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Outline*
Historical perspective

– PnP original recipe
– Some cool PnP results

Generative PnP Theory:
– Proximal generators
– GPnP Theorem

Generative PnP Implementation:
– Proximal generators and score matching
– Pseudo-code algorithm

Results

*For details see:
Charles A. Bouman and Gregery T. Buzzard, “Generative Plug and Play: Posterior Sampling for Inverse 
Problems,” arXiv:2306.07233, submitted to Allerton Conference, 2023.
https://github.com/gbuzzard/generative-pnp-allerton



MBIR - Model Based Iterative Reconstruction
oRegularized inversion
oVariable Splitting and proximal maps
oThe ADMM Algorithm



Computed Tomographic (CT) Imaging

Source

Parallel Beam CT: synchrotrons, electron 
microscopy, nano-X-ray sources

Fan Beam CT: Industrial CT

Cone Beam CT: Industrial CT, C-arm Scanners Multi-Slice Helical CT: Medical, 
transportation security



CT Forward Model

Measurements

System Matrix
Volume to be 
Reconstructed

Noise

𝑦 = 𝐴𝑥 + 𝑤

Problems:
– Not enough measurements: sparse or missing views, etc.
– Low quality data: high noise, low dosage, short exposure, etc.
– Model mismatch: metal, beam-hardening, scatter, poly-energetic, etc.
– Resolution loss: detector blur, motion blur, X-ray spot size, etc.

Applications:
– Medical, scientific, industrial, and security

 Q:  How do we resolve these problems for quantitative imaging?



Physical 
system

yx

Model-Based Iterative Reconstruction (MBIR)

Prior 
Model: p(x) Forward model f(x)

Difference

x̂
f (x)

Error Sinogram (Ax-y)
Fwd Model f(x) = Ax

"𝑥 = argmin
!

− log 𝑝 𝑦|𝑥 − log 𝑝 𝑥

= argmin
!

1
2
𝑦 − 𝐴𝑥 "

# − log 𝑝 𝑥



MBIR: Regularized Image Reconstruction

 Sensor model:

 Prior model:

 MBIR Reconstruction

𝑢! 𝑥 = − log 𝑝 𝑦 𝑥 =
1
2 𝑦 − 𝐴𝑥 "

#

𝑢$ 𝑥 = − log 𝑝 𝑥

Sensor model 
𝑝 𝑦 𝑥

Prior model 
𝑝 𝑥 𝑥 𝑦

Forward Model

Regularized 
Inversion "𝑥

-𝑥 = argmin
%

𝑢! 𝑥 + 𝑢$ 𝑥



MBIR: “Thin Manifold” View

sensor manifold 
minimizes 𝑢! 𝑥

prior manifold 
minimizes 𝑢" 𝑥

MBIR Reconstruction:

(𝑥

Sensor manifold – 
Based on physical 

sensor model
Prior manifold – 

Based on empirical or 
assumed information

Forward model 
likelihood

unknown

𝑥

𝑦

measurements

𝑓(𝑥)

negative 
log likelihood

Prior model 
probability

unknown

𝑥 ℎ(𝑥)

prior negative 
log likelihood

!𝑥 = argmin
4

𝑢5 𝑥 + 𝑢6 𝑥



PnP Original Recipe*
oMotivation
oVariable Splitting and proximal maps
oThe ADMM Algorithm
oPnP-ADMM

*Singanallur V. Venkatakrishanan, Charles A. Bouman, and Brendt Wohlberg, 
“Plug-and-Play Priors for Model Based Reconstruction,” 
IEEE Global Conference on Signal and Information Processing (GlobalSIP), 
Austin, Texas, USA, December 3-5, 2013.



PnP Motivation
Uncomfortable facts circa 2013:

– MBIR is great, but it wasn’t close to the best algorithm for the most basic MBIR 
problem:  denoising (MBIR with the identity forward model).

– Algorithms such as non-local means, BM3D, wavelet shrinkage, bilateral filters, 
were all much better at denoising than MBIR.

But denoising is the most basic inverse problem:

$𝑥 = argmin
!

1
2𝜎" 𝑦 − 𝑥 " − log 𝑝 𝑥 = denoise 𝑦; 𝜎

Questions:
– Is there a way to improve on MBIR?
– Can a denoiser be used as a prior model?  There’s nothing to minimize!

log 𝑝 𝑦|𝑥 + const



Fresh Look at MBIR (circa 2013)

 Forward model: 𝑢9 𝑥 = − log 𝑝 𝑦 𝑥

 Prior model:  𝑢: 𝑥 = − log 𝑝 𝑥

MAP or regularized inverse

-𝑥 = argmin
%

𝑢! 𝑥 + 𝑢$ 𝑥

Can we minimize these 
two terms separately?

