Generative Plug-and-Play (GPnP): Posterior Sampling for Inverse Problems[†] (The Saga Continues...)

Charles A. Bouman and Gregery T. Buzzard, Purdue University

2023 Allerton Conference on Communications, Control, & Communications September 28, 2023

†Thank you to Showalter Foundation, NSF, ORNL, LANL, GE Healthcare, AFRL, Eli Lilly, and DHS

PnP Original Recipe*

Motivation

 ${\scriptstyle \circ}$ Variable Splitting and proximal maps

• The ADMM Algorithm

o PnP-ADMM

*Singanallur V. Venkatakrishanan, Charles A. Bouman, and Brendt Wohlberg, "Plug-and-Play Priors for Model Based Reconstruction," *IEEE Global Conference on Signal and Information Processing (GlobalSIP)*, Austin, Texas, USA, December 3-5, 2013.

Model-Based Iterative Reconstruction (MBIR)

$$\hat{x} = \arg\min_{x} \{-\log p(y|x) - \log p(x)\} \\ = \arg\min_{x} \{\frac{1}{2} \|y - Ax\|_{\Lambda}^{2} - \log p(x)\}$$

Fresh Look at MBIR (circa 2013)

- Forward model: $u_1(x) = -\log p(y|x)$
- Prior model: $u_0(x) = -\log p(x)$

MAP or regularized inverse

Proximal Maps

Proximal map of f with base point x:

Prior Proximal Map is a Denoiser

$$\overline{F}_0(v) = \arg\min_{x} \left\{ u_0(x) + \frac{1}{2\gamma^2} \|x - v\|^2 \right\}$$

Denoiser: When $u_0(x) = -\log p(x)$, the proximal map is a denoiser

$$\overline{F}_{0}(v) = \arg \min_{x} \left\{ \frac{1}{2\gamma^{2}} \|v - x\|^{2} - \log p(x) \right\}$$

-Log likelihood for
AWGN with variance γ^{2}
= Denoise($v; \gamma$)
MAP denoiser for AWGN

ADMM for MBIR Reconstruction

Initialize $v, u = 0$ Repeat {	
$x \leftarrow \bar{F}_1(\nu-u)$	// Project onto sensor manifold
$v \leftarrow \bar{F}_0(x+u)$	// Projection onto prior manifold
$u \leftarrow u + (x - v)$	// Augmented Lagrangian update
}	

•ADMM:

- Iteratively reproject on sensor/prior manifolds
- Minimizes $u(x) = u_1(x) + u_0(x)$

PnP for MBIR Reconstruction

Big Idea:

- Replace F_0 with any denoiser!
- Does it still converge? Does it minimize anything?

PnP circa 2013

Forward model: sparse subsampling

$$u_1(x) = \sum_{s \in \{\text{sampled}\}} \frac{1}{2} ||x_s - y_s||^2$$

Prior model: denoising algorithm

K-SVD

RMSE : 14.11

ΤV

BM3D

RMSE : 12.56

q-GGMRF

Noise std. dev : 5% of max signal

RMSE : 15.50

RMSE : 15.72

RMSE : 14.54

So what's the problem?

PnP only generates a single "best" result

Can PnP be modified to generate samples from the posterior distribution?

$$X \sim p_{x|y}(x|y) = \frac{1}{Z}p(y|x)p(x)$$

Generative PnP (GPnP):

Proximal generators Markov chains Intuition behind GPnP

Posterior Distribution

The posterior distribution is given by $p(x|y) = \frac{1}{Z} \exp\{-u_1(x) - u_0(x)\}$

where

$$u_1(x) = -\log p(y|x)$$
$$u_0(x) = -\log p(x)$$

Strategy:

- Create Markov chain
- Proximal generators: create sequential random samples
- Modular implementation

Proximal Generators

Proximal Map

$$\overline{F}_0(x) = \arg\min_{v} \left\{ u_0(v) + \frac{1}{2\gamma^2} \|v - x\|^2 \right\}$$

Proximal distribution

$$q_0(v|x) = \frac{1}{Z} \exp\left\{-u_0(v) - \frac{1}{2\gamma^2} \|v - x\|^2\right\}$$

Proximal Generator

$$V = F_0(x) \sim q_0(v|x)$$

Generates a sample from the proximal distribution

Interpretation of Proximal Generator

Expected change approximates score

Generative PnP

Observations/questions:

- This is a Markov chain
- Does it converge to a stationary distribution?
- If so, then what is the stationary distribution?

GPnP Theorem

Theorem: Consider $X_n = F_1(F_0(X_{n-1}))$, then

- X_n is a reversible Markov chain
- X_n has a stationary distribution given by

$$\tilde{p}(x|y) = \frac{1}{Z} \exp\{-u_1(x) - \tilde{u}_0(x;\gamma^2)\}$$

- where $\tilde{u}_0(x;\gamma^2)$ is $u_0(x)$ blurred with a Gaussian noise of variance γ^2 .

Bottom line:

- Repeated sequential application of F_0 and F_1 converges to "desired" distribution.
- But GPnP introduces AWGN with variance γ^2 to the prior distribution!

Generative Plug-and-Play Intuition

Implementing Proximal Generators:

Generic implementation
Prior model proximal generator
GPnP Psuedo-code

How to implement the Proximal Generator?

