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Abstract—One-sided ultrasonic non-destructive evaluation
(UNDE) is extensively used to characterize structures that need
to be inspected and maintained from defects and flaws that
could affect the performance of power plants, such as nuclear
power plants. Most UNDE systems send acoustic pulses into the
structure of interest, measure the received waveform and use
an algorithm to reconstruct the quantity of interest. The most
widely used algorithm in UNDE systems is the synthetic aperture
focusing technique (SAFT) because it produces acceptable results
in real time. A few regularized inversion techniques with linear
models have been proposed which can improve on SAFT, but they
tend to make simplifying assumptions that do not address how to
obtain reconstructions from large real data sets. In this paper, we
propose a model-based iterative reconstruction (MBIR) algorithm
designed for scanning UNDE systems. To further reduce some
of the artifacts in the results, we enhance the forward model to
account for the transmitted beam profile, the occurrence of direct
arrival signals, and the correlation between scans from adjacent
regions. Next, we combine the forward model with a spatially
variant prior model to account for the attenuation of deeper
regions. We also present an algorithm to jointly reconstruct
measurements from large data sets. Finally, using simulated
and extensive experimental data, we show MBIR results and
demonstrate how we can improve over SAFT as well as existing
regularized inversion techniques.

Index Terms—Non-Destructive Evaluation (NDE), Ultrasound
imaging, Ultrasound Reconstruction, Model-Based Iterative Re-
construction (MBIR), Regularized Iterative Inverse, Synthetic
Aperture Focusing Technique (SAFT).

I. INTRODUCTION

ONE-SIDED ultrasonic non-destructive evaluation
(UNDE) is widely used in many applications to

characterize and detect flaws in materials, such as concrete
structures in nuclear power plants (NPP), because of its low
cost, high penetration, portability, and safety compared with
other NDE methods [1]–[3]. A typical one-sided UNDE
system consists of a sensor that transmits sound waves
into the structures of interest and an array of receivers that
measures the reflected signals (see Fig. 1). Such a set up is
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scanned across a large surface in a rectangular grid pattern
and the reflected signals from each position are processed
to reconstruct the underlying structure. The ability to easily
probe structures that can only be accessed from a single
side combined along with the ability of ultrasound signals
to penetrate deep into structures make one-sided UNDE a
powerful tool for the analysis of structures across a variety
of applications [4], [5].

Reconstruction of structures from one-sided UNDE systems
are challenging because of the complex interaction of ultra-
sound waves with matter, the geometry of the experimental set-
up, the trade-off between resolution and penetration, and the
potentially low signal-to-noise ratio of the received signals [6],
[7]. The most widely used reconstruction method for UNDE is
the synthetic aperture focusing technique (SAFT) [4], [8]–[12].
SAFT uses a delay-and-sum (DAS) approach to reconstruct
ultrasound images. Fig. 2 shows an example of a SAFT re-
construction from real data. Notice that SAFT reconstructions
tend to have significant artifacts due to the fact that SAFT
assumes a simple propagation model and does not account for
a variety of effects such as noise and image statistics, direct
arrival signal artifacts, reverberation, and shadowing [11], [12].
In summary, while SAFT is computationally inexpensive to
implement, it can result in significant artifacts in the one-sided
UNDE reconstructions.

In order to overcome some of the short-comings of the
SAFT method, regularized iterative reconstruction methods
that use linear models (due to their low computational com-
plexity) have recently been proposed for various ultrasound
inverse problems. These methods formulate the reconstruction
as minimizing a cost-function that balances a data fidelity
term with a regularization applied to the image/volume to
be reconstructed. The data fidelity term encodes a physics
based model to reduce the error between the measurements
and the projected reconstruction while the regularizer forces
certain constraints on the reconstruction itself. For the data
fidelity term, regularized iterative techniques for one-sided
UNDE, such as [13], [14], use a simple linear model that
models the propagation of the ultrasonic wave to reconstruct
the reflectance B-mode images. A technique that uses the
same forward model, but shows 2D images for a fixed depth
(c-mode), is shown in [15]. The forward model in [15] has
been upgraded to account for the beam profile as in [16]
which can help in reducing some artifacts. However, this
forward model does not account for direct arrival signals
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caused by coupling the ultrasonic device to the surface of the
structure which might cause artifacts and interference with
reflections. Furthermore, the reconstruction algorithm of [16]
is not designed to exploit correlations between adjacent scans
for systems with large field-of-view.

In [14], [16]–[18], the authors used a simple regularization
terms, such as l1 or l2. This regularization is suitable for
imaging point scatters or sparse regions. However, for more
complex medium where edge preservation is needed, other
techniques use a more sophisticated regularization, such as
total variation, where they showed significant enhancement
over SAFT [13], [15]. The method in [13] uses total variation
with variety of a regularization terms that are depth dependent
to resolve the attenuation and blurring for deeper reflections.
However, the depth-dependent regularization is linear with
depth which might not be the best modeling for the depth
attenuation. Therefore, while regularized inversion methods
that use a linear forward model have shown promise in certain
applications, they do not deal with the direct arrival signal
artifacts in a principled manner, they have not been designed
to jointly handle large data sets that require multiple scanning
for one-sided UNDE systems, and they do not fully account
for the depth-dependent blurring that can occur by the use of
certain regularizers.

