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Abstract

We present. a method for nondifferentiable optimization
in MAP estimation of computed transmission tomograms.
This problem arises in the application of a Markov ran-
dom field image model with absolute value potential func-
tions. Even though the required optimization is on a con-
vex function, local optimization methods, which iteratively
update pixel values, become trapped on the nondifferen-
tiable edges of the function. We propose an algorithm
which circumvents this problem, by updating connected
groups of pixels formed in an intermediate segmentation
step. Experimental reéults show that this approach sub-
stantially increases the rate of converge and the quality of
the reconstruction.

1 Introduction

Image reconstruction from integral projections has been
approached in a variety of ways, with the method of
choice dependent on the quality and character of the data
set[1, 2]. Although convolution backprojection (CBP) is
the technique most frequently found in commercial appli-
cations of X-ray computed tomography with relatively high
signal-to-noise ratio and complete data sets, special cases
benefit from alternative algorithms. In many situations the
quality and/or quantity of data is inadequate for conven-
tional CBP reconstruction. These cases arise, for example,
in low dosage medical imaging[3], nondestructive testing of
materials with widely varying densities[4], and applications
with limited angle projections[5] or hollow projections[6].
Statistical methods of image reconstruction and restora-
tion seek the solution which best matches the proba-
bilistic behavior of the data. Maximum-likelihood (ML)
estima.tion selects the reconstruction which most closely
matches the data available, but may yield solutions which
do not have many of the properties expected in the origi-
nal function[7]. Maximum a posteriori (MAP) estimation
allows the introduction of a prior distribution which re-
flects knowledge or beliefs concerning the types of images
acceptable as estimates of the original cross-section.

1 This work was supported by an NEC Faculty Fellowship.

The Markov random field (MRF) has proven a useful
image model in the tomographic setting, with relatively
simple parameterization. MRF’s have been applied ex-
tensively in emission tomography(8, 9, 10, 11], and to a
lesser extent in the transmission problem{12].- The dif-
ferences between the MRF models often centers on the
choice of the potential function, which penalizes differences
among neighboring pixels in the estimate. The central idea
of these generalizations is the avoidance of the excessive
penalties extracted by the Gaussian’s quadratic potential
function, which tends to blur edges due to the high cost of
abrupt transitions. :

The generalized Gaussian MRF (GGMRF)[12] uses a
potential function similar to the log of the generalized
Gaussian noise density found commonly in robust detec-
tion and estimation[13]. It renders edges accurately with-
out prior knowledge of their size, and it results in a convex
optimization problem with no local minima.

A particular case of the GGMRF, with the absolute
value of local inter-pixel differences as the potential func-
tion, appears to produce superior reconstructions, but at
the cost of greater computational difficulty in finding op-
timal solutions. When applied to the transmission to-
mography problem, this approach presents a nondifferen-
tiable cost function for optimization. Since the gradient of
nondifferentiable functions cannot be computed, methods .
such as gradient ascent and conjugate gradient can not
be directly applied. Modifications of standard gradients
have been successfully applied in some nondifferentiable
optimizations[14], but would require very large amounts of
computation in a high-dimensional case such as image es-
timation. Alternatively, Gauss-Seidel(GS) type iterations
move toward the MAP estimate by sequentially updating
individual pixels[15]. The GS method does not require
the computation of gradients. However, it may become
“stuck” on nondifferentiable edges at points far from the
optimal estimate.

We present an adaptation of the GS method of MAP
optimization which overcomes the convergence problems
in the case of the absolute-value potential function. Our
method allows the image estimate to move along hyper-
planes where its cost function is not differentiable. This is
accomplished by updating connected groups of pixels with
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similar value. These connected groups are first formed by
an intermediate segmentation step, after which each group
is shifted in value to minimize cost. The updating of a
group is performed efficiently by a generalization of the
GS algorithm, and the segmentation process only requires
amoderate computational overhead. Convergence is deter-
ministic, and significantly faster than that of an adapted
gradient technique.

