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Appendix G: Pseudocode for Computing H(Y ) in Dynamic Optical Diffu-
sion Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



vii

LIST OF FIGURES

Figure Page

2.1 (a) Culture flask with the absorbing cylinder embedded in the scattering
Intralipid solution. (b) Apparatus used to collect the data. . . . . . . . 10

2.2 Reconstructed images of the absorption coefficient using data at modu-
lation frequencies of (a) 10 MHz (b) 46 MHz (c) 81 MHz (d) 10, 46, and
81 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Isosurfaces of the absorption coefficient images contoured at 1/4 of the
maximum value using data at: (a) 10 MHz (b) 46 MHz (c) 81 MHz (d)
10, 46, and 81 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Proposed measurement scheme. . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 True phantom, with cross sections of the widest part of the heterogeneity:
(a) µax

in cm−1 (b) Dx in cm (c) µam
in cm−1 (d) Dm in cm (e) τ in ns

(f) ηµaf
in cm−1 (g) ηµaf

= 0.01 cm−1 isosurface . . . . . . . . . . . . . 28

3.3 Grid used for both sources and detectors in the simulation, with the
relative location of the sphere depicted. . . . . . . . . . . . . . . . . . . 29

3.4 Reconstructed phantom: (a) µ̂ax
in cm−1 (b) D̂x cm (c) µ̂am

in cm−1 (d)
D̂m in cm (e) τ̂ in ns (f) η̂µaf

in cm−1 (g) η̂µaf
= 0.01 cm−1 isosurface . 30

3.5 Plot of estimate τ̂avg versus the true value of τ . The trend is almost linear,
as desired. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 NRMSE for η̂µaf
due to changes in assumed constant background values

for: (a) µax
in cm−1 (b) Dx cm (c) µam

in cm−1 (d) Dm in cm . . . . . . 31

3.7 Fractional error for τ̂avg due to changes in assumed constant background
values for: (a) µax

in cm−1 (b) Dx cm (c) µam
in cm−1 (d) Dm in cm . . 32

3.8 Phantom box schematic, showing the fibers, the spherical heterogeneity,
and the removable lid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.9 Source and detector layout for experiment. The blackened detector sym-
bols represent detector positions used in the fluorescence measurements.
The relative location of the sphere is also depicted. . . . . . . . . . . . . 33

3.10 True fluorophore location . . . . . . . . . . . . . . . . . . . . . . . . . . 34



viii

Figure Page

3.11 Reconstructions of µax
in cm−1 . . . . . . . . . . . . . . . . . . . . . . . 35

3.12 Reconstructions of µam
in cm−1 . . . . . . . . . . . . . . . . . . . . . . . 36

3.13 Reconstructions of ηµaf
in arbitrary units . . . . . . . . . . . . . . . . . 37

4.1 Reconstruction using simulated data, showing the improvement due to
use of multiple modulation frequencies. (a) Source/detector geometry,
(b) True image cross section, (c) Reconstruction using 78.4 MHz data,
(d) Reconstruction using 314 MHz data, (e) Reconstruction using 78.4
and 314 MHz data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 (a) Schematic of the experimental setup, showing the box and tissue
phantom, and a glass sphere filled with ICG/Intralipid, rubber tubes,
and Intralipid suspension. (b) Source fiber positions. The same positions
were selected as detection regions from the camera images. . . . . . . . 56

4.3 Reconstruction of µax
(cm−1), obtained using 78, 314, and 627 MHz data 57

4.4 Reconstruction of µam
(cm−1), obtained using 78, 314, and 627 MHz data 58

4.5 Reconstruction of η (in 10−4 cm−1), obtained using 78, 314, and 627 MHz
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Reconstruction of τ (in 10−10 s), obtained using 78, 314, and 627 MHz
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 Reconstruction of η (in 10−4 cm−1), obtained using only 78 MHz data.
The result is similar to the result obtained using multiple modulation
frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.8 Reconstruction of τ (in 10−10 s), obtained using only 78 MHz data. The
result is similar to the result obtained using multiple modulation frequen-
cies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.9 Reconstructions of η (in 10−4 cm−1) using various values of σ, showing a
progression from overregularization to underregularization. The z = 2.85
cm cross sections are shown. The τ model used σ = 1 × 10−10 s in all
cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.10 (a)-(e) The z = 2.85 cm cross sections of reconstructed τ (in 10−10 s) for
various σ, showing a progression from overregularization to underregular-
ization. (f)τ̂avg as a function of σ for the τ reconstruction. The × symbol
represents the value of σ which was used in generating the data of Figure
4.6. The η model used σ = 2.5× 10−5 cm−1 in all cases. . . . . . . . . . 64



ix

Figure Page

4.11 Mutual information versus α for (a) the simulation model and (b) the
experiment model. In (a), the + symbols mark the results for the true
value of α used in the simulation. In (b), the + symbol marks the results
for the estimated value of α in the experiment. The units of information
are nats, rather than bits, as the base e logarithm was used. . . . . . . . 65

5.1 Compartmental model describing the exchange of contrast agent between
the tissue and the plasma. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Measurement approach for reconstructing η(t) and τ . Note that the mea-
surement geometry may differ at each time. . . . . . . . . . . . . . . . . 81

5.3 Source and detector locations used in the simulations. The sources were
on the bottom face of the cube-shaped phantom, while the detectors were
on the top. The sources were illuminated in the order shown, with one
source used for each time frame. . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 True parameter images describing the time-varying fluorescence in sim-
ulation study. Cross sections are shown through the top heterogeneity
and the bottom heterogeneity. Note the parameter γ3, which indicates
different uptake rates in the two heterogeneities. In (e), an isosurface of
the γ1 reconstruction is shown, contoured at 1/3 the maximum value. . 82

5.5 Reconstructed parameter images describing the time-varying fluorescence
in the simulation study. In (e), an isosurface of the γ1 reconstruction is
shown, contoured at 1/3 the maximum value. . . . . . . . . . . . . . . . 83

5.6 (a)-(d) True fluorescence versus time. (e) η(t), for a sample point within
each heterogeneity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.7 (a)-(d) Fluorescence versus time, reconstructed by parametric ICD method.
(e) η̂(t), for a sample point within each heterogeneity. . . . . . . . . . . 85

5.8 Convergence for PICD algorithm in simulation study. . . . . . . . . . . 86

5.9 (a)-(d) Fluorescence versus time, reconstructed independently at each
time frame, using the same data as the parametric reconstructions. (e)
η̂(t), for a sample point within each heterogeneity. . . . . . . . . . . . . . 87

5.10 (a)-(d) Fluorescence versus time, reconstructed independently at each
time frame, using a 21-fold increase in data over those used in the para-
metric reconstructions. (e) η̂(t), for a sample point within each hetero-
geneity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



x

Figure Page

6.1 (a) Illustration of fluorescence scan measurement, with photons migrating
within the scattering tissue. (b) Semi-infinite geometry used to derive
forward model. The method of images is used to insure that φ = 0 for
the boundary at a distance of ls outside of the physical air-tissue interface. 104

6.2 Simulated measurement of tumor of diameter d at depth zdepth, with all
datasets normalized to the maximum value. (a) Geometry. (b) Plot
of simulated normalized intensity profile for a small tumor at different
depths. (c) Plot of the intensity profile for a large tumor at different
depths. (d) Superimposed plots from two different-sized tumors, showing
the relative invariance to size. . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Structural formula for folate-indocyanine . . . . . . . . . . . . . . . . . 106

6.4 A nu/nu mouse injected with folate-indocyanine, which selectively targets
folate receptors on tumors. . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5 Schematic depictions of tumor localization experiment. (a) A tumor-
bearing mouse is injected with folate-indocyanine, and excised tumor
fragments are bonded to Petri dishes and covered with Intralipid-agarose.
(b) The sample is scanned in a near-IR fluorescence microscope and mea-
surements are recorded. HNF=Holographic Notch Filter . . . . . . . . . 107

6.6 Normalized mouse tumor fluorescence intensity scans for two different
Intralipid depths: (a) 0.69 cm deep (b) 1.1 cm deep. The dashed lines
show the best fit to a diffusion model with a point fluorophore. . . . . . 107

6.7 Cost function versus tumor position, for a mouse tumor obscured under
(a) 0.69 cm and (b) 1.1 cm of Intralipid. The × symbol marks the true
tumor location, while the + symbol marks the estimated location. . . . 108

6.8 Theoretical performance bounds for tumor measurement as a function of
tumor depth. (a) Probability of detection for a false alarm rate of 0.03.
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ABSTRACT

Milstein, Adam B. Ph.D., Purdue University, August, 2004. Imaging of near-infrared
fluorescence, absorption, and scatter in turbid media. Major Professor: Charles A.
Bouman and Kevin J. Webb.

A nonlinear, Bayesian optimization scheme is presented for reconstructing fluo-

rescent yield and lifetime, the absorption coefficient, and the diffusion coefficient in

turbid media, such as biological tissue. The method utilizes measurements at both

the excitation and emission wavelengths for reconstructing all unknown parameters.

The effectiveness of the reconstruction algorithm is demonstrated by simulation and

by application to experimental data from a tissue phantom containing the fluorescent

agent indocyanine green.
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1. INTRODUCTION

Optical diffusion tomography (ODT) is emerging as a powerful tissue imaging modal-

ity [1, 2]. In ODT, images are comprised of the spatially dependent absorption and

scattering properties of the tissue. Boundary measurements from several sources and

detectors are used to recover the unknown parameters from a scattering model de-

scribed by a partial differential equation. Contrast between the properties of diseased

and healthy tissue might then be used in clinical diagnosis. In principle, sinusoidally

modulated, continuous-wave (CW), or pulsed excitation light is launched into the bi-

ological tissue, where it undergoes multiple scattering and absorption before exiting.

The measured intensity and phase (or delay) information may be used to reconstruct

three-dimensional (3-D) maps of the absorption and scattering properties by opti-

mizing a fit to diffusion model computations. As a result of the nonlinear dependence

of the diffusion equation photon flux on the unknown parameters and the inherently

3-D nature of photon scattering, this inverse problem is computationally intensive

and must be solved iteratively.

A relatively modest intrinsic contrast between the optical parameters of diseased

and healthy breast tissue has been reported in some studies [3, 4]. The use of ex-

ogenous fluorescent agents has the potential to improve the contrast and thus to

facilitate early diagnosis. In recent years, the use of fluorescent indicators as exoge-

nous contrast agents for in vivo imaging of tumors with near-infrared (NIR) or visible

light has shown great promise, attracting considerable interest [5–14]. In experimen-

tal studies with animal subjects [5–7,9,10,13,14], fluorescence has been successfully

used to visualize cancerous tissue in vivo near the skin surface. In addition, Ntzi-

achristos et al. [12] have used optical diffusion tomography after indocyanine green

(ICG) injection to image the absorption of a malignant breast tumor in a human sub-
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ject. The injected fluorophore may preferentially accumulate in diseased tissue due

to increased blood flow from tumor neovascularization [9]. Alternatively, the agent

may have different decay properties in diseased tissue, which could be useful in lo-

calizing tumors independently of fluorophore concentration [7]. In addition, contrast

between tumors and surrounding tissue may be substantially improved by the use of

diagnostic agents that selectively target receptors specific to cancer cells [8,10,13,14].

In frequency-domain fluorescence optical diffusion tomography, sinusoidally mod-

ulated light at the fluorophore’s excitation wavelength is launched into the tissue.

The excited fluorophore, when it decays to the ground state, emits light at a longer

(emission) wavelength, and this emission is measured by an array of detection de-

vices. These emission data are then used to perform a volumetric reconstruction

of the yield (a measure of the fluorescence efficiency) and the lifetime (the fluores-

cent decay parameter). However, the multiple scattering in tissue complicates the

reconstruction [15, 16]. The emission intensity of the fluorophore is proportional to

the optical intensity at the excitation wavelength at that position, which depends,

in turn, on the optical parameters of the scattering domain at the excitation wave-

length. A rigorous reconstruction of fluorescence property maps should also therefore

include reconstructions of absorption and scattering parameters at the excitation and

emission wavelengths. In addition, reconstruction of the unknown absorption and

scattering coefficients by use of ODT can function as an adjunct image to the fluo-

rescence image in screening for tumors.

Fluorescence imaging simulations with (3-D) [17] and two-dimensional (2-D) [18–

20] geometries have reconstructed fluorescence yield and lifetime parameters. These

simulations have generally assumed that the absorption and scattering parameters

are known in advance, except for Roy and Sevick-Muraca [17], who also reconstructed

the excitation wavelength absorption. In an early experimental result, Chang et al.

[21] used a transport theory model to reconstruct fluorescent yield in a heterogeneous

tissue phantom containing Rhodamine 6G. Their study used CW data recorded in a

2-D plane geometry. Recently, Ntziachristos and Weissleder [22] used a normalized
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Born approximation to reconstruct 3-D, fluorescent heterogeneities containing the

NIR cyanine dye Cy5.5 embedded in a tissue phantom. Under the assumption of

known background optical properties and absorbers limited to a perturbative regime,

their technique can circumvent the need for recording background measurements

before contrast agent administration.

The development of nonlinear inversion methods for optical diffusion tomography

is necessary due to the fundamentally limited accuracy of methods which linearize

the forward model [23]. Previously, Ye et al. have presented a nonlinear Bayesian ap-

proach [24,25] and shown that it produces high quality images compared to previous

methods such as the distorted Born iterative method [26]. The method formulates

the inversion as the optimization of an objective function which incorporates a model

of the detection system and a priori knowledge about the image properties. We have

found that a neighborhood regularization scheme used in a Bayesian framework re-

duces artifacts characteristic of previous approaches which impose a penalty on the

norm of the image updates [24]. The inversion can be made more computationally

efficient by multigrid techniques [25].

We have extended Ye’s previous 2-D Bayesian formulation and iterative coor-

dinate descent (ICD) optimization method for absorption imaging to 3-D, and we

address the problem of estimating source-detector coupling, the background diffusion

coefficient, and detector noise variance, thereby circumventing difficult and inconve-

nient calibration measurements on homogeneous phantoms [27–38]. The estimation

of source-detector coupling loss and background parameters using a preprocessing

technique with an assumed homogeneous domain has been described, [39] and the

source-detector coupling coefficients have been estimated as part of a linear gener-

alized inverse. [40] We incorporate estimation of the ancillary parameters into the

Bayesian framework and update the estimates throughout the inversion procedure.

Laboratory data are used to assess the algorithm and the merits of using multiple

modulation frequencies.
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We have also extended the approach to include fluorescence yield and lifetime

in the inverse problem [41, 42]. We present a new inversion algorithm and a mea-

surement scheme for reconstructing all the unknown fluorescence, absorption, and

diffusion parameters. Numerical simulations validate the scheme and demonstrate

its computational efficacy. We use the method to image a spherical heterogeneity in

a tissue phantom by use of transmission data collected by a CW imaging device. The

heterogeneity contains ICG, a fluorescent diagnostic agent approved by the FDA for

use in the NIR range, where biomedical imaging with light is most practical. In sub-

sequent work we have extended the FODT approach to include direct reconstruction

of pharmacokinetic parameters from measurements of time-varying fluorescence [43].

