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How can we integrate multiple
heterogeneous models to yield a single
coherent reconstruction?

*Our answer:

— Plug-and-Play priors: An algorithm for regularized inversion
— Consensus Equilibrium: A criteria for integration of models



MAP or Regularized Inversion

Prior model Sensor model
p(x) X p(y|x) y\

unknown measurements

= Forward model: f(x) = —logp(y|x)
" Prior model:  h(x) = —logp(x)

= MAP or regularized inverse

X « arg mxin{f(x) + h(x)}



“Thin Manifold” View of Multiple Models

prior manifold

: v

sensor manifold

MAP estimate

= Sensor manifold — Based on physical sensor model
* Prior manifold — Based on empirical or assumed information

= MAP minimizes the sum of the costs



Proximal Maps

The proximal map is:

1
F(x) = argmin { () + = llv - xII?]

Intuition:
F(x)=x—aVf(x)



Sensor Proximal Map

1
sensor model such as p ly — Ax||?

/

F(x) = argmin { () +— llv - xII?]

202

X = F(x)
. “projection” onto
X “sensor manifold”
>
" [nterpretations

— “Projection” of x onto sensor manifold
— MAP estimate with additive white Gaussian noise prior



Prior PrOXi mal Map prior model such as TV norm

/

H(x) = argmln{ lv — x]||? + h(v)}

20 2

@/\

X = H(x)
“projection” onto
“prior manifold”

" [nterpretation

— “Projection” of x onto prior manifold
— Denoising operator for white additive Gaussian noise



Plug-and-Play Inversion
(ADMM algorithm with variable splitting)

Initialize v, u = 0

Repeat {
x « F(v—u) //Project onto sensor manifold
v« H(x 4+ u) // Denoise
u—u+ (x—v) // Augmented Lagrangian update

Big idea: Replace H(x) with any denoiser

Big issue: This 1s no longer minimization!!



Inpainting with Many “Priors”

Ground Truth Subsampled Image  K-SVD

v

RMSE :14.54 RMSE :15.50 RMSE :15.72



Plug-and-Play or Plug-and-Pray?

" Intuition: Alternating steps towards each manifold.

sensor manifold prior manifold
\ PY
o—o
'<’\‘

* [t might converge...but to what?



Consensus Equilibrium

* What 1s Consensus Equilibrium?
— A set of equilibrium conditions (like a PDE)
— Generalization of regularized inversion
— Generalization of Plug-and-Play
— Allows integration of multiple Models

= Consensus Equilibrium 1s not
— It 1s not an algorithm

— It does not minimize a cost function

Analogy: Wave equation 1s a PDE, but it doesn’t minimize energy



Consensus Equilibrium Equations

" P&P ADMM: Repeat

step1: x « F(v—u) // Forward step
step2: v« H(x +u) // Prior step
step 3: u <« u + (x —v) // Lagrangian

" [f P&P convergences, then it must result in...

x=F(x—-u)

Consensus
— Equilibrium

X = H(X 1 u) ) (CE) equations




Consensus Equilibrium Equations

= All we really want 1s the solution (x, u) to...

x=F(x—u) (sensor agent)
x = H (x + u) (prior agent)

— Interpretation: u 1s the noise

F(x —u) H(x +u)
\W X N
X —U H‘H X+ Uu

Force Balance



Geometric Interpretation
of Consensus Equilibrium

@ 0 prior manifold

>

sensor manifold

\

4

x=F(x—u)
x =H(x + u)

= Interpretation
— u 1s the noise removed by the denoising operator H
— Solution balances forces between F and H
— Analog of department head job



Transformation of CE Equations

* By rotating coordinates, we get

w+ v
x=F(x—u) > = F(w)
=

w+v
x =H( +u) > = H(v)
Fw) H(v)




Multi-Agent of CE Equations

" Generalization for multiple models or agents
X = Fl (Wl) where

N
1
X = (W) x=NZWn
: n=1

X = F N (WN ) Consensus

Fi(wq) Equilibrium
/ F4(W4)\\./\/

, F;(wy)
These functions are
“agents” but not always
proximal map Modular inputs from

Fy (WS) independent agents



Solving the CE Equations

* Douglas-Rachford Algorithm

Wk+1 — Wk 1 p(TWk . Wk)
where

T =QF-DQH - 1)

*"[mportant Facts:
— Converges to fixed point when T is non-expansive and p € (0,1).
— Exactly the ADMM algorithm when p = 1/2,
— Generalization of ADMM when p # 1/2.



