4D X-Ray CT Reconstruction using Multi-Slice Fusion

Soumendu Majee¹ Thilo Balke¹ Craig A. J. Kemp² Gregery T. Buzzard³ Charles A. Bouman¹

¹School of ECE, Purdue University, IN, USA ²Eli Lilly and Company, Indianapolis, IN, USA ³Department of Mathematics, Purdue University, IN, USA

Supported by:

- Eli Lilly and Company research project funding agreement 17099289
- NSF grant CCF-1763896

What is 4D (or High-D) Reconstruction?

2D: Image

3D: Volume

4D: Volume + time

- Reconstruct objects in many dimensions:
 - 4D: Space + time
 - 5D: Space + time + parameters (e.g., heart + respiration phase)
- Advantages:
 - Reduce data
 - Increase temporal resolution

MBIR for 4D CT Reconstruction

• Forward model:	$f(x) = -\log p(y x)$
• 4D Prior model:	$h(x) = -\log p(x)$
• 4D MBIR reconstruction:	$\hat{x} \leftarrow \arg\min_{x} \{f(x) + h(x)\}$

Previous Work on 4D MBIR Reconstruction

TIMBIR:

- Showed 16x increase in temporal resolution
- Based on simple 4D MRF prior

Can we do better with advanced 4D priors?

Designing Advanced 4D Prior Model

Challenges:

- 4D (or high-D) prior modeling is difficult!
- Curse of dimensionality: In 5D, each voxel has 242 neighbors!
- Prior model is often more computation than forward model!

Approach:

- Use CNNs to build advanced 4D prior model
- CNNs are fast and very effective at modeling complex data
- Heterogeneous CPU/GPU computing with TensorFlow libraries

How to Incorporate a CNN Prior?

- Plug & Play Priors:
 - CNN denoiser functions as prior model
 - Variations: P&P-ADMM, RED, P&P-FISTA
 - Alternate reconstruction and denoising

- **Problem:** 4D CNN denoising is difficult
 - 4D convolutions require 6D kernels: computationally expensive
 - No GPU accelerated routines from major Deep Learning vendors
 - 4D training data difficult to obtain

Can we build 4D prior from 2D convolutions?

Multi-Slice Fusion using MACE

Multi-Slice Fusion

- Fuse multiple low-D CNN denoisers to implement 4D prior
- •Use 2D convolutions: fast and implementable

• No 4D training data required

Intro to MACE Model Fusion

How does MACE work?

- Generalization of Plug & Play
- Can fuse multiple models
- Can be viewed as a force balance equation

MACE equilibrium equations:

$$L(X) = G(X)$$

Definition of Agents

•Forward model agent is a proximal map that fits the data:

$$F_4(x) = \operatorname{argmin}_{v \in \mathbb{R}^N} \left\{ -\log p(y|v) + \frac{\beta}{\sigma^2} \|v - x\|_2^2 \right\}$$

•Prior model agents are CNN denoising operators:

- • F_1 denoises in (x, y, t)
- • F_2 denoises in (x, z, t)
- • F_3 denoises in (y, z, t)
- • F_1 , F_2 , F_3 share same architecture and weights

•CNN denoisers are trained to remove AWGN noise

- •Does not represent measurement noise
- •Artificial noise within MACE framework

Computing MACE solution

Initial Reconstruction: $x_1 = x_2 = x_3 = x_4 \in \mathbb{R}^N$ $X \leftarrow W \leftarrow \begin{bmatrix} x_1 \\ \vdots \\ x_4 \end{bmatrix}$ while not converged $X \leftarrow \tilde{L}(W; X)$ $Z \leftarrow G(2X - W)$ $W \leftarrow W + 2\rho(Z - X)$ Return (x_1)

Other details:

- •Uses partial update of $L(W) \approx \tilde{L}(W; X)$ to reduce computation
- •The parameter $\rho \in (0,1)$ can be adjusted to speed convergence
- •Special case: two agents and $\rho = 0.5$ equivalent to ADMM
- •CNN agents ran on GPUs, and inversion agents ran on CPUs

2.5D CNN Denoiser Architecture

Network Architecture

- •17 Layer residual network
- •2.5-D: Multiple 2-D slices passed as input channels
- •Denoises center slice of 5 adjacent time points
- •Denoises full volume with a moving window

Training CNN Denoisers

Typical CT volume

Patches of size 40×40×5

1. Extract patches

- 2. Add synthetic AWGN noise to patches
- 3. Train CNN to remove noise

Simulated Experimental Setup

- Generate 3D phantom 1.
- 2. Translate 3D phantom to generate 4D phantom
- 3. Forward project phantom to generate sinograms
- Reconstruct from sinograms 4.
- 5. Compare with phantom

Simulated Results: Qualitative Comparison

Simulated Results: Qualitative Comparison

Simulated Results: Cross-Section

Multi-Slice Fusion: most accurate reconstruction of gap

Simulated Results: Quantitative Metrics

Method	PSNR(dB)	SSIM
FBP	19.690	0.609
MBIR+4D-MRF	25.837	0.787
Multi-Slice Fusion	29.071	0.943
MBIR+ $H_{xy,t}$	29.026	0.922
MBIR+ $H_{yz,t}$	28.040	0.932
$MBIR+H_{zx,t}$	28.312	0.926

•PSNR and SSIM is computed for each method with respect to the phantom

•Multi-Slice Fusion achieves highest PSNR and SSIM metrics

Experimental Setup

Scanner Model	North Star Imaging X50
Source-Detector Distance	839 mm
Magnification	5.57
Cropped Detector Array	731×91, (0.254 mm) ²
Detector resolution at ISO	45.7 μm
Number of Views per Rotation	150
Voxel Size	$(45.7 \ \mu m)^3$
Reconstruction Size (x, y, z, t)	731×731×91×16

Other details:

- •Object held in place by fixtures: artifacts
- •All 4D results undergo preprocessing to correct for jig artifacts

Results: Dynamic 3D Rendering

Results: Qualitative Comparison

FBP (3D)

4D MBIR (MBIR with 4D MRF prior model)

Multi-Slice Fusion

Results: Effect of Model Fusion

Results: Qualitative Comparison (Time-Space)

4D MBIR (MBIR with 4D MRF prior model)

Multi-Slice Fusion (Uses three 2.5D CNN priors with MACE model fusion)

Results: Cross-Section

Results: Temporal Resolution

Experimental Setup: Narrow Angle CT

Scanner Model Source-Detector Distance Magnification Cropped Detector Array Detector resolution at ISO Number of Views per Rotation Voxel Size Reconstruction Size (*x*, *y*, *z*, *t*) North Star Imaging X50 694 mm 2.83 300×768, (0.254 mm)² 89 μm 144 (89 μm)³ 300×300×768×12

Detector

Results: Narrow Angle CT

FBP (3D)

Multi-Slice Fusion

Each frame reconstructed from disjoint view-sets of 90-degrees

Conclusion

Image Quality can be dramatically improved with:

- •4D reconstruction
- Advanced CNN priors

Multi-slice fusion using MACE:

- •Makes high-D priors practical to implement
- •Results in smooth reconstruction along all dimensions