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While Bayesian methods can significantly improve
the quality of tomographic reconstructions, they re-
quire the solution of large iterative optimization prob-
lems. Recent results indicate that the convergence
of these optimization problems can be improved by
using sequential pixel updates, or Gauss-Seidel itera-
tions.

However, Gauss-Seidel iterations may be perceived
as less useful when parallel computing architectures
are use. In this paper, we show that for degrees of
parallelism of typical practical interest, the Gauss-
Seidel iterations updates may be computed in parallel
with little loss in convergence speed. In this case, the
theoretical speed up of parallel implementations is
nearly linear with the number of processors.

1 Introduction

Statistical methods of tomographic image reconstruc-
tion offer significant improvement in quality over de-
terministic approaches such as filtered backprojection
(FBP), but entail far more computation for the re-
sulting large-scale, iterative optimizations. Most op-
timization techniques for solving these problems are
closely related to gradient ascent, with updates of all
pixels’ values computed in parallel at each iteration[1-
3]. However, recent results have established that se-
quential updates of pixels, in the manner of Gauss-
Seidel iterations for solving partial differential equa-
tions, converge very rapidly in the tomographic prob-
lem, and can trivially enforce constraints on the
solution[4, 5]. The Gauss-Seidel method may be ap-
plied to Bayesian reconstruction in both emission and
transmission cases [6]. While we use the name Gauss-
Seidel for our approach to the optimization problem,
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iterative coordinate descent (ICD) and iterative con-
ditional modes (ICM) are alternative names for the
same method.

Because computation time is an important limit-
ing factor in the industrial and clinical application of
statistical reconstruction techniques, it is natural to
consider parallel implementations. This is by defini-
tion at odds with the form of sequential updates. But
it is intuitively clear that pixels which are spatially
distant from one another influence each other mini-
mally through the forward and backward projection.
In this paper, we quantify this property, and use it to
formulate a parallel implementation of Gauss-Seidel
methods for tomographic reconstruction.

We include experimental results on synthetic phan-
toms which indicate that for practical levels of par-
allelization, pixels may be updated in parallel with
little loss in convergence speed. In this case, the the-
oretical speed up of parallel implementations is nearly
linear with the number of processors.

2 Parallel Computation of Se-
quential Updates

In this section, we present the form of provably
convergent parallel pixel update computation. This
method is similar to the technique employed by De
Pierro to allow complete parallel updates for Bayesian
tomographic emission reconstructions using a modi-
fied expectation-maxi- mization (EM) algorithm[3].

The photon counts Y which form the raw tomo-
graphic data are modeled as independent Poisson-
dist- ributed random variables, dependent on projec-
tions∑
j Aijxj , where x is the unknown cross section, and

A is the projection matrix. The Poisson parameters
depend on both input dosage and attenuation of the
each ray in the transmission case, while the parame-
ters are expressed directly by projections for the emis-
sion problem.
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DePierro has designed a method for fully parallel
EM-type updates under a spatially connected a priori
model for X. This method consists of replacing the
logarithm of the prior density on X by an alternative
cost function C(x;xn) at the n+1-th update, having
the properties

C(x;x) = logP(X = x)
C(x;xn) ≤ logP(X = x).

Solving the optimization with C(x;xn) in place of
logP(X = x) guarantees that at each step, the log
posterior density increases, since any increase in the
former must result in an equal or greater increase in
the latter.

With degrees of parallelism which are likely to
be practical in our applications, and Markov ran-
dom field (MRF) a priori image models, it is easy
to choose parallel updates which are not coupled
through logP(X = x). We apply this approach to
only the log likelihood function, logP(Y = y|X = x),
since through this function, essentially all pixel pairs
are coupled.

The log likelihood for tomographic problems can
be shown to have the form

logP(Y = y|X = x) = (1)∑
i

−fi

∑
j

Aijxj

 ,

where fi(·) is a convex function which depends on
the data y. The first summation is over all entries in
the data vector, while the second is over the image
vector. Intuitively, the argument of fi(·) is the ith

projection of the image x.
Suppose now that we consider the parallel update

of a collection of pixels whose indeces form the set S
at iteration n + 1, with the remainder of the image
fixed at xn. We may then view the log likelihood
at this step as a function of only {xj ; j ∈ S}. If we
define

WS,i =
∑
k∈S

Aik,

then we may express the dependence on {xj ; j ∈ S}
by using the modified convex function fSi(·).

logP(Y = y|X = x) (2)

= −
∑
i

fS,i

∑
j∈S

Aijxj


= −

∑
i

fS,i

∑
j∈S

Aij
WS,i

[∑
l∈S

Ailx
n
l +WS,i(xj − xnj )

] .

