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Abstract—Recent developments in dual-energy X-ray CT have
shown a number of benefits over standard CT for object sepa-
ration, contrast enhancement, artifact reduction, and material
composition assessment. As with traditional CT, model-based
iterative approaches to reconstruction offer the opportunity
to reduce noise and artifacts in dual energy reconstructions.
However, previous approaches to model-based dual energy re-
construction have not fully modeled the statistical dependencies
in the material-decomposed data. In this paper, we present a
method for model-based iterative reconstruction which accounts
for both the statistical dependency in the material decomposed
sinogram components, and fast-switching approaches to dual-
energy sampling. Our method also incorporates a positivity
constraint in the space domain which accurately accounts for
the true physical constraint of positive X-ray attenuation and is
computationally simple to implement. Both phantom and clinical
results show that the proposed model produces images which
compare favorably to FBP in overall image quality.

I. INTRODUCTION

Acquiring X-ray CT exposures at two distinct energy levels
can help distinguish different material types, which is of great
importance in disease diagnosis and security inspection. Dual-
energy CT reconstruction typically works by reconstructing
two density maps for two basis materials. The cross-sectional
attenuation map at any given energy can then be computed as
a linear combination of the two material density maps [1].

A typical approach to dual-energy reconstruction works by
first transforming the low and high energy photon counts into
quantities that are proportional to the integral of the material
density for two basis materials. This material-decomposed
sinogram can then be directly reconstructed using FBP to
form the material density maps in image space. The trans-
formation from photon counts to integral projections is per-
formed by a material-decomposition function, which can then
be experimentally measured through a scanner calibration
procedure. However, the processes of applying this material-
decomposition function changes the statistics of the measured
data, which results in reconstructions that have statistically
correlated noise properties.

Statistical iterative methods have the natural advantage that
they can explicitly build data statistics into the dual-energy
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problem description, and account for the significant changes
occurring during material decomposition. Some statistical ap-
proaches [2], [3] have been proposed from a rigorous theo-
retical perspective to reconstruct the material images directly
from the low- and high-energy projections. On the other hand,
Model-Based Iterative Reconstruction (MBIR), which views
the reconstruction problem as the solution of a Maximum A
Posteriori (MAP) estimation formulation, has been found to
be very effective in reconstruction of single-energy CT images
[4], [5].

In this paper, we propose an approach for applying MBIR
to the dual-energy X-ray CT problem. Our approach explicitly
accounts for the correlation of scanner noise caused by the
material-decomposition process, and it also allows for accurate
modeling of data collected using kV switching techniques,
in which low and high energy measurements are used at
alternating views. The MBIR approach incorporates a prior
model that accounts for the separation into materials, and
includes a simple positivity constraint that accurately accounts
for the true physical constraint of positive X-ray attenuation.

II. PROBLEM FORMULATION AND PROPOSED SOLUTION

A. Problem Formulation

The linear attenuation coefficient x(E) of any material as a
function of energy E can be expressed as a linear combination
of mass attenuation coefficients of two basis materials [1].
Without loss of generality, in this paper we choose the basis
materials as water and iodine. Then the relationship can be
described as

xj(E) = mj · µT (E), (1)

where j is the index of the voxel, mj , [mj,W , mj,I ]
represents the water-equivalent and iodine-equivalent densities
at voxel j and µ(E) , [µ

W
(E), µ

I
(E)] represents the known

mass attenuation coefficients for water and iodine. The task is
to reconstruct the material densities from the measurements
obtained from dual-energy acquisition.

Let m ∈ ℜN×2 represent the reconstructed images for
the selected material basis pair, where each row is given by
mj = [mj,W , mj,I ]. Furthermore, let y ∈ ℜM×2 be the
set of dual-energy sinogram measurements, where each row
given by, yi = [yi,l, yi,h], specifies the low and high energy
measurements for the ith projection.

Then the reconstruction problem can be formulated as
computing the MAP estimate given by

m̂ = arg max
m∈ΩN

{logP (y|m) + logP (m)}, (2)
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where P (y|m) is the conditional distribution of y given m,
P (m) is the prior distribution of m, and Ω is the constrained
set for each voxel.

B. Forward Model

Let p ∈ ℜM×2 be the forward projection of the material
reconstruction, with its ith row given by

pi ,

 ∫
ray i

m∗,W (r)dr,

∫
ray i

m∗,I (r)dr

 (3)

Then p can be expressed as p = Am where A is the forward
projecting matrix for the CT system.

