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Abstract—Recently it has been shown that model-based recon-
struction (MBR) can greatly improve the quality of computed
tomography (CT) images. In particular, MBR can recover fine
details and small features in the reconstruction more accurately
than conventional algorithms. In order to fully benefit from this
higher spatial resolution, MBR reconstruction requires a higher
spatial sampling rate, or equivalently smaller voxels, to represent
fine details such as edges. However, these higher spatial sampling
rates generate many more voxels for a fixed region-of-interest,
so the resulting computation required for reconstruction can be
greatly increased.

In this paper, we propose an edge-localized iterative re-
construction algorithm that can reconstruct images at high
resolution with computational cost similar to a low resolution
reconstruction. The method works by focusing computation only
on the regions of the image that contain fine details, such as edges.
Experimental results demonstrate that the proposed algorithm
can achieve the same visual quality as the full high resolution
reconstruction algorithm at significantly reduced computational
cost.

Index Terms—Computed tomography, model based reconstruc-
tion, coordinate descent, multi-resolution, targeted reconstruc-
tion.

I. INTRODUCTION

Recent applications of model based reconstruction (MBR)
algorithms to computed tomography have shown that MBR
can greatly improve the image quality by both reducing noise
and increasing resolution [1]–[3]. In particular, MBR can sub-
stantially increase spatial resolution through the incorporation
of a more accurate model of the scanner. However, in order to
fully benefit from this higher spatial resolution, MBR typically
requires a higher spatial sampling rate, or equivalently smaller
voxels, to represent fine details in the images [4], [5]. One
disadvantage of this higher spatial sampling rate is that it
can significantly increase the computational cost of MBR
since many more voxels need to be reconstructed in the same
fixed region-of-interest (ROI). For example, reconstructing the
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images at twice the resolution increases the number of voxels
by a factor of 4 in a 2D plane and by a factor of 8 in a 3D
volume.

In this paper, we present an edge-localized update strategy
that can reconstruct high resolution images with computational
cost similar to a lower resolution reconstruction. The key
idea of our algorithm is to focus the computation only on
the regions of the image that contain fine details, such as
edges. Based on this idea, we first compute a low resolution
reconstruction of the ROI. Since the number of voxels in
the reconstruction is relatively small, this reconstruction can
be achieved with much less computation. The low resolution
reconstruction is then used as the initial estimate for the
high resolution reconstruction. At that stage, we can detect
the regions in the image that contain edges and fine detail,
and we use the iterative coordinate descent algorithm to only
update voxels in these locations. This approach results in high
resolution images that are very close to the results of the
conventional high resolution MBR reconstruction, but requires
only a fraction of the computation to evaluate.

Although generally speaking, the edge-localized update
strategy can be combined with a variety of optimization algo-
rithms, we find that the iterative coordinate descent algorithm
(ICD) has several advantages in this application. First, it allows
individual voxels to be efficiently updated. Second, it has a
relatively fast convergence behavior, especially for the high
frequency content and near the edges in the image [6], [7].

This paper is organized as follows. In section II, we provide
a brief review of our previous work on the ICD algorithm
and the targeted reconstruction framework, which provide
the initial estimate for the edge-localized ICD algorithm. In
section III, we present the edge-localized ICD algorithm used
for fast reconstruction of high resolution images. In section IV,
we verify the performance of the proposed algorithm on
clinical data.

II. MULTI-RESOLUTION TARGETED RECONSTRUCTION

We use a Bayesian approach for model based reconstruction.
Let x denote the vector of the voxels to be reconstructed,
and y be the vector of the measurement data. We model
the data acquisition by the conditional probability density
function p(y|x), and the image by the prior density p(x). The
Maximum a posteriori estimate is computed by maximizing
the a posteriori density function p(x|y) which leads to the
following minimization problem [6]

x̂ = arg min
x≥0

{
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D (y − Ax) + U(x)
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where A is the forward system matrix, and D is a diagonal
weighting matrix which reflects variations in the credibility
of data [8]. The term U(x) penalizes large variations in the
image domain, while preserving edge characteristics [1].

The ICD optimization algorithm works by updating indi-
vidual voxels to minimize the cost of equation (1). It can be
efficiently implemented by keeping a state variable e = Ax−y,
which we call the residual error sinogram [6]. Conventionally,
ICD is implemented so that each voxel is updated exactly once
per iteration, but a faster version of the algorithm, which we
call non-homogeneous ICD (NH-ICD) updates some voxels
more frequently than others in order to speed convergence [7].

Medical imaging typically requires the reconstruction of a
targeted ROI smaller than the full size of the scanned object.
Multi-resolution approaches are typically used to reduce the
computation [9]. In our previous work, we proposed a multi-
resolution framework for targeted reconstruction [10]. In this
framework, we first perform a low resolution reconstruction
that updates all the voxels in the full field of view encompass-
ing all the objects measured by the CT system. Next, a high
resolution reconstruction initialized from the low resolution
images of the previous stage focuses the computation on the
ROI only in order to achieve good image quality without
propagating artifacts from the outside to the inside of the tar-
get. The residual error sinogram correction method described
in [10] reduces the mismatch due to the change in resolution
when switching to the high resolution stage.