Applying Jensen’s inequality results in the expression

− logP(Y = y|X = x) ≤∑
i

∑
j∈S

Aij
WS,i

fS,i

(∑
l∈S

Ailx
n
l +WS,i(xj − xnj )

)
.(3)

This applies to common likelihood functions for the
tomographic problems. Note that this is a summation
over S, each term involving only one xj , which allows
for simple optimization.

If we define

pS,i(xn, xj) =
∑
l

Ailx
n
l +WS,i(xj − xnj )

and substitute into (3) for the standard Poisson mod-
els for transmission and emission tomography, the
right-hand side of the inequality takes the form∑
i

∑
j∈S

Aij
WS,i

[pS,i(xn, xj)− yi log(pS,i(xn, xj))]

for emission and∑
i

∑
j∈S

Aij
WS,i

[yT exp{−pS,i(xn, xj)}+ yipS,i(xn, xj)]

for transmission, where yT is the dosage parameter.
The log likelihood functions in both emission and

transmission cases can be approximated by a second-
order Taylor series expansion in x

logP(Y = y|X = x) ≈
−1/2(p−Ax)tD(p−Ax) + c(y),

with p the vector of measured integral projections,
c(y) a constant relative to x, and D a diagonal matrix
with entries being the photon counts {yi} (transmis-
sion) or {y−1

i } (emission)[6]. This approximation is
quite accurate for most common transmission prob-
lems, and in both cases, lends both analytical leverage
and qualitative understanding to studies of optimiza-
tion techniques and their convergence behavior.

Under this approximation, we may apply the result
of (3) to obtain the following.

∑
i

fS,i

∑
j∈S

Aijxj


≤

∑
i

∑
j∈S

AijDii

WS,i
(eni −WS,i∆n+1

j )2. (4)

where

eni = pi −
∑
j

Aijx
n
j

∆n+1
j = xj − xnj



          

0 2 4 6 8 10 12
Log(No. Processors)

0.0

0.5

1.0

R
el

ax
at

io
n 

Fa
ct

or

Figure 1: Value of the under-relaxation factor for the
quadratic approximation of the log-likelihood. The
number of processors ranges from one for the entire
image on the left, to one for each pixel on the right.
The latter case corresponds to completely parallel up-
dates.

Here eni is the error state vector in the projection data
after iteration n, and ∆n+1

j is the current change in
pixel j. Minimization as a function of ∆n+1

j yields

∆n+1
j =

∑
iDiiAije

n
i∑

iDiiAijWS,i
(5)

This is the same form as the updates derived in [4],
except that this formulation calls for under-relaxation
of the greedy updates by the factor∑

iDiiA
2
ij∑

iDiiAijWS,i
,

which reduces to the local update of [4] when S con-
tains only one pixel. The value of this factor for
the center pixel of a 128 × 128 reconstruction from
128 × 128 uniformly spaced projections is shown in
Figure 1.

3 Numerical Results
Our first results consist of trials using a phantom
with attenuation values similar to human tissue in a
low dosage transmission tomography simulation. The
data are 128×128 projections, and the reconstruction
is computed at a resolution of 128 × 128 pixels. We
solve the maximum a posteriori (MAP) reconstruc-
tion with the generalized Gaussian Markov random
field (GGMRF)[7]. These prior densities add to the

optimization the log prior
∑
i,j

bij
q

(
xi−xj
σ

)q
, which

is convex for our choices of q.
The parallel computation assumes that after each

processor has updated a pixel, the state of the pro-
jection error vector en can be updated and shared
among all processors. We show results for a number



       

but practical matters must also be addressed. Ques-
tions do remain on the effects, both short-term and
asymtotic, of over/under-relaxation in this frame-
work. The linear speed-up shown here is based on
synchronous update of the projection state vector for
all processors at the end of a cycle, which may in
practice be limited by memory and communication
speeds. Future work on this topic will include imple-
mentation of the Gauss-Seidel approach on parallel
computing machinery.

Figure 3: Above: Emission brain phantom, from
which approximately 3 × 106 total photons are
counted. Upper right: FBP reconstruction. Lower
left: MAP estimate with Gaussian image model,
σ = 0.5. Lower right: MAP estimate with GGMRF
model, q = 1.1, σ = 0.2.
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Figure 4: Convergence of parallel and purely se-
quentially computed pixel updates for emission phan-
tom reconstruction under the Gaussian prior and no
under-relaxation.

0 5 10 15 20
Iterations

-1.5e+04

-1.0e+04

L
og

 A
 P

os
te

ri
or

i P
ro

ba
bi

lit
y

Sequential
N = 64
N = 256

Figure 5: Convergence comparison with GGMRF
prior and q = 1.1., and no under-relaxation.
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