Distributed Signal Decorrelation in WSNs Using the Sparse Matrix Transform (SMT)

Leonardo Bachega¹, Srikanth Hariharan², Charles Bouman¹, and Ness Shroff²

Purdue University
 Ohio State University

Distributed Anomaly Detection

Anomaly detection is

- **Important:** Central to Detection theory
- **<u>Ubiquitous</u>**: Many applications in security-related areas
 - Remote Sensing, Surveillance, Network Intrusion Detection, etc...

Wireless Network of Cameras

- Collectively monitor the environment
- Each outputs image (vector) from own viewpoint

<u>Goal:</u> detect anomalies based on *joint* measurements from *all cameras*

Approach: Sparse Matrix Transform(SMT)

- Allows covariance to be estimated when *n*<<*p*
 - Imposes sparsity constraint in non-linear manifold
 - Maintains full rank of covariance estimate
- Results in a fast decorrelating transformation
 - Computation of transform is O(p)
 - Generalization of FFT and orthonormal wavelet transform

✓ Works when *n*<<*p*

• **Problem:** Requires lots of communications between sensors

In this paper: The Vector SMT

- Improvement on original SMT
- Suitable for implementation in a network of sensors
 - Distributed *in network* implementation
 - Restrict communication between pairs of sensors

Covariance Estimation Framework

• Data: We observe *n* independent N(0,R) vectors, each of dimension *p*.

$$Y = [y_1, \cdots, y_n]$$

• Sample Covariance:

$$S = \frac{1}{n}YY^t$$

• Model: Covariance can be represented by

$$R = \mathbf{E}[S] = E\Lambda E^t$$

E – eigen transform Λ – eigenvalues

• Maximum Likelihood (ML) Estimate:

$$\hat{E} = \arg\min_{E \in \Omega_{K}} \left\{ \left| diag(E^{t}SE) \right| \right\}$$
$$\hat{\Lambda} = diag(\hat{E}^{t}S\hat{E})$$

Unconstrained minimization \square PCA of S

<u>Big Idea</u>: Constrain Ω_{K} \implies SMT of order K

The Sparse Matrix Transform (SMT)

• SMT is also a generalization of the orthonormal (paraunitary) wavelet transform

Design of SMT using Cost Optimization

• Decorrelating transform, $K=rp \implies O(p)$ computation

Vector SMT Design in Data Domain

time

Anomaly Detection with the Vector SMT

- Vector SMT: models parent distribution of typical data
- Anomaly Detection: significance test against parent distribution

Simulations Setup

10-dimensional vectors (h=10)

We consider two scenarios:

- 1 Assume sensor measurements are independent
- 2 Assume sensor measurements are correlated use vector SMT for decorrelation

Monitoring a Moving Sphere

"Typical" trajectory

Side view

"Anomalous" trajectory

Top view

Moving Sphere Anomaly Detection

Eigen-Images

Under Independent sensor measurements assumption

Under correlated sensor measurements assumption

Relative Sensitivity of the Two Detectors

Relative sensitivity given by the ratio:

 $\frac{x^t R_2^{-1} x}{x^t R_1^{-1} x}$

Covariance matrices:

 R_1 - sensor independence assumption

 R_2 - correlated sensor measurements assumption

Generalized Eigen-decomposition:

Transform *H*: $HH^{t} = R_{1}$ $H\tilde{\Lambda}_{2}H^{t} = R_{2}$

The ratio becomes a weighted sum of independent components:

$$\frac{x^{t}R_{2}^{-1}x}{x^{t}R_{1}^{-1}x} \xrightarrow{\tilde{x} = H^{t}x} \sum_{k=1}^{p} \underbrace{\frac{1}{[\tilde{\Lambda}_{2}]_{kk}}}_{k} \tilde{x}_{k}^{2}$$
Relative sensitivity of generalized coordinate k

Generalized Eigenvalues/Eigen-Images

Generalized Eigen-Images

15

Sphere Clouds

Goal: Monitor the clouds of 30 spheres scene using 14 cameras and decide whether

- (1) it is a typical configuration (hollow cloud)
- (2) OR it is an anomalous configuration (dense cloud)

Anomalous Configuration

Cloud Sample – Camera Views 1-14

Sample with typical configuration: **Hollow cloud**

Sample with anomalous configuration: **Dense cloud**

Sphere Cloud - Detection

Conclusions and Future Work

- Vector SMT framework
 - Based on the SMT
 - Decorrelates vector measurements across multiple sensors in a WSN
 - One pair of sensors per iteration
- Simulation results suggest
 - Great potential for use in distributed monitoring applications
 - Multi-view detection of visual anomalies
- Future
 - Analysis of communication costs
 - Comparison with other methods

Thank You