Direct Reconstruction from Sinogram Data using Stacked Back Projection

Wenrui Li, Gregery T. Buzzard, and Charles A. Bouman Purdue University

ICCV Workshop on Learning for Computational Imaging: Sensing, Reconstruction, and Analysis Seoul Korea, 2019-11-02

Thank you ALERT:

This material is based upon work supported by the U.S. Department of Homeland Security, Science and Technology Directorate, Office of University Programs, under Grant Award 2013-ST-061-ED0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.

Computed Tomography (CT)

Sparse View Reconstruction

- Conventional Reconstruction
 - Filtered Back Projection (FBP) commonly used
 - Requires 256 views for a 256×256 reconstruction
- Sparse view reconstruction:
 - You can't always get a full set of views
- Example of 16 view FBP recon

Why does 16 view FBP look so bad?

• Why so bad?

- Sparse views violate Nyquist.
- Under-sampled by 16x (should have 256 views)
- Noisy projections through dense objects (metal)
- Solution?
 - MBIR with PnP Iterative recon works, but is slow

Goal of Research

Use DNNs for direct sparse view reconstruction

- Avoid use of MBIR-PnP, but not as flexible
- Get MBIR or better quality from sparse and noisy data
- Fast reconstruction
- Use all the sonogram data

Not PnP, Heresy! (but might be fun)

DNN Processing Approaches

• Image Domain DNN $y \longrightarrow FBP \longrightarrow CNN \longrightarrow X$ sinogram Final Recon

Sinogram Domain DNN **FBP** CNN ► X **Final Recon** sinogram Direct DNN (AUTOMAP) **Fully Connect** X ν Network **Final Recon** sinogram

DNN Processing Approaches

Image and Sinogram Domain DNN

- Simple and fast
- Don't use all the information

Direct DNN (AUTOMAP)

- Uses all the information
- <u>Can't use CNNs</u>
- Difficult to design and use

Approach: Stacked Back Projection

- Stacked Back Projection (SBP)
 - SBP contains <u>all</u> the sonogram data, but in image domain
 - Direct reconstruction using CNNs
 - Fast, simple and easy to train
 - LSTM processing across views

Stacked Back Projection

Measure projections

Stacked Back Projection

- Measure projections
- Back project each projection

- Measure projections
- Back project each projection
- Stack them up as a tensor

Stacked Back Projection for 16 Views

- SBP is a 256×256×16 tensor
- SBP contains all the information in the sonogram
- Can be used to perform direct reconstruction

Baseline: DNN Post Processing of FBP

- Input is the FBP image
 - $[N \times N \times 1]$ image
 - Does not contain all the information in sonogram
 - Noisy projections are combined with low-noise projections

Direct Recon from SBP

- Input is the Stacked Back Projection (SBP)
 - $[N \times N \times 16]$ image
 - Contain <u>all</u> the information in sonogram
 - Does not require fully connected network (FCN)

LSTM Processing of SBP

• Use LSTM processing of SBP with ConvLSTM2D

Rotational Stride of $\pi/4$

Rotational Stride of $\pi/4$

Loss Functions

Modified MSE Loss

$$L_{MSE} = \|f(x) - f(\hat{x})\|^2$$

where

$$f(x) = \frac{x}{|x| + 2000}$$

CGAN adversarial loss function

- $-Loss = L_{MSE} + \lambda L_{CGAN}$
- Based on f(x) rather than x
- Discriminator structure

CT Data for this Research

3D suitcases <u>reconstructions</u>

- 188 suitcases scanned on Imatron Scanner
- $256 \times 256 \times L$ volumes with $L \in [177, 482]$

Example of slice

- Uses modified Hu units (0=air; 1000=water)
- Notice the high dynamic range
- For our application, mostly interesting in [0,2000Hu] range
 Cases <u>reconstructions</u>

suitcases scanned on Imatron Scanner $\times 256 \times L$ volumes with $L \in [177,482]$

le of slice

s modified Hu units (0=air; 1000=water)

ice the high dynamic range

our application, mostly interesting in [0,2000Hu] range Display with [0,2000 Hu] window.

Synthetic Data Generation

- 3D reconstructions of suitcases
 - 153 3D volumes used for training and validation
 - 35 3D volumes used for testing

Sinogram data simulation

- Parallel beam geometry
- 16 equi-spaced view projections between 0 and π
- pixel pitch=0.186 cm
- FOV = 47.6 cm
- water xray density=0.17 cm-1 (~100 keV)
- photon dosage per projection $\lambda_0 = 1,600$

Full Sinogram

Dense projections have much more noise

Experimental Results

- Synthetic data, but hopefully reasonably realistic
- Results:
 - FBP images
 - Metrics
 - Sparse view recons

FBP for 6 examples

Results: CGAN or Not?

• CGAN did not help with quantitative metrics

Туре	Loss	NRMSE	SSIM
FBP with DNN	MSE	0.033217993	0.902692077
FBP with DNN	MSE/CGAN	0.033931074	0.895443116

Туре	Loss	NRMSE	SSIM
SBP with DNN	MSE	0.032091032	0.907293357
SBP with DNN	MSE/CGAN	0.032082014	0.906680897

Results: SBP or FBP?

- FBP with DNN was good
- SBP with DNN was better
- SBP with LSTM/DNN was best

Туре	Loss	NRMSE	SSIM
FBP with DNN	MSE	0.033217993	0.902692077
SBP with DNN	MSE	0.032091032	0.907293357
SBP with LSTM/DNN	MSE	0.030437203	0.915121979

Result Compare (ALERT_G/Test/0034.hdf5)

Ground Truth

FBP DNN

Experiment	NRMSE	SSIM
FBP DNN	0.02668215	0.90408562
SBP LSTM	0.02378725	0.92758713

Result Compare (ALERT_G/Test/0106.hdf5)

Ground Truth

FBP DNN

Experiment	NRMSE	SSIM
FBP DL	0.037614	0.905294
SBP LSTM	0.035336	0.915452

Result Compare (ALERT_G/Test/0129.hdf5)

Ground Truth

FBP DNN

Experiment	NRMSE	SSIM
FBP DL	0.035249551	0.895256487
SBP LSTM	0.030629306	0.910768468

Result Compare (ALERT_G/Test/0218.hdf5)

Ground Truth

FBP DNN

Experiment	NRMSE	SSIM
FBP DNN	0.02332	0.93916
SBP LSTM DNN	0.02213	0.94581

Result Compare (ALERT_G/Test/0221.hdf5)

Ground Truth

FBP DNN

Experiment	NRMSE	SSIM
FBP DNN	0.02978	0.9219
SBP LSTM DNN	0.02784	0.92671

Result Compare (ALERT_G/Test/0340.hdf5)

Ground Truth

FBP DNN

Experiment	NRMSE	SSIM
FBP DNN	0.04143	0.82955
SBP LSTM DNN	0.03858	0.84829

Takeaways

- DL reconstruction of sparse view data works
- Stacked Back Projection (SBP) allows for simple implementation of direct sinogram-to-image reconstruction.
- LSTM processing of SBPs generates best results and may be more practical to implement.
 - LSTM could allow for more memory efficient implementation
- Adversarial loss doesn't improve quantitative results (but might have other advantages).