KL transform or SMT
along the rows, and a wavelet transform along the columns. The
same wavelet transform was implemented as in the ODT ex-
ample. The transformed inverse matrix was quantized and
encoded using a run-length coder (see Appendix E for details).

2) Discussion of Experimental Results: Fig. 10 shows the
reconstructed images of at a depth of cm using
the compressed inverse matrix based on the KL transform and
SMT. The plots of the distortion versus rate based on the KL
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TABLE I
COMPARISON OF ONLINE AND OFFLINE COMPUTATION REQUIRED BY VARIOUS RECONSTRUCTION METHODS FOR THE ODT EXAMPLE. RESULTS USE NUMBER

OF VOXELS � � ��� ��� �� � ������, NUMBER OF MEASUREMENTS � � 	�
 (WITH NUMBER OF SOURCES � � � AND NUMBER OF DETECTORS

� � �
), NUMBER OF ITERATIONS OF �� � � �
, A RUN-LENGTH CODING COMPRESSION RATIO OF � � �
 � �, AND NUMBER OF ITERATIONS REQUIRED

TO SOLVE THE FORWARD ��� � � ��. ����� � �
� FOR THE COMPRESSION CASE. NOTICE THAT THE NONITERATIVE MAP RECONSTRUCTION

REQUIRES MUCH LOWER ONLINE COMPUTATION AND MEMORY THAN THE ITERATIVE RECONSTRUCTION METHOD. HOWEVER, IT REQUIRES GREATER OFFLINE

COMPUTATION TO ENCODE THE INVERSE TRANSFORM MATRIX

Fig. 9. Measurement geometry for an FODT example. (a) A graphic depiction
of the imaging geometry. (b) An illustration of the source-detector probe where
the solid circles indicate the locations of sources and the rectangular grid repre-
sents the CCD sensor array.

transform are given in Fig. 11(a). Each plot corresponds to
a different transform method for data whitening and matrix
decorrelation. From the plots, we can see simply whitening

yields a slightly better distortion-rate performance than the
theoretically optimal transform, i.e., using the KL transform
both for data whitening and matrix decorrelation. This might be
caused by inaccurate modeling of the measurement covariance
matrix. However, both approaches achieve much better perfor-
mance than the other three methods where no data whitening
was implemented. This again emphasizes the importance of
data whitening. Fig. 11(b) shows the distortion-rate perfor-
mance where the SMT was used for data whitening and matrix
decorrelation. A total number of SMT butterflies
were used to whiten the measurements and decorrelate the
columns of . From the plot, we can see that the SMT results
in distortion-rate performance that is very close to the theoret-
ically optimal KL transform, but with much less computation
and storage.

Table II gives a detailed comparison of noniterative MAP
with the KL transform and SMT based compression methods
as compared to iterative MAP reconstruction using conjugate
gradient optimization. For the KLT method, the KL transform
is used both for data whitening and matrix decorrelation with a
single stored transform. For this example, the conjugate gradient
method required over 100 iterations to converge. The bit-rate

Fig. 10. Reconstructed images of 	
 ��� at the depth of 2 cm using different
compression methods. The compression ratios in (c) and (d) are 110:1 and 103:1,
and the NRMSE’s are 9.96% and 10.24%, respectively.

for both the compression methods was adjusted to achieve a
distortion of approximately 10%, which resulted in a compres-
sion ratio of 110:1 for the KL transform and 102:1 for the SMT,
both using the same run-length coder. The total storage includes
both the storage of and the storage of the required trans-
form or as shown explicitly in the table. Notice that the
SMT reduces the online computation by over a factor of 2 and
reduces online storage by over a factor of 10, as compared to
the KLT. Using more sophisticated coding algorithms, such as
SPIHT [35], can further decrease the required storage but at the
expense of increased reconstruction time due to the additional
time required for SPIHT decompression of the encoded matrix
entries.

C. Discussion

From the numerical examples, we see that noniterative
MAP reconstruction can dramatically reduce the computation
and memory usage for online reconstruction. However, this
dramatic reduction requires the offline precomputation and
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Fig. 11. Distortion versus rate for the FODT example. (a) Distortion versus rate for compression using the KL transforms for data whitening and matrix decorre-
lation. (b) Distortion versus rate for compression using the sparse matrix transform (SMT). � ��� ��� SMT butterflies were used to whiten the measurements
and decorrelate the columns of � . Notice that the SMT distortion-rate tradeoff is very close to the distortion-rate of the KL transform.

