Nonlinear Multigrid Optimization for Bayesian Diffusion Tomography

J.C. Ye¹, C. A. Bouman², R. P. Millane², and K. J. Webb²

 ¹ University of Illinois at Urbana-Champaign
 ² School of ECE, Purdue University, West Lafayette http://www.ece.purdue.edu/~bouman

Optical Diffusion Tomography

- Measure light passes through a highly scattering medium
- Light does not travel along a straight line path
- Use measurements to determine unknown absorption cross-section
- Frequency modulate light to reduce measurement noise

Optical Diffusion Model

• The photon flux density, $\psi_k(r, t)$, obeys the **wave** equation

$$\frac{1}{c}\frac{\partial}{\partial t}\psi_k(r,t) - \nabla \cdot D(r)\nabla\psi_k(r,t) + \mu_a(r)\psi_k(r,t) = S(t)\delta(r-s_k)$$

where $D(r) = \frac{1}{3(\mu_a(r) + \mu'_s(r))}$

- The frequency modulated light, $\phi_k(r)$, obeys the **PDE** $\nabla \cdot D(r) \nabla \phi_k(r) + (-\mu_a(r) + j\omega/c) \phi_k(r) = -\beta \delta(r - s_k).$
- We need to compute $\mu_a(r)$ from measurements of $\phi_k(r)$

How Does the Forward Model Behave?

- Nonlinear forward model: $\bar{\mathbf{y}} = \mathbf{f}(\mathbf{x})$
 - $ar{\mathbf{y}}$ noiseless complex optical measurement of $\phi_k(r)$
 - ${f x}$ image of unknown absorb tances, $\mu_a(r)$
- Measurement geometry $(8 \text{ cm} \times 8 \text{ cm})$

log magnitude of data

phase of data

What Is It Good for?

- Medical Imaging
 - "See" inside tissues at substantial depths
 - Fluorophors increase contrast
 - Tagging agents can target delivery of fluorophors
- Environmental Imaging
 - Airborne smoke and dust can obscure objects
 - Spectroscopic analysis of materials
 - Doppler shifting of envelope
- Nondestructive evaluation
 - Polymer composites
- Representative of a fundamentally new imaging modality
 - Nonlinear forward problem modeled by PDE
 - Potentially low cost
 - Does not require radioisotopes

What is the Problem?

- This inverse problem is REALLY DIFFICULT
 - Nonlinear forward and inverse problem.
 - Each evaluation of forward problem requires the solution of a PDE.
 - Often highly underdetermined
 - Fundamentally 3-D in nature
- Our approach
 - Use a Bayesian inverse framework
 - Develop general purpose computational tools and models
 - Nonlinear multigrid optimization framework

Statistical Measurement Model

- **y** complex optical measurements of $\phi_k(r)$
- ${f x}$ image of unknown absorbtances, $\mu_a(r)$
- $\mathbf{f}(\mathbf{x})$ nonlinear forward model
- Using a shot-noise limited measurement model, then

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{(\pi\alpha)^P |\Lambda|^{-1}} \exp\left[-\frac{||\mathbf{y} - \mathbf{f}(\mathbf{x})||_{\Lambda}^2}{\alpha}\right],$$

where

- α measurements variance
- $\Lambda = \text{diag1}/|\mathbf{y}_k|$ measurement covariance

Prior Model for Absorbtances

• Generalized Gaussian MRF (GGMRF)

$$\log P(x) = -\frac{1}{p\sigma^p} \sum_{\substack{\text{all neighbors} \\ \{s,r\}}} b_{i-j} |x_s - x_r|^p + \text{constant}$$

- Convex for p > 1
- Scalable $\rho(a\Delta) = a^p \rho(\Delta)$ eliminates need for a "threshold" parameter.
- Simple parameterization

$$\hat{\sigma}_{ML} = \frac{1}{N} \sum_{\substack{\text{all neighbors} \\ \{s,r\}}} b_{i-j} |x_s - x_r|^p$$

Maximum A Posteriori Estimate

- We perform joint MAP estimation of \mathbf{x} and α .
- Estimation of alpha makes global convergence more robust!

