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Better Prior Models 
§ Why do we need better prior models? 

–  Better prior models will be needed as data becomes sparser 
–  Models must be adaptive to different classes of images 
–  Low, mid, and high level representations are needed 

§ What is needed? 
–  More expressive models of images 
–  Trained on real data (scientific/medical data) 
–  Computationally efficient to implement 

§ Promising recent approaches: 
–  Dictionary learning; kSVD; Non-local means; BM3D; Bilateral filters 
–  Many of these are not really consistent prior models 
–  Do not quantify multivariate distribution of image 



Mission statement: 
Formulate a single, consistent, robust, and 
expressive prior model for any image, x, that can 
be used in computationally efficient Bayesian 
estimation algorithms. 

  pθ x( ) = 1
z
exp −u x( ){ }

So we need to construct u(x) 

θ  - parameterizes model



Modeling Patches with Gaussian Mixture 

§ Gaussian mixture model (GMM) for image patches 

Advantage: We can approximate any distribution with GMM 
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Advantage of GMM Patch Model 

§ Advantage of multivariate Gaussian mixture 
– Can model any distribution with enough GM components 
– Capture multivariate distribution of a patch 
– Model interaction between density and texture 

Single GMM 
component 



§ Dual energy CT example 
•  12 clusters. 
•  Display 2 dimensions out of 8 
•  Water/iodine decomposition 

GMM with 2x2 Image Patch 

color-coded scatter plot 
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Question? 

How to build a consistent image 
model out of GMM patches? 



§ Tile image with non-overlapping patches 

 

§ Image distribution 

 

 

§ Energy function 

Model 1:  
Non-Overlapping Tiling with GMM Patches 

p0 (x) = g Psx( )
s∈S0
∏

V Psx( ) = logg Psx( )

u(x) = V Psx( )
s∈S0
∑



§ Tile image with non-overlapping patches 

 

§ Energy function 

Model 1:  
Non-Overlapping Tiling with GMM Patches 
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Model 2:  
Non-Overlapping Tiling with GM Patches 
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§ M2 different tilings with non-overlapping patches 

§ Form a single distribution using the “Product of Experts” 



§ M2 different tilings with non-overlapping patches 

§ “Product of Experts” energy function 

Model 2:  
Non-Overlapping Tiling with GM Patches 
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§ Prior model 

§ Energy function 

§ Log GMM 

 

Final GM-MRF Model 
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corrects for patch overlap 

sums over all patches 



§ GM-MRF prior model 

 
§ OK, but … 

–  Is this really an MRF?   
•  Yes, with an (2M-1)x(2M-1) neighborhood. 

–  How do I train the model? 
•  Just use your favorite GMM app to fit to patch data. 

–  How do I use this? 
•  Hmm, good point. We’ll give you a surrogate function. 

Final GM-MRF Model 
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§ MAP estimate 

§ MAP estimate with surrogate prior 

where 
 
 
 
 
How do we find                ? 

MAP Estimation with GM-MRF Model 

x̂ = argmin
x

− log p y | x( )+ u x( ){ }

x̂ = argmin
x

− log p y | x( )+ u x; ′x( ){ }

u ′x( ) = u ′x ; ′x( )
u x( ) ≥ u x; ′x( )

u ′x ; ′x( )

Perform surrogate optimization 
iteratively, updating     with 

each iteration 

′x  is the current state of x

′x



•  Each          is quadratic, so the resulting surrogate 
function,           , is also quadratic 

Lemma: Surrogate Functions for Logs of 
Exponential Mixtures  

vk x( )
q x; !x( )



•  Original energy function 

•  Surrogate energy function 

 
    where the weights are given by 

 
 
 
•  The weights,     , are soft classifications into the GMM classes 

Surrogate Prior for GM-MRF Model 
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Experiments 
§ Denoising experiments with the GM-MRF model 

1.  high dosage CT images with artificially added white noise; 
2.  low dosage CT images, containing real reconstruction noise. 

§ Compared with the following methods 
•  q-GGMRF model (8-point neighborhood, p=2, q=1.2, c=10) 
•  K-SVD method (7x7 patch, 512 dictionary entries) 
•  BM3D method (8x8 patch) 

§ The GM-MRF model was trained from clean high dosage CT images, 
with 30 subclasses and patch size 5x5. 

§ Parameters adjusted for lowest RMSE values (Experiment 1) and 
comparable noise level in homogeneous region (Experiment 2) for all 
methods. 

 
 

 

 



MAP classification with Learned GM-MRF 
§ Color-codes the most probable subclass for each patch with 
the learned GMM parameters 

§ Shows that the GMM parameters capture different 
materials along with different edges 

 

 

 

 

materials	 edges	



original 

noisy 

GM-MRF 

q-GGMRF BM3D 

K-SVD 

Experiment 1: High Dosage CT Images 

Methods	
RMSE 
(HU)	

noisy	 40.05	

GM-MRF	 17.02	

Q-
GGMRF	

20.48	

K-SVD	 18.68	

BM3D	 17.25	

•  GM-MRF model achieves 
-  lowest RMSE 
-  less salt/pepper noise and sharper edges than q-GGMRF model 
-  less aggressive and preserves more details in soft tissues than K-SVD and 

BM3D 



original 

GM-MRF q-GGMRF 

K-SVD BM3D 

•  GM-MRF achieves 
-  sharper edges than q-

GGMRF model 
-  less artifacts and better 

texture in soft tissues 
than K-SVD and BM3D 
 

 

 

 

 

Experiment 2: Low Dosage CT Images 



GM-MRF – original q-GGMRF – original 

K-SVD – original BM3D – original 

Experiment 2: Low Dosage Difference Images 

•  GM-MRF model 
shows the ability to 
regularize different 
materials/structures 
differently: 
-  more regularization in 

soft tissue 
-  less regularization in 

bone/lung tissue 
 



Conclusions 
§ GM-MRF (Gaussian Mixture MRF) 
•  Is and MRF 
•  Can be trained for any image 
•  Captures full multivariate distribution of image 

§ How is the GM-MRF used? 
•  Is constructed with POE trick (geometric mean of 

distributions) 
•  Surrogate function for an mixture distribution 

§ Medical applications 
•  It can capture both mean and texture characteristics for medical 

applications 
•  MAP optimization looks like it uses an adaptive quadratic prior 


