
Generative Plug-and-Play (GPnP):
Posterior Sampling for Inverse Problems†

Charles A. Bouman and Gregery T. Buzzard, Purdue University

2023 Allerton Conference on Communications, Control, & Communications
September 28, 2023

†Thank you to Showalter Foundation, NSF, ORNL, LANL, GE Healthcare, AFRL, Eli Lilly, and DHS

(The Saga Continues…)

PnP Original Recipe*
oMotivation
oVariable Splitting and proximal maps
oThe ADMM Algorithm
oPnP-ADMM

*Singanallur V. Venkatakrishanan, Charles A. Bouman, and Brendt Wohlberg,
“Plug-and-Play Priors for Model Based Reconstruction,”
IEEE Global Conference on Signal and Information Processing (GlobalSIP),
Austin, Texas, USA, December 3-5, 2013.

Physical
system

yx

Model-Based Iterative Reconstruction (MBIR)

Prior Model
𝑝(𝑥)

Forward model
𝑓(𝑥)

Difference

x̂ f (x)

"𝑥 = argmin
!

− log 𝑝 𝑦|𝑥 − log 𝑝 𝑥

= argmin
!

1
2
𝑦 − 𝐴𝑥 "

− log 𝑝 𝑥

Fresh Look at MBIR (circa 2013)

 Forward model: 𝑢$ 𝑥 = − log 𝑝 𝑦 𝑥

 Prior model: 𝑢% 𝑥 = − log 𝑝 𝑥

MAP or regularized inverse

"𝑥 = argmin
!

𝑢$ 𝑥 + 𝑢% 𝑥

Can we minimize these
two terms separately?

Proximal
maps

Proximal Maps
 Proximal map of 𝑓 with base point 𝑥:

!𝐹& 𝑣 = argmin
'

𝑢& 𝑥 	+
1
2𝛾(𝑥 − 𝑣 (

Minimize a
function

Quadratic
“spring” penalty

𝑣

𝑢! 𝑥

)𝐹"(𝑣)
Base point

Base point

Prior Proximal Map is a Denoiser

Denoiser: When 𝑢& 𝑥 = − log 𝑝 𝑥 , the proximal map is a denoiser

)𝐹& 𝑣 = argmin
'

1
2𝛾(

𝑣 − 𝑥 (− log 𝑝 𝑥

= Denoise 𝑣; 𝛾
MAP denoiser for AWGN

-Log likelihood for
AWGN with variance 𝛾!

)𝐹& 𝑣 = argmin
'

𝑢& 𝑥 +
1
2𝛾(𝑥 − 𝑣 (

ADMM for MBIR Reconstruction

ADMM:
– Iteratively reproject on sensor/prior manifolds
– Minimizes 𝑢 𝑥 = 𝑢# 𝑥 + 𝑢" 𝑥

Initialize 𝑣, 𝑢 = 0
Repeat {

𝑥 ← !𝐹) 𝑣 − 𝑢

𝑣 ← !𝐹& 𝑥 + 𝑢

𝑢 ← 𝑢 + 𝑥 − 𝑣
}

// Project onto sensor manifold

// Projection onto prior manifold

// Augmented Lagrangian update

PnP for MBIR Reconstruction

Big Idea:
– Replace 𝐹" with any denoiser!
– Does it still converge? Does it minimize anything?

Initialize 𝑣, 𝑢 = 0
Repeat {

𝑥 ← !𝐹) 𝑣 − 𝑢

𝑣 ← Denoise 𝑥 + 𝑢

𝑢 ← 𝑢 + 𝑥 − 𝑣
}

// Project onto sensor manifold

// Denoise

// Augmented Lagrangian update

PnP circa 2013

Ground Truth

Subsamples

K-SVD BM3D

TV q-GGMRFPLOW
RMSE : 12.56

RMSE : 14.54 RMSE : 15.50 RMSE : 15.72

RMSE : 14.11

Noise std. dev : 5% of max signal

Forward model:
sparse subsampling

Prior model: denoising
algorithm

P n P
Prior

Forward

𝑢! 𝑥 = %
"∈ $%&'()*

1
2 𝑥" − 𝑦" +

So what’s the problem?

 PnP only generates a single “best” result

 Can PnP be modified to generate samples
from the posterior distribution?