2 MAP Tomographic Estimation
2.1 Statistical Model for Data

In transmission tomography the raw projection data are
in the form of the number of photons detected after pass-
ing through an absorptive material. We will assume that
the input photon counts are Poisson-distributed random
variables that are known through calibration to have fixed
mean Ar. We will denote the vector of measured pho-
ton counts for each angle and displacement as A. Under
the usual assumptions of independence of photon counts
among angles and displacements, the log likelihood func-
tion reduces to

L)

log p(Alf) (1)

M
- Z[ATC_A
i=1

where Aj, is the j'* row of the projection matrix A, and
f is the function to be estimated. Using this form, the
maximum likelihood (ML) estimate may be computed by
maximizing (1).

We next introduce a quadratic approximation to the log
likelihood function given in (1) formed by a second order
Taylor expansion as a function of f[15] This approxima-
tion provides a much more intuitive view of the log likeli-
hood, and permits analytic and computational simplifica-
tions.

I A +log()]
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where p; and D are defined by
Pj log(Ar/A;)
A1 /\2 AMm
D dlag { /\ A B 7\;-} .

Since ¢()) is independent of f, it may be ignored in the ML
and MAP estimation of f. Note that since this approxima-
tion is not a quadratic function of J;, it is not equivalent to
a Gaussian approximation of the photon counts. Moreover,
it is not a Gaussian approximation for f since the distri-
bution for f is yet unspecified. Therefore, this method
is distinct from previous work which has made Gaussian
approximations for the projections(16, 17].

The key to the behavior of (2) is found in the matrix D.
The matrix more heavily weights errors corresponding to
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Figure 1: Plots of the log-likelihood as a functioii of a sin-
gle projection across the reconstructed image. The exact
Poisson model (dashed lines) and the quadratic approxi-
mation (solid lines) are each plotted for three values of .
Each of these plots covers a confidence interval of 0.99 for a
maximum-likelihood estimate of the projection value, and
assumes Ap = 2000.

projections with large values of );. These projections pass
through less dense objects, and consequertly have higher
signal-to-noise ratio. Fig. 1 compares the true and ap-
proximate log likelihood values as a function of a single

" projection Aj, f. This is done for observed photon courts

ranging from 10 to 1000 and a confidence interval of 99%.
The plots indicate that the approximation is rea.sona.ble
even at 10 observed photons.

In a practical settings, the input dosages, Ar, may not
be available. Often only the computed projection values,
D, are recorded, making the computation of the exact log
likelihood impossible. However, the entries of the matrix
D can be computed from the entries of 5. Thus if we
are given a set of prOJectlon measurements p, but do not
know the input photon emission rate Ay, the approximate
log likelihood function can be computed within a constant.
This makes the approximation essential for many real data
sets.

2.2 Statistical Image Model

The maximum a posteriori (MAP) estimate is the value
of f which maximizes the a posterior: density given the .
observations A.

f=arg max {L(A|f) +logg(f)}, - ®

where g(f) is the prior distribution of the random field.
The Markov random field (MRF) model has proven
very useful as a choice for g(f) in image estimation
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problems[18, 19]. The MRF is characterized by the lo-
calization of pixel interactions to a neighborhood. We will
restrict our attention to simple MRF’s based on at most a
8-point neighborhood.

A common choice for the prior model is a Gaussian
Markov random field (GMRF). The log likelihood of the
GMRF density function may always be written in the form

logg(f) = =Y alfsl? = D borlfe=frlP+e, (9)

{s,r}eU

where a,, b, and c are constants, s and r are pixel lo-
cations, and U is the set of all neighboring locations or
cliques[20]. In addition, each squared difference of neigh-
boring pixels is called a potential function of the distribu-
tion. Since (4) is a negative definite quadratic function,
and L(A|f) is a concave function of f, the global maxi-
mum of (3) will be unique and feasible to compute. Un-
fortunately, the GMRF prior distribution results in esti-
mates of f which are either excessively noisy or generally
blurred[12]. This is because the squared difference poten-
tial functions in (4) excessively penalizes abrupt changes
in f. The blurring effect is particularly undesirable along
the edges that often occur in real tomograms.