$$\begin{aligned} \hat{\mathbf{x}}_{MAP} \\ &= \arg\max_{\mathbf{x}\geq\mathbf{0}} \left\{ \log p(\mathbf{y}|\mathbf{x}) + \log p(\mathbf{x}) \right\} \\ &= \arg\max_{\mathbf{x}\geq\mathbf{0}} \max_{\alpha} \left\{ -\frac{1}{\alpha} ||\mathbf{y} - \mathbf{f}(\mathbf{x})||_{\Lambda}^{2} - P \log \alpha - \frac{1}{p\sigma^{p}} \sum_{\{i,j\}\in\mathcal{N}} b_{i-j} |x_{i} - x_{j}|^{p} \right\} \\ &= \arg\max_{\mathbf{x}\geq\mathbf{0}} \left\{ -P \log \left(\frac{1}{P} ||\mathbf{y} - \mathbf{f}(\mathbf{x})||_{\Lambda}^{2} \right) - \frac{1}{p\sigma^{p}} \sum_{\{i,j\}\in\mathcal{N}} b_{i-j} |x_{i} - x_{j}|^{p} \right\} \end{aligned}$$

• Intuition: Logarithm term "reduces size" of local minimum.

Multigrid Optimization Approach

- Advantages of multigrid:
 - Fast convergence
 - Robustness to local minima
 - Suitable for non-quadratic optimization (nonlinear problems)
 - Allows simple enforcement of positivity constraints
 - Not just a "multiresolution" algorithm
- Approach:
 - Reformulate nonlinear multigrid in optimization framework
 - Derive general expressions for multigrid recursions
 - Use iterative re-linearization (Born approximation)
 - Iterative estimation of α

Multigrid Cost Functions

• Fine grid cost function is defined by problem

$$c^{(0)}(\mathbf{x}^{(0)}) = \frac{1}{\alpha} ||\mathbf{z} - \mathbf{A}\mathbf{x}^{(0)}||_{\Lambda}^{2} + \frac{1}{p\sigma^{p}} \sum_{\{i,j\}\in\mathcal{N}} b_{i-j} \left| x_{i}^{(0)} - x_{j}^{(0)} \right|^{p}$$

• Choose coarse grid cost functions which are a good approximation to fine grid

$$c^{(k)}(\mathbf{x}^{(k)}) = \frac{1}{\alpha} ||\mathbf{z}^{(k)} - \mathbf{A}^{(k)}\mathbf{x}^{(k)}||_{\Lambda}^{2} + \frac{4^{k}}{p\sigma^{p}} \sum_{\{i,j\}\in\mathcal{N}} b_{i-j} \left| \frac{x_{i}^{(1)} - x_{j}^{(1)}}{2^{k}} \right|^{p}$$

• We will approximately correct any errors later

General 2-Grid Optimization Approach

- Let $\mathbb{I}_{(1)}^{(0)}$ and $\mathbb{I}_{(0)}^{(1)}$ be interpolation and decimation operators
- 2-Grid Algorithm:
 - 1. Approximately optimize fine grid cost function $c^{(0)}(\mathbf{x}^{(0)})$
 - 2. Initialized coarse grid to $\mathbf{x}^{(1)} \leftarrow \mathbb{I}_{(0)}^{(1)} \hat{\mathbf{x}}^{(0)}$, then approximately optimize coarse grid cost function $c^{(1)}(\mathbf{x}^{(1)})$
 - 3. Update fine grid result

$$\mathbf{x}^{(0)} \leftarrow \hat{\mathbf{x}}^{(0)} + \mathbb{I}_{(1)}^{(0)}(\mathbf{x}^{(1)} - \mathbb{I}_{(0)}^{(1)}\hat{\mathbf{x}}^{(0)})$$

• Problem

- True solution is not a fixed point of algorithm!
- Coarse grid cost function needs to be corrected

Fine Grid Residual Term

• Use fine grid solution to compute correction term

$$\min_{\mathbf{x}^{(1)} \ge \mathbf{0}} \left\{ c^{(1)}(\mathbf{x}^{(1)}) - \mathbf{r}^{(1)} \, \mathbf{x}^{(1)} \right\}$$