𝑋 ∼ 𝑝9|; 𝑥|𝑦 =
1
𝑍
𝑝 𝑦|𝑥 𝑝 𝑥

Generative PnP (GPnP):
oProximal generators
oMarkov chains
o Intuition behind GPnP

Posterior Distribution

The posterior distribution is given by

𝑝 𝑥|𝑦 =
1
𝑍
exp −𝑢$ 𝑥 − 𝑢% 𝑥

where
𝑢) 𝑥 = − log 𝑝 𝑦|𝑥
𝑢& 𝑥 = − log 𝑝 𝑥

Strategy:
– Create Markov chain
– Proximal generators: create sequential random samples
– Modular implementation

Proximal Generators

Proximal Map
:𝐹% 𝑥 = argmin

/
𝑢% 𝑣 +

1
2𝛾#

𝑣 − 𝑥 #

Proximal distribution

𝑞% 𝑣|𝑥 =
1
𝑍
exp −𝑢% 𝑣 −

1
2𝛾#

𝑣 − 𝑥 #

Proximal Generator
𝑉 = 𝐹% 𝑥 ∼ 𝑞% 𝑣|𝑥

Generates a sample from
the proximal distribution

ball of
radius 𝛾

𝑥

x1

x1

Interpretation of Proximal Generator

Intuition:
– Locally samples from the prior distribution
– Expected change approximates score

𝑝 𝑥 =
1
𝑍 exp −𝑢" 𝑥

𝑉 = 𝐹" 𝑥 ∼ 𝑞" 𝑣|𝑥

Generative PnP

Observations/questions:
– This is a Markov chain
– Does it converge to a stationary distribution?
– If so, then what is the stationary distribution?

Initialize 𝑋 = Random 0, 𝐼 + ⁄) (
Repeat {

𝑋 ← 𝐹& 𝑋

𝑋 ← 𝐹) 𝑋
}
Return(𝑥)

// Prior Model Proximal Generator

// Forward Model Proximal Generator

GPnP Theorem

Theorem: Consider 𝑋< = 𝐹$ 𝐹% 𝑋<=$, then
• 𝑋* is a reversible Markov chain
• 𝑋* has a stationary distribution given by

?𝑝 𝑥|𝑦 =
1
Z
exp −𝑢) 𝑥 − ?𝑢& 𝑥; 𝛾(

– where >𝑢" 𝑥; 𝛾$ is 𝑢" 𝑥 blurred with a Gaussian noise of variance 𝛾$.

Bottom line:
– Repeated sequential application of 𝐹" and 𝐹# converges to “desired” distribution.
– But GPnP introduces AWGN with variance 𝛾$ to the prior distribution!

sensor manifold
𝑢# 𝑥

Generative Plug-and-Play Intuition

Repeat {
𝑋 ← 𝐹" 𝑋
𝑋 ← 𝐹# 𝑋

}

prior manifold
𝑢" 𝑥

blurred prior manifold
>𝑢" 𝑥

Implementing Proximal Generators:
oGeneric implementation
oPrior model proximal generator
oGPnP Psuedo-code

How to implement the Proximal Generator?

For 𝛾 small, just add white noise!
𝐹 𝑥 ≈ :𝐹 𝑥 + 𝛾𝑊

white Gaussian noiseOrdinary
proximal map

Proximal map
parameter

Proximal
generator

Forward Model Proximal Generator

For small 𝛾,
𝐹$ 𝑣 = :𝐹$ 𝑣 + 𝛾𝑊

𝑣
𝑥 =)𝐹# 𝑣 	

“projection” onto
“sensor manifold”)𝐹# 𝑣𝐹# 𝑣

Prior Proximal Generator (First Order Approx.)

First order approximation
𝐹% 𝑣 = :𝐹% 𝑣 + 𝛾𝑊

≈ Denoise 𝑣, 𝛾 + 𝛾𝑊

– But we can get a better approximation…

MAP denoiser for AWGN

Denoising Score Matching (Vincent 2011)*

Amazing	result:	
– The	AWGN	denoiser	provides	an	exact	MMSE	estimate	of	the	score

−∇N𝑢% 𝑥; 𝜎# =
1
𝜎#

Denoise 𝑥; 𝜎 − 𝑥
– Exactly true for any 𝜎

But….
– >𝑢" 𝑥; 𝜎$ is the energy function for the “noisy” prior
– So we have the exact solution, but for a noisy prior

MMSE denoiser for AWGN

*P. Vincent, “A connection between score matching and denoising autoencoders,” Neural Computation, 2011.

Prior Proximal Generator (Second Order Approx.)

Define
𝛾# = 𝜎#	𝛽

Better approximation using score matching is:

R𝐹% 𝑥; 𝛽, 𝜎 ≈ 1 − 𝛽 𝑥 + 𝛽Denoise 𝑥; 𝜎 + 𝛽𝜎𝑊

Remember:
– 𝛽 = #

%
	works	well	in	all	cases	we	tried.