Proximal 
maps



Proximal Maps

Important: 5𝐹: 𝑣 	is an agent that updates solution

𝑣

𝑢# 𝑥

 Proximal map of 𝑓 with base point 𝑥:

!𝐹$ 𝑣 = argmin
%

𝑢$ 𝑥 	+
1
2𝛾#

𝑥 − 𝑣 #

=𝐹$(𝑣)

Base point

Minimize a 
function

Minimize a function subject to a quadratic penalty on the 
distance (proximity) to a given base point.

Quadratic 
“spring” penalty



Proximal Map Fact: Gradient Step

Gradient Step: For 𝛾 small, the proximal map is a gradient step

8𝐹$ 𝑣 ≈ 𝑣 − 𝛾∇𝑢$ 𝑣

8𝐹$ 𝑣 = argmin
%

𝑢$ 𝑥 +
1
2𝛾# 𝑥 − 𝑣 #



Proximal Map Fact: Denoiser

Denoiser: When 𝑢$ 𝑥 = − log 𝑝 𝑥 , the proximal map is a denoiser

8𝐹$ 𝑣 = argmin
%

1
2𝛾#

𝑣 − 𝑥 # − log 𝑝 𝑥

= Denoise 𝑣; 𝛾
MAP denoiser for AWGN

-Log likelihood for 
AWGN with variance 𝛾!

8𝐹$ 𝑣 = argmin
%

𝑢$ 𝑥 +
1
2𝛾# 𝑥 − 𝑣 #



Denoisers are Gradient Steps!

Prior distribution

𝑝 𝑣 =
1
𝑍
exp −𝑢: 𝑥

Then for small 𝛾, 
𝑣 − 𝛾∇𝑢: 𝑣 = Denoise 𝑣; 𝛾

Denoisers are gradient steps for log priors
MAP denoiser for AWGN



Prior Model Proximal Map

Interpretation
– “Projection” of 𝑣 onto prior manifold
– Denoising operator for white additive Gaussian noise

!𝐹$ 𝑣 = argmin
%

1
2𝛾# 𝑣 − 𝑥 # + 𝑢$ 𝑥

𝑣	

𝑥 = =𝐹$ 𝑣 	
“projection” onto 
“prior manifold”

𝑥



Forward Model Proximal Map

Interpretations
– “Projection” of 𝑣 onto sensor manifold
– MAP estimate with additive white Gaussian noise prior

!𝐹! 𝑣 = argmin
%

𝑢! 𝑥 +
1
2𝛾# 𝑥 − 𝑣 #

𝑥

𝑣
𝑥 = =𝐹% 𝑣 	

“projection” onto 
“sensor manifold”



ADMM for MBIR Reconstruction

ADMM: 
– Iteratively reproject on sensor/prior manifolds
– Minimizes 𝑢 𝑥 = 𝑢% 𝑥 + 𝑢$ 𝑥

Initialize 𝑣, 𝑢 = 0
Repeat {

𝑥 ← !𝐹! 𝑣 − 𝑢

𝑣 ← !𝐹$ 𝑥 + 𝑢

𝑢 ← 𝑢 + 𝑥 − 𝑣
}

// Project onto sensor manifold

// Projection onto prior manifold

// Augmented Lagrangian update



PnP for MBIR Reconstruction

Big Idea: 
– Replace 𝐹$ with any denoiser!
– Does it still converge? Does it minimize anything?

Initialize 𝑣, 𝑢 = 0
Repeat {

𝑥 ← !𝐹! 𝑣 − 𝑢

𝑣 ← Denoise 𝑥 + 𝑢

𝑢 ← 𝑢 + 𝑥 − 𝑣
}

// Project onto sensor manifold

// Denoise

// Augmented Lagrangian update



PnP circa 2013

Ground Truth

Subsamples

K-SVD BM3D

TV q-GGMRFPLOW
RMSE : 12.56

RMSE : 14.54 RMSE : 15.50 RMSE : 15.72

RMSE : 14.11

Noise std. dev : 5% of max signal

Forward model: 
sparse subsampling

Prior model: denoising 
algorithm

P n P
Prior

Forward

𝑢! 𝑥 = 0
"∈ $%&'()*

1
2 𝑥" − 𝑦" +



sensor manifold prior manifold

Plug-and-Play Intuition
Question: Does PnP converge?
Answer: Yes, if 5𝐹9 and 5𝐹: are nonexpansive.*

*Or more precisely, 𝑇 = 2 /𝐹! − 𝐼 2 /𝐹" − 𝐼  nonexpansive ensures convergence.

