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1) Overview!
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2) MRFs and Inverse Problems!

8) Experimental results!

CT reconstruction simulation!

Problem: 
  MRFs are commonly used prior models, however they are restricted to 
very simple Gibbs distributions. 

  How can we make MRFs more expressive? 
 

Our Approach: 
1)  Model conditional probability of pixels given neighbors,                 . 
2)  Use local approximation to the implicit Gibbs distribution of the MRF. 
3)  Iteratively minimize the MAP cost. 
 
Result: 
An MRF prior which adapts to local image structure. 

  MRFs can be expressed as Gibbs distributions 
 

  Then inverse problems can be solved as MAP estimate with MRF prior 

MRF with conditional 

distribution                   . Not constructive 

Constructive proof 
Gibbs distribution 

p(xs | x∂s ) p(x) = 1
z
exp −u(x){ }

Hammersley-Clifford Theorem 

4) Our Solution: Implicit Gibbs distributions!

Convergence of RMSE 

Implicit prior 

GGMRF (p=1.2) qGGMRF (p=2, q=1, c=1.5) 5) Computing the Surrogate Energy Function!

  We introduced a new MRF modeling which is only implicitly specified 
through the conditional probabilities.  

  We provided a simple example of image denoising, but the method is 
generally applicable to any continuously valued MRF prior model. 

  We performed a simple denoising experiment of removing additive white 
Gaussian noise (σw=20). 

  The 25 grayscale training images were used.  
  We ran comparisons with different parameters of GGMRF and qGGMRF 

which are the current state-of-the-art priors for inverse problems. 

Original noisy image 

The matrix Bs,r entry 
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Surrogate energy function u(x;x’) 

7) Conditional probability model!

Conclusion!
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log p x( ) = u x( ) = ρ xs − xr( )
s,r{ }∈C
∑ + const

p xs | x∂s( )

3) The Problems with MRFs!

  An MRF is defined by the property that                                         . 
 
  However, the Hammersley-Clifford theorem provides no way to 

compute compute Gibbs energy,          , from                 . 

  Therefore, current MRF models are restricted to very simplistic Gibbs 
distributions that are not sufficiently expressive for real images. 

  Question: How can we create more complex and expressive MRFs? 

p xs | x∂s( ) = p xs | xr≠s( )

p xs | x∂s( )u x( )

p x( ) = 1
z
exp −u x( ){ }

x̂ = argmin
x

y − Ax Λ
2 + u x( ){ }

  Our Approach: 
1)  Model conditional probability of pixels given neighbors. 

•  Estimate the conditional distribution using off-line training procedure 
•  We use a Gaussian mixture model, but many choices are possible 
 

2)  Locally estimate the energy of the Gibbs distribution. 
•  Compute a local approximation to the energy function about the point, x’ 

•  Ensure that u(x;x’) is a surrogate function for u(x). 

3)  Iteratively minimize the MAP cost function with the surrogate approximation. 
 
 Observation: 

•  We never explicitly computed the energy u(x) . 
•  The true energy and prior remains implicit ! 

u x( ) ≅ u x; x '( )

6) Iterative MAP Optimization with Implicit Prior!

Hs,r = − ∂2

∂xs∂xr
log p xs | x∂s( )

x= ′x

u x; ′x( ) = 1
2
x − ′x( )B x − ′x( )+ dt x − ′x( )+ c

B← B +α  diag{B}

Our approach 

u x '( ) = u x '; x '( )
u x( ) ≤ u x; x '( )

  Surrogate energy function must satisfy the upper-bound conditions. 

  We formulate the surrogate energy 
function as a quadratic form such as: 
 

ds = − ∂
∂xs

log p xs | x∂s( )
x= ′x

Model MRF conditional 
distribution 

Initialize estimate 

Compute surrogate 
energy function 

Compute MAP estimate 
using surrogate function 

x ' u(x;x ')p(xs | x∂s )

x '← argmin
x

− log p(y | x)+ u(x; x '){ }

Off-line 

Iterative MAP optimization flowchart: 

  This iterative optimization guarantees minimization of MAP cost with 
implicit energy function. 

Our choice for conditional probability model: 
  Gaussian mixture form 
  Each pixel is assumed to be fallen into “classes” based on edge orientations 
  For a given class k, a pixel is formulated as a weighted sum of its neighbors 

 
xs|x∂s, k ∼ N (Akx∂s + βk, σk)

p(xs|x∂s) =
M∑

k=1

p(xs|x∂s, k)p(k|z)

x∂s

x1 x2 x3 x4 x5

x6 x7 x8 x9 x10

x11 x12 x13 x14

x15 x16 x17 x18 x19

x20 x21 x22 x23 x24

current pixel xs

  The model parameters are trained off-line 
using a linear least squares regression. 

where Ak is a coefficient row vector, βk is 
a scalar, and z is a edge feature. 

   Condition 1 
The symmetric matrix B must be positive definite (i.e.             )  

   Condition 2 
Surrogate energy function must have greater 2nd derivative than true energy 
function. (i.e.                     ) 
 
 
 

   Condition 3 
 Surrogate energy function must upper bound true energy function along 
 each axis.  

B > 0

B − H ≥ 0

 
  For B, our approach is to first find B which satisfies the three strong 

necessary conditions, then adjust the matrix by                                
to ensure an upper bound. 

where                                      . 
FBP 

kSVD prior 

qGGMRF (p=2 q=1.2 c=5) 

Implicit prior 

Ground Truth 

 
   2D parallel beam CT   
   128x128 resolution, 1mm width 
   180 views, 1 degree per view 
   186 detectors, 1mm each 
   White noise added to sinogram 