– _𝐹" is based on “noisy” prior, but noise decreases as 𝜎 → 0

proximal map
parameter

noise variance

Step size 𝛽 → 0

𝑣	

𝑋 = _𝐹" 𝑣 	

Prior Model Proximal Generator

– Prior blurred by 𝜎
– Step size scaled by 𝛽

E𝐹& 𝑥; 𝛽, 𝜎 ≈ 1 − 𝛽 𝑥 + 𝛽Denoise 𝑥; 𝜎 + 𝛽𝜎𝑊

𝑋 Noise blur 𝜎

GPnP Basic Algorithm

𝛽 = ⁄) +; 𝜎,-. = 2;
Initialize 𝑋 = Random 0, 𝐼 + ⁄) (
Repeat {

𝑋 ← 1 − 𝛽 𝑋 + 𝛽Denoise 𝑋; 𝜎 + 𝛽𝜎RandN(0, I)
𝑋 ←)𝐹) 𝑋 + 𝛽𝜎RandN(0, I)
𝜎 ← Reduce 𝜎

}
Return(𝑥)

– Prior	is	blurred	by	 1 + 𝛽 𝜎$

– But with time 𝜎 → 0

GPnP Basic Algorithm with Regularization

𝛽 = ⁄) +; 𝜎,-. = 2; 𝛼 = 1.3;
Initialize 𝑋 = Random 0, 𝐼 + ⁄) (
Repeat {

𝑋 ← 1 − 𝛽 𝑋 + 𝛽Denoise 𝑋; 𝛼𝜎 + 𝛽𝜎RandN(0, I)
𝑋 ←)𝐹) 𝑋 + 𝛽𝜎RandN(0, I)
𝜎 ← Reduce 𝜎

}
Return(𝑥)

– Denoise 𝑋; 𝜎 	-	MMSE	denoiser	trained	for	AWGN	with	variance	𝜎$.
– Increasing 𝛼 increases regularization
– Prior	is	blurred	by	 1 + 𝛽 𝜎$,	but with time 𝜎 → 0

sensor manifold
𝑢# 𝑥

GPnP Interations

Repeat {
𝑋 ← 1 − 𝛽 𝑋 + 𝛽Denoise 𝑋; 𝛼𝜎 + 𝛽𝜎W
𝑋 ← 2𝐹" 𝑋 + 𝛽𝜎W
𝜎 ← Reduce 𝜎

}

prior manifold
𝑢" 𝑥

blurred prior manifold
>𝑢" 𝑥

1 + 𝛽𝜎

Experiments

Experiment:
• Prior proximal generator: BM3D, DRUNet*, DDPM denoiser trained on

CelebAHQ-256**
• Forward model: interpolation with sparse sampling of 10%, 5%, 2% and

missing rectangle.

Parameters
• 𝑁 = 100; 𝜎,-. = 0.5	or	2.0; 𝜎,/0 = 0.005; 𝛽 = ⁄) +; 𝛼 = 1.3;
• Same parameters work for different problems (interpolation,

tomography, …) and different denoisers (BM3D, DRUNet, …).
*Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu Timofte, “Plug-and-Play Image Restoration
With Deep Denoiser Prior,” PAMI 2022.

**Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu Timofte, “Plug-and-Play Image
Restoration With Deep Denoiser Prior,” PAMI 2022.

Sparse interpolation: 10% of pixels sampled, DRUNet prior
(Std dev intensity window changes)

Sparse interpolation: 5% of pixels sampled, DRUNet prior
(Std dev intensity window changes)

Sparse interpolation: 2% of pixels sampled, DRUNet prior
(Std dev intensity window changes)

Inpainting: Center rectangle omitted - 3 samples, DRUNet prior
(Std dev intensity window changes)

Inpainting: Center rectangle omitted - 3 samples, DDPM denoiser trained
on CelebAHQ-256 prior (Std dev intensity window changes)

IT’S A FACE!!

Conclusions

Generative PnP: A natural generalization of PnP original recipe
– Denoiser for prior
– Proximal map for forward model
– Iterate and add noise

GPnP vs Langevin Dynamics*:
– Discrete Markov Chain vs Stochastic Differential Equation
– Proximal Maps vs Gradient Descent
– New Approach vs Established Method

*Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, Ben Poole, “Score Based
Generative Modeling Through Stochastic Differential Equations,” ICLR 2021.