In addition, we have performed an experiment to localize a fluorescing mouse

tumor submerged under varying thicknesses of lipid suspension [44, 45]. The depth

of the tumor was recovered after a one dimensional measurement scan with few

measurements. The experiment suggests the possibility that clinically useful tumor

localization can be obtained from a relatively simple measurement, even with very

limited data.
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2. THREE-DIMENSIONAL BAYESIAN OPTICAL

DIFFUSION IMAGING USING EXPERIMENTAL DATA

2.1 Measurement Models

The frequency domain diffusion equation [46] models the propagation of modu-

lated light in a highly scattering medium. The complex modulation envelope of the

photon flux φk(r) at position r due to a point source at position sk satisfies

∇ · [D(r)∇φk(r)] + (−µa(r)− jω/c)φk(r) = −δ(r − sk), (2.1)

where c is the speed of light in the medium, ω is the modulation frequency, D(r) is the

diffusion coefficient, and µa(r) is the absorption coefficient. Extrapolated Dirchlet

boundary conditions, accounting for refractive index mismatch, may be imposed to

model absorbing boundaries. [47]

We consider the case of a spatially variable absorption coefficient and a constant

(but unknown) diffusion coefficient. The set of absorption coefficients and the diffu-

sion coefficient are denoted by the vector x, where x = [µa(r1), · · · , µa(rN), D]T , and

the domain of the scattering region is discretized into N points at positions ri. The

forward model is expressed as a complex vector f(x) = [fω1(x), fω2(x), · · · , fωQ
(x)]T

where fωi
(x) is the computed data vector for ω = ωi corresponding to all source and

detector pairs. The true measurements corresponding to f( x) are collected together

into the column vector y of length P = KMQ, where there are K source positions,

M detector positions, and Q modulation frequencies. The objective of the optical

imaging problem is to determine the image x from the measurements y.
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2.2 Inverse Problem

Formulating the solution in a Bayesian framework [24], we compute the maximum

a posteriori (MAP) estimate of x (the image) and simultaneously maximize with

respect to α (a parameter which scales detector noise variance) and γ (the source-

detector coupling coefficient). More precisely, the MAP estimate is given by

x̂ = arg max
x≥0

max
α

max
γ
{ log p(y|x, α, γ) + log p(x) }, (2.2)

where p(y|x, α, γ) is the data likelihood and p(x) is the prior density for the image.

The data likelihood is formed using a Gaussian model. [24] For the prior density, we

use the generalized Gaussian Markov random field (GGMRF) model [24]

p(x) =
1

σNz(p)
exp



− 1

pσp

∑

{i,j}∈N

bi−j|xi − xj|p


 1 ≤ p ≤ 2, (2.3)

where σ and p are hyperparameters (with p = 2 corresponding to the Gaussian case),

N consists of all pairs of neighboring nodes, and bi−j represents coefficients in a 26

node neighborhood system with values inversely proportional to node separation.

We assume here that γ is real and is the same for all source-detector pairs, which

is appropriate for our experimental arrangement. With α and γ unknown, and using

the data and prior density functions, (2.2) can be written

x̂ = arg min
x≥0

min
γ

min
α







1

α
||y − γf(x)||2Λ + P log α +

1

pσp

∑

{i,j}∈N

bi−j|xi − xj|p






,(2.4)

where Λ is the inverse of a diagonal covariance matrix and ||w||2Λ = wHΛw. Viewing

the argument in (2.4) as a cost function, we sequentially update α, γ, and x in an

iterative optimization scheme. Minimization with respect to α, assuming γ and x

are constant, gives α̂ = 1
P
||y− γ̂f(x̂)||2Λ . Minimizing with respect to γ, for constant

α and x, gives

γ̂ =
Re

{

fH(x̂)Λy
}

fH(x̂)Λf(x̂)
, (2.5)
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where H denotes the conjugate transpose. The update with respect to D consists of

one iteration of a 1-D Newton’s method, with step

∆D̂ =
Re

{

EHf ′H
D (x̂)Λz

}

γ̂EHf ′H
D (x̂)Λf ′

D(x̂)E
, (2.6)

where E = [1, 1, ..., 1]T , z = y−γ̂f(x̂), and f ′
D(x̂) is the P×N Fréchet derivative [26]

of f(·) at x̂ with respect to D. The update of the µa components of x employs the

iterative coordinate descent (ICD) algorithm. [24]

2.3 Experiment

Measurements were made on an optically clear culture flask containing a black

plastic cylinder of diameter 0.7 cm embedded in a turbid suspension, as shown in

Figure 2.1 [27]. The region of the flask containing the suspension had dimensions

8.1 cm × 2.9 cm × 8.1 cm. The suspension was a phosphate-buffered saline solution

of Intralipid diluted to a concentration of 0.4%. The data were collected using

an inexpensive apparatus (depicted schematically in Figure 2.1) which contains an

infrared LED operating at 890 nm and a silicon p-i-n photodiode. [46] The source

was placed at a fixed central position on one side of the flask. On the other side, the

detector was mounted on a translation stage and moved to 25 locations at intervals

of 0.2 cm (± 2.5 cm). Magnitude and phase data were collected in the range of 10

MHz to 81 MHz using an RF network analyzer.

In order to investigate the possible benefits of using multiple modulation frequen-

cies, we selected data acquired at 10 MHz, 46 MHz, and 81 MHz. At each frequency,

the 25 measurements were increased to 50 by using the symmetry of the problem

to assume that the same data would result from the detectors and source switch-

ing sides. Inversions were performed using individual frequencies and also using the

three frequencies simultaneously. In all inversions, the domain (including the ex-

trapolated boundary region computed for a refractive index of 1.33) was discretized

into 65 × 33 × 65 nodes, giving grid spacings of 1.4 × 1.1 × 1.4 mm. The values

of µa, D, and γ were initialized to 10−5 cm−1, 0.05 cm, and 1.0, respectively. For
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the prior density, we used σ = 2.0 cm−1 and p = 2.0. The optimization procedure

described above was run for 100 iterations, where one iteration consists of an update

of all unknowns.

Reconstructed images of the absorption coefficient are shown for the measure-

ment (z = 0) plane in Figure 2.2. Figures 2.2(a)-(c) show single-frequency recon-

structions obtained using modulation frequencies of 10 MHz, 46 MHz, and 81 MHz,

respectively. Figure 2.2(d) shows the reconstruction obtained using all three modu-

lation frequencies. All reconstructions show a circular, centrally located absorber of

approximately the correct dimensions. Since the diffusion approximation does not

apply in regions of high absorption, the actual values of the absorption within the

cylinder cannot be quantitatively interpreted. Figure 2.3 shows isosurface plots of

the absorption contoured at 1/4 of the maximum value, corresponding to the recon-

structions in Figure 2.2. Despite the fact that data were collected only in a single

plane and no quasi-2-D assumptions were incorporated into the inversion geometry

or the prior model, the isosurfaces all resemble the cylindrical form of the absorber.

The reconstruction using all three modulation frequencies was slightly more accu-

rate, suggesting that the use of multiple frequencies may offer slight advantages. All

of the reconstructions contain some artifacts in the vicinity of the detectors, possi-

bly due to the slight asymmetry in the measured data, the failure of the diffusion

approximation in the absorbing cylinder, or the influence of the Green’s function

singularity when evaluating the Fréchet derivative near the detectors. The estimate

of D was close to 0.08 cm, which is consistent with previous measurements [46],

except for the 10 MHz case, where it was somewhat lower. Using a single value of

D (i.e., both outside and inside the absorbing cylinder) is not strictly correct and

could introduce some error into the estimate.
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2.4 Conclusion

In summary, we have presented a 3-D Bayesian inversion technique for optical

diffusion absorption imaging and applied it to laboratory data. Estimation of source-

detector coupling, background diffusion coefficient, and detector noise allow a fully

automated reconstruction procedure. The results are geometrically accurate and

show that the use of multiple modulation frequencies may be useful. They also

demonstrate that use of a full 3-D model with Bayesian regularization allows recovery

of 3-D images from limited two-dimensional measurements. Accurate and efficient

3-D inversion methods such as this will be essential for practical optical diffusion

imaging.
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Fig. 2.1. (a) Culture flask with the absorbing cylinder embedded in
the scattering Intralipid solution. (b) Apparatus used to collect the
data.
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Fig. 2.2. Reconstructed images of the absorption coefficient using
data at modulation frequencies of (a) 10 MHz (b) 46 MHz (c) 81
MHz (d) 10, 46, and 81 MHz.
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(a) (b)

(c) (d)

Fig. 2.3. Isosurfaces of the absorption coefficient images contoured
at 1/4 of the maximum value using data at: (a) 10 MHz (b) 46 MHz
(c) 81 MHz (d) 10, 46, and 81 MHz.
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3. FLUORESCENCE OPTICAL DIFFUSION

TOMOGRAPHY

3.1 Models

The transport of modulated light (at modulation angular frequency ω, i.e., ejωt

variation) in a fluorescent, highly scattering medium with an external source at the

excitation wavelength is modeled by using the coupled diffusion equations [15,16,48]:

∇ · [Dx(r)∇φx(r, ω)]− [µax
(r) + jω/c] φx(r, ω) = −δ(r − rsk

) (3.1)

∇ · [Dm(r)∇φm(r, ω)]− [µam
(r) + jω/c] φm(r, ω) = −φx(r, ω)ηµaf

(r)×
1− jωτ(r)

1 + [ωτ(r)]2
, (3.2)

where the subscripts x and m, respectively, denote excitation and emission wave-

lengths λx and λm, φ(r, ω) is the complex modulation envelope of the photon flux,

δ( r) is the Dirac function, and rsk
is the location of the excitation point source. We

also assume single exponential decay in this model. The optical parameters are the

diffusion coefficients D(r) and the absorption coefficients µa(r). The fluorescence pa-

rameters are the lifetime τ(r) and the fluorescent yield ηµaf
(r). The fluorescent yield

incorporates the fluorophore’s quantum efficiency η (which depends on the type of

fluorophore and the chemical environment) and its absorption coefficient, µaf
(which

depends on the fluorophore concentration). Note the right hand side of (3.2), where

the light absorbed by fluorophores and subsequently emitted at the emission wave-

length, is incorporated into an effective source term. In the case of an external point

source at the emission wavelength, the flux is governed by

∇ · [Dm(r)∇φm(r, ω)]− [µam
(r) + jω/c] φm(r, ω) = −δ(r − rsk

). (3.3)
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In the most general case, the unknown parameters in (3.1) and (3.2) are µax
, µam

,

Dx, Dm, τ , and ηµaf
. Reconstructions of the Dx and µax

images may be obtained

using data from sources and detectors at the excitation wavelength λx. Similarly,

Dm and µam
may be obtained using data from sources and detectors at the emission

wavelength λm. Finally, having found these parameters, using sources at λx and

detectors filtered at λm will yield the fluorescence parameters. Figure 3.1 depicts

this measurement approach schematically.

After discretizing the domain into N voxels of equal size, the unknown parameters

can be regarded as three image vectors, each corresponding to a measurement set.

Let ri denote the position of the ith voxel centroid, i.e., the location of a node in a

Cartesian finite difference representation of (3.1)-(3.3). We define the image vectors

as

xx =





xxa

xxb





= [µax
(r1) · · ·µax

(rN), Dx(r1) · · ·Dx(rN)]T (3.4)

xm =





xma

xmb





= [µam
(r1) · · ·µam

(rN), Dm(r1) · · ·Dm(rN)]T (3.5)

xf =





xfa

xfb





= [γ(r1) · · · γ(rN), τ(r1) · · · τ(rN)]T , (3.6)

where the subscript f denotes the fluorescence image and the superscript T denotes

the transpose operation. Note that the three image vectors are each of size 2N , con-

sisting of two unknown parameter vectors of size N . In addition, we reparameterize

the fluorescence unknowns {ηµaf
, τ} to {γ, τ} using

γ(r, ω) = ηµaf
(r)

1

1 + [ωτ(r)]2
, (3.7)
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which, when substituted into (3.2), gives

∇ · [Dm(r)∇φm(r, ω)]− [µam
(r) + jω/c] φm(r, ω) = −φx(r, ω)γ(r, ω)×

[1− jωτ(r)] . (3.8)

As explained in Appendix A, this new parameterization is useful because, in a se-

quential optimization scheme, it takes advantage of the inherent linearity of the flu-

orescence inverse problem while allowing regularization to be applied to τ directly.

The sets of flux measurements corresponding to the above image vectors may be

defined, respectively, as yx, ym, and yf .

3.2 Inversion

The estimation of each of the unknown images {xx, xm, xf} from the correspond-

ing observations {yx, ym, yf} is an ill-posed, typically underdetermined, inverse prob-

lem. As in previous work [24, 25, 27, 28], we address this by formulating the inverse

problem in a Bayesian framework. This framework allows the incorporation of a

priori information, and it encapsulates all available information about the problem

model into an objective function to be optimized. Let x denote one of the images of

(3.4)-(3.6), and let y denote its corresponding observations. We use Bayes’ rule to

compute the maximum a posteriori (MAP) estimate, given by

x̂MAP = arg max
x≥0
{ p(y|x)p(x) }, (3.9)

where p(y|x) is the data likelihood and p(x) is the prior density for the image. The

data likelihood can be formed from a Gaussian model by considering, for example,

the physical properties of a photocurrent shot noise-limited measurement system [24].

This gives

p(y|x) =
1

(πα)P |Λ|−1
exp

[

−||y − f(x)||2Λ
α

]

, (3.10)
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where P is the number of measurements, f is the appropriate forward operator, α

is a scalar parameter that scales the noise variance, and, for an arbitrary vector w,

||w||2Λ = wHΛw (where H denotes Hermitian transpose), and α
2
Λ−1 is the covariance

matrix. In a small signal shot noise model, the measurements are independent and

normally distributed with a mean equal to the exact (noiseless) measurement and a

variance proportional to the exact measurement at a modulation frequency of zero

(DC). Following Ye et al. [24], we approximate the DC flux for the ith datum as |yi|.
The resulting covariance matrix is given by

αΛ−1 = αdiag[|y1|, |y2|, ...|yP |]. (3.11)

For the prior density p(x), we use the generalized Gaussian Markov random field

(GGMRF) model, which enforces smoothness in the solution while preserving sharp

edge transitions [24, 49]. For each node (representing a voxel) inside the image,

we form a three-dimensional neighborhood from the 26 adjacent nodes. Let xT =

[xT
a xT

b ], as in (3.4)-(3.6). Assuming independence of xa and xb, the density function

is given by

p(x) = p(xa) · p(xb) (3.12)

=





1

σN
a z(pa)

exp



− 1

paσ
pa
a

∑

{i,j}∈Na

bi−j |xi − xj|pa







 ·




1

σN
b z(pb)

exp



− 1

pbσ
pb

b

∑

{i,j}∈Nb

bi−j |xi − xj|pb







 , (3.13)

where the subscripts a and b have the same meaning as in (3.4)-(3.6), xi denotes the

ith node of x, the set N consists of all pairs of neighboring nodes, and bi−j is the

weighting coefficient corresponding to the ith and jth nodes. The coefficients bi−j are

assigned to be inversely proportional to the node separation in a cube-shaped node

layout, with the requirement that that
∑

j bi−j = 1. The constants p and σ control

the shape and scale of the distribution, and the factor z(p) is a normalization term.