In this paper, we propose an ultrasonic model-based iterative
reconstruction (MBIR) algorithm designed specifically for
one-sided UNDE systems of large structures. We resolve the
issues discussed above by enhancing the forward and prior
models used in the current regularized iterative techniques.
The enhancement to the forward model include a direct arrival
signal model with varying acoustic speed and an anisotropic
modeling of the transmitted signal propagation to reduce some
of the artifacts in the reconstruction. Also, we repopulate the
system matrix of the forward model to generate a larger system
matrix for larger field of views to share more information
about adjacent scans which can help in reducing noise and arti-
facts and enhancing the reconstruction. Furthermore, the prior
model is enhanced by increasing and conveniently controlling
the regularization for deeper regions to reduce the attenuation
to these regions. In previous work, we have demonstrated the
performance of MBIR compared with SAFT using different
combinations of these enhancements [19]–[21]. We introduce
four major contributions in this paper:
1) A physics-based linear forward model that models the
direct arrival signal with varying acoustic speed, absorption
attenuation, and anisotropic propagation;
2) A non-linear spatially-variant regularization to enhance the
reconstruction for deeper regions;
3) A systematic way using joint-MAP stitching and 2.5D
MBIR to reconstruct the volume from all the measured data
simultaneously rather than individual reconstruction;
4) Qualitative and quantitative results from simulated and
extensive experimental data.

The paper is organized as follows. In section II we cover
the design for the forward model of the ultrasonic MBIR for
one-sided NDE applications. In section III we cover the prior
model used for MBIR. In section IV we cover the optimization
of the MAP cost function using the ICD method. In section V

Fig. 1. An illustration of a typical one-sided UNDE problem where s(t)
is the transmitted signal, ν is a point in the field-of-view, yi,j(ν, t) is the
received signal reflected from ν, θt is the angle between ri and ν, and θr is
the angle between rj and ν.

we cover simulated and experimental results from MBIR and
other techniques. In section VI we cover the conclusion.

II. FORWARD MODEL OF ONE-SIDED UNDE
The reconstruction in an MBIR setting is given by the

following minimization problem,

xMAP = arg min
(x)

{− log p(y|x)− log p(x)} ,

where x is the image to be reconstructed, y is the measured
data, xMAP is the reconstructed image, p(y|x) is the forward
model and the probability distribution of y given x, p(x) is
the prior model and the probability distribution of x. The
forward model is designed in the following way. We will
consider a one-sided UNDE for a concrete structure where
the transducers are coupled to the surface as shown in Fig. 1.
We will consider a pressure signal (Pascal) transmitted from
transducer i located at position ri ∈ R3, reflected by a point
located at ν ∈ R3, and received by transducer j located at
rj ∈ R3. We assume the Fourier transform of the temporal
impulse response of a system sending a signal from ri and
receiving from ν to be

G(ri, ν, f) = λe−(α(f)+jβ(f))‖ν−ri‖

where λ is a transmittance coefficient,

α(f) = α0|f | (m−1)

is the rate of attenuation,

β(f) =
2πf

c
(m−1)

is the phase delay due to propagation through the specimen,
and c is the speed of sound [22]–[28]. Similarly, we assume
the Fourier transform of the impulse response of a system
sending a signal from ν and receiving from rj to be

G(ν, rj , f) = λe−(α(f)+jβ(f))‖rj−ν‖ .

Assuming s(t) (Pascal) is the input to the system and x̃(ν)
(m−3) is the reflectivity coefficient for ν, then the output
Ỹi,j(ν, f) (Pascal ·m−3 · Hz−1) at the receiver due to ν is

Ỹi,j(ν, f) = −S(f)G(ri, ν, f)x̃(ν)G(ν, rj , f)

= −λ2x̃(ν)S(f)e−(α0c|f |+j2πf)τi,j(ν),
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(a) (b) (c)
Fig. 2. Example of a SAFT reconstruction from real data of a concrete structure. (a) shows the defect diagram containing steel rebars (dotted circles), defects (marked D#), and
the back wall (dotted line). (b) shows SAFT reconstruction for a single scan of the large field-of-view in (a). (c) shows the SAFT reconstruction for the entire field-of-view after
stitching the results from each individual scan.

where

τi,j(ν) =
‖ν − ri‖+‖ν − rj‖

c
(s).

By defining

h̃(τi,j(ν), t) = F−1
{
−λ2S(f)e−α0c|f |τi,j(ν)

}
, (1)

where F−1 is the inverse Fourier transform, the time domain
output signal, ỹi,j(ν, t) (Pascal ·m−3), is given by

ỹi,j(ν, t) = h̃(τi,j(ν), t− τi,j(ν)) x̃(ν).

Note that h̃(τi,j(ν), t) is a function of τi,j and t, i.e. not
directly a function of ν. This is a very useful property that
can reduce the computational cost of evaluating h̃. In many
cases, h̃(τ, t) for any τ is close to zero after a certain time t0.
In this case, it is very helpful to modify the previous equation
to

ỹi,j(ν, t) = h(τi,j(ν), t− τi,j(ν)) x̃(ν).

where

h(τ, t) = h̃(τ, t) rect
(
t

t0
− 1

2

)
,

rect(x) = 1 for |x|< 1

2
and 0 for |x|≥ 1

2
,

and t0 is a constant where we assume h(τ, t) is equal to
zero for t > t0. Applying the rect function is very helpful
in increasing the sparsity of the system matrix which leads to
a dramatic decrease in memory and processing time. To get
the overall output ỹi,j(t) (Pascal) from all points in R3, we
need to integrate over all ν:

ỹi,j(t) =

∫
R3

ỹi,j(ν, t)dν (2)

=

∫
R3

Ãi,j(τi,j(ν), t)x̃(ν)dν , (3)

where

Ãi,j(τi,j(ν), t) = h(τi,j(ν), t− τi,j(ν)). (4)

For simplicity, the set of all transducer pairs, {i, j}, is mapped
to the ordered set {1, ...,K} , where K is the total number of
transducer pairs. Hence, Eq. 3 becomes

ỹk(t) =

∫
R3

Ãk(τk(ν), t)x̃(ν)dν . (5)

Finally, we assume the noise associated with the measurements
to be i.i.d. Gaussian.

