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Sparse View Reconstruction
§ Conventional Reconstruction

– Filtered Back Projection (FBP) commonly used
– Requires 256 views for a 256×256 reconstruction

§ Sparse view reconstruction:
– You can’t always get a full set of views

§Example of 16 view FBP recon

Ground Truth Sparse View Recon



Why does 16 view FBP look so bad?

§ Why so bad?
– Sparse views violate Nyquist.
– Under-sampled by 16x (should have 256 views)
– Noisy projections through dense objects (metal)

§ Solution?
– MBIR with PnP - Iterative recon works, but is slow

Ground Truth 16 View Recon



Goal of Research

§ Use DNNs for direct sparse view reconstruction
– Avoid use of MBIR-PnP, but not as flexible
– Get MBIR or better quality from sparse and noisy data
– Fast reconstruction
– Use all the sonogram data

Not PnP, Heresy!
(but might be fun)



DNN Processing Approaches
§ Image Domain DNN

§ Sinogram Domain DNN

§Direct DNN (AUTOMAP)
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DNN Processing Approaches
§ Image and Sinogram Domain DNN

– Can use CNNs
– Simple and fast
– Don’t use all the information

§Direct DNN (AUTOMAP)

– Uses all the information
– Can’t use CNNs
– Difficult to design and use
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Approach: Stacked Back Projection

§ Stacked Back Projection (SBP)
– SBP contains all the sonogram data, but in image domain
– Direct reconstruction using CNNs
– Fast, simple and easy to train
– LSTM processing across views
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Stacked Back 
Projection

§ Measure projections

§ Back project each 
projection

§ Stack them up as a 
tensor



Stacked Back Projection for 16 Views

§ SBP is a 256×256×16
tensor

§ SBP contains all the 
information in the sonogram

§ Can be used to perform direct 
reconstruction

Stacked Back Projection (SBP) contains all the 
information from the sinogram



Baseline: DNN Post Processing of FBP

§ Input is the FBP image
– "×"×1 image
– Does not contain all the information in sonogram
– Noisy projections are combined with low-noise projections
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Direct Recon from SBP

§ Input is the Stacked Back Projection (SBP)
– "×"×16 image
– Contain all the information in sonogram
– Does not require fully connected network (FCN)

SBP

"×"×16 SBP 
contains all information
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LSTM Processing of SBP
§ Use LSTM processing of SBP with ConvLSTM2D
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Rotational Stride of !/#
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Rotational Stride of //1

Since we use the uni-directional LSTM with a 
rotational stride of half-rotation, we train a non-
rotational layer and a half-rotational layer and
concatenate their output. Therefore, with F=32,
the final output is (256,256,64).

Output of ConvLSTM2D



Loss Functions
§ Modified MSE Loss

where
! " = "

|"| + 2000
§ CGAN adversarial loss function

– )*++ = ),-. + /)0123
– Based on ! " rather than "
– Discriminator structure

),-. = ! " − ! 5" 6



CT Data for this Research
§ 3D suitcases reconstructions

– 188 suitcases scanned on Imatron Scanner
– 256×256×& volumes with & ∈ 177,482

§ Example of slice
– Uses modified Hu units (0=air; 1000=water)
– Notice the high dynamic range
– For our application, mostly interesting in [0,2000Hu] range

Display with [0,2000 Hu] window. Display with [0,max Hu] window.



Synthetic Data Generation
§ 3D reconstructions of suitcases

– 153 3D volumes used for training and validation
– 35 3D volumes used for testing

§ Sinogram data simulation
– Parallel beam geometry 
– 16 equi-spaced view projections between 0 and !
– pixel pitch=0.186 cm 
– FOV = 47.6 cm
– water xray density=0.17 cm-1 (~100 keV)
– photon dosage per projection "# = 1,600
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Full Sinogram

§ Dense projections have much more noise

!" = exp '(
)*

noiseless sinogram

noise

noisy sinogram

+



Experimental Results

§ Synthetic data, but hopefully reasonably realistic

§ Results:
– FBP images
– Metrics
– Sparse view recons



FBP for 6 examples



Results: CGAN or Not?
§ CGAN did not help with quantitative metrics

Type Loss NRMSE SSIM

FBP with DNN MSE 0.033217993 0.902692077

FBP with DNN MSE/CGAN 0.033931074 0.895443116

Type Loss NRMSE SSIM

SBP with DNN MSE 0.032091032 0.907293357

SBP with DNN MSE/CGAN 0.032082014 0.906680897



Results: SBP or FBP?
§ FBP with DNN was good

§ SBP with DNN was better

§ SBP with LSTM/DNN was best

Type Loss NRMSE SSIM

FBP with DNN MSE 0.033217993 0.902692077

SBP with DNN MSE 0.032091032 0.907293357

SBP with LSTM/DNN MSE 0.030437203 0.915121979



Result Compare (ALERT_G/Test/0034.hdf5)

Experiment NRMSE SSIM
FBP DNN 0.02668215 0.90408562
SBP LSTM 0.02378725 0.92758713

FBP DNN SBP with LSTMGround Truth



Result Compare (ALERT_G/Test/0106.hdf5)

Experiment NRMSE SSIM
FBP DL 0.037614 0.905294

SBP LSTM 0.035336 0.915452

FBP DNN SBP with LSTMGround Truth



Result Compare (ALERT_G/Test/0129.hdf5)

Experiment NRMSE SSIM
FBP DL 0.035249551 0.895256487

SBP LSTM 0.030629306 0.910768468

FBP DNN SBP with LSTMGround Truth



Result Compare (ALERT_G/Test/0218.hdf5)

Experiment NRMSE SSIM
FBP DNN 0.02332 0.93916

SBP LSTM DNN 0.02213 0.94581

FBP DNN SBP with LSTMGround Truth



Result Compare (ALERT_G/Test/0221.hdf5)

Experiment NRMSE SSIM
FBP DNN 0.02978 0.9219

SBP LSTM DNN 0.02784 0.92671

FBP DNN SBP with LSTMGround Truth



Result Compare (ALERT_G/Test/0340.hdf5)

Experiment NRMSE SSIM
FBP DNN 0.04143 0.82955

SBP LSTM DNN 0.03858 0.84829

FBP DNN SBP with LSTMGround Truth



Takeaways

§DL reconstruction of sparse view data works

§ Stacked Back Projection (SBP) allows for simple 
implementation of direct sinogram-to-image 
reconstruction.

§LSTM processing of SBPs generates best results and 
may be more practical to implement. 

– LSTM could allow for more memory efficient implementation

§Adversarial loss doesn’t improve quantitative results 
(but might have other advantages).


