Covariance Estimation for High Dimensional Data Vectors

Charles A. Bouman Purdue University School of Electrical and Computer Engineering

Co-authored with: Guangzhi Cao and Leonardo R Bachega

Covariance Estimation for High Dimensional Data Vectors

• Let
$$Y = \begin{bmatrix} y_1, y_2, \cdots, y_n \end{bmatrix}$$

where $y_i \sim N(0, R)$ is a *p*-dimensional random vector

• **Objective:** Estimate the eigenvalues and eigenvectors of *R*

$$R = E\Lambda E^{t}$$

- **Problem:** This a classically difficult problem when *n*<*p*
 - Curse of dimensionality
- **Proposed Solution:** Model based estimation
 - Does not depend on ordering of vector or stationarity assumption

Data Model

• Notation:

• Likelihood of *Y* given *R*:

$$p_{R}(Y) = \frac{1}{(2\pi)^{np/2}} \left| R \right|^{-\frac{n}{2}} \exp\left\{ -\frac{1}{2} tr\{Y^{t} R^{-1} Y\} \right\}$$

• ML estimate of eigenvectors and eigenvalues is given by

$$\hat{E} = \arg\min_{E \in \text{Prior Model}} \left\{ \left| diag(E^{t}SE) \right| \right\}$$

$$\hat{\Lambda} = diag(\hat{E}^{t}S\hat{E})$$

Prior Model: The Sparse Matrix Transform (SMT)

• Big idea:

(Eigenvector matrix *E*) = (Sparse Matrix Transform)

• What is a Sparse Matrix Transform?

$$E = E_1 E_2 \cdots E_k$$

were E_k are Givens rotations

• Each Givens rotation operates on only two coordinates

- Only 4 multiplies per rotation (really only 2)
- When k=p(p-1)/2, this is any orthonormal transform

SMT is a Generalization of the FFT and Orthonormal Wavelet Transform

• SMT is product of Givens rotations:

$$E = E_1 E_2 \cdots E_k$$
 where $E_k =$

$$\begin{bmatrix} 1 & 0 \\ \cos\theta & -\sin\theta \\ & \sin\theta & \cos\theta \\ 0 & & 1 \end{bmatrix}$$

• So the SMT is a generalization of the FFT

• SMT is also a generalization of orthonormal (paraunitary) wavelets

Design of SMT using Cost Optimization

• ML estimate of Eigenvectors is

$$\hat{E} = \arg \min_{E \in \text{SMT of order } K} \left\{ \left| diag(E^{t}SE) \right| \right\}$$

where $E = E_1 E_2 \cdots E_K$ is an SMT transform.

• The algorithm:

For k = 1 to K {

Select most correlated coordinate pair

Decorrelate the coordinate pair with rotation E_k

}

• *K* is choose to maximize cross-validated likelihood

Covariance Estimation for Hyperspectral Data

• # of hyperspectral bands: p = 191, # of samples: n = 80, grass class

Estimators Compared

• Shrinkage estimator

 $\hat{R} = (1 - \alpha) \cdot S + \alpha \cdot diag(S)$

- estimate α using cross-validation
- Graphic lasso (glasso) covariance estimator *:

$$\hat{R} = \arg \max_{R: P.D.} \left\{ \log(Y \mid R) - \rho \left\| R^{-1} \right\|_{L^{1}} \right\}$$

- L1 regularized ML estimate
- SMT estimator
 - Use *K*th order SMT model
 - Estimate k using cross-validation
- SMT-shrinkage (SMT-S) model
 - Combine SMT covariance estimate with shrinkage

$$\hat{R} = (1 - \alpha) \cdot S + \alpha \cdot \hat{R}_{SMT}$$

Eigenvalue and Eigenvector Estimation: Gaussian Case

Results in Kullback-Leibler Distance: Gaussian Case

Results in Kullback-Leibler Distance^{*}: non-Gaussian Case

* KL distance of Gaussian distributions estimated from non-Gaussian samples

Computational Complexity

	Complexity	CPU time (seconds)	Model order
Shrinkage	p^3	8.6	1
glasso	$p^{3}I$	422.6	4939
SMT	Кр	6.5	495
SMT-S	$Kp+p^3$	7.2	496

- *I*-iterations required for for glasso, *K*-number of Givens rotations
- Numerical results are based on the Guassian grass case with n = 80

Signal Detection Based on Covariance Estimation

• Formulation of signal detection :

 $H_0: r = x$

 $H_1: r = x + e \cdot t$, with *e* not zero

- where: x is a background with covariance R
 - t is a target signature

e is a scalar signal strength

r is the observed pixel

• The SNR of signal detection:

$$SNR = \frac{\left(q^{t}t\right)^{2}}{q^{t}Rq}$$

where $q = \hat{R}^{-1}t$ is the linear matching filter used to test for signal

Results in Signal Detection

- Simulation:
 - *R* was chosen to be the true covariance of each class
 - \hat{R} was estimated from the Gaussian sample (n = 80)
 - Dense case:
 - t = rand(p,1) has the uniform distribution in [0, 1]
 - Sparse case:

setting all but the largest values (>0.9) of *t* to zero

• Test was run 100 times, and the average SNRR was calculated:

 $SNRR = \frac{SNR(\hat{R})}{SNR(R)} = \frac{SNR \text{ using estmated } \hat{R}}{\text{opitmal } SNR}$

Comparison of Traditional and SMT Eigenimages

Eigenimage experiment

- Dataset: face image
- Number of samples (n) = 40
- Dimensions (p) = 644
- Use cross-validation to compute expected log likelihood

Δ log likelihood= 92.37

- SMT produces much better fit to image data
- SMT can produce *all* eigenimages

SMT versus Traditional Eigenfaces

Face dataset:

Full SMT:

Traditional (PCA) eigenfaces:

SMT(8pt neighborhood):

UNIVERSI