Furthermore, we may define a vector-valued function hi :
ℜ2 → ℜ2, which transfers the material projections to the
expected photon attenuation along the ith ray, as

hi(pi) , − log

∫
R

si(E) exp
{
−piµ

T (E)
}
dE

 , (4)

where E denotes the X-ray photon energy, vector si(E)
represents the two normalized source/detector spectra for the
ith ray. Assuming hi is invertible, the corresponding inverse
function h−1

i is defined as

h−1
i (hi(pi)) , pi . (5)

Assume that for each detector, a measurement is made of
the photon counts for both the low and high energy case.
Then we can compute the associated low and high attenuation
measurement as

yi ,
[
− log

(
λi,l

λi,o,l

)
,− log

(
λi,h

λi,o,h

)]
, (6)

where λi,l and λi,h represent the measured photon counts
along the ith ray at low and high energies, respectively, and
λi,o,l and λi,o,h represent the expected air-scanned photon rate.
Then yi has approximate mean hi(pi) and approximate inverse
covariance Wi as

Wi = diag {wi,l, wi,h} . (7)

The diagonal elements wi,l and wi,h give the inverse variances
of yi,l and yi,h respectively. Zero off-diagonal entries come
from the assumption that the incident rays with different
energy levels are mutually independent. The values of wi,l and
wi,h can be estimated by using the photon count measurement
λi [6], [7], as

wi,l =
λ2
i,l

λi,l + σ2
e

, (8)

wi,h =
λ2
i,h

λi,h + σ2
e

, (9)

where σ2
e represents the variance of electronic noise in the

data acquisition [8]. The log-likelihood term can then be
approximated by a second-order Taylor series expansion using

a Poisson-Gaussian noise model [6], [7], which yields the
quadratic expression:

− logP (y|m)

≈1

2

∑
i

(yi − hi(Ai,∗m))Wi (yi − hi(Ai,∗m))
T
+ f(y),

(10)

where f(y) is a function depending on data y only. Define p̂i
as an estimate of the material projection pi, which is obtained
via the h−1

i function,

p̂i , h−1
i (yi). (11)

Then by a first order approximation, the likelihood term can
be written as

− logP (y|m) ≈ 1

2

∑
i

(p̂i −Ai,∗m)Bi (p̂i −Ai,∗m)
T
,

(12)
where the weighting matrix Bi is given by

Bi , [∇h−1
i (yi)]

−1Wi[∇h−1
i (yi)]

−T . (13)

Each Bi is a 2×2 symmetric matrix which represents the
inverse covariance of the estimated material projections p̂i.
The off-diagonal entries of Bi provide information about
the correlation between the calculated projections of distinct
materials.

This formulation also works for the fast kVp switching
data acquisition mode, in which the effective source voltage
changes from view to view. In this case, each projection only
contains one of the low- or high-kV measurements. So if a
low measurement is made, then wi,h = 0, and if a high
measurement is made, then wi,l = 0. The missing components
for the values of yi are then computed by interpolation.
However, these interpolated values are only used to compute
the gradient ∇h−1

i (yi), which consequently only have a small
effect the value of Bi. Moreover, the matrix Bi is always rank
deficient in this case, with a zero eigenvalue in the direction
of the missing information.

In practice, the h−1
i can be the same material decomposition

function used in FBP reconstruction, and it can be empirically
measured from the physical system.

C. Prior Model
We employ a Markov random field (MRF) as our prior

model with the form

− logP (m) =
∑

s∈{W,I}

∑
{j,k}∈C

bjk,sρ(mj,s −mk,s), (14)

where s is the index of material type, C represents the set of all
neighboring voxel pairs, bjk,s are regularization weights and
ρ(.) is the potential function. Our particular choice of penalty
here is the q-generalized Gaussian MRF (q-GGMRF) [4]:

ρ(∆) =
|∆|p

1 + |∆/c|p−q
. (15)

with 1 < q ≤ p ≤ 2, which guarantees strict convexity
and therefore global convergence of the cost function. The
parameter c balances the performance between noise reduction
and edge preservation [4]. We choose here to perform this
regularization independently on each of the material density
images.
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Fig. 1. This figure illustrates the feasible values of a pixel mj =
[mj.W ,mj,I ]. The set is formed by the intersection of only two half planes,
one defined by nmax and the other by nmin.

D. Constrained Optimization

An important physical constraint to the solution is that
the attenuation at every energy must be non-negative. More
precisely for all E ∈ [40, 140] keV, we know that

xj(E) = mj · µT (E) ≥ 0 , (16)

where the photon energy range [40, 140] keV is of particular
interest for medical imaging and is above the k-edge of iodine.
This constraint is then equivalent to the constraint that

mj · nT (E) ≥ 0 , (17)

where n(E) = µ(E)
||µ(E)|| is the normalized mass attenuation

vector. The constraint set is then given by mj ∈ Ω where

Ω = ∩E∈[40,140]{mj ∈ ℜ2 : mj · nT (E) ≥ 0} . (18)

So Ω is formed by the intersection of an infinite number of half
planes. However, the form of Ω can be dramatically simplified
by noticing that the direction of n(E) moves continuously
with E, therefore the constraint can be represented much more
simply by the intersection of two planes corresponding to the
minimum and maximum values of n(E) as nmin and nmax,
with

Ω =
{
m : mj · nT

min ≥ 0 and mj · nT
max ≥ 0

}
. (19)

The constraint set and the associated vectors are illustrated
graphically in Fig. 1.