Initialize 𝑣 = 𝑥, 𝑢 = 0
Repeat {

𝑥 ← =𝐹% 𝑣 − 𝑢
𝑣 ← =𝐹$ 𝑥 + 𝑢
𝑢 ← 𝑢 + 𝑥 − 𝑣

}



What’s great about PnP

It produces great results

It’s modular
– You only need to train the prior distribution once
– You can adapt different forward models with the same prior
– The software is modular too!

There are lots of denoisers to choose from



Some Cool Results
oTransmission electron microscopy
o3D reconstruction from sparse views
o4D reconstruction from sparse views



Bright Field Electron Microscopy
Suhas Shreehari, Purdue/Oak Ridge National Laboratory
Singanallur V Venkatakrishnan, Purdue/Oak Ridge National Laboratory
Greg Buzzard, Purdue
Jeff Simmons, Larry Drummy, AFRL
Charles Bouman, Purdue



3D Bright Field Tomography:
Aluminum Spheres (Real) Dataset

67 equi-spaced views from -65° to +65°

Slice 307

100 nm



Aluminum Spheres (Real) Dataset: Reconstructions

PnP prior

qGGMRF prior

FBP



Cone-Beam CT for Imaging AM Parts
Thilo Balke, Soumend Majee,Greg Buzzard, Purdue
Pat Howard, GE Healthcare
Scott Poveromo, Northrop Grumman



Cone-Beam CT

𝑿 - reconstructed 
image

Sourc
e

Detecto
r

X-rays

Rotatio
n axis

Cone-Beam Geometry

𝒀 – measured 
sinogram

Beer’s Law attenuation

Discretized model

,𝜇 𝑟 𝑑𝑟 = −log
𝐼) 𝑢, 𝑣
𝐼! 𝑢, 𝑣

𝑦 = 𝐴𝑥 + 𝑤



Reconstructions
FBP
2160 Views

FBP
270 Views

MBIR
q-GGMRF
270 Views

MBIR
Plug-and-Play
BM4D
270 Views

mm-1



4D Recon using PnP/MACE
 Soumendu Majee, Purdue
 Thilo Balke, Purdue
 Craig A. J. Kemp, Eli Lilly
 Gregery T. Buzzard, Purdue
 Charles A. Bouman, Purdue



4D MBIR Reconstruction
TIMBIR:

• Showed 16x increase in temporal resolution
• Based on simple 4D MRF prior

4D object

Forward model
𝑝 𝑦 𝑥

Prior model 
𝑝 𝑥 𝑥 𝑦

Cone-beam CT 
measurements

4D MBIR reconstruction: 
-𝑥 ← argmin

%
− log 𝑝 𝑦 𝑥 − log 𝑝 𝑥

Can we do better with 4D PnP prior?



Experimental Setup
Scanner Model  North Star Imaging X50
Source-Detector Distance  839	mm 
Magnification  5.57
Cropped Detector Array  731×91, 0.254	mm 2 
Detector resolution at ISO  45.7	µm
Number of Views per Rotation 150
Voxel Size   (45.7	µm)3 
Reconstruction Size (𝑥, 𝑦, 𝑧, 𝑡) 731×731×91×16

X-Ray 
Source

Detector

Rotating 
Object

Other details:
• Object held in place by fixtures: artifacts
• All 4D results undergo preprocessing to correct for jig artifacts



Multi-Slice Fusion: Qualitative Comparison 

FBP (3D) MBIR with 4D prior PnP:Multi-Slice Fusion



Vial Scan with Force-Curve

Scanner parameters:
– 758	×290 pixels, 3750 views, 25 full 

rotations
– Detector spacing: 0.254×0.254	mm!

– Source-object distance: 152	mm
– Object-detector distance: 695 mm
– Magnification: ≈ 5.57

Image Parameters (ROR)(rotations 5-8):
– 758×758×290×4	voxels
– Voxel size: 0.05	mm "

– Field of view: 38 mm (758 voxels)

Sinogram View



Reconstruction (𝟏𝟖𝟎° per time-point)

FBP

Multi-Slice Fusion



Generative PnP (GPnP):
oProximal generators 
oMarkov chains
o Intuition behind GPnP



Can PnP be Generative?

Problem: PnP only generates a single “best” result

Question: 
– Can PnP be modified to generate samples from the posterior distribution?
– What is the posterior distribution?