A. Direct Arrival Signal Artifacts

When the ultrasonic device is attached or coupled to the
surface of the concrete, a direct arrival signal is generated
along with the transmitted signal. This direct arrival signal
produces artifacts on the reconstructed image in regions closer
to the transducer and it might interfere with some of the
reflected signals (see Fig. 2). Eq. 5 models the output from
the reflection of all points. However, the equation does not
account for the direct arrival signal. Locating and deleting
the direct arrival signal from the received signal eliminates
the artifacts, but might lead to deleting reflection signals for
closer objects. We propose a modification to the forward
model that models the direct arrival signal and attenuates the
artifact while preserving information from reflected signals.
The modification adds the following term to the forward model
in Eq. 5 that corresponds to the direct arrival signal,

ỹk(t) =

∫
R3

Ãk(τk(ν), t)x̃(ν)dν + d̃k(t) gk, (6)

where d̃k(t) is an additional term used to model the direct
arrival signal given by

d̃k(t) = −Ãk(τk, t),

τk =
‖ri − rj‖

c
,

and gk is an unknown scaling coefficient for the direct arrival
signal.

The above model works efficiently when the acoustic speed
is constant. For a non-homogeneous material, such as concrete,
the acoustic speed is not constant. This change in acoustic
speed changes the location of the direct arrival signal and
causes a mismatch with MBIR’s direct arrival signal modeling.
We can estimate the shift error by searching for the delay that
produces the maximum autocorrelation of the direct arrival
signal,

l̂ = arg max
−τ̃≤l≤τ̃

{∫
ỹk(t)d̃k(t− l)dt

}
d̃k(t) ← d̃k(t− l̂),
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Fig. 3. Beam pattern model for an ultrasound transducer placed at (0,0) for
isotropic propagation (left) and anisotropic propagation (right). Left image
shows equal propagation in all direction. Right image shows more attenuation
as the angle between the transmitter and the pixel increases.

where τ̃ is chosen to be small, e.g. 3 sampling periods, to
insure the shift is within the integral boundaries and to avoid
interfering with later reflections. This estimate finds the shift
error with the assumption that reflections do not interfere with
the direct arrival signal. Therefore, for homogeneous medium,
our approach is able to reduce direct arrival signal artifacts and
detect reflections close to the transducers. However, for non-
homogonous medium, our approach is able to reduce direct
arrival signal artifacts that do not interfere with reflections.

B. Anisotropic Propagation

Many models used in UNDE assume that the profile of the
transmitted beam is isotropic [15], [29]. However, this assump-
tion is not valid for many systems and it can produce artifacts.
While it would be ideal to know the precise profile especially
of the transmitted beam, in systems that we deal with, this is
not known. Therefore, we adopt a similar apodization function
as in [4] for the anisotropic model. However, the apodization
function used in [4] has a slow attenuating window. In our
application, a faster attenuating window is needed. We use an
anisotropic beam pattern model as shown in Fig. 3. We define
a function, φk(ν), that has a value ranging from 0 to 1. This
function depends on the angles from the transmitter to ν and
from ν to the receiver. φk(ν) is monotonically decreasing with
respect to those two angles. φk(ν) can act as an attenuating
window, such as cosine or Gaussian windows, to the output.
The function φk(ν) is added to Eq. 4 as follows:

Ãk(τk(ν), t) = h(τk(ν), t− τk(ν))φk(ν). (7)

Note that the beam pattern is assumed to be reciprocal, i.e. the
receiver will also have the same beam pattern. In this paper,
we chose φk(ν) to be

φk(ν) = cos2(θt(ν)) cos2(θr(ν)) ,

where θt is the angle between the transmitter and ν and θr is
the angle between the receiver and ν shown in Fig. 1.

Finally, the discretized version of the forward model can be
used in the MAP estimate as shown below,

− log p(y|x) =
1

2σ2
‖y −Ax−Dg‖2 + constant,

where y ∈ RMK×1 is the measurement, σ2 is the variance
of the measurement, A ∈ RMK×N is the forward model
(system matrix), x ∈ RN×1 is the image, D ∈ RMK×K

is the direct arrival signal modeling matrix, g ∈ RK×1 is
a vector containing scaling coefficients for the direct arrival
signals, M is the number of measurement samples, and N is
the number of pixels. The columns of D, dk, are the discretized
version of d̃k. The vector g is used to scale each column of
D independently.

C. Joint-MAP Stitching

In order to scan large regions, the sensor assembly is
typically moved from one region to another on the surface in
raster order to build up a 3D profile of the structure. Typically
each data set is individually processed and placed together
to present the overall 3D reconstruction, Fig. 4. However,
this method results in sharp discontinuities at the boundaries
and inefficient use of the data collected, Fig. 2. We design a
joint-MAP technique to solve these issues by modifying the
forward model to perform the stitching internally as part of the
estimation. This technique is able to remove all discontinuities
between the sections, make use of any additional information
from adjacent scans, and process each pixel in the large field-
of-view once. Furthermore, the system matrix used in the
proposed joint-MAP technique is designed to arrange the small
system matrices of single scans in an efficient way to increase
the sparsity and reduce the required memory without requiring
additional processing time for the reconstruction. We assume
that adjacent scans share some columns of pixels and has
some useful correlation that needs to be exploited to produce
better images. Therefore, the forward model will account for
those shared columns differently than the rest of the pixels or
columns. For L measurements, we let the system matrix for
each measurement be A and the image for each measurement
be xl. We let the order of the pixels in xl be from top to bottom
for each column starting from the far left column to the far
right column. Hence, the term associated with the modified
forward model in the MAP estimate will be

1

2σ2

∥∥∥y
JMAP

−A
JMAP

x
JMAP

−D
JMAP

g
JMAP

∥∥∥2

, (8)

where

A
JMAP

=


[ A ] 0 0 . . .