Combining the log likelihood in (12) and the prior in (14)
with the above constraints, the MAP estimate of m can be
obtained by solving the following constrained optimization:

m̂ = arg min
m∈ΩN

{
1

2

∑
i

(p̂i −Ai,∗m)Bi (p̂i −Ai,∗m)
T

+
∑

s∈{W,I}

∑
{j,k}∈C

bjk,sρ(mj,s −mk,s)

 . (20)

We use iterative coordinate descent (ICD) algorithm with
an FBP initial condition to solve the problem in (20), and

TABLE I
COMPARISON OF FBP AND MBIR FOR MEASUREMENT OF NOISE AND

IN-PLANE MTF, FOR THE IMAGES IN FIG. 2. THE 10% MTF IS CHOSEN
SINCE IT GENERALLY REPRESENTS THE VISUAL RESOLUTION OF THE

IMAGE.

Noise Std. Dev. (mg/cc) 10% MTF (lp/cm)
FBP MBIR FBP MBIR

Water 21.21 9.68 6.15 11.80
Iodine 0.60 0.38 5.81 10.59

70keV Mono 14.18 13.69 6.60 11.70

with each ICD voxel update, we compute the exact solution
to the constrained voxel update with the Karush-Kuhn-Tucker
(KKT) conditions.

III. RESULTS

In this section, we apply the dual-energy MBIR algorithm to
both phantom and clinical reconstructions. Data is acquired on
a Discovery CT750 HD scanner (GE Healthcare, WI) in dual-
energy fast switching acquisition mode, rapidly alternating
source voltage between 80 kVp and 140 kVp from view
to view in 540 mAs. Each reconstructed 512×512 axial
image has a prescribed thickness of 0.625mm. The recon-
structed pixel value represents the water-equivalent or iodine-
equivalent densities in units of mg/cm3. The prior parameters
are empirically chosen to be p = 2.0, q = 1.2, and c = 10.
We will compare our method with a generic FBP method
with a standard reconstruction filter kernel, which improves the
FBP image quality via a correlation-based noise management
[9]. Our method has not been optimized to yield a particular
desired image quality performance.

Fig. 2 presents reconstructions of a GE Performance Phan-
tom with 984 views per rotation for each kVp with pitch
0.938:1. As shown in the figures, MBIR creates smoother
texture over FBP in flat regions. Fig. 3 shows the improvement
in visual resolution brought by MBIR in the monochromatic
image. Quantitative measurements also indicate that MBIR has
the ability to improve the in-plane resolution with reduced
noise over FBP, as illustrated in Table I.

Fig. 4 shows reconstructions of a clinical scan of the
abdomen with 984 views per rotation for each kVp at a
helical pitch of 0.984:1. By visual comparison to FBP, MBIR
improves the water image by reducing noise and enhancing
the overall contrast. The bone structures in the MBIR images
exhibit less blooming and sharper edges than FBP, and the
texture of the liver area is also improved. Some small lesions
in the liver area and some fine structures are also enhanced in
the MBIR images compared to the FBP images. The overall
contrast enhancement by MBIR can also be observed in the
monochromatic images. These results illustrate some potential
diagnostic benefits of iterative reconstruction from dual-energy
CT data.

IV. CONCLUSION

In this paper, we have presented a model-based iterative
reconstruction approach for dual-energy X-ray CT reconstruc-
tion. The method combines a forward model to account for
correlation between material decomposed projections with
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Fig. 2. Comparison of generic FBP vs MBIR performance on a GE Performance Phantom. All the images represent the same imaging plane in the 3D volume.
Top left: FBP water image; top middle: FBP iodine image; top right: 70keV monochromatic FBP image. Bottom left: MBIR water image; bottom middle:
MBIR iodine image; bottom right: 70keV monochromatic MBIR image. Display window for the water images: WW 1600mg/cm3 and WL 900mg/cm3; for
iodine images: WW 40mg/cm3 and WL 3mg/cm3; for mono images: WW 1000HU and WL 0HU. The monochromatic image at a particular photon energy
is generated by linearly combining water and iodine images with the corresponding mass attenuation coefficients at the given photon energy, according to
equation in (1). The white box in the image indicates the region where the noise standard deviation is evaluated.
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Fig. 3. Profile plot across the resolution bars on a GE Performance Phantom for FBP and MBIR images. Image on the LHS indicates the location of the
profile line, which passes through the resolution bars perpendicularly. Image on the RHS shows the pixel values along that particular line in FBP (blue) and
MBIR (red) images. It can be seen in the figure that the spikes in the MBIR image are much more enhanced than those in the FBP image, which makes the
resolution bars more spatially separable.

MRF regularization, and features an additional physical con-
straint over the reconstructed linear attenuation coefficients.
The proposed method has better performance than FBP in
terms of noise reduction and spatial resolution. Further inves-
tigation will assess how to further improve material separation
performance and investigate potential clinical benefits.
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