III. EDGE-LOCALIZED ICD ALGORITHM

We propose an edge-localized ICD algorithm to perform a
fast high resolution reconstruction. The basic idea is to focus
the computation on the fine details of the image that are not
accurately represented by larger voxels, and update only the
voxels near the edges at the highest resolution, while the rest
of the voxels are directly estimated from the low resolution
reconstruction. In Figure 1(a), we show the initial estimate of
the high resolution image, which is interpolated by a factor of
2 from the low resolution reconstruction. Errors in the initial
estimate are computed by comparing it to a fully converged
high resolution reconstruction. The resulting error image of
Fig. 1(b) shows that the edge voxels have significantly larger
error magnitude than other voxels. In the high resolution
edge-localized reconstruction, the computation is focused on
updating the edge voxels depicted in (c), while the rest of the
image remains unchanged.

The edge-localized ICD algorithm solves a constrained
optimization problem. Let Ω denote the set of edge voxels
as shown in Figure 1(c), and Ω̄ be the complement set of Ω,
containing all the other voxels. We use xΩ and x

Ω
to denote

the vector of the voxels in Ω and Ω̄ respectively. Formally, the
edge-localized reconstruction algorithm solves the following
optimization problem.






x̂ = arg min
x≥0

{
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}

Subject to x̂
Ω

= x̃
Ω

(2)

where x̃
Ω

is an estimate of the voxels in the set Ω̄. Notice
that, assuming U(x) is strictly convex, the objective function

(a) (b)

(c)

Fig. 1. Illustration of the edge-localized ICD algorithm. (a) is the initial
estimate for the high resolution reconstruction, (b) shows the errors in (a)
relative to the true MAP estimate in a [-50,50] HU window, and (c) shows
the detected edge voxels that are updated in the final stage.

is also strictly convex. Moreover, the constraints are linear.
Therefore, it is easy to verify that the optimization problem
in (2) is a convex optimization problem.

We initialize the reconstruction using 512 by 512 sized ROI
images reconstructed by the algorithm described in section II.
The ROI images are then interpolated by a factor of 2 using
bi-cubic interpolation in the axial planes, while the cross-plane
resolution remains unchanged. The interpolated images serve
two purposes in the edge-localized ICD algorithm. First, for
the voxels in Ω, they are used as the initial estimate. Second,
for the voxels in Ω̄, the interpolated images are used as x̃Ω̄

in equation (2), that is, the estimate of the voxels that are not
edges.

The edge-localized reconstruction also uses the residual
error sinogram resulting from the low resolution reconstruction
as its initial residual error sinogram.

To form the set Ω, a robust edge detection algorithm needs
to be developed. We choose to perform the edge detection
independently on each slice of the interpolated volume, follow-
ing a four-step process: clipping, edge detection, thresholding,
and morphological operation. First, before edge detection, the
image is clipped by a lower threshold T = −400HU , in
order to remove the background objects that are not clinically
relevant. Second, we use a Sobel edge detector to compute the
gradient image from the clipped image. Third, the gradient
image is thresholded using the value Tg . Tg determines the
contrast of edge features to be detected. Typically, we use
the threshold Tg = 300 in order to robustly detect high-
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Fig. 2. Clinical reconstruction using MBR, displayed in [-50,350] HU
window

contrast edges such as the bone/tissue boundary as well as
some clinically important lower-contrast edges such as blood
vessel boundaries. After thresholding, a binary image of the
selected edge pixels is formed. In the final step, noise and
outliers in the edge image are removed with a morphological
opening operation followed by a closing operation in order to
obtain the final edge map.

The edge-localized ICD algorithm iterates only on the set
Ω instead of updating all the voxels in the image volume. The
NH-ICD algorithm provides a mechanism to select the order of
voxels to update using two steps. First a voxel-line1 selection
algorithm is used to determine a voxel-line for update. Then
all the voxels on the voxel-line are updated in sequence. The
edge-localized ICD algorithm inherits the voxel-line selection
method from the conventional NH-ICD algorithm; however,
only the voxels in the set Ω are updated. In order to do so,
the voxel-line selection algorithm only selects voxel-lines that
have at least one voxel in the set Ω. When a voxel-line is
selected for update, the 3D edge mask is first checked and
updates are calculated only for the voxels in the set Ω; the
rest of the voxels are skipped.

IV. EXPERIMENTAL RESULTS

In this section, we verify the performance of the edge-
localized ICD algorithm on clinical data. We compare the
images reconstructed by FBP, low resolution MBR, high
resolution full update MBR, and high resolution edge-localized
MBR. The FBP and low resolution MBR images are recon-
structed on 512 by 512 grids over the targeted ROI, whereas
the high resolution reconstructions are of size 1024 by 1024. In
order to visualize the fine details, the images are interpolated
to the size of 2048 by 2048 for comparison.