As in previous work [25], we incorporate α into the inverse problem as an unknown

for each image. We have found that this tends to improve the robustness and speed
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of convergence. As a result, we perform a joint MAP estimation of both x and α for

each image:

x̂x = arg max
xx≥0,αx

{ p(xx|yx, αx) } (3.14)

x̂m = arg max
xm≥0,αm

{ p(xm|ym, αm) } (3.15)

x̂f = arg max
xf≥0,αf

{ p(xf |yf , αf , x̂x, x̂m) }. (3.16)

The estimations of xx and xm are performed independently of each other, using

(3.1) and (3.3) as the respective forward models. Subsequently, these estimates are

incorporated into the coupled diffusion equations (3.1) and (3.2) to estimate xf .

Let x and α correspond to one of the images in (3.14)-(3.16). Ye et al. [25]

showed that the above reconstructions are equivalent to maximizing the log posterior

probability l(x), which can be derived using (3.9), (3.10), and (3.13):

l(x) = −P ln ||y − f(x)||2Λ −
1

paσ
pa
a

∑

{i,j}∈Na

bi−j |xi − xj|pa −

1

pbσ
pb

b

∑

{i,j}∈Nb

bi−j |xi − xj|pb (3.17)

Optimizing l(x) may be implemented by alternating closed form updates of α̂ with

updates of x̂ [25]:

α̂ =
1

P
||y − f(x̂)||2Λ (3.18)

x̂ ' arg max
x≥0
{ ln p(y|x, α̂) + ln p(x|α̂)}, (3.19)

where ' implies an update iteration, rather than a full optimization. The x̂ updates

represent more computationally expensive steps toward optimizing (3.9) than the α̂

updates. For each image, we form an objective function from (3.10) and (3.13):

c(xx, α̂x) =
1

α̂x

||yx − fx(xx)||2Λx
+

1

pxaσ
pxa
xa

∑

{i,j}∈Nxa

bi−j

∣

∣xxai
− xxaj

∣

∣

pxa

+
1

pxbσ
pxb

xb

∑

{i,j}∈Nxb

bi−j

∣

∣xxbi
− xxbj

∣

∣

pxb (3.20)
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c(xm, α̂m) =
1

α̂m

||ym − fm(xm)||2Λm
+

1

pmaσ
pma
ma

∑

{i,j}∈Nma

bi−j

∣

∣xmai
− xmaj

∣

∣

pma

+
1

pmbσ
pmb

mb

∑

{i,j}∈Nmb

bi−j

∣

∣xmbi
− xmbj

∣

∣

pmb (3.21)

c(xf , x̂x, x̂m, α̂f ) =
1

α̂f

||yf − ff (xf , x̂x, x̂m)||2Λf

+
1

pfaσ
pfa

fa

∑

{i,j}∈Nfa

bi−j

∣

∣xfai
− xfaj

∣

∣

pfa

+
1

pfbσ
pfb

fb

∑

{i,j}∈Nfb

bi−j

∣

∣xfbi
− xfbj

∣

∣

pfb . (3.22)

The variables have the same meaning as in (3.10) and (3.13), and their subscripts

have the same meaning as in (3.4)-(3.6). Note that forward operator ff is a function

of xf and the estimates x̂x and x̂m. In principle, one could jointly optimize (3.20)-

(3.22) over xx, xm, and xf , but for computational simplicity, we first optimize (3.20)

and (3.21) and subsequently incorporate the estimates into (3.22). With the objective

functions (3.20)-(3.22) established, an optimization algorithm to minimize these costs

is needed, which is described in the next section.

3.3 Iterative coordinate descent optimization

The optimizations of (3.20)-(3.22) are performed using the iterative coordinate

descent (ICD) algorithm [24,27,50], a sequential single-site update scheme similar to

the Gauss-Seidel method used in other problems. One ICD scan consists of forming

a local quadratic approximation to the cost function, followed by an update of each

image element individually to minimize the approximate objective function. On

each subsequent scan, the Fréchet derivative of the nonlinear forward operator is

recomputed, and a new quadratic approximation is made.
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Once again, let x denote one of the three images to be optimized. During the

scan, the individual voxels of x are sequentially updated in random order. At the

beginning of the scan, f(x) is first expressed using a Taylor expansion as

||y − f(x)||2Λ ' ||y − f(x̂)− F ′(x̂)∆x||2Λ , (3.23)

where ∆x = x− x̂, and F ′(x̂) represents the Fréchet derivative of f(x) with respect

to x at x = x̂. Using (3.23), we formulate the approximate cost function

c(x, α̂) ' 1

α̂
||z − F ′(x̂)x||2Λ +

1

paσa
pa

∑

{i,j}∈Na

bi−j |xi − xj|pa

+
1

pbσb
pb

∑

{i,j}∈Nb

bi−j |xi − xj|pb , (3.24)

where

z = y − f(x̂) + F ′(x̂)x̂ . (3.25)

With the other image elements fixed, the ICD update for x̂i is given by

x̂i = arg min
xi≥0

{

1

α̂

∣

∣

∣

∣

∣

∣y − f(x̂)− [F ′(x̂)]∗(i) (xi − x̂i)
∣

∣

∣

∣

∣

∣

2

Λ
+

1

pσp

∑

j∈Ni

bi−j |xi − x̂j|p
}

, (3.26)

where [f ′(x̂)]∗(i) is the ith column of the Fréchet matrix and Ni is the set of nodes

neighboring node i, and p and σ are chosen appropriately from {pa, pb} and {σa, σb}.
This one-dimensional minimization is solved by use of a simple half-interval search

[24]. The Fréchet matrices used for each image are given in Appendix A. Appendix

B summarizes the ICD optimization algorithm in pseudocode form.

Previously, we have found that multiresolution techniques can reduce the com-

putational burden and improve robustness of convergence for the optical diffusion

tomography problem [25]. Hence, for large computational domains, it may be bene-

ficial to perform several ICD scans at a reduced resolution followed by interpolation

as an initialization step for the full-resolution problem.
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3.4 Simulations

Figure 3.2 shows cross section images of a 17.3 × 17.3 × 6 cm tissue phantom

having background values µax,m
= 0.01 cm−1, Dx,m = 0.047 cm, τ = 0 ns and

ηµaf
= 0 cm−1. A slightly off-center spherical heterogeneity with diameter of roughly

3 cm is present, with µax
= 0.05 cm−1, µam

= 0.01 cm−1, Dx and Dm = 0.30 cm,

τ = 0.55 ns, and ηµaf
= 0.02 cm−1. Figure 3.2(g) shows the location and size of

the fluorophore as the ηµaf
= 0.01 cm−1 isosurface. As shown in Figure 3.3, the

bottom face of the domain contains 16 sources (modulated at 70 MHz) arranged in

a 4 × 4 grid pattern. On the top face, 16 detectors are placed in an identical grid.

Using multigrid finite differences [51] to solve the diffusion equations, we generated

synthetic measurements. Additive noise was introduced using the approximate shot

noise model of (3.10) and (3.11), giving an average signal-to-noise ratio (SNR) of 34

dB and a maximum SNR of 41 dB. In the forward solution, an extrapolated zero-flux

boundary condition [52] was used to model the free space absorbing boundaries.

For each of the xx, xm, and xf inversions, 20 ICD iterations at a resolution of

17 × 17 × 9 nodes, followed by 20 ICD iterations at a resolution of 33 × 33 × 17

nodes, were performed. For the nonlinear xx and xm problems, multigrid finite

differences were used to solve the forward model prior to each ICD image update.

During the inversions, the log posterior probability was evaluated as the conver-

gence criterion. For each image, convergence (with subsequent iterations changing

the images very little) was obtained in approximately 10 minutes of computation on

a AMD Athlon 1333 MHz workstation. While automatic estimation of the GGMRF

hyperparameters p and σ is in principle possible using a maximum likelihood es-

timation technique [53], we follow Ye et al. [24] and use parameter values which

empirically give good results. For each reconstruction, the estimates were initial-

ized with homogeneous images equal to the correct background values, as the ICD

method’s convergence is slow for low spatial frequency image components [50]. We

have shown previously that multigrid inversion methods in conjunction with ICD
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updates alleviate this difficulty [25, 36, 54], but, again, we do not address them in

this investigation.

Reconstructions µ̂ax,m
, D̂x,m, τ̂ , and η̂µaf

are shown in Figure 3.4. We used

p = 2.0 in all of the reconstructions, and σ values of 0.015 cm−1, 0.02 cm, 0.5 ns,

and 0.002 cm−1 in computing µ̂a, D̂, τ̂ , and γ̂, respectively. The reconstructions are

qualitatively and quantitatively accurate.

We conjecture that changes in the lifetime parameter τ may be useful in distin-

guishing between diseased and healthy tissue environments. Hence, it is useful to

determine if such changes are within the accuracy of the reconstruction algorithm.

The simulation was repeated for four fluorophores, each with a different value of τ :

0.1375 ns, 0.275 ns, 0.55 ns, and 1.10 ns. The procedure outlined above was per-

formed for each image. To determine a single lifetime value for each reconstructed

image, we used a weighted average:

τ̂avg =

∑N−1
i=0 γ̂(ri)τ̂(ri)
∑N−1

i=0 γ̂(ri)
. (3.27)

The weighted average is reasonable, as the reconstruction τ̂(r) could be significant

in spurious regions where ˆηµaf
≈ 0. It is also similar to the weighting that occurs

in the source term of (3.8), which represents the effect of τ on the data. Figure 3.5

shows a plot of τ̂avg as a function of the true value. The result suggests that the

method can track even small changes in diagnostic lifetime imaging applications.

We also investigated the propagation of error from the x̂x and x̂m images into the

x̂f result. We created a series of incorrect images for x̂x and x̂m, and we used the

incorrect guesses in reconstructing x̂f . The incorrect x̂x and x̂m images were homo-

geneous. We tested the effect of varying µax
, Dx, µam

, and Dm, and we computed

an error metric to quantify the change. For the η̂µaf
results, the error metric was

the normalized root mean squared error (NRMSE), defined as

NRMSE =

[
∑N−1

i=0 |η̂µaf
(ri)− ηµaf

(ri)|2
∑N−1

i=0 |ηµaf
(ri)|2

]1/2

. (3.28)

For the τ̂ results, the NRMSE is less appropriate, as τ̂ may be nonzero in areas where

ˆηµaf
≈ 0. Hence, the error metric for τ̂ was the fractional error, |τ̂avg − τtrue|/τtrue.
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The plots in Figure 3.6(a)-(d) show the NRMSE for η̂µaf
, as a function of background

µax
, Dx, µam

, and Dm, respectively. The plots in Figure 3.7(a)-(d) show the fractional

error for τ̂avg, also as a function of background µax
, Dx, µam

, and Dm, respectively.

Whenever one parameter was varied, the others were all set to the correct image’s

background value. In all plots, the ”+” symbols depict the error metric values

resulting from the erroneous images, and an ”×” symbol shows the error metric

value resulting from computing reconstructions x̂x and x̂m in advance. For η̂µaf
, the

NRMSE is above 0.5 in all cases, even when the full reconstruction was done. This

was likely due to blurring of the sharp edges as a result of using the GGMRF prior

model [49] with p = 2. Ignoring the heterogeneities, but using the correct background

values, noticeably increased the NRMSE. However, the NRMSE changed relatively

little over a range of incorrect background values for all of the parameters, µax
,

Dx, µam
, and Dm. The reconstructed η̂µaf

images also looked qualitatively similar.

This suggests that the reconstructed yield was fairly robust to errors in x̂x and x̂m.

However, τ̂ was highly sensitive to the use of the incorrect images.

3.5 Experimental results

To further evaluate the proposed reconstruction method, we performed fluores-

cence measurements [41]. The data were recorded using a CW imaging device and a

versatile phantom box (shown in Figure 3.8), both described in detail elsewhere [55].

In the absence of phase information, we did not consider τ , and we assumed D to

be constant and known based on physical considerations. The instrument has laser

diode sources available at both 690 nm and 830 nm, and it has avalanche photodiode

(APD) detectors. While 690 nm excitation is not ideal for ICG, a published excita-

tion spectrum [56] indicates that the detected 830 nm emission intensity, using 690

nm excitation, is about 30% of the maximum value (obtained using 780 nm excita-

tion), making it acceptable for this demonstration. The box had internal dimensions

of 16 × 16 × 3.8 cm, where the last dimension is the vertical thickness. As shown
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in Figure 3.9, 9 source fibers were connected to the bottom plate (at z = −1.9 cm),

and 14 detector fibers were connected to the top plate (at z = 1.9 cm). A hollow,

surface frosted glass sphere of outer diameter 2 cm and thickness of about 2 mm

was mounted with its center near z = 0.7 cm, as depicted in Figure 3.10. This

sphere was mounted on a small plastic stand on the bottom of the box. It was also

connected to a closed circulation channel via thin, translucent rubber tubes leading

outside the box, allowing fluorophore solution to be titrated into the sphere from an

external reservoir over the course of the experiment. The titration allowed compa-

rable data to be taken both without and with the fluorophore present for analysis

and calibration purposes.

The box was filled with a suspension of 0.4% Intralipid. Assuming 690 nm ex-

citation and 830 nm emission, this results in background values of approximately

Dx = 0.071 cm, Dm = 0.082 cm, µax
= 0.0052 cm−1, and µam

= 0.03 cm−1 [57, 58].

The sphere was initially filled with the same suspension, creating an essentially ho-

mogeneous domain (apart from the glass sphere, rubber tubes, and plastic stand).

Before administration of the ICG, two sets of measurements, y
(base)
x and y

(base)
m , were

recorded using sources at 690 nm and at 830 nm, respectively. We refer to the

measurements recorded before ICG administration as baseline measurements. Sub-

sequently, ICG was introduced into the sphere at a concentration of 1.0 µmol/L. For

the purposes of reconstructing µax
, measurements, which we define as y

(uncal)
x , were

recorded using 690 nm sources with no optical bandpass filters installed over the

detectors. We neglect the fluorescence signal in these measurements, as published

quantum efficiency values [16,59] imply that its effect on the data is two or three or-

ders of magnitude below the effects due to absorption. Following a similar procedure,

830 nm data, which we call y
(uncal)
m , were recorded (with no filters) for reconstructing

µam
. Upon completion of these measurements, 830 nm bandpass filters with 12 nm

FWHM (Newport 10LF10-830) were installed in front of the detectors to perform

the fluorescence measurements. Due to a limited number of filters, only 9 of the 14
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detectors were used for recording the filtered fluorescence measurements (as shown

in Figure 3.9).

The installation of the filters required disconnection of the detector fibers from

the detection devices. In principle, the disconnection and subsequent reconnection

of the fibers could invalidate the previous baseline calibrations by potentially chang-

ing the detectors’ coupling efficiencies. Such effects might adversely affect the yx

and ym measurements. Hence, a new baseline calibration procedure was performed.

This need for multiple calibrations is a limitation in the design of the experiment

which could be alleviated by using a different detection scheme. For example, the

instrument used by Ntziachristos and Weissleder [22], in which a CCD camera im-

aged a detection fiber array, required only the installation of a single fluorescence

filter without perturbing the detection fibers. Incorporating the unknown calibration

parameters into the inverse problem [28,40] may also alleviate this difficulty.

To perform the new calibration, the ICG-Intralipid mixture was pumped out of

the sphere and replaced with new Intralipid without ICG. Baseline measurements

y
(base)
f with 690 nm sources and 830 nm detection were made. Subsequently, a new

ICG-Intralipid mixture identical in concentration to the previous one was titrated

into the sphere. With the ICG now present, fluorescence measurements y
(uncal)
f were

recorded using 690 nm source excitation and 830 nm detection.