B𝑋 ∼ 𝑝!|G 𝑥|𝑦 =
1
𝑍 𝑝 𝑦|𝑥 𝑝 𝑥



Posterior Distribution

The posterior distribution is given by

𝑝 𝑥|𝑦 =
1
𝑍
exp −𝑢9 𝑥 − 𝑢: 𝑥

where
𝑢! 𝑥 = − log 𝑝 𝑦|𝑥
𝑢$ 𝑥 = − log 𝑝 𝑥

Strategy:
– Create Markov chain
– Proximal generators: create sequential random samples
– Modular implementation



Proximal Generators

Proximal Map
5𝐹: 𝑥 = argmin

H
𝑢: 𝑣 +

1
2𝛾#

𝑣 − 𝑥 #

Proximal distribution

𝑞: 𝑣|𝑥 =
1
𝑍
exp −𝑢: 𝑣 −

1
2𝛾#

𝑣 − 𝑥 #

Proximal Generator
𝑉 = 𝐹: 𝑥 ∼ 𝑞: 𝑣|𝑥

Generates a sample from 
the proximal distribution



ball of 
radius 𝛾

𝑥

x1

x2

Interpretation of Proximal Generator

Intuition:
– Locally samples from the prior distribution
– Expected change approximates score 

𝑝 𝑥 =
1
𝑍 exp −𝑢 𝑥

𝑉 = 𝐹$ 𝑥 ∼ 𝑞$ 𝑣|𝑥



Generative PnP

Observations/questions: 
– This is a Markov chain
– Does it converge to a stationary distribution?
– If so, then what is the stationary distribution?

Initialize 𝑋 = Random 0, 𝐼 + ⁄! #
Repeat {

𝑋 ← 𝐹$ 𝑋

𝑋 ← 𝐹! 𝑋
}
Return(𝑥)

// Prior Model Proximal Generator 

// Forward Model Proximal Generator



GPnP Theorem

Theorem: Consider 𝑋P = 𝐹9 𝐹: 𝑋PQ9 , then
• 𝑋7 is a reversible Markov chain
• 𝑋7 has a stationary distribution given by

F𝑝 𝑥|𝑦 =
1
Z
exp −𝑢! 𝑥 − F𝑢$ 𝑥; 𝛾#

– where R𝑢$ 𝑥; 𝛾"  is 𝑢$ 𝑥  blurred with a Gaussian noise of variance 𝛾".

Bottom line:
– Repeated sequential application of 𝐹$ and 𝐹% converges to “desired” distribution.
– But GPnP introduces AWGN with variance 𝛾" to the prior distribution!



sensor manifold 
𝑢% 𝑥

Generative Plug-and-Play Intuition

Repeat {
𝑋 ← 𝐹$ 𝑋
𝑋 ← 𝐹% 𝑋

}

prior manifold 
𝑢$ 𝑥

blurred prior manifold 
R𝑢$ 𝑥



Implementing Proximal Generators:
oGeneric implementation
oPrior model proximal generator
oGPnP Psuedo-code



How to implement the Proximal Generator?

For 𝛾 small, just add white noise!
𝐹 𝑥 ≈ 5𝐹 𝑥 + 𝛾𝑊

white Gaussian noiseOrdinary 
proximal map

Proximal map 
parameter

Proximal 
generator



Forward Model Proximal Generator

For small 𝛾 …
!𝐹! 𝑣 = argmin

%
𝑢! 𝑥 + !

#8&
𝑥 − 𝑣 #       // Proximal Map

𝑣
𝑥 = =𝐹% 𝑣 	

“projection” onto 
“sensor manifold”

𝐹! 𝑣 = !𝐹! 𝑣 + 𝛾𝑊   // Proximal Generator

𝑥𝑋



Proximal Generator for Prior

For the prior, we know that
𝐹: 𝑣 = 5𝐹: 𝑣 + 𝛾𝑊

≈ Denoise 𝑣, 𝛾 + 𝛾𝑊

But we will use score matching for:
– More flexible/accurate form
– Easier training (closed form loss function)
– But there is a “catch”…

MAP denoiser for AWGN



Denoising Score Matching (Vincent 2011)*

Amazing	result:	
– The	AWGN	denoiser	provides	an	exact	MMSE	estimate	of	the	score

−∇P𝑢: 𝑥; 𝜎# ≈
1
𝜎#

Denoise 𝑥; 𝜎 − 𝑥
– Exactly true for any 𝜎

But….
– R𝑢$ 𝑥; 𝜎"  is the energy function for the “noisy” prior
– So we have the exact solution, but for a noisy prior

MMSE denoiser for AWGN

*P. Vincent, “A connection between score matching and denoising autoencoders,” Neural Computation, 2011. 