In [12], we proposed a simple generalization of MRF’s
based on the concept of generalized Gaussian noise[13].
This model has the functional form

Z bsolfs — frl7 ] +¢
{s,r}eU
5)

where 1 < ¢ < 2, and 7 is a parameter which is in-
versely proportional to the scale of f. We call the class
of random fields with this distribution generalized Gaus-
sian Markov random fields (GGMRF) since this model is
contained within the more general class of MRF’s and in-
cludes all Gaussian MRF’s when ¢ = 2. In practice, we
may choose a, = 0, which results in an ill-defined density.
However, this is not a practical problem since the function
L(A|f) causes the MAP estimation problem to be unique.

The GGMRF is unique among proposed MRF’s because
it has three desirable properties. It allows the sharp re-
construction of edges; it results in a convex log likelihood,
and it does not require the choice of a particular threshold
corresponding to the expected edge size[12].

Larger values of ¢ discourage abrupt discontinuities
while smaller values of ¢ allow them. The particular case
of ¢ = 1 will be the focus of this paper. To gain insight,
consider the example shown in Fig. 2 of a one-dimensional
function f withg¢=1,a, =0and b, = 1. As long as f
is a monotone (increasing or decreasing) function, then

logg(f) = =7 | D_alful’ +

N
logg(z) = Y _Ifi—fil+e=Ilh—Inl+e.

i=1

Therefore, any monotone function has the same cost, and
reconstructions with abrupt edges are not discouraged.

(a)

/

(b

Figure 2: When ¢ = 1, any monotone function which starts
and ends at the same values has the same total cost. There-
fore, both the sharp edge and the smooth edge have the
same cost.

Since tomograms often contain abrupt transitions be-
tween densities, the GGMRF with ¢ = 1 isan appropriate
model. Using (2), the MAP estimate of f is then given by
the minimum of the cost function

Ol = (- ANDG- AN+ 3L 3 1h=Fl ®

{s,r}eU

The choice of the parameter ¥ may be made from ensem-
bles of typical images. However, in practice the input rate
Ar may also be unknown. Since the MAP estimate is de-
termined by the ratio %, only a single constant, must be
determined experimentally.

2.3 Optimization

The potential function C(f) of (6) is convex, and there-
fore contains no local minima. However, the derivative of
C(f) does not exist whenever fs = fr where s and r are
neighbors. This makes optimization difficult since gradient
methods (i.e. gradient accent, conjugate gradient) are not
directly applicable at these points-where the gradient does
not exist.

Nondifferentiable optimization problems have been
widely studied[21, 22], and many algorithms hinge on the
concept of a subgradient. The subgradient of the function
C(f) at fo is defined as any vector #(fo) with the property
that '

C(f) 2 C(fo) + (fo)T(F = fo) ¥ f.

Since C(f) is formed by the sum of convex functions, its
subgradient may be computed as the sum of its component
subgradients[23]. In particular, we compute the subgradi-
ent by differentiating using the convention that

an-sl_[g %27
s -1 f<f

Unfortunately, an incremental step in the direction op-
posite a subgradient may cause the functional C(f) to
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Figure 3: Negative a posteriori log density function of
two pixels, fi and f;, when ¢ = 1 in the GGMRF, and
quadratic approximation is used for the Poisson in f. The
MAP estimate of f is at fazap, but the current estimate f
1s a local optimum with respect to either f; or f,.

increase(23]. Using a simply computed ¢(f) in an iterative
MAP estimation process can lead to very slow convergence.
These results can be improved in terms of iteration counts
by choosing the subgradient yielding the direction of steep-
est descent[14]. But making this choice, rather than the
simplest ¢(f), has complexity @(n?), which is unreason-
ably expensive for problems of the dimensions of interest
here. :

In [15], we introduced a Gauss-Seidel (GS) type ap-
proach to produce MAP estimates of transmission tomo-
grams. The GS technique scans the current estimate of
f, choosing each pixel’s value to minimize C(f), with the
remainder of the image fixed. The computational expense
of a single pass through the image is approximately the
same as one iteration of gradient ascent or conjugate gra-
dient. It has also been shown analytically that with a
Gaussian prior distribution, GS iterations have relatively
fast convergence[15].