Figure 2 shows a clinical reconstruction of a patient’s neck
in 240 mm targeted field of view (tfov). In Figure 3, the images
are zoomed in to compare the edges of the bone. The FBP
reconstruction using a standard kernel is shown in (a). The low
resolution MBR image shown in (b) produces sharper edges
than the FBP image. However, the sampling rate of this image
is not sufficiently high to support the reconstructed object
resolution, so the edges do not appear sufficiently smooth. In
(c) and (d) the high resolution reconstructions are shown using
full update NH-ICD and edge-localized ICD, respectively.

1A voxel-line is a set of voxels that fall on a line parallel to the axes of
the helix in the helical scan mode.

(a) (b)

(c) (d)

Fig. 3. Zoomed images comparing edge details displayed in [-50,350] HU
window. (a) FBP reconstruction (b) low resolution MBR (c) high resolution
full update MBR (d) high resolution edge-localized MBR

Both images produce sharp bone edges. There is little visual
difference between (c) and (d); however, the edge-localized
reconstruction requires substantially less computation than the
full update method.

Table I quantitatively compares the image quality and the
computational cost of each algorithm. In each row, we compute
the root mean squared errors (RMSE)2 of all the voxels and
the RMSE of the edge voxels only, as well as the total
computation time of the reconstruction algorithms. The first
row shows the low resolution MBR using NH-ICD algorithm.
In the low resolution reconstruction, the overall RMSE is
relatively low, which implies that low resolution reconstruction
provides a good initial estimate in general, while the large
RMSE among the edge voxels indicates that they need to
be refined. In the second row, by applying the edge-localized
ICD algorithm, the RMSE of the edge voxels is reduced by
almost half, while the total computation time is increased
by only 7.5%. In the third and fourth row, we use two
full update methods for the high resolution reconstruction.
In row three, we use the NH-ICD algorithm, and in row
four, we use the conventional ICD algorithm for both the
low resolution and high resolution reconstructions. Both the
edge-localized and full update high resolution reconstruction
algorithms can achieve similar RMSE for edge voxels, while
the computational costs with the two full update methods are
substantially higher since both algorithms iterate on all the
voxels in the high resolution image grid.

The high resolution reconstruction provides superior image
quality not only around bone edges but also when reconstruct-
ing small high contrast features. To illustrate this, Figure 4
shows an image of a computed tomography angiography
(CTA) study covering a patient’s abdomen and part of the chest
in 350 mm tfov. In this case, the patient has a stent implant
in the abdomen which introduces small high intensity features
that must be reconstructed with fine resolution. Figure 5 (a)

2We use a fully converged full update high resolution reconstruction as the
reference image for the RMSE calculation.
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Method RMSE of all
voxels (HU)

RMSE of
edge voxels
(HU)

Total computa-
tion time a

Low resolution MBR
(NH-ICD)

10.4 19 1

Edge-localized ICD 8.06 10.9 1.075
Full update MBR
(NH-ICD)

6.3 7.8 1.38

Full update MBR
(Conventional ICD)

7.0 11.0 2.82

aNormalized by the total computation time of the low resolution MBR

TABLE I
TABLE COMPARING THE IMAGE QUALITY AND TOTAL COMPUTATION TIME

Fig. 4. Abdomen CTA study with a stent implant, displayed in [-200,500]
HU window.

shows the FBP image using the standard kernel. The low
resolution MBR image shown in (b) significantly reduces
the noise in the soft tissue, and the stent has a sharper
appearance. The image reconstructed at high resolution using
full updates and edge-localized updates are shown in (c) and
(d), respectively. By comparing (c) to (b), we notice that the
slowly varying area in the image such as the soft tissue remains
almost unchanged, whereas the most noticeable difference is
in the reconstruction of the stent. Both (c) and (d) show finer
details of the stent with less undershoot around the edges.
By updating only the edge voxels, the edge-localized ICD
reconstruction shown in (d) achieves similar image quality as
the full update reconstruction.

V. DISCUSSION AND CONCLUSION

In this paper, we present an edge-localized iterative re-
construction algorithm that can reconstruct images at high
resolution with computational cost similar to a low resolution
reconstruction. Experimental results with clinical data have
demonstrated that the proposed algorithm can achieve the
same visual quality as the full high resolution reconstruction
algorithm at significantly reduced computational cost.

Although our method is proposed in a multi-resolution
framework, the edge-localized update strategy can be im-
plemented differently. For example, a method that would
reconstruct the images directly on non-uniform grids to allow
the voxel size to vary across different locations as a function
of local frequency content would be a natural extension of

(a) (b)

(c) (d)

Fig. 5. Zoomed images of the stent implant displayed in [-200,500] HU
window. (a) FBP reconstruction; (b) low resolution MBR; (c) high resolution
full update MBR; (d) high resolution edge-localized MBR.

this work. Although the implementation of such hierarchical
approach might be significantly more complex, especially in
a regularized environment, it might result in overall improved
efficiency.
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