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Optical Diffusion Tomography

• Measure light passes through a highly scattering medium

• Light does not travel along a straight line path

• Use measurements to determine unknown absorption cross-section

• Frequency modulate light to reduce measurement noise
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Optical Diffusion Model

• The photon flux density, ψk(r, t), obeys the wave equation

1

c

∂

∂t
ψk(r, t)−∇ ·D(r)∇ψk(r, t) + µa(r)ψk(r, t) = S(t)δ(r − sk)

where D(r) =
1

3(µa(r) + µ′s(r))

• The frequency modulated light, φk(r), obeys the PDE

∇ ·D(r)∇φk(r) + (−µa(r) + jω/c)φk(r) = −βδ(r − sk).

•We need to compute µa(r) from measurements of φk(r)



How Does the Forward Model Behave?

• Nonlinear forward model: ȳ = f(x)

ȳ - noiseless complex optical measurement of φk(r)

x - image of unknown absorbtances, µa(r)

• Measurement geometry (8 cm × 8 cm)
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What Is It Good for?

• Medical Imaging

– “See” inside tissues at substantial depths

– Fluorophors increase contrast

– Tagging agents can target delivery of fluorophors

• Environmental Imaging

– Airborne smoke and dust can obscure objects

– Spectroscopic analysis of materials

– Doppler shifting of envelope

• Nondestructive evaluation

– Polymer composites

• Representative of a fundamentally new imaging modality

– Nonlinear forward problem modeled by PDE

– Potentially low cost

– Does not require radioisotopes



What is the Problem?

• This inverse problem is REALLY DIFFICULT

– Nonlinear forward and inverse problem.

– Each evaluation of forward problem requires the solution of a PDE.

– Often highly underdetermined

– Fundamentally 3-D in nature

• Our approach

– Use a Bayesian inverse framework

– Develop general purpose computational tools and models

– Nonlinear multigrid optimization framework



Statistical Measurement Model

y - complex optical measurements of φk(r)

x - image of unknown absorbtances, µa(r)

f(x) - nonlinear forward model

• Using a shot-noise limited measurement model, then

p(y|x) =
1

(πα)P |Λ|−1
exp

[
−
||y − f(x)||2Λ

α

]
,

where

α - measurements variance

Λ = diag1/|yk| - measurement covariance



Prior Model for Absorbtances

• Generalized Gaussian MRF (GGMRF)

logP (x) = −
1

pσp

∑
all neighbors

{s,r}

bi−j|xs − xr|
p + constant

• Convex for p > 1

• Scalable - ρ(a∆) = apρ(∆) - eliminates need for a “threshold” parameter.

• Simple parameterization

σ̂ML =
1

N

∑
all neighbors

{s,r}

bi−j|xs − xr|
p



Maximum A Posteriori Estimate

•We perform joint MAP estimation of x and α.

• Estimation of alpha makes global convergence more robust!

x̂MAP

= arg max
x≥0
{log p(y|x) + log p(x)}

= arg max
x≥0

max
α

− 1

α
||y − f(x)||2Λ − P logα−

1

pσp

∑
{i,j}∈N

bi−j|xi − xj|
p


= arg max

x≥0

−P log

(
1

P
||y− f(x)||2Λ

)
−

1

pσp

∑
{i,j}∈N

bi−j|xi − xj|
p


• Intuition: Logarithm term “reduces size” of local minimum.



Multigrid Optimization Approach

• Advantages of multigrid:

– Fast convergence

– Robustness to local minima

– Suitable for non-quadratic optimization (nonlinear problems)

– Allows simple enforcement of positivity constraints

– Not just a “multiresolution” algorithm

• Approach:

– Reformulate nonlinear multigrid in optimization framework

– Derive general expressions for multigrid recursions

– Use iterative re-linearization (Born approximation)

– Iterative estimation of α



Multigrid Cost Functions

• Fine grid cost function is defined by problem

c(0)(x(0)) =
1

α
||z−Ax(0)||2Λ +

1

pσp

∑
{i,j}∈N

bi−j

∣∣∣x(0)
i − x

(0)
j

∣∣∣p
• Choose coarse grid cost functions which are a good approximation to fine

grid

c(k)(x(k)) =
1

α
||z(k) −A(k)x(k)||2Λ +

4k

pσp

∑
{i,j}∈N

bi−j

∣∣∣∣∣x
(1)
i − x

(1)
j

2k

∣∣∣∣∣
p

•We will approximately correct any errors later



General 2-Grid Optimization Approach

• Let I(0)
(1) and I(1)

(0) be interpolation and decimation operators

• 2-Grid Algorithm:

1. Approximately optimize fine grid cost function c(0)(x(0))

2. Initalized coarse grid to x(1) ← I(1)
(0)x̂

(0), then approximately optimize

coarse grid cost function c(1)(x(1))

3. Update fine grid result

x(0)← x̂(0) + I(0)
(1)(x

(1) − I(1)
(0)x̂

(0))

• Problem

– True solution is not a fixed point of algorithm!

– Coarse grid cost function needs to be corrected



Fine Grid Residual Term

• Use fine grid solution to compute correction term

min
x(1)≥0

{
c(1)(x(1))− r(1) x(1)

}
• Choose the row vector r(1) so that:

– Gradients of coarse and fine grid cost functions are equal

– Exact solution is fixed point of algorithm

• General formula for r(1)

r(1) = ∇c(1)(I(1)
(0)x̂

(0))−∇c(0)(x̂(0)) I(0)
(1)



Formula for Residual Term

• Explicit expression for residual term[
r(1)
]
k

=
4

σp

∑
j∈Nk

bk−j
1

2

∣∣∣∣∣x
(1)
k − x

(1)
j

2

∣∣∣∣∣
p−1

sgn(x
(1)
k − x

(1)
j )

−
4

σp

∑
l

[
I(1)

(0)

]
k,l

∑
m∈Nl

bl−m

∣∣∣x(0)
l − x

(0)
m

∣∣∣p−1

sgn(x
(0)
l − x

(0)
m )


• Optimize c(1)(x(1)) to minimize r(1)?



Basic Iteration for Algorithm

   

Born approx.
    estimationα

   
fine

coarse

Born approx.
    estimationα

• For each iteration:

– Update α

– Linearize about current point (Born approximation)

– Apply nonlinear multigrid optimization

α̂ ←
1

P
||y− f(x̂)||2Λ

A ← ∇f(x̂) z← y − f(x̂) +∇f(x̂)x̂

x̂ ← Multigrid min
x≥0

1

α̂
||y−Ax||2Λ +

1

pσp

∑
{i,j}∈N

bi−j|xi − xj|
p





Multigrid Recursion

   

Born approx.
    estimationα

   
fine

coarse

Born approx.
    estimationα

• Multigrid(k)

– Apply v optimization iterations to c(k)(x(k))

– Apply Multigrid(k+1) to c(k+1)(x(k+1)) + (r(k+1))Tx(k+1)

– Apply v optimization iterations to c(k)(x(k))

• Fixed grid optimizer must have good high frequence convergence

•We use ICD/Born optimizer



Data (Simulated)
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Reconstructions

129×129 phantom

Fixed grid solution Multigrid solution



Convergence Speed
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Conclusions

• Optical tomography represents a fundmentally new imaging modality with
potentially important applications.

• Optical tomography problem is representative of a very important class of
nonlinear inverse problems.

• Multigrid algorithms offer great potential in reducing computation and pro-
viding robustness to local minima.

• Multigrid algorithms are well suited to nonlinear optimization problems and
the enforcement of positivity constraints.

• Direct formulation of multigrid algorithms in an optimization frame-
work has many analytical advantages.