GS can quite easily be applied to optimize nondiffer-
entiable functions such as C(f), since the computation of
the current optimum with respect to a single pixel remains
relatively simple. However, this algorithm is also limited
in its power to find the MAP image. The problem faced
by GS and others methods is illustrated in Fig. 3. In the
“trough” of this cost function, which corresponds to the
state with fi = f, we can see that moving toward far4p
reduces C(f). But optimization with respect to. either f,
or f; individually results in no change of state.

3 Segmentation-Based Optimiza-
tion

The derivative of C(f) in (6) does not exist whenever f
contains neighboring pixels of equal value. When the prior
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distribution is strong, solutions tend to fall on these edges
of the cost function, forming large groups of pixels with
equal value. If the function to be estimated is known
to have piecewise constant regions, as is. often the case
in nondestructive testing applications, this may be quite
desirable. But when multiple pixels cluster at a single
density value, the example in Fig. 3 is expanded to high-
dimensional edges, which makes the cost function nondif-
ferentiable with respect to many variables.

Our approach to this problem can be understood by
viewing Fig. 3 and doing what seems obvious on inspec-
tion of the surface of C(f). From f, we wish to follow the
valley f; = f, to the minimum along that line. This can
be accomplished by changing the value ¢ = f; = f, until
a minimum of C(f) is achieved.

Higher-dimensional cases are similar, though not quite
so simple. Edges of C(f) correspond to groups of neigh-
boring pixels with the same value, f,, = f,, = ... = foxes
where S = {s1,53,...,5k} is the set of pixel locations. We
say that S is a connected set since each pixel is a neighbor
of some other pixel in S. In fact, each group S is the largest
connected set of pixels with equal value. If a multiple-pixel
spatial cluster S has acquired a common value, the appar-
ent generalization is to change all the pixels in S together.
Specifically, we move along the hyper-plane as = f, for all
s € S, seeking the minimum of C(f) as a function of the
scalar ag. ‘

The first step in implementing this segmentation-based
optimization (SBO) is to segment f into connected regions
of constant value. This can be done with only a few sim-
ple operations per pixel using well known algorithms[24].
Next, each segment is visited in sequence, and each seg-
ments value is adjusted to minimize C(f) while fixing the
remaining values in f.

While the segment-based approach accelerates motion
down the edge of the cost function, it does not guarantee
convergence to the global minimum. By locking the values
of multiple pixels together, and looking only along result-
ing hyperplanes in image space, we sacrifice consideration
of many alternative directions corresponding to other edges
of the likelihood function. We ameliorate the problem by
alternating the segmentation based optimization with the
standard GS pixel updates. During the GS operations,
each pixel is freed to seek its own conditionally optimal
value.

The algorithm for efficiently updating the value of each
segment is closely related to the algorithm used for basic
GS updates. For computational efficiency, the following
projection error must be stored at the k*” iteration.

eF=p—Af*

At update k, the value of segment S is changed by the
amount Ag. ‘

o5t = o + A% .
If we define, S to be all the neighboring pixels of .S, then
the cost function of (6) may be written to emphasize the
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dependence on A,

M
Ai
oY= > g ef = ALY Ay (7
i=1 T jes
2y
+ b E lfr—ag_Ag‘I .
reds
The the updated value for the segment, a'§+1 may be

found by minimizing the cost as a function of Ak. Suppose
we put the P neighbors of segment .S into order of increas-
ing pixel value s(1), s(2), "> 8(P)- If the segment’s final
value lies between the values of the p—th and (p+1)—th
neighbors of S, then the derivative of the prior distribution
term in (7) is (27/A7)[P —2p|. In this case, optimizing (7)
with respect to A’g yields the following result.

M .
M2 [ Tyes i) + 2P~ 2]
M ),
Ea‘:l %;(Zjes A,-]-)Z

Because C(f) is convex, if A + of falls in the interval
between f; and fs(,41y then Ak = A is in fact the opti-
mum.

Therefore, to compute ag“"l, we scan through the-or-
dered values of neighbors. For each p, if the value A + of
is between f,m and fy( 11y then the result is optimum.

