Consensus Equilibrium: A Framework for Model Integration

Charles A. Bouman, Purdue ECE Gregery T. Buzzard, Purdue Math Stanley Chan, Purdue ECE

October 8, 2018

How can we integrate multiple heterogeneous models to yield a single coherent reconstruction?

•Our answer:

- Plug-and-Play priors: An algorithm for regularized inversion
- Consensus Equilibrium: A criteria for integration of models

MAP or Regularized Inversion

- Forward model: $f(x) = -\log p(y|x)$
- Prior model: $h(x) = -\log p(x)$
- MAP or regularized inverse

$$\hat{x} \leftarrow \arg\min_{x} \{f(x) + h(x)\}$$

"Thin Manifold" View of Multiple Models

- Sensor manifold Based on physical sensor model
- Prior manifold Based on empirical or assumed information
- MAP minimizes the sum of the costs

Proximal Maps

The **proximal map** is:

$$F(x) = \arg\min_{v} \left\{ f(v) + \frac{1}{2\sigma^2} \|v - x\|^2 \right\}$$

Intuition:

$$F(x) \approx x - \alpha \nabla f(x)$$

Sensor Proximal Map

– MAP estimate with additive white Gaussian noise prior

Interpretation

- "Projection" of x onto prior manifold
- Denoising operator for white additive Gaussian noise

Plug-and-Play Inversion (ADMM algorithm with variable splitting)

Initialize v, u = 0Repeat { $x \leftarrow F(v - u)$ //Project onto sensor manifold $v \leftarrow H(x + u)$ // Denoise $u \leftarrow u + (x - v)$ // Augmented Lagrangian update }

Big idea: Replace H(x) with any denoiser
Big issue: This is no longer minimization!!

Inpainting with Many "Priors"

Ground Truth Subsampled Image K-SVD

BM3D

Noise std. dev : 5% of max signal

RMSE : 14.11

RMSE : 12.56

PLOW

q-GGMRF

RMSE : 14.54

RMSE : 15.50

RMSE : 15.72

Plug-and-Play or Plug-and-Pray?

Intuition: Alternating steps towards each manifold.

- Not minimizing anything!!!!!
- It might converge...but to what?

Consensus Equilibrium

- What is Consensus Equilibrium?
 - A set of equilibrium conditions (like a PDE)
 - Generalization of regularized inversion
 - Generalization of Plug-and-Play
 - Allows integration of multiple Models
- Consensus Equilibrium is not
 - It is not an algorithm
 - It does not minimize a cost function

Analogy: Wave equation is a PDE, but it doesn't minimize energy

Consensus Equilibrium Equations

P&P ADMM: Repeat

step 1: $x \leftarrow F(v-u)$ // Forward step step 2: $v \leftarrow H(x+u)$ // Prior step step 3: $u \leftarrow u + (x-v)$ // Lagrangian

• If P&P convergences, then it must result in...

$$\begin{array}{l} x = F(x - u) \\ x = H(x + u) \end{array} \begin{array}{l} \text{Consensus} \\ \text{Equilibrium} \\ \text{(CE) equations} \end{array}$$

Consensus Equilibrium Equations

•All we really want is the solution (x, u) to...

$$x = F(x - u)$$
 (sensor agent)

$$x = H(x + u)$$
 (prior agent)

– Interpretation: *u* is the noise

Geometric Interpretation of Consensus Equilibrium

Interpretation

- u is the noise removed by the denoising operator H
- Solution balances forces between F and H
- Analog of department head job

Transformation of CE Equations

By rotating coordinates, we get

$$x = F(x - u) \qquad \implies \qquad \frac{w + v}{2} = F(w)$$
$$x = H(x + u) \qquad \qquad \frac{w + v}{2} = H(v)$$

Multi-Agent of CE Equations

Generalization for multiple models or agents

Solving the CE Equations

• Douglas-Rachford Algorithm

$$w^{k+1} = w^k + \rho \big(T w^k - w^k \big)$$

where

$$T = (2F - I)(2H - I)$$

Important Facts:

- Converges to fixed point when T is non-expansive and $\rho \in (0,1)$.
- Exactly the ADMM algorithm when $\rho = 1/2$.
- Generalization of ADMM when $\rho \neq 1/2$.