Before applying the reconstruction algorithm for xx and xm, calibrations using the

baseline data were performed. Synthetic data y
(comp)
x (for 690 nm sources) and y

(comp)
m

(for 830 nm sources) were computed for a homogeneous phantom with Dx = 0.071

cm, Dm = 0.082 cm µax
= 0.0052 cm−1, and µam

= 0.03 cm−1 on a 33 × 33 × 17

grid. Calibrations were performed by normalizing to these computed data:

yxi
= y(uncal)

xi

y
(comp)
xi

y
(base)
xi

(3.29)

ymi
= y(uncal)

mi

y
(comp)
mi

y
(base)
mi

, (3.30)

where the subscript i represents the ith component of the data vector. This base-

line calibration procedure estimates the unknown scaling and coupling efficiencies in



24

the measurements. For the much dimmer fluorescence measurements, the baseline

data y
(base)
f contained significant background signal. Calibrations were performed

to account for the unknown coupling efficiencies and to remove these background

components from the fluorescence data:

yfi
=

(

y
(uncal)
fi

− y
(base)
fi

) y
(comp)
xi

y
(base)
xi

, (3.31)

where we have used the 690 nm calibration factors. The resulting fluorescence data

contain an unknown scale factor, due to the unknown filter attenuation of the 690

nm excitation light relative to the 830 nm fluorescence light.

The reconstructions µ̂ax
and µ̂am

are shown in Figures 3.11 and 3.12, respec-

tively. For each inversion, a volume representing the whole box was discretized into

33 × 33 × 17 voxels. The µ̂ax
computation used σ = 0.015 cm−1 and p = 2, and

the µ̂am
computation used σ = 0.03 cm−1 and p = 2. For both images, the ICD

algorithm was run for 20 iterations on a 927 MHz Pentium III workstation, taking

approximately 10 minutes. The resulting µ̂ax
and µ̂am

images show a heterogeneity

with accurate shape, though with artifacts present in the region close to the top

plate. In both images, the sphere’s vertical positions are similar, but below the true

location by approximately 4 or 5 mm. The similarity of the two reconstructions, de-

spite the fact that they are based on independent data sets, suggests that this error

is due to a systematic effect in the reconstruction method. They may be a result

of calibration errors, as the assumption of a diffuse, homogeneous medium in the

baseline calibrations neglected the presence of the low-scattering glass sphere, the

plastic stand used to hold the sphere, and the thin rubber tubes used for pumping in

ICG solution. Small errors in the assumed Dx and Dm values might also contribute

to artifacts in the reconstructions. In addition, placing the sphere close to the de-

tectors may have resulted in modeling errors under the diffusion approximation. In

µ̂ax
, the reconstructed ICG absorption is slightly smaller than the predicted value

of 0.039 cm−1 which one would expect from the results of Sevick-Muraca et al. [16],

after correcting for the use of 690 nm, rather than 780 nm, excitation with the afore-
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mentioned 30% factor [56]. The µ̂am
image has higher contrast than the µ̂ax

image,

in contrast to a published absorption spectrum for ICG 6.5 µmol/L, which shows

higher absorption at 690 nm than at 830 nm. It is possible that ICG’s instability

in aqueous solution causes some variability in its optical spectrum, as Landsman

et al. [60] observed a shift in the absorption peak toward longer wavelengths with

decreasing concentration. In addition, the effect of an Intralipid suspension on ICG’s

absorption spectrum has not been investigated in detail, to our knowledge.

Figure 3.13 shows the fluorescent yield reconstruction η̂µaf
. As a result of the

unknown scale factor in the fluorescence data, the image is in arbitrary units (AU).

Making use of µ̂ax
and µ̂am

, the ICD algorithm, using p = 2.0 and σ = 5.0 AU ,

was run for 20 iterations (about 3 minutes). The iterations were computationally

inexpensive due to the linearity of the fluorescence inverse problem. In contrast

to the absorption reconstructions, the reconstructed fluorophore’s center is slightly

higher than that of the true fluorophore. Though no quantitative information is

available, the size and shape are approximately correct.

3.6 Conclusion

We have presented a computationally efficient Bayesian inversion strategy for

reconstructing fluorescence, absorption, and scattering properties, and demonstrated

the method in a simulation study and in a tissue phantom experiment to image

fluorescence from ICG in a spherical heterogeneity. The results show potential for use

of optical diffusion tomography with fluorescence as a tool for localizing fluorescent

contrast agents in clinical diagnostic applications.

It is worth noting that our experimental calibration procedure simplifies the

problem substantially by choosing a background absorption value in advance and

observing changes with respect to baseline measurements. We have found that this

procedure reconstructs similar-looking absorbers, over a wide range of background

values. Ongoing work with nonlinear multigrid reconstruction algorithms [25], auto-
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matic optode calibration [28], and more accurate transport models [61] may improve

reconstruction accuracy with less favorable calibrations.

Fluorescence imaging may offer some clinical advantages over absorption imag-

ing. One advantage is the possibility of using lifetime as a diagnostic tool. For

the yield imaging problem, the error propagation study suggests that qualitative

results may be obtainable without doing the full xx and xm inversions. Although

the reconstructed lifetime was highly sensitive to incorrect background properties,

the reconstructed yield was not. Hence, as Ntziachristos and Weissleder [22] have

observed, simplified first-order models are more easily applied to the fluorescent yield

imaging problem than to the full absorption imaging problem. This enables a simpler

experimental approach which requires no baseline data. For qualitative localization

of tumors, this could prove to be a decisive advantage of fluorescence imaging over

absorption imaging.
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Fig. 3.1. Proposed measurement scheme.
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Fig. 3.3. Grid used for both sources and detectors in the simulation,
with the relative location of the sphere depicted.
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(a) Bottom plate (sources) (b) Top plate (detectors)

Fig. 3.9. Source and detector layout for experiment. The blackened
detector symbols represent detector positions used in the fluorescence
measurements. The relative location of the sphere is also depicted.
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(a) z=-1.82 cm (b) z=-1.30 cm

(c) z=-0.78 cm (d) z=-0.26 cm

(e) z=0.26 cm (f) z=0.78 cm

(g) z=1.30 cm (h) z=1.82 cm

Fig. 3.10. True fluorophore location
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in cm−1
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Fig. 3.13. Reconstructions of ηµaf
in arbitrary units
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4. FLUORESCENCE OPTICAL DIFFUSION

TOMOGRAPHY USING MULTIPLE-FREQUENCY

DATA

4.1 Background

Several authors have suggested that it should be possible to improve the reso-

lution of ODT reconstructions by using either time-resolved or multiple-frequency

data [62, 63]. Intuitively, one might expect that additional modulation frequencies

would provide additional information which is useful in the reconstruction. To date,

however, no one has addressed the question of how to rigorously reconstruct the

fluorescent yield and lifetime by use of multiple modulation frequencies or whether

multi-frequency data can improve FODT reconstruction quality. There has been

little done on the use of performance metrics for evaluating the impact of multiple

frequencies. Here, we present a method for reconstructing the fluorescent yield and

lifetime using multiple modulation frequencies [42]. We show using numerical sim-

ulations that the proposed method of incorporating multiple frequency components

can indeed improve image quality when reconstructing well localized objects. We

also validate the reconstruction algorithm by reconstructing the fluorescent yield,

fluorescent lifetime, and absorption of measurements from an experimental tissue

phantom containing ICG embedded within a lipid suspension.

Based on the simulation and experimental results, it appears that the advantage

of using multiple modulation frequencies is most apparent in reconstructing well lo-

calized objects, and less apparent in reconstructing targets with broader features.

To investigate this claim, we present a performance metric based on information

theory [64, 65] for evaluating an experimental configuration. The performance met-
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ric incorporates statistical models of both the unknown image and the measurement

device. Hence, it provides insight relevant to entire classes of problems, rather than

only a few anecdotal examples. Previously, information theory-based performance

metrics have been used to evaluate computed tomography (CT) [66] and magnetic

resonance imaging (MRI) [67]. Our performance metric is closely related to previous

work by Shao et al., who used mutual information to evaluate different aperture

designs for single photon emission tomography (SPECT) [68,69]. While information

theory has not been applied to the ODT problem, several groups have used singular

value analysis to evaluate source/detector arrangements [70, 71] or data types [72].

However, none of these investigations incorporated statistical models of the unknown

image’s properties. Mutual information measures the degree to which the measure-

ment apparatus is matched to the statistical model of the unknown fluorescence

image. Using results of rate distortion theory [73], it provides a lower bound for the

mean squared error (MSE) for any estimator of the unknown image. Application

of the performance metric to various image priors and measurement models agrees

well with the reconstruction results in predicting improvement due to use of multiple

frequencies.

4.2 Fluorescence Optical Diffusion Tomography Models

We discretize the domain into N voxels of equal size (although one can generalize

to irregular meshes). Let ri denote the position of the ith voxel centroid, and let η
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denote ηµaf
, for brevity. We define three image vectors, with each corresponding to

a particular measurement:

xx =
[

xT
xA, xT

xB

]T

= [µax
(r1) · · ·µax

(rN), Dx(r1) · · ·Dx(rN)]T (4.1)

xm =
[

xT
mA, xT

mB

]T

= [µam
(r1) · · ·µam

(rN), Dm(r1) · · ·Dm(rN)]T (4.2)

xf =
[

xT
fA, xT

fB

]T

= [η(r1) · · · η(rN), τ(r1) · · · τ(rN)]T , (4.3)

where the subscript f denotes the fluorescence image and the superscript T denotes

the transpose operation. Note that the three image vectors are each of size 2N , con-

sisting of two unknown parameter vectors of size N . The photon flux measurement

vectors corresponding to the above image vectors may be defined, respectively, as

yx, ym, and yf .

4.3 Inverse Problem

4.3.1 Definitions

Previously [27, 41], we have shown how to reconstruct xx and xm in a Bayesian

framework that can incorporate multiple frequencies. Hence, suppose xx and xm have

been reconstructed, or are known by some other means. The remaining unknowns,

η and τ , appear on the right hand side of Eq. (3.2) as part of the source term. Let

h(xf , r, ω) = η(r)
1− jωτ(r)

1 + [ωτ(r)]2
. (4.4)

Also, let g(rsk
, rdm′

; ω, x) be the diffusion equation Green’s function for the problem

domain computed using the image vector x and a numerical forward solver, with rsk

as the source location, rdm′
as the observation point, and modulation frequency ω.
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More specifically, let gx(rsk
, rdm′

; ω, xx) be the Green’s function for wavelength λx

and let gm(rsk
, rdm′

; ω, xm) be the Green’s function at λm. Set

φf (rsk
, rdm′

; ω, xf ) =

∫

h(xf , r, ω)gx(rsk
, r; ω, xx)gm(r, rdm′

; ω, xm)d3r, (4.5)

where we omit the dependence on xx and xm for simplicity. From Eq. (3.2),

h(xf , r, ω)gx(rsk
, r; ω, xx) =

φx(r, ω)
η(r)[1− jωτ(r)]

1 + [ωτ(r)]2
. (4.6)

Suppose we have K sources and M detectors at a modulation frequency of ω.

Let fω(xf ) be the forward model describing the expected value of the data given xf .

Then

fω(xf ) =



































φf (rs1 , rd1 ; ω, xf )

φf (rs1 , rd2 ; ω, xf )
...

φf (rs1 , rdM
; ω, xf )

φf (rs2 , rd1 ; ω, xf )
...

φf (rsK
, rdM

; ω, xf )



































. (4.7)

Let Q be the number of modulation frequencies used, and

f(xf ) =
[

fω1(xf )
T , fω2(xf )

T · · · fωQ
(xf )

T

]T

. (4.8)

Similarly, we define the measurement vector y as:

y =
[

yT
ω1

, yT
ω2
· · · yT

ωQ

]T

(4.9)

corresponding to the same order used in Eq. (4.8). Note that g(rsk
, rdm′

, ·, ·) =

g(rdm′
, rsk

, ·, ·) at λx and at λm, due to the reciprocity theorem [74].
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For the discretized problem, we define matrix operators to approximate the inte-

gration in Eq. (4.5):

Gx(ω) =










gx(rs1 , r1; ω, xx) · · · gx(rs1 , rN ; ω, xx)
...

. . .
...

gx(rsK
, r1; ω, xx) · · · gx(rsK

, rN ; ω, xx)











(4.10)

Gm(ω) =










gm(rd1 , r1; ω, xm) · · · gm(rd1 , rN ; ω, xm)
...

. . .
...

gm(rdM
, r1; ω, xm) · · · gm(rdM

, rN ; ω, xm)











(4.11)

Jω =

V ·





























Gx
1,1(ω)Gm

1,1(ω) · · · Gx
1,N (ω)Gm

1,N(ω)
...

. . .
...

Gx
1,1(ω)Gm

M,1(ω) · · · Gx
1,N (ω)Gm

M,N(ω)

Gx
2,1(ω)Gm

1,1(ω) · · · Gx
2,N (ω)Gm

1,N(ω)
...

. . .
...

Gx
K,1(ω)Gm

M,1(ω) · · · Gx
K,N (ω)Gm

M,N(ω)





























(4.12)

where V is the volume of a voxel. Let

hω(xf ) =
[

h(xf , r1, ω) · · · h(xf , rN , ω)
]T

(4.13)

Neglecting discretization error,

fω(xf ) = Jωhω(xf ). (4.14)

Suppressing the x̂x and x̂m arguments for brevity, we can rewrite Eq. (3.22) as:

c(xf , α̂f ) =
1

α̂f

Q
∑

q=1

∣

∣

∣

∣yfωq
− Jωq

hωq
(xf )

∣

∣

∣

∣

2

Λfωq

+
1

ρfAσ
ρfA

fA

∑

{i,j}∈NfA

bi−j

∣

∣xfAi
− xfAj

∣

∣

ρfA

+
1

ρfBσ
ρfB

fB

∑

{i,j}∈NfB

bi−j

∣

∣xfBi
− xfBj

∣

∣

ρfB . (4.15)
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In the single frequency case, we can take advantage of the linearity of fω(xf ) with

respect to hω(xf ) by reparameterizing {η, τ} to create a quadratic optimization prob-

lem [41]. However, since the resulting parameters must contain frequency terms in

their denominators, they cannot be used for the multiple frequency case. Hence, we

perform a nonlinear optimization of Eq. (4.15) directly over {η, τ}.

4.3.2 Iterative Coordinate Descent

As in our previous work [24,25,27,28,41], we use the iterative coordinate descent

(ICD) algorithm [50], a Gauss-Seidel approach, to optimize (4.15). The voxels are

scanned in random order, and the cost function is optimized with respect to each

individual voxel. Previously [41], we have shown how to optimize (3.20) and (3.21).