0 [ A ] 0 . . .
0 0 [ A ] . . .
...

...
...

. . .

 ,

D
JMAP

=


D 0 . . . 0
0 D . . . 0
...

...
. . .

...
0 0 . . . D

 ,

y
JMAP

=


y1

...
yl
...
yL

 , g
JMAP

=


g1

...
gl
...
gL

 ,

and x
JMAP

is the image of the large field-of-view. A
JMAP

is
designed so that if a pixel is shared in more than one image,



5

Fig. 4. An illustration of multiple measurements needed to scan a large field-
of-view. Images from each scan share some pixels with its neighbor images.
Proper stitching technique is needed to account for this shared areas in the
field-of-view.

then its corresponding column in the system matrix for one
image will be aligned with its corresponding columns in the
system matrix for other images. For the example shown in Fig.
4, we can accomplish this alignment by shifting each system
matrix A left or right until the required alignment is achieved.

III. PRIOR MODEL OF THE IMAGE

We design the prior model of the image to be a combination
of a Gibbs distribution and an exponential distribution, i.e.

− log p(x) =
∑
{s,r}∈C

bs,r ρ(xs − xr, σg) +
∑
s∈S

xs
σe

+ constant,

where C is the set of all pair-wise cliques, S is the set of
all pixels in the field of view, bs,r is a scaling coefficient, ρ
is the potential function, σg is the regularization constant for
the Gibbs distribution, σe is the regularization constants for
the exponential distribution, and xs ≥ 0 ∀s ∈ S . We chose
the q-generalized Gaussian Markov random field (QGGMRF)
as the potential function for the Gibbs distribution [30]. The
equation for the QGGMRF is

ρ(∆, σg) =
|∆|p

pσpg

(
| ∆
Tσg
|q−p

1 + | ∆
Tσg
|q−p

)
, (9)

where 1 ≤ p < q = 2 insures convexity and continuity of first
and second derivatives, and T controls the edge threshold.
The Gibbs distribution is used to preserve edges while the
exponential distribution is used to force the background toward
zero.

The neighbors of a pixel s are arranged asr1 r2 r3

r4 r5 r6

r7 r8 r9

 ,
r10 r11 r12

r13 s r14

r15 r16 r17

 ,
r18 r19 r20

r21 r22 r23

r24 r25 r26

 . (10)

where the neighbors with index 10 to 17 are from the same
layer, and the rest of the neighbors are from the next and

previous layers. With this arrangement, the scaling coefficients
bs,r are chosen to bebs,r1 bs,r2 bs,r3

bs,r4 bs,r5 bs,r6
bs,r7 bs,r8 bs,r9

 =

0 0 0
0 2 0
0 0 0

 · γ

4γ + 12
,

bs,r10 bs,r11 bs,r12
bs,r13 0 bs,r14
bs,r15 bs,r16 bs,r17

 =

1 2 1
2 0 2
1 2 1

 · 1

4γ + 12
,

bs,r18 bs,r19 bs,r20
bs,r21 bs,r22 bs,r23
bs,r24 bs,r25 bs,r26

 =

0 0 0
0 2 0
0 0 0

 · γ

4γ + 12
,

with a free boundary condition. The parameter γ is set to
zero when 2D MBIR is needed, or greater than zero when a
3D regularization (2.5D MBIR) is needed. 2.5D MBIR can
be used to gain more information from neighbors of different
layers to reduce noise and increase resolution.

A. Non-linear Spatially-Variant Regularization

The standard form of the regularization introduced above
uses constant σg and σe for all voxels. However, this can
result in reconstruction artifacts because for closer reflections,
there are few pixels that could have contributed to the signal.
However, for deeper reflections, there are many more pixels
that could have caused the reflection, i.e. the deeper the
reflection the less lateral resolution it has. Fig. 5 shows
the back-projection of two point scatters of different depth.
The closer reflection has less overlapping and higher lateral
resolution. The deeper reflection has larger overlapping and
lower lateral resolution. This is an issue because MBIR spreads
the energy over the intersection area, which attenuates the
intensity dramatically for deeper reflections. This smoothing
and attenuation appear to increase more rapidly for deeper
reflection. Therefore, a linear spatially-variant regularization
as in [13] is not sufficient, and a more generalized model is
needed. Hence, we adapt a non-linear spatially-variant regu-
larization technique designed for the UNDE system. We can
solve the attenuation problem by assigning less regularization
as the pixel gets deeper. The disadvantage of this method is
that it will amplify both the reflection and the noise for deeper
pixels.

We replace σg and σe with σgs,r and σes , respectively,
where these new parameters are monotone increasing with
respect to depth. We assign a new scaling parameter cs that
varies between two values, 1 and cmax, as follows:

cs = 1 + (cmax − 1) ∗
(

depth of pixel s
maximum depth

)a
(11)

where a > 0 and cmax > 1. Then, σgs,r and σes are calculated
as follows:

σgs,r = σg
√
cscr,

σes = σecs ,

where cr has the same equation as in cs, but for pixel r.



6

Fig. 5. Back-projection of two point scatters, one that is closer to the
transducers (17cm deep) and one that is far from the transducers (105 cm
deep). As the reflection gets deeper, The lateral resolution decreases.

B. Selection of Prior Model Parameters

The selection of the prior model parameters is an open
area of research. In this paper, we select the regularization
parameters σg , σe and γ (which control edge preservation,
background sparsity, and contribution from neighbors of adja-
cent layers, respectively) to produce the best results visually.
The parameters p, q, T , and a (which controls the transitioning
from high to low regularization as the pixels get deeper) are
unitless parameters and the values used for them in this paper
are considered standard and seem to be consistent with the
applications we are working on. The parameter cmax is a
unitless parameter and is used to amplify reflections for deeper
regions as needed.