•For γ small, just add white noise!

Forward Model Proximal Generator

•For small γ ,

 $F_1(v) = \overline{F}_1(v) + \gamma W$

Prior Proximal Generator (First Order Approx.)

•First order approximation

$$F_0(v) = \overline{F}_0(v) + \gamma W$$

$$\approx \text{Denoise}(v, \gamma) + \gamma W$$

MAP denoiser for AWGN

– But we can get a better approximation...

Denoising Score Matching (Vincent 2011)*

•Amazing result:

- The AWGN denoiser provides an exact MMSE estimate of the score

$$-\nabla \tilde{u}_0(x;\sigma^2) = \frac{1}{\sigma^2} [\text{Denoise}(x;\sigma) - x]$$

- Exactly true for any σ

MMSE denoiser for AWGN

But....

- $\tilde{u}_0(x; \sigma^2)$ is the energy function for the "noisy" prior
- So we have the exact solution, but for a <u>noisy prior</u>

*P. Vincent, "A connection between score matching and denoising autoencoders," Neural Computation, 2011.

Prior Proximal Generator (Second Order Approx.)

Better approximation using score matching is:

$$\tilde{F}_0(x;\beta,\sigma) \approx (1-\beta)x + \beta \text{Denoise}(x;\sigma) + \sqrt{\beta}\sigma W$$

Remember:

- $\beta = \frac{1}{4}$ works well in all cases we tried.
- \tilde{F}_0 is based on "noisy" prior, but noise decreases as $\sigma \to 0$

Prior Model Proximal Generator

 $\tilde{F}_0(x;\beta,\sigma) \approx (1-\beta)x + \beta \text{Denoise}(x;\sigma) + \sqrt{\beta}\sigma W$

- Prior blurred by σ
- Step size scaled by β

GPnP Basic Algorithm

```
\beta = \frac{1}{4}; \sigma_{\text{max}} = 2;
 Initialize X = \text{Random}(0, I) + \frac{1}{2}
 Repeat {
         X \leftarrow (1 - \beta)X + \beta \text{Denoise}(X; \sigma) + \sqrt{\beta}\sigma \text{RandN}(0, I)
         X \leftarrow \overline{F}_1(X) + \sqrt{\beta}\sigma \text{RandN}(0, I)
         \sigma \leftarrow \text{Reduce}(\sigma)
\operatorname{Return}(x)
```

- Prior is blurred by $(1 + \beta)\sigma^2$
- But with time $\sigma \rightarrow 0$

GPnP Basic Algorithm with Regularization

```
\beta = \frac{1}{4}; \sigma_{\text{max}} = 2; \alpha = 1.3;
 Initialize X = \text{Random}(0, I) + \frac{1}{2}
 Repeat {
         X \leftarrow (1 - \beta)X + \beta \text{Denoise}(X;\alpha\sigma) + \sqrt{\beta}\sigma \text{RandN}(0, I)
         X \leftarrow \overline{F}_1(X) + \sqrt{\beta}\sigma \text{RandN}(0, I)
         \sigma \leftarrow \text{Reduce}(\sigma)
 \operatorname{Return}(x)
```

- Denoise(*X*; σ) MMSE denoiser trained for AWGN with variance σ^2 .
- Increasing α increases regularization
- Prior is blurred by $(1 + \beta)\sigma^2$, but with time $\sigma \to 0$

GPnP Interations

Experiments

•Experiment:

- Prior proximal generator: BM3D, DRUNet*, DDPM denoiser trained on CelebAHQ-256**
- Forward model: interpolation with sparse sampling of 10%, 5%, 2% and missing rectangle.

Parameters

- $N = 100; \sigma_{\text{max}} = 0.5 \text{ or } 2.0; \sigma_{\text{min}} = 0.005; \beta = \frac{1}{4}; \alpha = 1.3;$
- Same parameters work for different problems (interpolation, tomography, ...) and different denoisers (BM3D, DRUNet, ...).

*Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu Timofte, "Plug-and-Play Image Restoration With Deep Denoiser Prior," PAMI 2022.

**Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu Timofte, "Plug-and-Play Image Restoration With Deep Denoiser Prior," PAMI 2022.

Sparse interpolation:

10% of pixels sampled, DRUNet prior (Std dev intensity window changes)

Sparse interpolation:

5% of pixels sampled, DRUNet prior (Std dev intensity window changes)

Sparse interpolation:

2% of pixels sampled, DRUNet prior (Std dev intensity window changes)

Inpainting:

Center rectangle omitted - 3 samples, DRUNet prior (Std dev intensity window changes)

Inpainting: Center rectangle omitted - 3 samples, DDPM denoiser trained on CelebAHQ-256 prior (Std dev intensity window changes)

Conclusions

Generative PnP: A natural generalization of PnP original recipe

- Denoiser for prior
- Proximal map for forward model
- Iterate and add noise

•GPnP vs Langevin Dynamics*:

—	Discrete Markov Chain	VS	Stochastic Differential Equation
—	Proximal Maps	VS	Gradient Descent
—	New Approach	VS	Established Method

*Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, Ben Poole, "Score Based Generative Modeling Through Stochastic Differential Equations," ICLR 2021.