Hence, we focus on (3.22), and omit the f subscript here for simplicity. In one update

scan for x̂, we update all of the N voxels with respect to xA = η, and subsequently

update all of the voxels with respect to xB = τ . Let the scalar xi denote the ith

element of x. With all other image elements fixed, the ICD update for the estimate

x̂i is given by

x̂i ← arg min
xi≥0

{

1

α̂

Q
∑

q=1

∣

∣

∣

∣

∣

∣yωq
−

[

Jωq

]

∗(i)
h(x, ri, ωq)

∣

∣

∣

∣

∣

∣

2

Λωq

+
1

ρσρ

∑

j∈Ni

bi−j |xi − x̂j|ρ
}

, (4.16)
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where Ni is the set of nodes neighboring node i, and ρ and σ are chosen appropriately

from {ρA, ρB} and {σA, σB}.
[

Jωq

]

∗(i)
denotes the ith column of Jωq

. Suppose we

have an initial guess x̃, and let zωq
= yωq

− fωq
(x̃). Then, Eq. (4.16) is equivalent to

x̂i ← arg min
xi≥0
{

1

α̂

Q
∑

q=1

||zωq
− [Jωq

]∗(i)[h(x, ri, ωq)

−h(x̃, ri, ωq)]||2Λωq

+
1

ρσρ

∑

j∈Ni

bi−j |xi − x̂j|ρ
}

,

= arg min
xi≥0
{

1

α̂

Q
∑

q=1

(

θ1,ωq
[h(x, ri, ωq)− h(x̃, ri, ωq)]

+
θ2,ωq

2
[h(x, ri, ωq)− h(x̃, ri, ωq)]

2

)

+
1

ρσρ

∑

j∈Ni

bi−j |xi − x̃j|ρ
}

, (4.17)

where

θ1,ωq
= −2Re

{

[Jωq
]H∗iΛωq

zωq

}

(4.18)

θ2,ωr
= 2[Jωq

]H∗iΛωq
[Jωq

]∗i (4.19)

In Eq. (4.17), θ1,ωq
and θ2,ωq

are not functions of xi, and thus do not need to be

recomputed during the nonlinear, one-dimensional (1-D) line search over xi. This

property enables significant computational savings, as repeated computations of θ1,ωq

and θ2,ωq
would require numerous complex multiplications. We perform the mini-

mization over xi by use of a Golden Section search [75].

We implement the joint estimation of α and x iteratively. One iteration consists

of a closed form update with respect to α̂ followed by ICD scans to update all of

the voxels in x̂A and x̂B. Appendix C summarizes the ICD optimization algorithm

in pseudocode form.
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4.4 Simulation

We performed a simulation incorporating multiple modulation frequencies by use

of the proposed algorithm. Figure 4.1 (a) shows a cubic tissue phantom, with 5

sources on one side and 5 detectors on the other. Two small η heterogeneities were

placed near each other, slightly off center. The other parameters were constant,

with µax,m
= 0.047 cm −1, D = 0.27 cm, τ = 0 s. Three data sets were computed

numerically, using multigrid finite differences on a 33 × 33 × 17 grid: 78.4 MHz

data, 314 MHz data, and a combination of both. We used the extrapolated zero-flux

boundary condition [52] with internal sources interpolated among the nearest grid

nodes. The sources were placed 0.08 cm inside the physical boundary, corresponding

approximately to 1 transport mean free path. The voxels were 0.26 × 0.26 × 0.38

cm in size. Gaussian noise was added, using the shot noise model presented by Ye

et al. [24] and assuming equal input source power for each modulation frequency.

The average signal to noise ratio (SNR) was 21.2 dB for the 78.4 MHz data and 14.7

dB for the 314 MHz data. Using the same 33 × 33 × 17 grid, the ICD algorithm

was used to reconstruct η, with a constant initial guess of 0 cm−1. The shape

and scale hyperparameters σ and ρ were set to 0.021 cm−1 and 2, respectively,

for all three reconstructions. For each reconstruction, using σ = 0.021 cm−1 gave

substantially the best qualitative results. The algorithm was run to convergence, with

subsequent iterations changing the cost function negligibly. To avoid singularities

near the sources and detectors, we did not update within in a 2-voxel border of

the computational boundary. Figure 4.1 (c)-(e) shows the results. In the single

frequency reconstructions, the two objects are not clearly distinct. However, in

the multiple frequency reconstruction, the two objects are clearly distinguishable.

The result suggests that the proposed method for making use of multiple frequency

components can improve reconstruction quality in some cases.
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4.5 Experiment

4.5.1 Design and Procedure

To test the method, we prepared a time-domain fluorescence and absorption

imaging experiment, shown schematically in Figure 4.2(a). The tissue phantom

comprised a 2 cm glass sphere containing ICG and 1% Intralipid (a fat emulsion)

embedded within a 1% Intralipid suspension. As in earlier work [41], a measurement

box contained the phantom and fiber optic connectors. The box had inner dimensions

of 17×17 cm, with adjustable height. A grid of 16×16 fiber optic connectors, with 1

cm spacing, was used to position source fibers on the bottom of the box. We selected

24 source positions, as shown in Figure 4.2. A tunable, mode-locked Spectra-Physics

MaiTai Ti:sapphire pulsed laser was used as the source. The pulse width was less

than 100 fs, according to manufacturer data. The 0.8 W average output of the laser

was split using the reflection off of a glass microscope cover slip, and 20 mW was

coupled into the source fibers. A galvanometer-based optical scanner from Nutfield

technologies was used to sequentially couple the beam into the source fibers. The

top of the phantom box was opened, and a LaVision PicoStar image intensified CCD

camera imaged the exposed top surface of the Intralipid.

A 1.0% solution of Intralipid and distilled water was added to the box to a depth

of 5.7 cm, and to the sphere. The sphere was measured to be vertically centered

at z ' 2.8 cm. However, the sphere was suspended only by flexible rubber tubes,

which added an uncertainty of roughly 2-3 mm to the estimated vertical position.

The rubber tubes were used for titrating the fluorophore from a separate reservoir

of Intralipid solution.

Initially, baseline measurements were performed on the essentially homogeneous

slab, without the fluorophore present. These baseline measurements were used in

a calibration scheme which we have used previously [41]. For the purpose of re-

constructing µax
, impulse responses were measured with the laser tuned to 780 nm,

and the intensifier voltage set to 350 V. Each sample of the temporal response was
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recorded by gating the intensifier for 1 ns and integrating for 75 ms, with the gating

triggered at the laser’s repetition rate of 80 MHz. Using the intensifier’s adjustable

triggering delay, samples were recorded at 250 ps delay intervals. Due to the 80

MHz repetition rate, the impulse responses were measured over a range of 12.5 ns,

which was sufficient to encompass the entire impulse durations. Similarly, for the

µam
reconstruction baseline data, the laser was tuned to 830 nm, the ICG emission

wavelength, and the above measurement procedure was repeated. No baseline data

were recorded for reconstructing η and τ , as no Intralipid fluorescence was observed.

After collection of the baseline data, ICG was titrated into the sphere at a concen-

tration of 0.125 µM, and impulse responses were recorded as above. To measure the

fluorescence, the laser was tuned to 780 nm, and an 830 nm bandpass filter with

10 nm FWHM (CVI Laser Corporation) was placed in front of the camera. Be-

cause the fluorescence measurements were dimmer than the previous measurements,

the intensifier voltage was increased to 550 V, the samples were collected at 500

ps intervals (thus decreasing the temporal resolution and collection time), and the

integration time per sample was increased to 1 s, while the gate width remained at

1 ns. We did not need to account for the finite gate width in the reconstruction, as

the normalizations performed in the calibrations cancel any windowing effects.

To remap the raw data images into 2−D uniform grid coordinates, the projection

transformation between the points of maximum brightness (assumed to be directly

above the sources) and the known grid locations of their corresponding source fibers

was estimated in the least-squares sense. This transformation was applied to convert

between detector grid locations and image pixel coordinates. For both λx and λm,

the background µa and D and the unknown initial time offset were determined by

fitting one of the point spread functions to the analytical slab model [47] with a

direct line search. The point spread functions were Fourier-transformed, and the

78, 314, and 627 MHz components were selected. Calibration factors were obtained

by computing simulated measurements on a homogeneous domain discretized into

33 × 33 × 17 voxels (0.51 × 0.51 × 0.38 cm in size) and dividing these results by
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the baseline measurements. These factors were used to calibrate the data with the

procedure of our previous work [41].

4.5.2 Reconstructions

To reconstruct µax
and µam

from the measured data, we used the ICD algorithm

presented previously [27, 41] to optimize Eqs. (3.20) and (3.21). The domain was

discretized into 33×33×17 voxels, 0.51×0.51×0.38 cm in size. The reconstructions

were initialized with the constant background µa and D values estimated from the

baseline impulse responses. Both Dx and Dm were assumed to be constant and not

modified from the initial values. Although automatic estimation of the GGMRF

hyperparameters ρ and σ is possible in principle [53], we follow our previous work

[24,41] and use parameter values which empirically give good results. For the µax
and

µam
reconstructions, the algorithm was run to convergence (i.e., until ICD iterations

produce negligible change in the cost function’s value). We used model parameters

σ = 0.005 cm−1 and ρ = 2. The estimates µ̂ax
and µ̂am

were incorporated into

the coupled diffusion equations, and η and τ were reconstructed using the proposed

algorithm.

Figures 4.3 and 4.4 show the reconstructions of µax
and µam

, respectively, ob-

tained using 78, 314, and 627 MHz data. The peak value of the µax
deviation from

the background is smaller than the value of 0.016 cm−1 which one would obtain by

dividing a previously reported [16] 1 µM ICG absorption value by 8 to account for the

concentration difference. (We note, however, that an ICG solution’s absorption and

fluorescence may not be linear with concentration, nor constant over time [59, 60].)

The µam
peak value is consistent with our previous results [41]. Aside from a sig-

nificant artifact near one of the sources, the images also appear to be qualitatively

reasonable. The reconsructed sphere’s center is approximately 4 mm below the cen-

ter (where the true sphere lies with an uncertainty of approximately 2-3 mm), and

its diameter is close to the true diameter of 2 cm.
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The fluorescence properties were also reconstructed using 78, 314, and 627 data.

Figure 4.5 shows the reconstruction of η, obtained using σ = 2.5 × 10−5 cm−1 and

ρ = 2. The effects of changing the intensifier voltage and inserting the bandpass

filter were accounted for in the calibration by using manufacturer data. The image

is qualitatively accurate, with few artifacts and position similar to the reconstructed

absorbers. Dividing the peak fluorescent yield by the peak absorption of the hetero-

geneity at λx, we obtain a quantum efficiency of about 0.018. This result is slightly

higher than the value of 0.016 obtained by Sevick-Muraca et al. [16], who measured

a micromolar aqueous solution with a spectrofluorometer. Figure 4.6 shows the re-

constructed τ , obtained using σ = 0.1 ns and ρ = 2. Quantitatively, it is similar

to a literature-reported lifetime of 0.56 ns [19]. The image appears spread out, due

to the fact that τ can be nonzero in regions where η ' 0, with small effect (as τ is

multiplied by η in the diffusion equations).

Figures 4.7 and 4.8 show reconstructions of η and τ obtained using only 78 MHz

data. The results are very similar to the reconstructions obtained using 78, 314,

and 627 MHz data together. Hence, for this experiment, the additional modulation

frequencies (perhaps surprisingly) do not appear to contribute information which is

useful for reconstructing the sphere.

4.5.3 Effects of Regularization

Figures 4.9 and 4.10 show reconstructions of η and τ , respectively, obtained

over a range of σ values. The η reconstructions in Figure 4.9 qualitatively show a

progression from over- to underregularization with increasing σ (where the τ prior

parameters were fixed to ρ = 2 and σ = 0.1 ns, as used above). Figure 4.9(a),

which we deem to be overregularized, appears overly broadened, with blurred edges.

In contrast, Figure 4.9(e) is underregularized, with sharp peaks appearing in the

image. The τ images in Figure 4.10 were also computed over a range of σ values,

with the η prior parameters fixed to ρ = 2 and σ = 2.5×10−4 cm−1. For the lifetime
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images, discerning underregularized and overregularized images is more complicated.

Because τ is multiplied by η in the diffusion equations, overregularized τ images may

appear qualitatively reasonable, and not excessively broadened. Figures 4.10(d) and

4.10(e), which are deemed to be underregularized, have much of their structure

outside the voxels containing the fluorophore in Figure 4.5 rather than within it.

One method of selecting σ for the fluorescence lifetime problem might be to choose

the largest one which gives physically acceptable images. Less regularization implies

a more accurate fit to the data irrespective of image quality. As in our previous

work [41], we define the weighted average lifetime:

τ̂avg =

∑N
i=1 η̂(ri)τ̂(ri)
∑N

i=1 η̂(ri)
. (4.20)

This weighted average accounts for the possibility that the reconstruction could be

significant in spurious regions where ˆηµaf
≈ 0. It is also related to the weighting

that occurs in the source term of (3.2), and thus represents the effect of τ on the data

yf . Figure 4.10(f) shows τ̂avg as a function of σ. As σ increases, τ̂avg asymptotically

approaches a constant value of about 0.49 ns, just under the literature-reported

value of 0.56 ns [19]. The stability of τ̂avg with increasing σ suggests that selecting

the largest σ which produces a physically acceptable image is reasonable. However,

despite the stability of τ̂avg, the image becomes more distorted (and less physically

meaningful) with increasing σ due to the inherent tradeoff between regularization and

accurate fitting of the data. We selected σ = 0.1 ns, which gave τ̂avg = 0.205 ns, as the

best compromise. Although this gives a less than ideal result for τ̂avg, it is physically

reasonable, with the lifetime distributed evenly throughout the fluorophore.

4.6 Mutual Information Performance Measure

4.6.1 Motivation and Mathematics

The results of Sections 4.4 and 4.5 suggest that the additional modulation fre-

quencies provide useful information for some problems, but not for others. Here,
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we propose to use the mutual information, defined in information theory [64,65,73],

as an indicator of the reconstruction fidelity that can be achieved with a particular

measurement scenario.

We first define the mutual information for our problem. Let X be the random

vector corresponding to the fluorescent yield image, and let Y be the random vector

corresponding to the measured data. Then the mutual information I(X; Y ) is defined

as [65]

I(X; Y ) = H(Y ) − H(Y |X), (4.21)

where H(Y ) and H(Y |X) are the differential entropy and conditional differential

entropy defined by

H(Y ) = E[− log pY (Y )], (4.22)

and

H(Y |X) = E[− log pY |X(Y |X)]. (4.23)

where pY (y) and pY |X(y|x) are the densities of X and Y |X respectively. Informally,

the mutual information measures the information that the data Y contains about

the unknown image X. If base 2 logarithms are used, then I(X; Y ) has units of bits,

whereas a natural logarithm results in units of “nats”.

For our problem, the mutual information may be easily computed. For simplicity,

assume that τ = 0 and consider the information content for reconstructing η. To

model the image statistics, we use the Gaussian Markov random field (GMRF) prior

model, which is equivalent to the GGMRF with ρ = 2. In this case, the density of

the image X is given by

pX(x) =
1

√

(2πσ)N
|C|−1/2 exp

{

− 1

2σ2
xtCx

}

(4.24)

where the matrix C has elements

Ci,j =







2 if i = j

2bi−j if i 6= j
.
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As in previous sections, we let

E[Y |X] = JX (4.25)

where J is the matrix representing the linear forward operator, and αΛ−1/2 is the

measurement noise convariance matrix as defined in Eq. (3.11). Using these defini-

tions, we show in Appendix D that the mutual information is given by

I(X; Y ) = log

∣

∣

∣

∣

I +
σ2

α
ΛJC−1JH

∣

∣

∣

∣

(4.26)

where I is the identity matrix.