IV. OPTIMIZATION OF MAP COST FUNCTION

After designing the forward model and the prior model, the
MAP estimate becomes

(x, g, σ2)MAP = arg min
x≥0,g,σ2

{
1

2σ2
‖y −Ax−Dg‖2

+
MK

2
log(σ2) +

∑
{s,r}∈C

bs,r ρ(xs − xr, σgs,r )

+
∑
s∈S

xs
σes

}
.

(12)

The shifting of the direct arrival signal matrix D mentioned
in section II-A is performed once before estimating g, x and
σ2. The solution for g is straightforward:

0 = 5g
{

1

2σ2
‖y −Ax−Dg‖2 +

MK

2
log(σ2)

+
∑
{s,r}∈C

bs,r ρ(xs − xr, σgs,r ) +
∑
s∈S

xs
σes

}
=⇒ 0 = 2DtDg + 2DtAx− 2Dty

=⇒ g = (DtD)−1Dt(y −Ax).

Given x, the evaluation of g is computationally inexpensive
because DtD is a diagonal matrix, i.e.

(DtD) =


dt1d1 0 . . . 0

0 dt2d2 . . . 0
...

...
. . .

...
0 0 . . . dtKdK

 ,

Fig. 6. ICD algorithm using the majorization technique with shift error estimation (top
red box) and direct arrival modeling (bottom red box) [30], [31].

where dk is the discretized version of d̃k(t) for transducer
pair k. However, g requires the knowledge of x which is the
image we would like to reconstruct. This issue can be resolved
by updating the value of g from the updated image in each
iteration. Furthermore, for each iteration, we update g, x, and
σ2 in the following steps:

g ← (DtD)−1Dt(y −Ax)

y ← y −Dg

x ← arg min
x≥0

{
− log p(y|x)− log p(x)

}
σ2 ← 1

MK
‖y −Ax‖2

We adopt the iterative coordinate descent (ICD) technique
to optimize the cost function with respect to x [31]. Since
the prior model term is non-quadratic, optimizing the cost
function will be computationally expensive. Therefore, we use
the surrogate function (majorization) approach with ICD to
resolve this issue [30]. This ICD optimization algorithm is
guaranteed to converge to the global minimum because the
function being minimized is continuously differentiable and
strictly convex [30]. Fig. 6 shows the complete algorithm for
ICD using the majorization approach. The algorithm is stopped
either if

‖xn−1 − xn‖
‖xn−1‖

< ε, (13)

where xn is the current image update and ε is a stopping
threshold, or if the number of iterations exceeds a specified
number, e.g. 100 iterations. Empirically, we have found that a
value of ε = 0.01 is a sufficient value to declare convergence
with zero initialization.

V. RESULTS

In this section we compare MBIR with two different tech-
niques qualitatively and quantitatively.
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A. Algorithms for Comparison

We compare MBIR with the SAFT and l1-norm techniques.
The l1-norm is a regularized iterative technique with the same
forward model as in Eq. 5 with an exponential distribution
prior. The prior model is exactly equal to an l1 regularization
term with a positivity constraint. The MAP estimate for the
l1-norm technique is

(x, σ2)MAP = arg min
x≥0,σ2

{
1

2σ2
‖y −Ax‖2

+
MK

2
log(σ2) +

∑
s∈S

xs
σes

}
.

(14)

A pixel-wise precision-recall (PR) plot is used for the
simulated data to compare the performance of the techniques
qualitatively. A pixel-wise PR test calculates the number of
true positive (TP), false positive (FP), and false negative (FN)
for each technique. These values are, then, used to plot the
precision vs. recall (PR) curves where

recall =
TP

TP + FN

and
precision =

TP

TP + FP
.

This detection test compares the performance of each tech-
nique by the area under the PR curve. The larger the area the
better the technique. Next, for each technique, all the images
are normalized by dividing them with their maximum value.
Thresholds from 1 to 0 with step 0.001 are applied to all
images. For each threshold, a TP is declared if the defect
diagram (ground truth) pixel is 1 and the reconstructed pixel
is 1. A FP is declared if the defect diagram pixel is 0 and
the reconstructed pixel is 1. A FN is declared if the defect
diagram pixel is 1 and the reconstructed pixel is 0.

The techniques performance for the simulated data will be
compared with measurements of different signal-to-noise ratio
(SNR). The SNR is defined as

SNR =
‖y‖2

‖w‖2
,

where y is the noiseless simulated output from k-wave, and w
is the added noise to y.

A component-wise PR plot is used for the experimental data
to compare the performance of each technique. Each image is
segmented into connected components using the standard Mat-
lab functions “edge” and “imfill”. Next, the maximum value
and weighted centroid for each connected component is stored.
Next, a search is performed pairing targets from the defect
diagram to connected components from the reconstruction in
the following way: A connected component is mapped to a
particular target if its centroid is both the closest among all
detected components to the target’s centroid, and it is within
10 cm of the target’s centroid. Next, for each technique, all the
images are normalized by dividing them with the maximum
value of them all. Thresholds from 1 to 0 with step 0.001 are
applied to all images. For each threshold, a TP is declared if
the maximum value of a paired connected component is equal
or greater than the threshold. A FP is declared if the maximum

value of an unpaired connected component is equal or greater
than the threshold. The FN is calculated by subtracting the
number of TP’s from the number of targets.

A normalized root mean square error (NRMSE) plot will
be used to compare MBIR convergence with different initial-
izations. The NRMSE is defined as

NRMSE(n) =
‖Xn −Xtrue‖
‖Xtrue‖

, (15)

where n is the iteration number, and Xtrue is the true solution.
We define Xtrue to be iteration 1500 of the zero initialization.