Multi-Agent Consensus Equilibrium

* Compact form: define the operators

Fi(wy) W1
F(w) = : ] wherew=l : ]
Fy(wy) WN
and _
w
G(w) = [ : ] where w = %Zlivzl w;
w

" Then the consensus equilibrium equations are given by

Fw = Gw




Fixed Point Operator for Multi-Agent Problem

=Consensus equilibrium

Fw = Gw

Then it’s easy to show that (2G — I)~1 = (2G — I).
Using simple algebra, we have that
Fw*® = Gw~™
(2F = Dw* = (26 — DHw™
2G - D 1QF - DHw* =w*
(26 —DQR2F - Dw* =w"

So the CE solutions are exactly the fixed points of

T =026 —-1)2F-1)




Solving the Multi-Agent CE Equations

" Can be solved using Douglas-Rachford Algorithm

Wk+1 — Wk 1 p(TWk _ Wk)
where

T=QQ6¢—-1)2F —-1)

*"[mportant Facts:

— Converges to fixed point when T is non-expansive and p € (0,1).
— Exactly the consensus ADMM algorithm when p = 1/2.
— Generalization of consensus ADMM when p # 1/2.



P& P with Deep Learning (CNN)
Prior Model



Integrate Multiple CNN Denoisers

" Goal: Denoise 1image
Yy=XTn

= Problem: We would like to use CNN, but don’t
know the true noise level.

= Approach: Use CE to integrate 5 different CNN
denoisers each trained for a different noise level



Multiple CNN Denoisers

DnCNNy;, 19.92dB DnCNNjs, 26.44dB DnCNNj, 27.39dB CE, 27.77dB

= True noise level 40/255.
* CE beats each individual: (10, 15, 25, 35, 50)/255



Multiple CNN Denoisers

* CE outperforms mismatched CNNs, averaged
denoisers without CE (baseline), and compares well

with matched CNN:s.

DnCNN Matched
Image 10 15 25 35 50 Baseline CE | DnCNN
o = 20/255

Barbara512 23.99 28.02 3049 28.11 25.71 29.80  30.97 31.02
Boat512 2398 2792 3061 2873 27.03 29.86  31.08 31.15
Cameraman256 | 24.12 28.04 30.20 28.52 27.20 | 29.88 31.05 31.07
Hill512 2393 27.81 3034 2868 27.20 | 29.78 30.88 30.92
House256 24.03 28.70 3370 3232 30.69 | 31.38 33.82 33.97
Lena512 24.07 2859 33.06 31.13 2059 | 31.12 33.35 33.47
Man512 2394 2789 3041 2846 27.02 2979 3100 31.08
Peppers256 2398 28.25 3133 2951 27.93 30.27 31.79 31.80



MBIR/P&P for Cone-Beam CT
using Deep Learning Prior

Thilo Balke, Purdue University



Cone-Beam CT
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*Nondestructive evaluation (NDE) of additively
manufactured parts



Experimental Setup

Radiographs:

* GE Inspection Technologies v|tome|x C 450 HS with scatter|correct
 Dimensions: 700x800 pixels, 270 views

« Acceleration Voltage: 450 kV

 Current: 1.5 mA Sinogram
» Exposure: 143 ms

« Scatter correction: GE-proprietary Measurement
Geometry:

« Source-detector distance: 1160 mm

« Magnification: 1.5

» Detector pixels: 0.2x0.2 mm?

Object:

» 3D-printed CoCr part

 Diameter = 60 mm

* Reconstruction resolution: (0.13 mm) 3D printed

700x700x870 CoCr part



Reconstructions

FBP ' MBIR
2160 Views q-GGMRF
270 Views

MBIR
' r RN NAY Plug-and-Play
FBP S HARSATISIIN BM4D

2 270 Views . ' 270 Views




P&P for Coherent DH Imaging through
Atmospheric Turbulence

Maj. Casey Pellizzari, United States
Airforce Academy



Coherent Optical Imaging

" Used P&P 1mage prior in DH reconstruction

Laser source

)

: <
Energy detector \ Atmospheric

Turbulence

y =Apg +wwith g ~ C(0,7)

r — Unknown 1mage
¢ — Unknown phase distortion



CE Applied to Coherent Imaging
(With Joint Phase Error Estimation)

: | Sensing *

|| Process «
—p

Blurry & Noisy
Reconstruction

P&P/CE: BM4D P&P/CE: DnCNN

SR
250

PSNR = 17. PSNR =18.6 PSNR = 22.0
S =0.53 S =0.84 S =0.84

S = Strehl Ratio



Conclusions

= Consensus equilibrium viewpoint of P&P offers:

— Flexible model integration without optimization
— Integrates physical and machine learning models
— Accommodates different numerical solvers

— Makes nice images ©