TABLE II
COMPARISON OF ONLINE AND OFFLINE COMPUTATION REQUIRED BY VARIOUS RECONSTRUCTION METHODS FOR THE FODT EXAMPLE. RESULTS USE NUMBER

OF VOXELS � � ��� ��� �	 � �
���, NUMBER OF MEASUREMENTS � � �� (WITH NUMBER OF SOURCES � � � AND NUMBER OF DETECTORS

� � ���), NUMBER OF ITERATIONS OF �� � � �, NUMBER OF SPARSE ROTATIONS � � � ������ � �
��, A RUN-LENGTH CODING COMPRESSION

RATIOS OF � � �� � � AND � � �� � �, FOR KLT AND SMT COMPRESSION, RESPECTIVELY, AND NUMBER OF ITERATIONS REQUIRED TO SOLVE THE

FORWARD ��� � � ��.���	
 � �� FOR THE COMPRESSION CASES. NOTICE THAT THE NONITERATIVE MAP RECONSTRUCTION REQUIRES MUCH

LESS ONLINE COMPUTATION AND MEMORY THAN THE ITERATIVE RECONSTRUCTION METHOD. HOWEVER, IT REQUIRES GREATER OFFLINE COMPUTATION TO

ENCODE THE INVERSE TRANSFORM MATRIX

encoding of the inverse transform. In our experiments, com-
putation of the inverse matrix dominated offline computation;
so once the inverse transform was computed, it was easily
compressed. Moreover, compression of the inverse transform
then dramatically reduced storage and computation.

The proposed noniterative reconstruction methods are best
suited for applications where repeated reconstructions must be
performed for different data. This could occur in clinical ap-
plications where the scanning geometry is fixed, and a new re-
construction is performed with each new scanned data set. The
matrix source coding method might also be useful for encoding
of the forward transform in iterative reconstruction, particularly
if many forward iterations were required.

Once the inverse matrix was computed, the best transforms
(KLT for our ODT example, and SMT for our FODT example)
resulted in large reductions in computation and storage, as com-

pared to direct storage of the inverse matrix. In particular, ma-
trix source coding reduced computation by 30:1 and 13:1 for the
ODT and FODT problems, respectively. And it reduced storage
by 174:1 and 88:1, respectively. For these relatively small ma-
trices, computation was ultimately dominated by the overhead
required to compute the inverse wavelet transform, but for larger
matrices we would expect the computation reduction to approx-
imately equal storage reduction.

Generally, the computational and storage benefits of this
method tend to increase with matrix size. Recently, we have
begun to investigate the use of matrix source coding for the
closely related problem of space-varying deconvolution of
digital camera images. For example, a 1 mega pixel digital
image can produce an inverse matrix of size .
In this case, computational reductions of 10,000:1 are
possible [51].
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VI. CONCLUSION

In this paper, we presented a noniterative MAP reconstruction
approach for tomographic problems using sparse matrix repre-
sentations. Compared to conventional iterative reconstruction
algorithms, our new method offers much faster and more effi-
cient reconstruction both in terms of computational complexity
and memory usage. This makes the new method very attractive
for applications. A theory for lossy compression of the inverse
matrix with minimum distortion in the reconstruction was devel-
oped. Numerical simulations in optical tomography show that
compression of the inverse matrix can be quite high, which in
turn leads to more efficient computation of the matrix-vector
product required for reconstruction. To extend our approach to
more general tomography methodologies, we also addressed the
problem when the number of measurements is large by intro-
ducing the sparse matrix transform (SMT) based on rate-distor-
tion analysis. We demonstrated that the SMT is able to closely
approximate orthonormal transforms but with much less com-
plexity through the use of pair-wise sparse transforms.