B. K-wave Simulated Results

The k-wave simulator have been used to simulate acoustic
propagation through concrete medium [32]. The concrete
structure was embedded with steel of different shapes. The
width and depth of the structure is 40cm and 30cm , respec-
tively. 10 transducers were used to transmit and receive. For
each simulation, the simulator produces 90 outputs from all
pairs of transducers where only distinctive pairs are used,
i.e. 45 distinctive pairs. The transducers are placed at the
top center of the field-of-view and separated by 4cm from
each other. To simulate the acoustic propagation using k-wave,
we provided three images of speed, density, and attenuation
as inputs to k-wave. Each pixel in the three input images
corresponds to the characteristics of either steel or cement. The
output of k-wave is then used as input to the reconstruction
methods. Fig. 7 shows reconstruction results for four different
tests. The voxel spacing for 2D reconstructions is 1 cm for all
reconstruction techniques. The left column shows the designed
defect diagram that was used for simulation where the white
pixels corresponds to cement and the black pixels corresponds
to steel. The next column shows the instantaneous envelope of
SAFT reconstruction. The next column is l1-norm. The right
column shows the MBIR reconstruction. Both l1-norm and
MBIR were initialized to zero. Note that SAFT does not share
the same unit with MBIR or L1-norm. That is why it shows
different scaling.

Fig. 9 shows the pixel-wise PR curve for each technique
over all 4 tests. Table IV shows values of the area under the PR
curves in Fig. 9. Table I shows the parameters which are used
for k-wave simulation, and some of them are used as input
parameters in all techniques. Table III shows the parameters
used for l1-norm and MBIR in Eq. 1, 9, and 11, and the
stopping threshold.

Fig. 8 shows a comparison between the methods with noise
added to the simulated signal of the defect diagram of Test 1
in Fig. 7.

Discussion: In Fig 7, MBIR and l1-norm were able to show
significant enhancement over SAFT in reducing noise. MBIR
showed remarkable performance in identifying, eliminating,
and distinguishing the direct arrival signal artifacts from the
steel objects. For example, in test 1, two steel plates where
placed at depth 2cm. The plates where overshadowed by the
direct arrival signal artifacts in SAFT and l1-norm, but appear
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Fig. 7. Comparison between MBIR and SAFT reconstruction from the k-wave simulated data. The far left column is the position of the defects. The next column is SAFT
reconstruction. The next column is l1-norm reconstruction. The far right column is MBIR reconstruction. MBIR tends to produce results with less noise and artifacts compared to
SAFT and l1-norm.
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Fig. 8. Comparison between SAFT, l1-norm, MBIR reconstructions from the k-wave simulated data with different SNR. The defect diagram is the same as the defect diagram in
Test 1 in Fig. 7. The left column is SAFT reconstruction. The next column is l1-norm reconstruction. The right column is MBIR reconstruction. Each row correspond to different
SNR value where the SNR values from top to bottom are 3, 1, and 0.33, repectively. MBIR tends to produce results with less noise and artifacts compared to SAFT and l1-norm.
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TABLE I
PARAMETER SETTINGS FOR K-WAVE SIMULATION.

Parameters Value Unit
Carrier frequency 52 kHz
Sampling frequency 1 MHz
Cement speed 3680 m/s
Cement density 1970 Kg/m3

Cement attenuation 1.46e-6 dB/((MHz)ycm)
Steel speed 5660 m/s
Steel density 8027 Kg/m3

Steel attenuation 4.85e-8 dB/((MHz)ycm)
Spatial resolution 1 mm
Number of columns 400 -
Number of rows 300 -
Number of transducers 10 -

Fig. 9. PR curves for each technique over all 4 tests in Fig.7. MBIR
outperforms the other techniques by having the highest PR area.

very clearly in MBIR. Test 2 and 3 also show similar direct
arrival signal overshadowing effects for SAFT and l1-norm,
that are reduced for MBIR. In addition, the steel objects are
more easily observed and recognized in l1-norm and MBIR.
In Fig. 9 and Table IV, MBIR shows better performance in
the detection test with the highest PR area.

Notice that in test 4, none of the techniques were able to
show the complete structure of the steel object. They were
able to show only one side of it. This is because all three
reconstruction methods reconstruct the reflections caused by
discontinuous boundaries rather than recovering the actual
material property at each voxel location.

Fig. 8 shows the reconstruction of test 1 in Fig. 7 with
varying signal-to-noise ratio (SNR). As the SNR decreases, the
reconstruction becomes noisier for all techniques. However,
the results show better performance in MBIR than the other
techniques in reducing noise and artifacts.

C. MIRA Experimental Results

Experimental results have been obtained from a designed
thick concrete specimen [33]. The height and width of the
specimen is 213.36 cm (84 inches), Fig. 10. The depth of the
specimen is 101.6 cm (40 inches). Each side of the block
is gridded with 10.16 cm squares producing 21 rows and
columns. The specimen has been heavily reinforced with steel
rebars horizontally and vertically with 1 ft separation in both

sides. One side is “smooth” and the other is “rough” which
refer to the physical characteristic of the concrete surface due
to pouring. Also, Fig. 12 and Fig. 13 show diagrams of the
steel rebars in green color with more details. The specimen
has been embedded with designed defects placed in specific
locations. The type and location of the defects are shown
in Figs. 11, 12, 13, and 14 [33]. The specified location of
the defects might be different from the real location due to
possible displacement while pouring the cement.

