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Covariance Estimation for High
Dimensional Data Vectors

 Objective: Estimate the eigenvalues and eigenvectors of R

 Problem: This a classically difficult problem when n<p
 Curse of dimensionality

 Proposed Solution: Model based estimation
 Does not depend on ordering of vector or stationarity assumption
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Data Model

 Notation:

 Likelihood of Y given R:

 ML estimate of eigenvectors and eigenvalues is given by
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Ê = arg min
E!Prior Model

diag(EtSE){ }

"̂ = diag( ÊtSÊ)
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Prior Model: The Sparse Matrix Transform (SMT)
 Big idea:

(Eigenvector matrix E) = (Sparse Matrix Transform)

 What is a Sparse Matrix Transform?

were Ek are Givens rotations

 Each Givens rotation operates on only two coordinates
 Only 4 multiplies per rotation (really only 2)

 When k=p(p-1)/2, this is any orthonormal transform

1 2 k
E E E E= !
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 SMT is product of Givens rotations:

 So the SMT is a generalization of the FFT

 SMT is also a generalization of orthonormal (paraunitary) wavelets

SMT is a Generalization of the FFT and
Orthonormal Wavelet Transform

E = E1 E2
…Ek where Ek =

FFT SMT
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Design of SMT using Cost Optimization
 ML estimate of Eigenvectors is

where                                   is an SMT transform.

 The algorithm:
For k = 1 to K {

Select most correlated coordinate pair
Decorrelate the coordinate pair with rotation Ek

}

 K is choose to maximize cross-validated likelihood
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Covariance Estimation for Hyperspectral Data
• # of hyperspectral bands:  p = 191,  # of samples: n = 80, grass class

Y (Gaussian)Sample Data (1928)
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Estimators Compared
 Shrinkage estimator

 estimate       using cross-validation

 Graphic lasso (glasso) covariance estimator *:

 L1 regularized ML estimate

 SMT estimator
 Use Kth order SMT model

 Estimate k using cross-validation

 SMT-shrinkage (SMT-S) model
 Combine SMT covariance estimate with shrinkage

  R̂ = (1!" ) # S +" # diag(S)

!

  
R̂ = (1!" ) # S +" # R̂

SMT

  
R̂ = arg max

R: P.D.
log(Y | R) ! " R

!1

L1
{ }

* See Sparse inverse covariance estimation with the graphic lasso, Friedman et al. 2007
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Eigenvalue and Eigenvector Estimation: Gaussian Case

ˆ ˆ ˆ( )tdiag E SE! =



Results in Kullback-Leibler Distance: Gaussian Case
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Results in Kullback-Leibler Distance*: non-Gaussian Case

* KL distance of Gaussian distributions estimated from non-Gaussian samples
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Computational Complexity

4967.2Kp+ p3SMT-S

4956.5KpSMT

4939422.6p3Iglasso

18.6p3Shrinkage

Model order
CPU time

(seconds)
Complexity

 I-iterations required for for glasso, K-number of Givens rotations

 Numerical results are based on the Guassian grass case with n = 80
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Signal Detection Based on Covariance Estimation
 Formulation of signal detection :

            H0 : r = x

            H1:                   , with e not zero

  where:    x is a background with covariance R

                t is a target signature

                e is a scalar signal strength

                r is the observed pixel

 The SNR of signal detection:

     where                  is the linear matching filter used to test for signal
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Results in Signal Detection

 Simulation:
  R was chosen to be the true covariance of each class

       was estimated from the Gaussian sample (n = 80)

  Dense case:

                t  =  rand(p,1) has the uniform distribution in [0, 1]

  Sparse case:

               setting all but the largest values (>0.9) of t to zero

 Test was run 100 times, and the average SNRR was calculated:

R̂
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( ) opitmal 

SNR R SNR R
SNRR

SNR R SNR
= =



Results in Signal Detection – Dense Case
ˆ ˆ( )  using estmated   

( ) opitmal 

SNR R SNR R
SNRR

SNR R SNR
= = The higher, the better!
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Computing Eigenimages with SMT

Y=

n training sample images

SMT Model Training

p pixels

…

p eigenvalues
p eigenfaces

SMT Eigenimage 
Analysis

All p 
eigenvalues

Impulse
at position k

Input Image

kth 
eigenimage

SMT model
inverse

SMT 
model

Apply 
Givens rotations
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Comparison of Traditional and SMT
Eigenimages

Method Maximum
log-likelihood

Δ Kmax

PCA+Shrinkage -2885.71 0 -

Full SMT -2805.81 79.88 910

Fast SMT(8) -2793.33 92.37 1010

Fast SMT(16) -2799.03 86.67 910

Fast SMT(32) -2802.36 83.34 910

Diagonal -3213.10 -327.40 -

Δlog likelihood= 92.37

 Eigenimage experiment
 Dataset: face image
 Number of samples (n) = 40
 Dimensions (p) = 644

 Use cross-validation to compute expected
log likelihood

 SMT produces much better fit to image data
 SMT can produce all eigenimages
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SMT versus Traditional Eigenfaces
Face dataset: Traditional (PCA) eigenfaces:

Full SMT: SMT(8pt neighborhood):


