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Optical Diffusion Tomography

e Measure light passes through a highly scattering medium
e Light does not travel along a straight line path
e Use measurements to determine unknown absorption cross-section

e Frequency modulate light to reduce measurement noise
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Optical Diffusion Model

e The photon flux density, ¥ (7, t), obeys the wave equation

%%%(r, t) =V - D(r)Vpi(r,t) + pa(r)yi(r, t) = S(t)d(r — si)
where D(r) = 1

3(kalr) + pi(r))

e The frequency modulated light, ¢ (r), obeys the PDE
V- D(r)Voi(r) + (—pa(r) + jw/c)pp(r) = —=L0(r — si).

e We need to compute p,(r) from measurements of ¢ (r)



How Does the Forward Model Behave?

e Nonlinear forward model: y = f(x)

y - noiseless complex optical measurement of ¢y (r)

x - image of unknown absorbtances, p,(r)

e Measurement geometry (8 cm X 8 c¢m)
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What Is It Good for?

e Medical Imaging

— “See” inside tissues at substantial depths
— Fluorophors increase contrast

— Tagging agents can target delivery of fluorophors
e Invironmental Imaging

— Airborne smoke and dust can obscure objects
— Spectroscopic analysis of materials

— Doppler shifting of envelope
e Nondestructive evaluation

— Polymer composites

e Representative of a fundamentally new imaging modality

— Nonlinear forward problem modeled by PDE
— Potentially low cost

— Does not require radioisotopes



What is the Problem?

e This inverse problem is REALLY DIFFICULT

— Nonlinear forward and inverse problem.
— Each evaluation of forward problem requires the solution of a PDE.
— Often highly underdetermined

— Fundamentally 3-D in nature

e Our approach

— Use a Bayesian inverse framework
— Develop general purpose computational tools and models

— Nonlinear multigrid optimization framework



Statistical Measurement Model

y - complex optical measurements of ¢y (r)
x - image of unknown absorbtances, fi,(r)

f(x) - nonlinear forward model

e Using a shot-noise limited measurement model, then
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where
Q- measurements variance

A = diagl/|yx| - measurement covariance



Prior Model for Absorbtances

e Generalized Gaussian MRF (GGMRF)
1
log P(x) = ——— Z bi_j|zs — x|’ + constant
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e Convex for p > 1
e Scalable - p(aA) = a?p(A) - eliminates need for a “threshold” parameter.
e Simple parameterization
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Maximum A Posteriori Estimate

e We perform joint MAP estimation of x and «a.

e Estimation of alpha makes global convergence more robust!

XMAP
= argmax {log p(y|x) +log p(x)}
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e Intuition: Logarithm term “reduces size” of local minimum.



Multigrid Optimization Approach

e Advantages of multigrid:

— Fast convergence

— Robustness to local minima

— Suitable for non-quadratic optimization (nonlinear problems)
— Allows simple enforcement of positivity constraints

— Not just a “multiresolution” algorithm
e Approach:

— Reformulate nonlinear multigrid in optimization framework
— Derive general expressions for multigrid recursions
— Use iterative re-linearization (Born approximation)

— [terative estimation of «



Multigrid Cost Functions

e Fine grid cost function is defined by problem
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e Choose coarse grid cost functions which are a good approximation to fine
grid
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e We will approximately correct any errors later



General 2-Grid Optimization Approach
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e 2-Grid Algorithm:

be interpolation and decimation operators

1. Approximately optimize fine grid cost function c<0)(x(0))

2. Initalized coarse grid to x( «+ Hg(l)gfc(()), then approximately optimize
coarse grid cost function c(l)(x(l))

3. Update fine grid result

e Problem

— True solution is not a fixed point of algorithm!

— Coarse grid cost function needs to be corrected



Fine Grid Residual Term

e Use fine grid solution to compute correction term

in {Cu)(X(l)) _ X<1>}

X<1>20

e Choose the row vector r') so that:

— Gradients of coarse and fine grid cost functions are equal

— Exact solution is fixed point of algorithm

e Ceneral formula for rV



Formula for Residual Term

e Explicit expression for residual term
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e Optimize ¢M(zM) to minimize rt)?



Basic Iteration for Algorithm

a estimation O estimation
Born approx. Born approx.
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e [or each iteration:

— Update «
— Linearize about current point (Born approximation)

— Apply nonlinear multigrid optimization
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Multigrid Recursion

Qa estimation a estimation
Born approx. Born approx.
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e Multigrid(k)

— Apply v optimization iterations to ¢ <X(k))
— Apply Multigrid(k+1) to ¢+ (x*+1) 4 (ph+1)Tx (k+1)

— Apply v optimization iterations to c*)(x(*))

e Fixed grid optimizer must have good high frequence convergence

e We use ICD/Born optimizer



Data (Simulated)
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Reconstructions

129% 129 phantom

Fixed grid solution Multigrid solution



Convergence Speed
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Conclusions

e Optical tomography represents a fundmentally new imaging modality with
potentially important applications.

e Optical tomography problem is representative of a very important class of
nonlinear inverse problems.

e Multigrid algorithms offer great potential in reducing computation and pro-
viding robustness to local minima.

e Multigrid algorithms are well suited to nonlinear optimization problems and
the enforcement of positivity constraints.

e Direct formulation of multigrid algorithms in an optimization frame-
work has many analytical advantages.