A=

If A + of is greater than fs,,,, then increment p and
continue. If A + a% is less than f; ), the optimum is
E
- AS= foy — ok.
Once the optimum value of aFt! is computed, the pro-
jection error must be updated using the equation

k41 _ _k k
€; —8" "‘AsEA,’J
JjES

3.1 Computational Costs

To compare relative computational cost of several meth-
ods, we consider the number of multiplies required for one
complete iteration. Table 1 summarizes the results. If
we assume that no computation is required in evaluating
the elements A;; (look-up tables may be used), then the
number of multiplies required to compute Af is MoN,
where M is the average number of projections which pass
through a single pixel, and N is the number of pixels.
The computational cost of the segmentation based algo-
rithm will depend on the size of the segments. Generally,
smaller segments- will require more computation. There-
fore, we bound the computation using the assumption that
each pixel forms its own segment. In practice, this is a
conservative assumption. In [15] we computed the num-
ber of multiplies and divides required for one GS update.
Given our assumption of single pixel segments, segmenta-
tion based optimization requires the same number of mul-
tiplies and divides as GS for updating the error and eval-
uating the numerator of (8). However, the denominator of

Convolution Backprojection | MoN + Ns M
Gradient Ascent | 2MoN + M
Gauss-Seidel | (3Mp +2)N
Segmentation-Based Opt. | (5Mo + 2)N

Table 1: Number of multiplies and divides required for
one iteration of each method. N is the number of points
in the image, M is the number of projections, Mp is the
average number of projections passing through a pixel in
the image, Nj is the number of points in the CBP filter.

(8) requires an additional 2N M, multiplies since it cannot
be precomputed.

Therefore, an iteration of segmentation based optimiza-
tion followed by GS requires approximately 8N Mo multi-
plies, and an iteration of gradient ascent followed by GS
requires approximately 5N Mo multiplies.

4 Experimental Results

We have applied the models and optimization methods
discussed in this paper to problems of tomographic re-
construction under limited dosage X-rays. In these cases,
high noise levels in those rays passing through very dense
regions of the object under study yield artifacts which af-
fect the entire reconstruction. The initial state for the
Bayesian estimation iterations is a convolution backpro-
jection (CBP) reconstruction, using a raised-cosine rolloff
filter. The cutoff frequency was chosen for the best visu-
ally evaluated reconstruction. Because it is physically real-
istic to assume non-negative densities for our experiments,
we include this constraint in our priors. Modification of
the SBO and GS iterations for the strictly positive case is
trivial, and involves no appreciable increase in complexity.
The subgradient algorithms were modified by simply fol-
lowing each step of gradient ascent with a pixel-by-pixel
limiting operation, which adds slightly to projection error
update costs. :

The first data set was taken from the phantom in Fig.
4(a), which consists of four discs of density 0.48cm™!
in a circular background of diameter 20 cm and density
0.2¢cm=-1. The simulated dosage was a rate of 2000 pho-
tons per ray (Ar). At these dosages, the rays passing
through the most dense regions are essentially blocked,
making this reconstruction similar to a hollow projections
problem. The 128 angles were equally spaced, and 128 rays
were collected at each angle.

Fig. 4(b) shows the CBP reconstruction from filtered .
backprojection, using a raised cosine rolloff filter. Though
only the denser areas are too absorptive to render a good
reconstruction, the entire image is of poor quality. We
apply the GGRMF as a prior, with ¢ = 1, which pro-
duces the nondifferentiable cost function. Fig. 4(c) is the
result of applying 20 GS iterations directly to the MAP
estimation. The reconstruction is much improved, and has
essentially converged after only about 6 iterations. But



we cannot guarantee that GS can reach the MAP esti-
mate, and in fact Fig. 4(c) represents the case of the esti-
mate’s begin “stuck” at a nondifferentiable point. Figure
4(d) illustrates the effects of using alternating segmenta-
tion with the GS iterations. This image is the result of 50
iterations, but was not appreciably changed after 6 itera-
tions. Though the difference in convergence rates and final
likelihood value between Fig. 4(c) and (d) is small, image
quality is significantly improved in the latter.