- Choose the row vector $\mathbf{r}^{(1)}$ so that:
 - Gradients of coarse and fine grid cost functions are equal
 - Exact solution is fixed point of algorithm
- General formula for $\mathbf{r}^{(1)}$

$$\mathbf{r}^{(1)} = \nabla c^{(1)}(\mathbb{I}_{(0)}^{(1)} \hat{\mathbf{x}}^{(0)}) - \nabla c^{(0)}(\hat{\mathbf{x}}^{(0)}) \,\mathbb{I}_{(1)}^{(0)}$$

Formula for Residual Term

• Explicit expression for residual term

$$\begin{bmatrix} \mathbf{r}^{(1)} \end{bmatrix}_{k} = \frac{4}{\sigma^{p}} \sum_{j \in \mathcal{N}_{k}} b_{k-j} \frac{1}{2} \left| \frac{x_{k}^{(1)} - x_{j}^{(1)}}{2} \right|^{p-1} \operatorname{sgn}(x_{k}^{(1)} - x_{j}^{(1)}) - \frac{4}{\sigma^{p}} \sum_{l} \left[\mathbb{I}_{(0)}^{(1)} \right]_{k,l} \left(\sum_{m \in \mathcal{N}_{l}} b_{l-m} \left| x_{l}^{(0)} - x_{m}^{(0)} \right|^{p-1} \operatorname{sgn}(x_{l}^{(0)} - x_{m}^{(0)}) \right)$$

• Optimize $c^{(1)}(x^{(1)})$ to minimize $\mathbf{r}^{(1)}$?

Basic Iteration for Algorithm

- For each iteration:
 - Update α
 - Linearize about current point (Born approximation)
 - Apply nonlinear multigrid optimization

$$\hat{\alpha} \leftarrow \frac{1}{P} ||\mathbf{y} - \mathbf{f}(\hat{\mathbf{x}})||_{\Lambda}^{2}$$

$$\mathbf{A} \leftarrow \nabla \mathbf{f}(\hat{\mathbf{x}}) \qquad \mathbf{z} \leftarrow \mathbf{y} - \mathbf{f}(\hat{\mathbf{x}}) + \nabla \mathbf{f}(\hat{\mathbf{x}})\hat{\mathbf{x}}$$

$$\hat{\mathbf{x}} \leftarrow \text{Multigrid} \min_{\mathbf{x} \ge \mathbf{0}} \left\{ \frac{1}{\hat{\alpha}} ||\mathbf{y} - \mathbf{A}\mathbf{x}||_{\Lambda}^{2} + \frac{1}{p\sigma^{p}} \sum_{\{i,j\} \in \mathcal{N}} b_{i-j} |x_{i} - x_{j}|^{p} \right\}$$

Multigrid Recursion

- Multigrid(k)
 - Apply v optimization iterations to $c^{(k)}(\mathbf{x}^{(k)})$
 - Apply Multigrid(k+1) to $c^{(k+1)}(\mathbf{x}^{(k+1)}) + (\mathbf{r}^{(k+1)})^T \mathbf{x}^{(k+1)}$

– Apply v optimization iterations to $c^{(k)}(\mathbf{x}^{(k)})$

- Fixed grid optimizer must have good **high frequence** convergence
- We use ICD/Born optimizer

Data (Simulated)

S4

D5

S5

D6

D4

S6

D7

S7

D8

S8

D9

S9

D10

Reconstructions

$129\!\times\!129$ phantom

Fixed grid solution

Multigrid solution

Convergence Speed

Conclusions

- Optical tomography represents a fundmentally new imaging modality with potentially important applications.
- Optical tomography problem is representative of a very important class of nonlinear inverse problems.
- Multigrid algorithms offer great potential in reducing computation and providing robustness to local minima.
- Multigrid algorithms are well suited to nonlinear optimization problems and the enforcement of positivity constraints.
- Direct formulation of multigrid algorithms in an **optimization framework** has many analytical advantages.