APPENDIX A
COMPUTATION OF

Here, we describe the method used for computing the inverse
matrix . Let be the column of , and let be the unit
measurement vector which is 1 for entry and zero for all other
entries. Then, can be computed as the reconstructed image
given the measurement

Thus, iterative methods such as the conjugate gradient (CG)
method can be used to solve this problem. Actually, it is more
sensible to compute directly instead of . The column of

can be computed as

where . It would, perhaps, be desirable to directly
compute the sparse representation , but this computation re-
quires which depends on the inverse matrix .

APPENDIX B
FAST COMPUTATION OF SMT

Here, we show that each butterfly of the SMT can be com-
puted with 2 multiplies. First, we show that for a pair-wise
sparse transform matrix and a diagonal matrix , there ex-
ists another pair-wise sparse transform matrix and diagonal
matrix such that

(52)

Without loss of generality, (52) can be easily verified that in the
2-D case. First assume either or is not zero, then we
have

(53)

where

and (54)

If either or is zero, e.g., , then we have

(55)

If both and are zero, then we have

(56)

Starting from and iterating (52) with , we
can obtain

(57)

Notice that each multiplication by requires two multiples,
so the evaluation of using the SMT requires a total of

multiplies. This implementation is similar to the fast Givens
transformation of [31].

APPENDIX C
OPTIMALITY OF FOR THE SMT COST FUNCTION

Here, we show that the exact transform in (21) is the
solution to the minimization of (40). First we prove some prop-
erties of symmetric, positive definite matrices, e.g., any covari-
ance matrix.

Theorem 2: If is a symmetric, positive definite
matrix, then we have

(58)

The equality holds if and only if is diagonal.
Proof: We know there exists a unique low triangular matrix

, such that

(59)

which is called Cholesky factorization [31]. Therefore,
. Clearly, we have ,

for . This gives

(60)

The equality holds if and only if for ,
which is equivalent to the fact that is diagonal.
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Now we show that minimizes the cost
function (40) among all nonsigular matrices, i.e.,

(61)

Proof: Since the covariance matrices and are sym-
metric and definite positive, and are
also symmetric and definite positive for any nonsigular matrix

. Therefore, from Theorem 2 we have

(62)

The equality in (62) holds if and only if both
and are diagonal. In another words, the cost function is
minimized if and only if and are simultaneously diago-
nized by . Now, let . This leads to

(63)

(64)

where is defined in (18). Therefore, both of the transformed
covariance matrices of and using are diagonal, and,
hence, the cost function is minimized. By substituting the ex-
pression of into the SMT cost function (40), we can also
explicitly show

(65)

APPENDIX D
OPTIMAL GIVENS ROTATION

In this appendix, we find the solution to the optimization
problem of (41) for a specified coordinate index pair and the
corresponding change of the cost function. Since the coordinate
index pair is specified, we can assume all the matrices to be 2 2
without loss of generality.

From Appendix C, we know that minimizes the cost func-
tion (41) if and only if it simultaneously diagonalizes both
and . To do this, let , and let

and (66)

A Givens rotation with
diagonalizes ,

i.e.,

(67)

where

Notice that for the special case that , we can
always choose , which leads to

(68)

(69)

If we define , then this leads to

(70)

(71)

where

and . Then, a Givens rotation
with makes
diagonal while maintaining . For the special case
that , the simplified expression for is given
in (48).

So we see that both and are di-
agonal with given above. Hence, must minimize
the cost function of (41). Based on (65), we know that the ratio
of the cost function before and after the transform of is given
as
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(72)

APPENDIX E

Here, we give the details of the run-length encoder [30] used
in numerical experiments. After quantization of , the run-
length encoder codes the first voxel position of each nonzero
run along every column, the run length and the nonzero voxel
values. Specifically, for the ODT example, a 32-bit integer is
used to store the voxel position, and an 8-bit integer is used to
store the run length. To identify the column index of every run,
we assign one extra bit to show weather it belongs to the same
column as the previous run. An 8-bit or 16-bit integer is used
to store every quantized nonzero voxel value depending on its
magnitude, and an extra bit is assigned to label the choice. For
the FODT example, the run-length encoder is almost the same
as in the ODT example except that an 16-bit integer is used for
storing the first voxel position of each nonzero run.

For encoding the SMT (i.e., ’s), we use an 16-bit integer
for storing index and , respectively, and an 8-byte double
float for each of the two nonzero off-diagonal entries.
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