While (4.26) provides a straightforward expression for the mutual information,

the question remains as to why one would expect it to be a good predictor of re-

construction quality. In fact as the mutual information increases, a lower bound

on the reconstruction distortion is also reduced. The minimum MSE estimate of

X given Y is given by the conditional expectation X̂ = E[X|Y ]. Furthermore, for

each image X there exists a distortion rate function DX(·) which lower bounds the

achievable distortion at a specified rate [73]. In communication applications, the

rate is the amount of information content per unit time which is sent over a channel

and decoded in order to reconstruct the original signal. Here, the rate refers to the

information obtained by the measurement device per acquisition for reconstructing

the fluorescence image. Importantly, the distortion rate function depends only on

X and the choice of the MSE distortion metric. For any particular choice of Y , we

then know that

E[||X − X̂||2] ≥ DX(I(X; Y )) . (4.27)

In addition, it is known that all distortion rate functions are convex, and monotone

decreasing with DX(0) = E[||X−E[X]||2]. Therefore, as the mutual information in-

creases, this lower bound on MSE decreases. Alternatively, when mutual information

is low, then the MSE is necessarily large.
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4.6.2 Application to Simulation and Experiment Models

Figure 4.11(a) shows the mutual information as a function of α for the same ge-

ometry and statistical models assumed in the simulation study of Section 4.4. Curves

are plotted for both the single frequency (78 MHz) case and the multiple frequency

(78 and 314 MHz) case. The + symbols mark the curve points corresponding to the

true α used to generate the synthetic data. The mutual information values differ sig-

nificantly at these points. The result suggests that the additional (multi-frequency)

data provide significant information for the set of problems modeled by the same

image and measurement statistics as in the simulation.

In Figure 4.11(b), the mutual information versus α is plotted for the geometry

and statistical models used in the reconstructions from experimental data. With

the true α for this instrument unknown, the (overlapping) + symbols mark the

curve points corresponding to the estimated α. Previously, we have found that the

estimation of α yields accurate values [25]. In contrast to Figure 4.11(a), the mutual

information values are virtually the same. Hence, there is no significant information

gain from the multiple frequency data in this case. In this case of a single, relatively

large inhomogeneity, additional frequencies, even with a small number of sources and

detectors, is not beneficial.

4.7 Conclusions

The proposed algorithm is a general framework for reconstructing fluorescent

yield, fluorescent lifetime, absorption, and scattering from frequency-domain data.

Simulation results for reconstructing two small objects indicate improvement due to

the incorporation of multiple-frequency data. However, similar improvements are not

noted in the experiment, which considers a comparatively large and low-resolution

spherical target. Even when the numbers of sources and detectors are reduced, single

and multiple frequency reconstructions produce substantially similar reconstructions

of fluorescent yield and lifetime. We suppose that the additional, higher-resolution
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image components observable by the use of the additional modulation frequencies

may be largely absent from the true sphere image. Simulations with single, spherical

images seem to confirm that the sphere is fully resolved using just one frequency, in

agreement with the experiment.

The mutual information performance metric provides a theoretical foundation

for our observations. A significant increase in the information corresponds with im-

proved reconstruction results in the simulation. Also, a lack of information gain

corresponds with lack of improvement in the the reconstruction results for the ex-

periment. Hence, it appears that information theory can accurately predict any

improvement in reconstruction results due to changes in the experimental configura-

tion. If accurate statistical models of the unknown image and measurement devices

are known, this property is useful in the design of an experiment. In principle, for

Gaussian problems, it is possible to use other, related performance metrics such as

the reconstruction MSE. However, the reconstruction MSE is computed as the trace

of the inverse of a very large matrix [76], making it less computationally tractable

than the mutual information.

As in a previous study [41], we note that the baseline calibration procedure sim-

plifies the experimental reconstruction. In practice, baseline data may be available

before administration of a contrast agent, but collecting it still may be problem-

atic. Previous investigations, such as the normalized Born approximation used by

Ntziachristos and Weissleder [22], suggest that the baseline calibration step can be

circumvented, under certain simplifying assumptions about the absorption problem.

Using higher-order transport equations [77] to improve modeling accuracy or estimat-

ing source/detector and boundary condition coefficients numerically [28, 39, 40, 78]

may also alleviate the need for baseline calibrations.
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Fig. 4.1. Reconstruction using simulated data, showing the im-
provement due to use of multiple modulation frequencies. (a)
Source/detector geometry, (b) True image cross section, (c) Recon-
struction using 78.4 MHz data, (d) Reconstruction using 314 MHz
data, (e) Reconstruction using 78.4 and 314 MHz data
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(a) (b)

Fig. 4.2. (a) Schematic of the experimental setup, showing the box
and tissue phantom, and a glass sphere filled with ICG/Intralipid,
rubber tubes, and Intralipid suspension. (b) Source fiber positions.
The same positions were selected as detection regions from the cam-
era images.
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Fig. 4.3. Reconstruction of µax
(cm−1), obtained using 78, 314, and 627 MHz data
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Fig. 4.5. Reconstruction of η (in 10−4 cm−1), obtained using 78, 314,
and 627 MHz data
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Fig. 4.6. Reconstruction of τ (in 10−10 s), obtained using 78, 314,
and 627 MHz data
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Fig. 4.7. Reconstruction of η (in 10−4 cm−1), obtained using only 78
MHz data. The result is similar to the result obtained using multiple
modulation frequencies.
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Fig. 4.8. Reconstruction of τ (in 10−10 s), obtained using only 78
MHz data. The result is similar to the result obtained using multiple
modulation frequencies.
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Fig. 4.9. Reconstructions of η (in 10−4 cm−1) using various values of
σ, showing a progression from overregularization to underregulariza-
tion. The z = 2.85 cm cross sections are shown. The τ model used
σ = 1× 10−10 s in all cases.
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σ = 2.5× 10−5 cm−1 in all cases.
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5. ESTIMATION OF KINETIC MODEL PARAMETERS

IN FLUORESCENCE OPTICAL DIFFUSION

TOMOGRAPHY

5.1 Background

As in positron emission tomography [79], the reconstruction of optical contrast

agent kinetics can provide useful physiological information. Several groups of re-

searchers have measured the dynamic behavior of injected optical contrast agents

in animal or human subjects [12, 80–84]. Gurfinkel et al. [82] have used an intensi-

fied CCD camera to measure the pharmacokinetics of fluorescent agents in a canine

with mammary tumors and fit the image sequence to a biexponential decay function

which arises from a compartmental model. The study employed indocyanine green

(ICG), which is believed to act as a nonselective blood pool agent, and carotene-

conjugated 2-devinyl-2-(1-hexyloxyethyl) pyropheophorbide (HPPH-car), a photo-

sensitizer which is believed to accumulate selectively in diseased tissue. A model

parameter related to the dye’s uptake rate showed significant contrast between dis-

eased and surrounding tissue for HPPH-car, but not for ICG. Cuccia et al. [84] have

measured the dynamics of two light-absorbing dyes, ICG and methylene blue (MB),

in an adenocarcinoma rat tumor model by use of an optical probe with magnetic

resonance imaging coregistration. Due to its small molecular weight of 373.9 Da,

the MB temporal dynamics were dominated by blood flow effects. From the MB

measurements, the authors observed variations in perfusion within the rat tumor.

In contrast, ICG binds to albumin in the blood, with a resulting effective molecular

weight of 66 kDa. Hence, ICG’s temporal dynamics are dominated by the movement

of albumin across the capillary membrane between the plasma and the extravascular,
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extracellular space (EES). The authors used ICG dynamics to compute a physiologic

parameter related to capillary permeability.

Previously, the time-varying absorption coefficient has been reconstructed in a

cylindrical phantom [85] and in the human brain [86] by solving the inverse problem

separately for each image in a time sequence. However, in some cases, the unknown

image may not reasonably be considered constant over the instrument’s measurement

time. In addition, independent reconstruction of each image in the sequence ignores

correlations in the image over time. Kolehmainen et al. have presented a state-

estimation approach to the time-varying optical diffusion tomography problem which

models the unknown image as a stochastic process governed by a stochastic difference

equation [87]. This method solves the inverse problem by using extended Kalman

filter and Kalman smoother techniques. The authors demonstrate their method with

synthetic data from a two-dimensional phantom and, in a subsequent investigation,

on real hemodynamic data from the human motor cortex [88]. This approach has

shown promise for dynamic imaging problems where the time variation cannot be

accurately parameterized by a known, deterministic model alone. However, in prac-

tical three-dimensional imaging problems, reconstructing a time sequence of images

and updating large estimator covariance matrices may pose some difficulty, due to

storage and computation requirements. Other dynamic imaging approaches have

been investigated, including space/time regularization operators [89–91], principal

components analysis [92], and temporal B-splines [93–95]. In many tracer experi-

ments, a compartmental model [79,96] can accurately describe tracer kinetics by use

of a system of first order differential equations. Previously, maximum likelihood ap-

proaches for direct reconstruction of kinetic model parameter images from PET data

have been presented [97,98]. Recently, Kamasak et al. [99] have presented a Bayesian

approach for dynamic PET which directly reconstructs images of the compartmental

model’s parameter images using all the data, while imposing spatial regularization.

This approach results in substantially improved accuracy compared with previous
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dynamic imaging methods which do not directly reconstruct the kinetic parameter

images.

Here, we present a Bayesian, three-dimensional reconstruction approach for time-

varying fluorescence optical diffusion tomography problems with nonlinear parame-

terizations of some known functional form. We demonstrate the method in a simula-

tion study for the important case of a double exponential model, where the unknown

parameters are the two amplitude coefficients and the two rate constants. This case

can arise from a compartmental model in some applications, and it is similar to the

behavior observed by Gurfinkel et al. [82] and Cuccia et al. [84]. The reconstruction

approach is closely related to the methods of Kamasak et al. [99], in that it uses a

statistical framework to directly reconstruct kinetic model parameters and a similar

optimization scheme. We use all of the measured data to reconstruct the model

parameter images directly, rather than reconstructing and storing a time sequence

of fluorescence images. Our approach explicitly accounts for the fact that different

sources are illuminated at different times. We also draw upon our recent work, in

which we presented a nonlinear Bayesian inversion approach for the ODT/FODT

problems and applied it to experimental data [27, 28, 41, 42]. We use parametric

iterative coordinate descent (PICD) optimization [42, 50, 99], which is efficient and

convenient for enforcing non-negativity constraints, and we use the generalized Gaus-

sian Markov random field (GGMRF) prior model [49] for spatial regularization in

the parameter images.

5.2 Models

Suppose the fluorescent yield η(r, t) varies with time, on a scale comparable to the

total acquisition time of the tomography instrument. The time variation might be a

result of drug kinetics, which may be of physiological interest. Here, we consider the
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case where η(r, t) can be expressed as a (possibly nonlinear) function of U parameters

which do not vary in time:

η(r, t) = η̃ (γ1(r), · · · , γU(r), t) , (5.1)

where η̃ is a known function.

One important case which follows this framework is the compartmental model

[96]. In a compartmental model, the body consists of a number of compartments,

conceptual regions where the drug’s concentration is assumed to be uniform. A sys-

tem of differential equations describes the exchange of the drug among the different

compartments. Previously [82, 84], the pharmacokinetics of ICG in animal subjects

has been described by use of a three-compartment model, depicted in Figure 5.1. The

compartments were the plasma, the tissue (the extracellular, extravascular space),

and the kidneys and liver, which tend to clear the fluorophore out of the blood pool.

Let cP (t) and cT (t) be the concentration of fluorophore in the plasma and tissue com-

partments, respectively. Cuccia et al. [84] initially assumed a biexponential decay

model for cP (t), but ultimately observed only single exponential behavior in their

experiment due to the relatively long elimination time of ICG compared with their

measurement duration. Hence, we will assume single exponential decay for cP (t):

cP = A exp(−κ3t) (5.2)

where A is taken to be the initial fluorophore concentration in the plasma and κ3

is the rate constant for fluorophore elimination. We assume that the plasma input

function does not vary throughout the imaging domain, i.e., that cT (t) is not large

enough to significantly effect the overall rate of elimination. A similar assumption

was made by Cuccia et al. [84] We also let κ1 and κ2 be the rate constants for ICG

entering and leaving the tissue. Then the concentrations are obtained by solving a

differential equation for cT (t):

dcT

dt
= κ1cP − κ2cT . (5.3)
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To obtain a volumetric image, we solve (5.3) with initial condition cT (0) = 0 to

obtain cT (t) in each voxel:

cT =

(

κ1A

κ2 − κ3

)

[exp(−κ3t)− exp(−κ2t)] . (5.4)

The experimentally observed fluorescent yield is proportional to the concentration of

fluorophore in the imaging domain. Within each voxel, the fluorophore concentration

is some weighted sum of the tissue and blood compartments. Hence, we may write

η(r, t) as

η(r, t) = wP (r)cP (t) + wT (r)cT (r, t). (5.5)

Substituting (5.2) and (5.4) into (5.5) yields the biexponential solution:

η(r, t) = γ1(r) exp[−γ4(r)t]− γ2(r) exp[−γ3(r)t] (5.6)

where

γ1 = A

(

wP +
wT κ1

κ2 − κ3

)

(5.7)

γ2 = A

(

wT κ1

κ2 − κ3

)

(5.8)

γ3 = κ2 (5.9)

γ4 = κ3. (5.10)

From γ1, . . . , γ4, it is possible to obtain the parameters κ2, κ3, (AwP ), and (AwT κ1).

Hence, we directly reconstruct images of the biexponential model parameters γ1,γ2,

γ3, and γ4. To enforce the spatial independence of cP (t), one can constrain γ4 to

be the same everywhere. Alternatively, one can reconstruct γ4(r) to check the self-

consistency of the model.

Strictly speaking, the time-dependence of η(r, t) should correspond with a time-

dependent perturbation in µax
. In previous work, we have observed that perturba-

tional changes in µax
do not have a strong effect on reconstructed fluorescence [41].

Hence, for simplicity, we will not consider the reconstruction of time-varying µax

here.
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5.2.1 Tomography Problem

Previously, for the stationary case, we have shown how to reconstruct µax
(r),

µam
(r), Dx(r), Dm(r), τ(r), and η(r) [41, 42]. Here, we assume that µax

(r), µam
(r),

Dx(r), and Dm(r) are known in advance and do not vary with time, and we consider

the problem of reconstructing τ(r) and η(r, t) in the time-varying case.

Suppose that measurements are recorded at C measurement times, which we call

t1, · · · , tC . At each measurement time, measurements are recorded with one or more

sources at wavelength λx and detectors filtered at λm. Figure 5.2 schematically de-

picts the measurement, with a source and an array of detectors arranged around the

domain at each time. Note that the source and detector geometry may be differ-

ent at different time indices. In particular, practical instruments often sequentially

illuminate sources one at a time, while all detectors are used simultaneously at all

times, and all are fixed in space.

Consider a domain discretized into N volume elements, or voxels. Let ri denote

the position of the ith voxel centroid. Assuming that η(r, t) can be expressed using

(5.1), we define the image vector x:

x =
[

xT
(0) xT

(1) · · · xT
(U)

]T

, (5.11)

where

xT
(u) =

[

x(u),1 · · · x(u),N

]T

, (5.12)

xT
(0) =

[

τ(r1) · · · τ(rN)
]T

, (5.13)

and, for 1 ≤ u ≤ U ,

xT
(u) =

[

γu(r1) · · · γu(rN)
]T

, (5.14)

with the superscript T denoting the transpose operation. Note that x is of size

(U + 1) ×N , consisting of U + 1 concatenated parameter vectors of size N . In the

parameterization of (5.6), U = 4.
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5.3 Inverse Problem

5.3.1 Bayesian Framework

Let y denote the measurement vector whose ordering will be precisely specified in

Section 5.3.2. Similarly, let f(x) denote the forward model. As in previous Chapters,

we address the ill-posed problem of estimating x from y in a Bayesian framework.

