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Computed Tomography (CT)
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Sparse View Reconstruction

= Conventional Reconstruction
— Filtered Back Projection (FBP) commonly used

— Requires 256 views for a 256 X256 reconstruction

" Sparse view reconstruction:
— You can’t always get a full set of views

*Example of 16 view FBP recon
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Why does 16 view FBP look so bad?
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Ground Truth 16 View Recon
* Why so bad?
— Sparse views violate Nyquist.

— Under-sampled by 16x (should have 256 views)
— Noisy projections through dense objects (metal)
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= Solution?
— MBIR with PnP - Iterative recon works, but 1s slow



Goal of Research

= Use DNNss for direct sparse view reconstruction

— Avoid use of MBIR-PnP, but not as flexible

— Get MBIR or better quality from sparse and noisy data
— Fast reconstruction

— Use all the sonogram data

Not PnP, Heresy!

(but might be fun)



DNN Processing Approaches
" Image Domain DNN
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* Sinogram Domain DNN
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DNN Processing Approaches

" Image and Sinogram Domain DNN
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— Can use CNNs y =——b{ CNN » FBP X

sinogram Final Recon

— Simple and fast
— Don’t use all the information

"Direct DNN (AUTOMAP)
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— Uses all the information
— Can’t use CNNs
— Dafficult to design and use




Approach: Stacked Back Projection

= Stacked Back Projection (SBP)

— SBP contains all the sonogram data, but in 1mage domain
— Direct reconstruction using CNNs

— Fast, simple and easy to train

— LSTM processing across views
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= Measure projections



Stacked Back
Projection

= Measure projections

= Back project each
projection
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Stacked Back
Projection
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= Measure projections

= Back project each
projection

= Stack them up as a
tensor




Stacked Back Projection for 16 Views

SBP is a 256X256X16
tensor

SBP contains all the
information in the sonogram

NN ] C an be used to perform direct
B reconstruction

ontains all the
Blbgram




Baseline: DNN Post Processing of FBP
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* Input 1s the FBP image
- [NXNX1] image
— Does not contain all the information in sonogram
— Noisy projections are combined with low-noise projections



Direct Recon from SBP

INXNx16] SBP
contains all information
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= Input 1s the Stacked Back Projection (SBP)
- [NXNXx16] image

— Contain all the information in sonogram

— Does not require fully connected network (FCN)



LSTM Processing of SBP
" Use LSTM processing of SBP with ConvLSTM2D
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Rotational Stride of /4




Rotational Stride of /4
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Since we use the juni-directional LSTM with a
rotational stride @f half-rotation, we train a non-
rotational layer ahd a half-rotational layer and
concatenate theirjoutput. Therefore, with F=32,
the final output 1s (256,256,64).




Loss Functions

= Modified MSE Loss
Lysg = ||f(x) — f(f)”z

where

f&) =T 2000

= CGAN adversarial loss function

— Loss = LMSE + ALCGAN
— Based on f(x) rather than x
— Discriminator structure
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CT Data for this Research

= 3D suitcases reconstructions

— 188 suitcases scanned on Imatron Scanner
— 256%256X%L volumes with L € [177,482]

= Example of slice

— Uses modified Hu units (O=air; 1000=water)

— Notice the high dynamic range

— For our application, mostly interesting in [0,2000Hu] range
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suitcases scanned on [matron Scanner
X256XL volumes with L € [177,482]

le of slice
s modified Hu units (O=atr; 1000=water)
1o¢ the high dynamic range

our application, mostly interesting tn [0,2000Hu] range
Display with [0,2000 Hu] window.
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Synthetic Data Generation

= 3D reconstructions of suitcases

— 153 3D volumes used for training and validation
— 35 3D volumes used for testing

" Sinogram data simulation
— Parallel beam geometry
— 16 equi-spaced view projections between 0 and 7
— pixel pitch=0.186 cm
— FOV =47.6 cm
— water xray density=0.17 cm-1 (~100 keV)
— photon dosage per projection Ay = 1,600
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Full Sinogram

" Dense projections have much more noise

0
50
100
150
200
250

0 75 100 125 150

noiseless sinogram

2 _ eXpyi}

0

50

100

150

200

250
00 25 50 75 100 125 150
.

Nnoisce

0

50

100

150

200

250
00 25 50 75 100 125 15.0

noisy sinogram



Experimental Results

* Synthetic data, but hopefully reasonably realistic

= Results:
— FBP 1mages
— Metrics
— Sparse view recons



FBP for 6 examples




Results: CGAN or Not?

* CGAN did not help with quantitative metrics

Type
FBP with DNN

FBP with DNN

Type
SBP with DNN

SBP with DNN

Loss

MSE

MSE/CGAN

Loss

MSE

MSE/CGAN

NRMSE SSIM
0.033217993 0.902692077

0.033931074 0.895443116

NRMSE SSIM
0.032091032 0.907293357

0.032082014 0.906680897



Results: SBP or FBP?
= FBP with DNN was good
= SBP with DNN was better
= SBP with LSTM/DNN was best

Type Loss NRMSE SSIM
FBP with DNN MSE 0.033217993 0.902692077
SBP with DNN MSE 0.032091032 0.907293357

SBP with LSTM/DNN MSE 0.030437203 0.915121979



Result Compare (ALERT _G/Test/0034.hdf5)

Ground Truth FBP DNN SBP with LSTM
Experiment NRMSE SSIM
FBP DNN 0.02668215 0.90408562

SBP LSTM 0.02378725 0.92758713



Result Compare (ALERT _G/Test/0106.hdf5)

Ground Truth FBP DNN SBP with LSTM
Experiment NRMSE SSIM
FBP DL 0.037614 0.905294

SBP LSTM 0.035336 0.915452



Result Compare (ALERT _G/Test/0129.hdf5)

Ground Truth FBP DNN SBP with LSTM
Experiment NRMSE SSIM
FBP DL 0.035249551 0.895256487

SBP LSTM 0.030629306 0.910768468



Result Compare (ALERT _G/Test/0218.hdf5)

Ground Truth FBP DNN SBP with LSTM
Experiment NRMSE SSIM
FBP DNN 0.02332 0.93916

SBP LSTM DNN 0.02213 0.94581



Result Compare (ALERT _G/Test/0221.hdf5)

Ground Truth FBP DNN SBP with LSTM
Experiment NRMSE SSIM
FBP DNN 0.02978 0.9219

SBP LSTM DNN 0.02784 0.92671



Result Compare (ALERT _G/Test/0340.hdf5)

Ground Truth FBP DNN SBP with LSTM
Experiment NRMSE SSIM
FBP DNN 0.04143 0.82955

SBP LSTM DNN 0.03858 0.84829



Takeaways

* DL reconstruction of sparse view data works

= Stacked Back Projection (SBP) allows for simple
implementation of direct sinogram-to-image
reconstruction.

= LSTM processing of SBPs generates best results and
may be more practical to implement.
— LSTM could allow for more memory efficient implementation

» Adversarial loss doesn’t improve quantitative results
(but might have other advantages).