The defects are designed to simulate real defects that
can occur due to construction process, cumulative deterio-
ration, or degradation of concrete. Both sides are scanned
horizontally and vertically. There are four types of scanning
modes: smooth-horizontal (SH), smooth-vertical (SV), rough-
horizontal (RH), and rough-vertical (RV). Each mode divides
the whole side into 19 sets which adds up to 76 sets. However,
only 73 sets are used and are arranged in this order: sets 1 to
18 for SH, sets 19 to 37 for SV, sets 38 to 56 for RH, and sets
57 to 73 for RV. Each set scans the side from left to right or
from bottom to top, depending on the orientation of the mode,
with 18 positions. The first and last positions are centered at
20.32 cm (8 inches) from the edge. The rest of the positions
are centered with a 10.16-cm (4-inch) shift from the previous
position, hence the 18 positions.

The MIRA system has been used to collect the data, Fig. 15.
The MIRA device contains 10 columns or channels separated
by 40 mm where each channel contains 4 dry contact points
with 2 mm radius that acts as transmitters or receivers. Only
distinct pairs, 45 pairs, are used in the reconstruction results
for all techniques. Each position produces an image of width
40 cm and depth 120 cm with 1 cm resolution. SAFT requires
approximately 0.03 seconds to reconstruct an individual image,
and MBIR requires approximately 5 seconds for the same
image. There are four different techniques used to reconstruct
the data: SAFT, l1-norm, 2D MBIR, and 2.5D MBIR. Zero
initialization was used for l1-norm, 2D MBIR, and 2.5D
MBIR. For SAFT, the multiple scans are jointly reconstructed
to avoid the stitching artifacts. For l1-norm, all images of the
set are stitched together to produce the complete cross section
of the set with 210cm-width and 120cm-depth. For 2D MBIR,
and 2.5D MBIR, the joint-MAP stitching is used to reconstruct
the whole cross section at once instead of regular stitching.
The joint-MAP stitching reduced the MBIR processing time
of the whole data from about 110 minutes to about 87 minutes
(about 30% lower). However, the 2.5D MBIR increased the
processing time from 87 minutes to 126 minutes (about 45%
higher). All the techniques were implemented in Windows
with a 6th generation Intel core i7-6500U processor with 4 MB
cache, 2/4 core/threads, and 2.5 GHz CPU. The transmitter
emits a signal with carrier frequency of 52 kHz, and the
sampling frequency of the receiver is 1 MHz. The acoustic
speed is assumed to be 2620ms . Each distinct pair produces
2048 samples of data where the first 27 samples are ignored
due to trigger synchronization. The data is, then, down-
sampled to 200 kHz and 409 samples and reconstructed using
all techniques.

Fig. 16 shows the reconstruction results. The reconstruction
2D voxel spacing is 1 cm for all techniques. The rows are
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Fig. 10. The concrete specimen used for the experimental data [33]. 20 defects
are embedded in the specimen.

ordered from top to bottom. The first row shows the defect
diagram and the position of the defects. The scanning of the
cross sections was performed at the top of the image from
left to right. The second row is the instantaneous envelope of
SAFT reconstruction. The third row is l1-norm reconstruction.
The fourth row is 2D MBIR reconstruction. The fifth row
is 2.5D MBIR reconstruction. Note that the defect diagram
shows the steel rebars as dotted circles or dotted rectangles.
The steel rebars might appear in all reconstructions as small
horizontal dots or a horizontal line at the top, but the bottom
steel rebars barely appear in all techniques due to their weak
reflection. Table II shows the common parameter settings
for all techniques. Table III shows the l1-norm and MBIR
parameter settings for Eq. 1, 9, and 11, γ in section III, and
the stopping threshold.

Because the position of the targets in the defect diagram
is not precise, the detection test was done using a component
wise approach rather than the pixel-wise approach used for the
k-wave data. Fig. 17 shows the PR curve for each technique
over all 73 experimental data sets. To make a fair comparison,
the parameter σg for MBIR, the parameter σe for l1-norm, and
the parameters σg and γ for 2.5D MBIR were chosen using a
grid search to maximize the area under the PR curves. Table
IV shows the value of the area under the PR curves in Fig.
17.

Discussion: In Fig. 16, MBIR shows significant enhance-
ment in reducing artifacts and reducing noise compared with
SAFT and l1-norm. SAFT and MBIR techniques were able to
show the back wall of the specimen. The back wall is located
at depth 100 cm. The detection test showed better performance
of 2.5D and 2D MBIR over all techniques with 2.5D MBIR
being slightly better than 2D MBIR.

Since all three algorithms are based on a linear forward
model, they all exhibit certain reconstruction artifacts such
as multiple reflection echos of a single defect. For example,
multiple echos appeared of defect 13 in SV8 for all techniques.

Fig. 11. Type and legend for each defect [33]. These defects are embedded
in the concrete specimen.

Fig. 12. Smooth side view of defects [33]. The location of the defects is
approximated due to possible displacement while pouring the cement.
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Fig. 13. Depth view of defects, smooth side on the right and rough side
on the left, [33]. The location of the defects is approximated due to possible
displacement while pouring the cement.

Fig. 14. A picture of defect 12 before embedding it in the specimen, [33].
It is made of dissolving styrofoam.

Fig. 15. A picture of the MIRA device used for the experimental data. The
device has 10 columns of transducers, where each column acts as a single
transducer.

TABLE II
PARAMETER SETTINGS USED FOR ALL TECHNIQUES TO RECONSTRUCT

THE EXPERIMENTAL MIRA DATA.

Parameters Value Unit
Carrier frequency 52 kHz
Sampling frequency 200 kHz
Cement p-wave speed 2620 m/s
Reconstruction resolution 1 cm
Number of columns 210 -
Number of rows 120 -

D. Results from Modifying the Forward and Prior Models

In this section, we investigate the effect of various MBIR
model attributes on the image quality resulting from the
MIRA data reconstructions. In particular, we computed recon-
structions without direct arrival signal elimination, shift error
estimation, anisotropic reconstruction, and spatially variant
regularization. We then compared each of these degraded re-
sults to the baseline MBIR reconstructions using the complete
MBIR algorithm in order to better understand the value of
each technique in overall image quality. We also calculated
the component-wise PR area for each reconstruction.