We impose positivity constraints for x, and also require that η(ri, t) ≥ 0 for all ri and

t. For pY |X(y|x), we once again use an independent Gaussian distribution derived

from a shot noise model [24]. The prior model pX(x) is the Gaussian Markov random

field (GGMRF) model [24, 49]. We use upper case to represent the corresponding

random variables, and we assume that X(0), · · ·X(U) are independent:

pX(x) =
U

∏

u=0

pX(u)
(x(u)) (5.15)

=
U

∏

u=0

1

σN
(u)ζ(ρ(u))

exp



− 1

ρ(u)σ
ρ(u)

(u)

∑

{i,j}∈N

bi−j

∣

∣x(u),i − x(u),j

∣

∣

ρ(u)



 ,(5.16)

where the u subscripts correspond to (5.12), N consists of all pairs of neighboring

(adjacent) nodes in a 26-neighbor system, and bi−j is the weighting coefficient corre-

sponding to the ith and jth nodes. As in the previous Chapters, the coefficients bi−j

are assigned to be inversely proportional to the node separation in a cube-shaped

node layout, where
∑

j bi−j = 1.

We incorporate α into the inverse problem as an unknown instrument parameter,

as we have found that this tends to improve the robustness and speed of convergence

[25]:

x̂ = arg max
x≥0,α≥0

{ pX|Y (x|y, α) }. (5.17)
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We form the log posterior probability l(x) [25]:

l(x) = −P log ||y − f(x)||2Λ

−
U

∑

u=0





1

ρ(u)σ
ρ(u)

(u)

∑

{i,j}∈N

bi−j

∣

∣x(u),i − x(u),j

∣

∣

ρ(u)





(5.18)

and implement its maximization by alternating closed form updates of α̂ with up-

dates of x̂:

α̂ ← 1

P
||y − f(x̂)||2Λ (5.19)

x̂ ← arg update
x≥0

{

log pY |X(y|x, α̂) + log pX(x)
}

, (5.20)

where “←” denotes assignment and “arg update” denotes an iteration of some opti-

mizer. The update in (5.20) is equivalent to reducing a cost function

c(x, α̂) =
1

α̂
||y − f(x)||2Λ

+
U

∑

u=0





1

ρ(u)σ
ρ(u)

(u)

∑

{i,j}∈N

bi−j

∣

∣x(u),i − x(u),j

∣

∣

ρ(u)



 .

(5.21)

5.3.2 Definitions

Define stc,k as the location of the kth source at time tc, and dtc,m′ as the location

of the m′th detector at time tc, and let gx(stc,k, dtc,m′ ; ω) and gm(stc,k, dtc,m′ ; ω) be the

diffusion equation Green’s functions for wavelength λx, and λm, respectively. Also,

let φf (stc,k, dtc,m′ ; ω, tc, x) be the fluorescence observed at observation position dtc,m′

for an excitation source at stc,k, where

φf (stc,k, dtc,m′ ; ω, tc, x) =

∫

η(r, tc)
1−jωτ(r)

1+[ωτ(r)]2
gx(stc,k, r; ω)gm(r, dtc,m′ ; ω)d3r. (5.22)

Suppose that at time tc we have Kc sources and Mc detectors at a modulation

frequency of ω. (Typically, Kc = 1 for most systems which illuminate sources sequen-
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tially.) Let fω,tc(x) be the forward model for the data taken at tc with ejωt-modulated

light. Then,

fω,tc(xf ) =



































φf (stc,1, dtc,1; ω, tc, x)

φf (stc,1, dtc,2; ω, tc, x)
...

φf (stc,1, dtc,Mc
; ω, tc, x)

φf (stc,2, dtc,1; ω, tc, x)
...

φf (stc,Kc
, dtc,Mc

; ω, tc, x)



































. (5.23)

Let Q be the number of modulation frequencies used, and C be the number of

measurement times times. Then:

ftc(x) =
[

fω1,tc(x)T , fω2,tc(x)T · · · fωQ,tc(x)T

]T

(5.24)

f(x) =
[

ft1(x)T , ft2(x)T · · · ftC (x)T

]T

. (5.25)

Similarly, we define the measurement vector y as:

ytc =
[

yT
ω1,tc , y

T
ω2,tc · · · yT

ωQ,tc

]T

(5.26)

y =
[

yT
t1
, yT

t2
· · · yT

tC

]T

(5.27)

corresponding to the same order used in (5.25). Note that g(sk, dm′ , ω) = g(dm′ , sk, ω)

at λx and at λm, due to reciprocity [74].

Using matrices to approximate the integration of (5.22), we write

Gx(ω, tc) =










gx(stc,1, r1; ω) · · · gx(stc,1, rN ; ω)
...

. . .
...

gx(stc,K , r1; ω) · · · gx(stc,K , rN ; ω)











(5.28)

Gm(ω, tc) =










gm(dtc,1, r1; ω) · · · gm(dtc,1, rN ; ω)
...

. . .
...

gm(dtc,M , r1; ω) · · · gm(dtc,M , rN ; ω)











. (5.29)
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We also define Jω,tc as

Jω,tc =

V ·





























Gx
1,1(ω, tc)G

m
1,1(ω, tc) · · · Gx

1,N (ω, tc)G
m
1,N (ω, tc)

...
. . .

...

Gx
1,1(ω, tc)G

m
M,1(ω, tc) · · · Gx

1,N (ω, tc)G
m
M,N(ω, tc)

Gx
2,1(ω, tc)G

m
1,1(ω, tc) · · · Gx

2,N (ω, tc)G
m
1,N (ω, tc)

...
. . .

...

Gx
K,1(ω, tc)G

m
M,1(ω, tc) · · · Gx

K,N (ω, tc)G
m
M,N (ω, tc)





























(5.30)

where V is the volume of a voxel. Let

h(x(∗),i, ω, t) = η(ri, t)
1− jωτ(ri)

1 + [ωτ(ri)]
2 (5.31)

hω,tc(x) =
[

h(x(∗),1, ω, tc) · · · h(x(∗),N , ω, tc)
]T

(5.32)

Then

fω,tc(x) = Jω,tchω,tc(x) (5.33)

if we ignore discretization error. Therefore, (5.21) is equivalent to:

c(x, α̂) =
1

α̂

C
∑

c=1

Q
∑

q=1

∣

∣

∣

∣yωq ,tc − Jωq ,tchωq ,tc(x)
∣

∣

∣

∣

2

Λωq,tc

+
U

∑

u=0

1

ρ(u)σ
ρ(u)

(u)

∑

{i,j}∈N

bi−j

∣

∣x(u),i − x(u),j

∣

∣

ρ(u) . (5.34)

The cost function in (5.34) is used in our image reconstruction.

5.3.3 Parametric Iterative Coordinate Descent

To optimize (5.34), we use an algorithm which we call parametric iterative coor-

dinate descent (PICD). It is based on earlier work [24], and it is modified to allow for

computationally efficient updates of the kinetic model parameters. The voxels are

individually updated in random order by optimizing the cost function with respect
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to the parameters at each voxel position. The updates enforce the constraints x ≥ 0,

and also γ1 ≥ γ2 and γ3 ≥ γ4, which are necessary and sufficient to ensure that each

parameter is nonnegative, and that η(t) ≥ 0 for all time.

In one update scan for x̂, all of the unknowns x(u), u = 0, · · · 4 are updated at all

N voxel positions. Let the scalar x(u),i denote the ith element of x(u). With all other

image elements fixed, the PICD update for the estimate x̂(u),i is given by

x̂(u),i ← arg min
x(u),i≥0

{

1

α̂

C
∑

c=1

Q
∑

q=1

∣

∣

∣

∣

∣

∣yωq ,tc −
[

Jωq ,tc

]

∗(i)
h(x(∗),i, ωq, tc)

∣

∣

∣

∣

∣

∣

2

Λωq ,tc

+
1

ρ(u)σ(u)
ρ(u)

∑

j∈Ni

bi−j

∣

∣x(u),i − x̂(u),j

∣

∣

ρ(u)

}

, (5.35)

where Ni is the set of nodes neighboring node i and ρ(u) and σ(u) are the prior model

parameters for X(u). In (5.35),
[

Jωq ,tc

]

∗(i)
denotes the ith column of Jωq ,tc . Suppose

we have an initial guess x̃, and let zωq ,tc = yωq ,tc−fωq ,tc(x̃). Then, (5.35) is equivalent

to

x̂(u),i ← arg min
x(u),i≥0

{

1

α̂

C
∑

c=1

Q
∑

q=1

||zωq ,tc − [Jωq ,tc ]∗(i)[h(x(∗),i, ωq, tc)

−h(x̃(∗),i, ωq, tc)]||2Λωq,tc

+
1

ρ(u)σ(u)
ρ(u)

∑

j∈Ni

bi−j

∣

∣x(u),i − x̂(u),j

∣

∣

ρ(u)

}

,

= arg min
x(u),i≥0

{

1

α̂

C
∑

c=1

Q
∑

q=1

(

θ1,ωq ,tc [h(x(∗),i, ωq, tc)− h(x̃(∗),i, ωq, tc)]

+
θ2,ωq ,tc

2
[h(x(∗),i, ωq, tc)− h(x̃(∗),i, ωq, tc)]

2

)

+
1

ρ(u)σ(u)
ρ(u)

∑

j∈Ni

bi−j

∣

∣x(u),i − x̃(u),j

∣

∣

ρ

}

, (5.36)
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where

θ1,ωq ,tc = −2Re
{

[Jωq ,tc ]
H
∗iΛωq ,tczωq ,tc

}

(5.37)

θ2,ωr ,tc = 2[Jωq ,tc ]
H
∗iΛωq ,tc [Jωq ,tc ]∗i. (5.38)

In (5.36), θ1,ωq ,tc and θ2,ωq ,tc are not functions of x(u),i, and thus do not need to

be recomputed during the nonlinear, one-dimensional (1-D) line search over x(u),i.

This property enables significant computational savings, as repeated computations

of θ1,ωq ,tc and θ2,ωq ,tc would require numerous complex multiplications. We perform

the minimization over x(u),i by use of a Golden Section search [75].

To enforce the constraints γ1 ≥ γ2, we initially perform minimizations over x(1),i

and over x(2),i and observe whether the inequality constraint is satisfied. If x̂(2),i >

x̂(1),i, we perform a new line search enforcing x(1),i = x(2),i:

x̂(1),i, x̂(2),i ← arg min
x(1),i=x(2),i≥0

{

1

α̂

C
∑

c=1

Q
∑

q=1

(

θ1,ωq ,tc [h(x(∗),i, ωq, tc)− h(x̃(∗),i, ωq, tc)]

+
θ2,ωq ,tc

2
[h(x(∗),i, ωq, tc)− h(x̃(∗),i, ωq, tc)]

2

)

+
1

ρ(1)σ(1)
ρ(1)

∑

j∈Ni

bi−j

∣

∣x(1),i − x̃(1),j

∣

∣

ρ(1)

+
1

ρ(2)σ(2)
ρ(2)

∑

j∈Ni

bi−j

∣

∣x(2),i − x̃(2),j

∣

∣

ρ(2)

}

(5.39)

A similar procedure is used to enforce the γ3 ≥ γ4 condition.

We implement the joint estimation of α and x iteratively. One iteration con-

sists of a closed form update of α̂ using (5.19), followed by a PICD scan to update

x̂. Appendix E provides pseudocode for a more detailed specification of the PICD

algorithm.
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5.4 Simulation

To validate the method, we performed a simulation study. A synthetic time series

of data was generated from a cube-shaped phantom containing two heterogeneities.

The background properties were µax
= µam

= 0.047 cm−1 and Dx = Dm = 0.027

cm. The heterogeneities had the same τ , but different γ1, γ2, and γ3. The param-

eter γ4 was 0, and was not reconstructed. This corresponds to an assumption that

elimination time of fluorophore from the plasma is long compared with the measure-

ment time, which is reasonable in cases where we are most interested in the initial

drug uptake behavior. The parameter values were selected to result in uptake be-

havior on the order of seconds, which may be reasonable for a small animal imaging

experiment [84].

The phantom was 8 cm × 8 cm × 5.7 cm in size, and it was discretized into

33× 33× 17 voxels of size 0.26 cm × 0.26 cm × 0.38 cm. To generate the synthetic

measurements, the diffusion equation was solved numerically using multigrid finite

differences [51] and extrapolated zero-flux boundary conditions with interpolated

source positions as we have described previously [28]. The simulation used a mod-

ulation frequency of 78.4 MHz. Figure 5.3 shows the locations of the sources which

were placed on the bottom face of the cube-faced domain. The same positions were

used as detector positions on the top face of the domain, simulating a parallel-plate

transmission geometry similar to that which has been used for optical mammogra-

phy previously. The sources were illuminated one at a time at different times, in

the order shown in Figure 5.3, and the data consisted of one complete pass through

all of the sources, with 441 measurements in all. Simulated shot noise was added,

giving an average signal/noise ratio of 28 dB for all the data. The true phantom is

shown in Figure 5.4, with cross section images through each of the heterogeneities.

For the reconstructions, the hyperparameter ρ was set to 2, corresponding to the

Gaussian Markov random field (GMRF) model. Although automatic estimation of

the hyperparameters is possible in principle [53], σ was chosen to empirically give
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the best results, as we have done previously [42]. For this problem the best results

were given by σ(0) = 2.75 × 10−10, σ(1) = 0.5, σ(2) = 0.5, and σ(3) = 0.0125 (where

the units of lifetime are seconds and the units of fluorescence are cm−1). The PICD

algorithm was run to 50 iterations, which required approximately 2 hours on a 2

GHz AMD Athlon workstation.

The reconstructed parametric images are shown in Fig. 5.5. The results are

accurate, although shadowing effects are apparent in the images. In particular, γ3,

which is related to a dye’s uptake rate, was reconstructed accurately, enabling a

clear distinction between the two objects. Figure 5.6(a)-(d) shows the true images of

η(r, t) for the two objects, at 4 different times, and Figure 5.6(e) shows plots of η(t)

for a single point near the center of each object. The reconstructed time variation

is also accurate, without shadowing artifacts.