Interpretation of Denoising Score Matching

Intuition:
– Denoiser moves towards larger probability
– Expected change approximates score 

x1

x2

probability density 
blurred by 𝜎

−𝜎+∇6𝑢G 𝑥; 𝜎+ ≈ Denoise 𝑥 − 𝑥

white noise ball 
with radius 𝜎

𝑥
Denoise 𝑥



Prior Proximal Generator

Define

𝛽 =
𝛾#

𝜎#
	

Using score matching, the prior proximal generator is: 

S𝐹: 𝑥; 𝛽, 𝜎 ≈ 1 − 𝛽 𝑥 + 𝛽Denoise 𝑥; 𝜎 + 𝛽𝜎𝑊

Remember:
– b𝐹$ is based on “noisy” prior, but noise decreases as 𝜎 → 0
– More accurate approximation for 𝛽 ≪ 1

Proximal Map parameter

Noise used in training denoiser



𝑣	

𝑋 = b𝐹$ 𝑣 	

Prior Model Proximal Generator

– Prior blurred by 𝜎
– Step size scaled by 𝛽

L𝐹$ 𝑥; 𝛽, 𝜎 ≈ 1 − 𝛽 𝑥 + 𝛽Denoise 𝑥; 𝜎 + 𝛽𝜎𝑊

𝑋 Noise blur 𝜎



GPnP Basic Algorithm

𝛽 = ⁄! 9; 𝜎:;< = 2;
Initialize 𝑋 = Random 0, 𝐼 + ⁄! #
Repeat {

𝑋 ← 1 − 𝛽 𝑋 + 𝛽Denoise 𝑋; 𝜎 + 𝛽𝜎RandN(0, I)
𝑋 ← 8𝐹! 𝑋 + 𝛽𝜎RandN(0, I)
𝜎 ← Reduce 𝜎

}
Return(𝑥)

– Prior	is	blurred	by	 1 + 𝛽 𝜎"

– But with time 𝜎 → 0



GPnP Basic Algorithm: Minor Hack

𝛽 = ⁄! 9; 𝜎:;< = 2; 𝛼 = 1.3;
Initialize 𝑋 = Random 0, 𝐼 + ⁄! #
Repeat {

𝑋 ← 1 − 𝛽 𝑋 + 𝛽Denoise 𝑋; 𝛼𝜎 + 𝛽𝜎RandN(0, I)
𝑋 ← 8𝐹! 𝑋 + 𝛽𝜎RandN(0, I)
𝜎 ← Reduce 𝜎

}
Return(𝑥)

– Prior	is	blurred	by	 1 + 𝛽 𝜎"

– But with time 𝜎 → 0



Experiments 

Experiment:
• Prior proximal generator: BM3D, DRUNet*, DDPM denoiser trained on 

CelebAHQ-256**
• Forward model: interpolation with sparse sampling of 10%, 5%, 2% and 

missing rectangle.

Parameters
• 𝑁 = 100; 𝜎:;< = 0.5	or	2.0; 𝜎:=> = 0.005; 𝛽 = ⁄! 9; 𝛼 = 1.3; 
• Same parameters work for different problems (interpolation, 

tomography, …) and different denoisers (BM3D, DRUNet, …).
*Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu Timofte, “Plug-and-Play Image Restoration 
With Deep Denoiser Prior,” PAMI 2022.

**Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu Timofte, “Plug-and-Play Image 
Restoration With Deep Denoiser Prior,” PAMI 2022.



Sparse interpolation: 10% of pixels sampled, BM3D prior 
(Std dev intensity window changes) 



Sparse interpolation: 10% of pixels sampled, DRUNet prior 
(Std dev intensity window changes) 



Sparse interpolation: 5% of pixels sampled, DRUNet prior 
(Std dev intensity window changes) 



Sparse interpolation: 2% of pixels sampled, DRUNet prior 
(Std dev intensity window changes) 



Inpainting: Center rectangle omitted - 3 samples, DRUNet prior 
(Std dev intensity window changes) 



Inpainting: Center rectangle omitted - 3 samples, BM3D prior 
(Std dev intensity window changes) 



Inpainting: Center rectangle omitted - 3 samples, DDPM denoiser trained 
on CelebAHQ-256 prior (Std dev intensity window changes) 

IT’S A FACE!!



Conclusions

Generative PnP: A natural generalization of PnP original recipe
– Denoiser for prior
– Proximal map for forward model
– Iterate and add noise

GPnP vs Langevin Dynamics*:
– Discrete Markov Chain vs Stochastic Differential Equation
– Proximal Maps  vs Gradient Descent
– New Approach  vs Established Method

*Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, Ben Poole, “Score Based 
Generative Modeling Through Stochastic Differential Equations,” ICLR 2021.


