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What is 4D (or High-D) Reconstruction?
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2D: Image 3D: Volume 4D: Volume + time

• Reconstruct objects in many dimensions:
• 4D: Space + time
• 5D: Space + time + parameters (e.g., heart + respiration phase)

• Advantages:
• Reduce data
• Increase temporal resolution

* Mohan, K. Aditya, et al. "TIMBIR: A method for time-space reconstruction from interlaced views." IEEE Transactions on Computational Imaging 1.2 (2015): 96-111.



MBIR for 4D CT Reconstruction
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• Forward model: $ # = − log ! " #

• 4D Prior model: ℎ # = − log ! #

• 4D MBIR reconstruction: +# ← argmin2 $ # + ℎ #



Previous Work on 4D MBIR Reconstruction
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TIMBIR:
• Showed 16x increase in temporal resolution
• Based on simple 4D MRF prior

Can we do better with advanced 4D priors?
* Mohan, K. Aditya, et al. "TIMBIR: A method for time-space reconstruction from interlaced views." IEEE Transactions on Computational Imaging 1.2 (2015): 96-111.



Designing Advanced 4D Prior Model
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Challenges:
• 4D (or high-D) prior modeling is difficult!
• Curse of dimensionality: In 5D, each voxel has 242 neighbors!
• Prior model is often more computation than forward model!

Approach:
•Use CNNs to build advanced 4D prior model
• CNNs are fast and very effective at modeling complex data
•Heterogeneous CPU/GPU computing with TensorFlow libraries



How to Incorporate a CNN Prior?
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• Plug & Play Priors:
• CNN denoiser functions as prior model
• Variations: P&P-ADMM, RED, P&P-FISTA
• Alternate reconstruction and denoising

• Problem: 4D CNN denoising is difficult
• 4D convolutions require 6D kernels: computationally expensive
• No GPU accelerated routines from major Deep Learning vendors
• 4D training data difficult to obtain

Can we build 4D prior from 2D convolutions?
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Multi-Slice Fusion using MACE
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!", $ -denoiser "%, $ -denoiser %!, $ -denoiser

Cone-beam
Inversion

4-D Sinogram 
Measurements

4D Reconstruction

Multi-Slice Fusion

Multi-Agent Consensus Equilibrium
(MACE)

•Fuse multiple low-D CNN denoisers to implement 4D prior
•Use 2D convolutions: fast and implementable
•No 4D training data required



Intro to MACE Model Fusion
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MACE equilibrium equations:
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How does MACE work?
• Generalization of Plug & Play
• Can fuse multiple models
• Can be viewed as a force balance equation +̅
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•Forward model agent is a proximal map that fits the data:

!" # = argmin
+ ∈ ℝ.

− log 2 3 + + 5
67 + − # 77

•Prior model agents are CNN denoising operators:
•!8 denoises in #, 3, :
•!7 denoises in #, ;, :
•!< denoises in 3, ;, :
•!8, !7, !< share same architecture and weights

•CNN denoisers are trained to remove AWGN noise
•Does not represent measurement noise
•Artificial noise within MACE framework

Definition of Agents
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Computing MACE solution
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Initial Reconstruction: !" = !$ = !% = !& ∈ ℝ)

* ← , ←
!"
⋮
!&

while not converged
* ← ./(,;*)
3 ← 4(2* −,)
, ← , + 2 8 3 − *

Return(!")

Other details:
•Uses partial update of / , ≈ ./(,;*) to reduce computation
•The parameter 8 ∈ 0,1 can be adjusted to speed convergence
•Special case: two agents and 8 = 0.5 equivalent to ADMM
•CNN agents ran on GPUs, and inversion agents ran on CPUs



2.5D CNN Denoiser Architecture
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Network Architecture
•17 Layer residual network
•2.5-D: Multiple 2-D slices passed as input channels
•Denoises center slice of 5 adjacent time points
•Denoises full volume with a moving window



Training CNN Denoisers
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1. Extract patches
2. Add synthetic AWGN noise to patches
3. Train CNN to remove noise

Patches of size 40×40×5Typical CT volume



Simulated Experimental Setup
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Source-Detector Distance 839 mm
Magnification 5.57
Cropped Detector Array 240×28, 0.254 mm 2

Detector resolution at ISO 45.7 µm
Number of Views per Rotation 75
Voxel Size (45.7 µm)3
Reconstruction Size (/, 0, 1, 2) 240×240×28×8

Procedure:
1. Generate 3D phantom
2. Translate 3D phantom to generate 4D phantom
3. Forward project phantom to generate sinograms
4. Reconstruct from sinograms
5. Compare with phantom
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Simulated Results: Qualitative Comparison 
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FBP (3D)Phantom 4D MBIR Multi-Slice
Fusion



Simulated Results: Qualitative Comparison 
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Simulated Results: Cross-Section
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Multi-Slice Fusion

Phantom

FBP (3D)

4D MBIR

Multi-Slice Fusion: most accurate reconstruction of gap 



Simulated Results: Quantitative Metrics
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•PSNR and SSIM is computed for each method with respect to the phantom

•Multi-Slice Fusion achieves highest PSNR and SSIM metrics



Experimental Setup
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Scanner Model North Star Imaging X50
Source-Detector Distance 839 mm
Magnification 5.57
Cropped Detector Array 731×91, 0.254 mm 2

Detector resolution at ISO 45.7 µm
Number of Views per Rotation 150
Voxel Size (45.7 µm)3
Reconstruction Size (0, 1, 2, 3) 731×731×91×16

X-Ray 
Source

Detector

Rotating 
Object

Other details:
•Object held in place by fixtures: artifacts
•All 4D results undergo preprocessing to correct for jig artifacts



Results: Dynamic 3D Rendering
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Results: Qualitative Comparison 
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FBP (3D) 4D MBIR
(MBIR with 4D MRF prior model)

Multi-Slice Fusion



Results: Effect of Model Fusion
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Multi-Slice Fusion CNN along !", $ CNN along "%, $CNN along %!, $



Results: Qualitative Comparison (Time-Space)
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4D MBIR
(MBIR with 4D MRF prior model)

Multi-Slice Fusion
(Uses three 2.5D CNN priors with MACE model fusion)



Results: Cross-Section
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4D MBIR

Multi-Slice Fusion

FBP (3D)



Results: Temporal Resolution
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Experimental Setup: Narrow Angle CT 
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Scanner Model North Star Imaging X50
Source-Detector Distance 694 mm
Magnification 2.83
Cropped Detector Array 300×768, 0.254 mm 2

Detector resolution at ISO 89 µm
Number of Views per Rotation 144
Voxel Size (89 µm)3
Reconstruction Size (1, 2, 3, 4) 300×300×768×12
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Results: Narrow Angle CT
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FBP (3D) Multi-Slice Fusion

Each frame reconstructed from disjoint view-sets of 90-degrees



Conclusion

28

!", $ -denoiser "%, $ -denoiser %!, $ -denoiser

Cone-beam
Inversion

4-D Sinogram 
Measurements

4D Reconstruction
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Image Quality can be dramatically improved with:
•4D reconstruction
•Advanced CNN priors

Multi-slice fusion using MACE:
•Makes high-D priors practical to implement
•Results in smooth reconstruction along all dimensions 