Multi-Agent Consensus Equilibrium

Compact form: define the operators

$$F(w) = \begin{bmatrix} F_1(w_1) \\ \vdots \\ F_N(w_N) \end{bmatrix} \quad \text{where } w = \begin{bmatrix} w_1 \\ \vdots \\ w_N \end{bmatrix}$$

$$G(w) = \begin{bmatrix} \overline{w} \\ \vdots \\ \overline{w} \end{bmatrix} \qquad \text{where } \overline{w} = \frac{1}{N} \sum_{i=1}^{N} w_i$$

• Then the consensus equilibrium equations are given by

$$Fw = Gw$$

Fixed Point Operator for Multi-Agent Problem

Consensus equilibrium

$$Fw = Gw$$

Then it's easy to show that $(2G - I)^{-1} = (2G - I)$.

Using simple algebra, we have that

$$Fw^* = Gw^*$$

$$(2F - I)w^* = (2G - I)w^*$$

$$(2G - I)^{-1}(2F - I)w^* = w^*$$

$$(2G - I)(2F - I)w^* = w^*$$

So the CE solutions are exactly the fixed points of

$$T = (2G - I)(2F - I)$$

Solving the Multi-Agent CE Equations

Can be solved using Douglas-Rachford Algorithm

$$w^{k+1} = w^k + \rho \big(T w^k - w^k \big)$$

where

$$T = (2G - I)(2F - I)$$

Important Facts:

- Converges to fixed point when T is non-expansive and $\rho \in (0,1)$.
- Exactly the consensus ADMM algorithm when $\rho = 1/2$.
- Generalization of consensus ADMM when $\rho \neq 1/2$.

P&P with Deep Learning (CNN) Prior Model

Integrate Multiple CNN Denoisers

• Goal: Denoise image

y = x + n

- **Problem:** We would like to use CNN, but don't know the true noise level.
- Approach: Use CE to integrate 5 different CNN denoisers each trained for a different noise level

Multiple CNN Denoisers

Noiseless

Noisy $\sigma_{\eta} = 40/255$

DnCNN25, 19.92dB

DnCNN35, 26.44dB

DnCNN10, 16.67dB

DnCNN50, 27.39dB

DnCNN15, 17.53dB

CE, 27.77dB

- True noise level 40/255.
- CE beats each individual: (10, 15, 25, 35, 50)/255

Multiple CNN Denoisers

• CE outperforms mismatched CNNs, averaged denoisers without CE (baseline), and compares well with matched CNNs.

	DnCNN							Matched
Image	10	15	25	35	50	Baseline	CE	DnCNN
$\sigma = 20/255$								
Barbara512	23.99	28.02	30.49	28.11	25.71	29.80	30.97	31.02
Boat512	23.98	27.92	30.61	28.73	27.03	29.86	31.08	31.15
Cameraman256	24.12	28.04	30.20	28.52	27.20	29.88	31.05	31.07
Hill512	23.93	27.81	30.34	28.68	27.20	29.78	30.88	30.92
House256	24.03	28.70	33.70	32.32	30.69	31.38	33.82	33.97
Lena512	24.07	28.59	33.06	31.13	29.59	31.12	33.35	33.47
Man512	23.94	27.89	30.41	28.46	27.02	29.79	31.00	31.08
Peppers256	23.98	28.25	31.33	29.51	27.93	30.27	31.79	31.80

MBIR/P&P for Cone-Beam CT using Deep Learning Prior

Thilo Balke, Purdue University

Cone-Beam CT

 Nondestructive evaluation (NDE) of additively manufactured parts

Experimental Setup

Radiographs:

GE Inspection Technologies v|tome|x C 450 HS with scatter|correct

450 kV

1.5 mA

143 ms

GE-proprietary

- **Dimensions:**
- Acceleration Voltage:
- Current:
- Exposure:
- Scatter correction:

Geometry:

- Source-detector distance: 1160 mm
- Magnification:
- Detector pixels:

700x800 pixels, 270 views

1.5 0.2x0.2 mm²

60 mm

Object:

- 3D-printed CoCr part
- Diameter \approx
- Reconstruction resolution: (0.13 mm)

700x700x870

Sinogram **Measurement**

3D printed CoCr part

Reconstructions

FBP 2160 Views

FBP

P&P for Coherent DH Imaging through Atmospheric Turbulence

Maj. Casey Pellizzari, United States Airforce Academy

Coherent Optical Imaging

Used P&P image prior in DH reconstruction

$y = A_{\phi}g + w$ with $g \sim C(0, r)$

r – Unknown image ϕ – Unknown phase distortion

CE Applied to Coherent Imaging (With Joint Phase Error Estimation)

100 150 200 100 150

0.6

0.5

0.4

0.3

0.2

PSNR = 18.6S = 0.84

S = Strehl Ratio

Conclusions

- Consensus equilibrium viewpoint of P&P offers:
 - Flexible model integration without optimization
 - Integrates physical and machine learning models
 - Accommodates different numerical solvers
 - Makes nice images \bigcirc