Fig. 18 compares MBIR performance when not using each
modification. Fig. 18b shows 2D MBIR reconstruction with
PR area = 0.5906. Fig. 18c shows 2.5D MBIR reconstruction
with PR area = 0.6199. Fig. 18d shows 2D MBIR recon-
struction without the direct arrival signal modeling with PR
area = 0.4235. Fig. 18e shows 2D MBIR reconstruction with
the direct arrival signal modeling, but not the shift error
estimation, with PR area = 0.4827. Fig. 18f shows 2D MBIR
reconstruction with regular stitching with PR area = 0.4384.
Fig. 18g shows 2D MBIR reconstruction with an isotropic
forward model with PR area = 0.4951. Fig. 18h shows 2D
MBIR reconstruction with constant regularization with PR
area = 0.5234. All the PR areas specified in Fig. 18 were
obtained by calculating the precision and recall for each plot
for only the cross-section shown in Fig. 18a.

Discussion: Fig. 18d does not model the direct arrival
which causes the reconstruction to have artifacts at the top
of the image. These artifacts have high amplitude and could
overshadow targets closer to the transducers. Fig. 18e reduces
these artifacts by modeling the direct arrival signal. However,
some residual of the artifacts still appears at the top right
corner due to changes in acoustic speed in the concrete
medium. Fig. 18f shows the results of performing conventional
stitching technique to stitch the reconstruction from multiple
scans. The stitching method produces vertical discontinuities at
the boundaries between the stitched images. Also, the stitching
method does not make use of additional information that can
be obtained from adjacent scans to improve the reconstruction.
Fig. 18g uses an isotropic model for the transmitted beam
which produces artifacts at the top of the image. These artifacts
appear because of the assumption that the signal travels in all
directions equally which allows MBIR to use pixels with large
transmitter-pixel or pixel-receiver angles to fit the data. Fig.
18h uses a spatially constant regularization which suppresses
weak details in deep regions of the reconstruction. This results
from the fact that the signal is dramatically attenuated as it
propagates into deeper regions. Consequently, reconstruction
with a constant regularization attenuates most useful detail in
the deep parts of the image.

In contrast, Fig. 18b shows 2D MBIR with much better
performance in reducing artifacts, exploiting correlations from
adjacent scans, showing targets for deeper regions, and having
larger PR area. Finally, Fig. 18c shows the 2.5D MBIR
reconstruction which is qualitatively and quantitatively slightly
better than 2D MBIR.
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Fig. 16. Comparison between all reconstruction results from the MIRA experimental data: the first row from the top is the position of the defects, the second row is SAFT
reconstruction, the third row is l1-norm reconstruction, the fourth row is 2D MBIR reconstruction, and the fifth row is 2.5D MBIR reconstruction. 2.5D and 2D MBIR tend to
produce results with less noise and artifacts compared to other techniques.

TABLE III
THE l1-NORM, 2D MBIR, AND 2.5D MBIR PARAMETER SETTINGS USED IN THE SIMULATED K-WAVE AND THE EXPERIMENTAL MIRA DATA.

Parameters l1-norm 2D MBIR 2.5D MBIR Unit
ε 0.01 0.01 0.01 -
α0 30 30 30 (MHz ·m)−1

p - 1.1 1.1 -
q - 2 2 -
T - 1 1 -
cmax - 10 10 -
a - 3 3 -
σg - 3 3 m−3

σe 15 15 15 m−3

γ - - 0.5 -
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Fig. 17. PR curves for each technique over all 73 experimental data sets.
2.5D and 2D MBIR outperforms the other techniques.

TABLE IV
PRECISION VS RECALL AREA FOR ALL TECHNIQUES IN FIG. 9 AND FIG.

17. MBIR HAS THE HIGHEST PR AREA.

SAFT l1-norm 2D MBIR 2.5D MBIR
PR area for k-wave data 0.1236 0.2131 0.3476 -
PR area for MIRA data 0.1397 0.1932 0.2836 0.2908

E. Convergence of MBIR

To show the algorithm’s convergence behavior, we recon-
structed cross-section rough-hor-set11 in Fig. 18a from the
MIRA data with different initializations: uniformly distributed
random noise with range [0, 10], zero, a constant value of
10. Fig. 19 shows the NRMSE vs. iteration for the different
initializations.

VI. CONCLUSION

This paper proposed an MBIR algorithm for ultrasonic
one-sided NDE. The paper showed the derivation of a linear
forward model. The QGGMRF potential function for the Gibbs
distribution prior model was chosen for this problem because
it guarantees function convexity, models edges and low con-
trast regions, and has continuous first and second deriva-
tives. Furthermore, we proposed modifications to both the
forward and prior models that improved reconstruction quality.
These modifications included direct arrival signal elimination,
anisotropic transmit and receive pattern, and spatially variant
regularization. Additionally, a joint-MAP estimate and a 2.5D
MBIR were performed to process large multiple scans at once
which helps reduce noise and artifacts dramatically compared
with results from individual scans. The research was supported
by simulated and extensive experimental results. The results
compared the performance of MBIR with SAFT and l1-norm
qualitatively and quantitatively. The results showed noticeable
improvements in MBIR over SAFT and l1-norm in reducing
noise and artifacts.

While the results of this paper are promising, it is worth
mentioning the need of a non-linear forward model to address
the issues due to the complexity of the one-sided UNDE
systems, such as reverberation, and acoustic shadowing.
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