[terations using subgradients alternating with GS may
also permit improved convergence relative to either of the
two independently. Fig. 7 compares convergence rates for
the SBO algorithm, subgradient descent, and alternating
GS/subgradient. Unassisted subgradient is much slower
than either of the other methods. We observed this behav-
ior over a wide range of values for the step size in the gra-
dient direction. Two plots appear for the GS/subgradient,
representing two choices for the step size in the subgradient
portion. With step size of 5 x 10~%, the estimates oscillate
for many iterations after nearing steady-state, and do not
reach the level of log posteriori probability of the SBO,
even after as many as 100 iterations. Convergence is im-
proved somewhat in the other GS/subgradient plot, with
step size 5x 10~%, but the image resulting from this setting
is poorer than obtained by either SBO or GS/subgradient.
The SBO algorithm demonstrates superior convergence
and visual results in this case.

The projection data used as input for the reconstruc-
tions in Figures 5 and 6 were taken from a first-generation
gamma-ray scanner at Lawrence Livermore National Lab-
oratories. The object is an approximately cubic concrete
block, 20 cm on each side, with four steel reinforcing rods
perpendicular to the plane in which this data was col-
lected. In the reconstruction of Fig. 5(a), the relatively
low dosage/density ratio yields apparent photon counting
noise artifacts throughout the image. Performance may
be improved with higher photon counts, but this would
require increased time in data collection.

Neither an original of this cross-section, nor the input
dosage rates are available with this data. But, as dis-
cussed above, we need only determine the ratio of Ar to
v for our estimation method. We present outcomes for
three cases, spanning two orders of magnitude in this ra-
tio. With Ar/y = 2 x 10%, the estimate is moderately
smoothed, but some apparent noise artifacts remain, while
in Fig. 6(b), the estimate is smoother than would be ex-
pected of material in this case. Fig. 6(a) results from
Ar/v = 2000, and shows texture approximately appro-
priate for the material, with good preservation of detail,
most of which can be seen with a bit more effort in Fig.
5(a). Note the greater smoothing which occurs near the
center of the block, where the relative strength of the prior
density’s influence is greater. This is in keeping with the
greater statistical uncertainty in this region, due to the
lower signal-to-noise ratio of rays passing through these
regions.

Convergence toward the reconstruction of Fig. 6(a)
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by the three optimization techniques appears in Fig. 8.
Again, the SBO method converges most quickly, with
GS/subgradient similar in terms of this quantitative mea-
sure. The appearance of the SBO reconstruction reaches a
state visually equivalent to the final result far earlier than
the latter approach, and is slightly better even after 50
iterations.

5 Conclusion

The segmentation-based optimization approach presented
here to seek the minimum of a nondifferentiable cost func-
tion appears to perform well in Bayesian tomographic re-
construction. In addition to furnishing better results, its
monotonic convergence behavior gives us greater certainty
concerning the nearness to optimality of our results. Sub-
gradient descent appears impractically slow, and the in-
clusion of the subgradient between Gauss-Seidel iterations
may also fail to reach the state of which SBO is capa-
ble. SBO converges well, and has moderate computational
costs.
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Figure 4: (a) Original phantom, diameter 20cm. Lighter
areas are of density 0.48cm~1, and background is 0.2cm™?.
(b) Convolution backprojection reconstruction from 128
raysums at each of 128 equally spaced angles. Emitter rate
is 2000 photons/ray. (c) Result of Bayesian estimation
using only local minimization with absolute value prior
density. (d) MAP estimate computed by proposed method,
with absolute value prior and vy = 20.
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Figure 5: (a) Convolution backprojection reconstruc-
tion of concrete block with steel reinforcing rods from
first-generation gamma-ray scanner. (Data courtesy of
Lawrence Livermore National Laboratory.) (b) MAP es-
timate computed by 50 iterations of proposed. algorithm
with Ar/y = 2 x 104 ‘
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Convergence Rates for Synthetic Phantom
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Figure 7: Convergence comparisons for synthetic phantom
in Figure 4 with v = 20. Two plots for GS alternating
with subgradient interations have two values for step size
for gradient: 5 x 1076 and 5 x 10-8. Oscillating plot cor-
responds to scaling of 5 x 10~°.

Convergence Rates for Concrete Block
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Figure 6: MAP estimate: from 50 iterations of proposed
algorithm with A7/ = 2000(a) and Ar/y = 200(b).

Figure 8: Convergence for concrete block data, with
/\T / Y= 2000.