The reconstruction η̂(r, t) was obtained by substituting γ̂1(r), γ̂2(r), and γ̂3(r)

into (5.6). The results shown in Figure 5.7 indicate that all features are nicely cap-

tured. Figure 5.8 shows a convergence plot showing monotone decrease of the cost

function versus iteration number. For comparison, we also reconstructed η(r, t) by

independently reconstructing η(r, ti) at each measurement time ti, using our previ-

ous FODT reconstruction algorithm [42]. For the first simulation, we used the same

441 measurements that was used for the results in Figure 5.9. The reconstructions

all used ρ = 2, with σ = 0.5 for η and σ = 2.75 × 10−10 for τ (which gave the best

empirical results). We performed 21 reconstructions of η(r, ti), using a single source

and 21 detectors for each. The results, shown in Figure 5.9, have poor accuracy. For

the second simulation, we greatly increased the number of data, using all 21 sources

and 21 detectors for each of the reconstructions of η(r, ti) (i.e., 9261 measurements,

with 441 measurements used at each time index). The reconstructions in this sim-

ulation used ρ = 2, with σ = 0.375 for η and σ = 2.75 × 10−10 for τ . The results

are shown in Figure 5.10. With this 21-fold increase in data, the reconstructions

accuracy approaches that of the parametric imaging method.
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5.5 Conclusions

We have presented a method for parametric reconstruction of fluorescent drug

kinetics by use of fluorescence optical diffusion tomography. The simulation showed

that two heterogeneities with different time-dependent behavior could be recon-

structed simultaneously, and clearly distinguished based on uptake-related param-

eters. In principle, receptor-targeted fluorescent probes may have a significantly

faster uptake rate in tumors compared with the surrounding tissue. Hence, the abil-

ity to reconstruct the drug uptake kinetics could facilitate tumor imaging with high

contrast, compared with methods which do not make full use of the drug dynamics.

The presented approach is flexible, and may be applied to more sophisticated

compartmental models. In principle, more complicated kinetic models which incor-

porate additional compartments or nonlinear saturation effects may be used in the

same framework, as they simply increase the complexity of the single-site updates. In

addition, the PICD algorithm may be incorporated into a multigrid framework [35]

to improve convergence properties for a wide variety of images.
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Fig. 5.1. Compartmental model describing the exchange of contrast
agent between the tissue and the plasma.

Fig. 5.2. Measurement approach for reconstructing η(t) and τ . Note
that the measurement geometry may differ at each time.

Fig. 5.3. Source and detector locations used in the simulations. The
sources were on the bottom face of the cube-shaped phantom, while
the detectors were on the top. The sources were illuminated in the
order shown, with one source used for each time frame.
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Fig. 5.4. True parameter images describing the time-varying fluores-
cence in simulation study. Cross sections are shown through the top
heterogeneity and the bottom heterogeneity. Note the parameter γ3,
which indicates different uptake rates in the two heterogeneities. In
(e), an isosurface of the γ1 reconstruction is shown, contoured at 1/3
the maximum value.
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Fig. 5.5. Reconstructed parameter images describing the time-
varying fluorescence in the simulation study. In (e), an isosurface
of the γ1 reconstruction is shown, contoured at 1/3 the maximum
value.
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Fig. 5.6. (a)-(d) True fluorescence versus time. (e) η(t), for a sample
point within each heterogeneity.
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Fig. 5.7. (a)-(d) Fluorescence versus time, reconstructed by para-
metric ICD method. (e) η̂(t), for a sample point within each hetero-
geneity.
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Fig. 5.8. Convergence for PICD algorithm in simulation study.
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Fig. 5.9. (a)-(d) Fluorescence versus time, reconstructed indepen-
dently at each time frame, using the same data as the parametric
reconstructions. (e) η̂(t), for a sample point within each heterogene-
ity.



88

Bottom Heterogeneity Top Heterogeneity

z = 2.1 cm z = 4.0 cm

−4 −2 0 2 4
−4

−2

0

2

4

x (cm)
y 

(c
m

)

0.2

0.4

0.6

0.8

1

1.2

−4 −2 0 2 4
−4

−2

0

2

4

x (cm)

y 
(c

m
)

0

0.2

0.4

0.6

0.8

(a) t = 0.14 s

−4 −2 0 2 4
−4

−2

0

2

4

x (cm)

y 
(c

m
)

0.2

0.4

0.6

0.8

1

1.2

−4 −2 0 2 4
−4

−2

0

2

4

x (cm)

y 
(c

m
)

0

0.2

0.4

0.6

0.8

(b) t = 1.42 s

−4 −2 0 2 4
−4

−2

0

2

4

x (cm)

y 
(c

m
)

0.2

0.4

0.6

0.8

1

1.2

−4 −2 0 2 4
−4

−2

0

2

4

x (cm)

y 
(c

m
)

0

0.2

0.4

0.6

0.8

(c) t = 2.70 s

−4 −2 0 2 4
−4

−2

0

2

4

x (cm)

y 
(c

m
)

0.2

0.4

0.6

0.8

1

1.2

−4 −2 0 2 4
−4

−2

0

2

4

x (cm)

y 
(c

m
)

0

0.2

0.4

0.6

0.8

(d) t = 3.98 s

0 2 4 6
0

0.2

0.4

0.6

0.8

1

η(
t)

 (
cm

−
1 )

time (sec)

reconstructed
fit

0 2 4 6
0

0.2

0.4

0.6

0.8

1

η(
t)

 (
cm

−
1 )

time (sec)

reconstructed
fit

(e) η̂(t)

Fig. 5.10. (a)-(d) Fluorescence versus time, reconstructed indepen-
dently at each time frame, using a 21-fold increase in data over those
used in the parametric reconstructions. (e) η̂(t), for a sample point
within each heterogeneity.
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6. DETECTION AND LOCALIZATION OF A

FLUORESCING MOUSE TUMOR IN A TURBID

MEDIUM

6.1 Background

Currently, the only assured cure for the vast majority of cancers involves the

complete resection of all malignant lesions. Achievement of this objective, however,

is often limited by the inability of the surgeon to identify and localize all cancerous

tissues. In some cases, neoplastic loci are difficult to distinguish from adjacent normal

tissue. In other situations, they are not detected by the surgeon due to their small

size or obscured location. Even after removal of visible tumor masses during surgical

debulking, microscopic tumors not visible to the naked eye can often be the source

of recurrent disease [100].

Recent advances in biomedical optical imaging based on fluorescent dyes [101] of-

fer great promise in diagnosing malignant tissue, monitoring tumor therapy progress,

and guiding surgical intervention for tumor removal. Optical imaging is safe and rel-

atively inexpensive compared to other modalities, and optical measurement probes

have the potential to be small, maneuverable, and unobtrusive. These properties may

be particularly attractive in an intraoperative environment where real-time imaging

may be required over a period of hours.

Previously, the problem of localizing fluorophores in real animal tissue, tissue-

simulating phantoms, or computational simulations has been considered in a variety

of studies. Chen et al. [102] have used a near-infrared (near-IR) measurement system

with dual interfering sources to determine the 2-D location of a fluorescing tumor

in a mouse subject. The mouse was injected with a contrast agent that selectively
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targeted the tumor due to its increased metabolic activity. Hull et al. [103] have

accurately determined the depth of a small fluorescent sphere embedded within a

turbid medium by use of fluorescence measurements on the surface. The sample

was illuminated from the side with an expanded laser beam, and the fluorescence

was collected from the top surface with a linear array of detector fibers. Pfister and

Scholz [104] have used a multiple signal classification algorithm to localize fluorescent

spots under tissuelike scatter in a computational simulation. Fluorescence optical

diffusion tomography (FODT), in which full volumetric images of fluorescence are

reconstructed from measurements on the boundary, has also been studied [17,18,21,

22,41,42,105].

Recently, several advancements have been made in the development of fluorescent

contrast agents which specifically target cancer cells. Receptors for the vitamin

folic acid are expressed at high levels in a number of tumor types including ovarian

[106–108], breast [108], brain [109, 110], kidney [111], lung [108, 112], uterine [108],

and others. In non-malignant tissues, expression of folate receptors (FR) is found

only in a few tissue types [113–120]. Because of the rare occurrence of folate receptors

in normal tissues and their high level of expression in tumors, FRs are a strong

candidate for obtaining tumor targeting with little uptake into normal tissues. FR

targeting has previously been used for radioimaging, MRI, and optical imaging [121–

126]. Optical imaging agents targeted with folate have been developed using near-

infrared dyes as well as visible dyes [125,126], resulting in high tumor-to-background

contrast.

Here we present a method for detecting and localizing a fluorescing tumor ob-

scured by a turbid medium and validate the method with an experimental study. For

this study, we developed a new targeted folate-indocyanine dye which was designed

to operate with excitation at 785 nm, a common wavelength for inexpensive diode

lasers. Tissue has relatively low absorption in this near-infrared range [127, 128].

The dye was injected into a mouse and the mouse tumor was placed into a tissue-

simulating Intralipid-agarose gel phantom. We used a fluorescence microscope to
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perform a 1-D measurement scan, and we estimated the tumor’s lateral and depth

coordinates. This measurement is related to that of Hull et al. [103], but it used a

reflection measurement geometry which is more applicable to clinical applications.

We analyze the tumor detection and localization problems in a statistical frame-

work. For the detection problem, we use a binary hypothesis testing approach,

and we provide expressions for the tumor’s detection probability. We also compute

the Cramèr-Rao lower bound for the localization error. These bounds allow one to

predict the performance and solvability of a detection and localization problem in

advance, before making measurements. Previously, the Cramèr-Rao bound has been

computed in other inverse scattering applications to bound localization error [129]

and to compute performance limits in parametric, shape-based imaging [130,131]. In

addition, hypothesis testing has been explored for linearized inverse scattering prob-

lems [132]. We apply these to the problem of detecting and localizing a fluorescent

tumor.

6.2 Models

6.2.1 Forward Model

Consider a fluorescence measurement scan, where a single source/detector posi-

tion is scanned over the top of a tissue surface to probe for a fluorescing submerged

tumor. Figure 6.1(a) illustrates this measurement, with photons migrating from the

source position to the tumor, and emitted photons migrating back to the same posi-

tion. The inverse problem is to determine the tumor’s position from the fluorescence

measurements. We use a forward model based on (2.1) which gives the expected

measurements that would result from a tumor at a known position.

For simplicity, we impose a few restrictions, although most of these are straight-

forward to remove. We consider only the ω = 0 case, where unmodulated light is

used, and we assume that µax
= µam

and Dx = Dm, so that the diffusion equation

Green’s functions are the same for λx and λm. We also model the tumor as a point
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fluorophore, and we examine the validity of this approximation in Section 6.2.2. Fi-

nally, we model the tissue as a semi-infinite region with homogeneous µa and D, so

that a closed-form analytical solution to the diffusion equation may be employed.

This model allows for rapid solution to the localization inverse problem.

Let y denote the measurement vector, and let f̃(r) denote the fluorescence data

vector expected from the diffusion model due to a point fluorophore at location r .

We assume a source wavelength of λx and a detector wavelength of λm. Let the mea-

surement source positions be identified as rsi
and let the tumor centroid position be

denoted by r. In addition, let g(rsi
, r) denote the domain’s Green’s function obtained

as the solution to (2.1), with the source at rsi
and the observation at r. We also

denote the recorded measurement at rsi
as yi. Using the coupled diffusion equations

of (3.1) and (3.2) and the approximations noted above, the fluorescence recorded

at rsi
from a point fluorophore located at r is given by f̃i(r) = g(rsi

, r)g(r, rsi
)w0,

where the first Green’s function represents the excitation light reaching the tumor,

the second represents the light emitted by the tumor back to the measurement point,

and w0 is a constant which incorporates the tumor’s ηµf and the efficiency of light

coupling into the medium. Using the reciprocity theorem [74], the Green’s function’s

source and observation positions can be interchanged, and f̃i(r) = [g(rsi
, r)]2w0.

Suppose the air-tissue interface is located at z = 0, and that the region z > 0

consists of tissue. We use the extrapolated zero-flux boundary condition for the

diffusion equation, where the extrapolation distance ls = 5.03D is chosen to model

a scattering domain interface where the scatterers are assumed to be in water with

refractive index 1.33 [47]. We apply the method of images to enforce the φ(z =

−ls) = 0 boundary condition, as shown in Figure 6.1(b). The excitation source is

modeled as an effective isotropic point source located one transport length inside the

medium at zsi
= 3D [47]. We assume a semi-infinite, homogeneous medium, with a
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point fluorophore at r = (x, y, z), and the measurement position at rsi
= (xsi

, y, zsi
).

Define

ra =
√

(x− xsi
)2 + (z − zsi

)2 (6.1)

rb =
√

(x− xsi
)2 + (z + zsi

+ 2ls)2 (6.2)

The forward model is given by [47]

f̃i(r) =

[

exp(−kra)

ra

− exp(−krb)

rb

]2

w (6.3)

= fi(r)w, (6.4)

where we have bundled multiplicative constants from the closed-form Green’s func-

tion and w0 into a new parameter w, k =
√

µa/D and the definition of fi is implied.

Note that we consider a 2-D geometry, where the laser excitation and the tumor are

located at the same y position, so no y terms appear in (6.3).

6.2.2 Validity of Point Tumor Source Model

In Section 6.2.1, we assumed that a fluorescing tumor can be approximated as a

single point. To investigate the validity of this assumption for scan measurements

similar to the one in our experiment, we performed a numerical simulation study

with a fluorophore dispersed throughout a spherical domain of varying size and depth

[44]. The 3 cm × 3 cm × 3 cm tissue phantom of Figure 6.2(a) with homogeneous

background µa = 0.03 cm−1 and D = 0.033 cm was considered. Two different-

sized tumors were considered: a 2 mm fluorescent sphere and a 1 cm sphere. Each

had ηµaf
= 0.02 cm−1, µa = 0.030 cm−1 and the same scattering properties as the

background. A 1-D scan (using unmodulated light) across the top of the surface over

the tumor was simulated, assuming a conceptual instrument containing a source and

detector in the same position. The region was discretized into 65 × 65 × 65 voxels,

and 21 measurements were simulated using multigrid finite differences to solve the

diffusion equation. Figure 6.2(b) shows the simulated measurements of fluorescence
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for the small tumor, normalized to the maximum, at four different depths. Figure

6.2(c) shows the simulated measurements of fluorescence for the large tumor at three

different depths. Figure 6.2(d) superimposes the two results. Note in Figure 6.2(d)

that the measured intensity profile is relatively invariant to the tumor’s size, giving

very similar results as a function of tumor depth for the two different tumor sizes

considered. This result suggests that a simple point tumor model is sufficiently

accurate for localizing a real tumor in a similar 1-D scanning experiment.

6.2.3 Detector Noise Model

For the detector noise, we assume the same shot noise model presented previ-

ously by Ye et al. [24] Let y denote the vector of measurements, and n denote the

corresponding detector noise vector. We assume that n is independent, zero-mean,

and Gaussian, with covariance given by Υ, where

[Υ]ii = α|yi| (6.5)

and α is a scalar parameter of the measurement system. Previously, Ye et al. [25]

have presented a method for estimating α from the measured data while solving the

ODT inverse problem. In Section 6.5, we apply this estimation method to obtain

the value of α which we use to compute statistical performance bounds related to

our experimental study.

6.3 Detection

Here, we describe a procedure for detecting the presence of a tumor, and we

compute the probability of detecting a tumor for a specified false alarm rate. As

we demonstrate in Section 6.5.4, the probability of detection may be plotted as a

function of tumor position for a particular measurement system, allowing one to

characterize the instrument’s diagnostic capabilities. The detection problem may be

viewed as a binary hypothesis testing problem [133]. Let hypothesis H0 correspond
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to the absence of a tumor, and let the composite hypothesis H1,θ correspond to the

presence of a tumor parameterized by the vector θ = [ x z w ]T , where x and z

give the location and w incorporates all scalar factors in the measurement. Let y

denote the measurement vector of length P , and let n be the independent Gaussian

noise vector with covariance Υ introduced in Section 6.2.3. The densities for y under

both hypotheses are given by

p0(y) =
1

√

(2π)P |Υ|
exp

(

−1

2
||y||2Υ−1

)

(6.6)

p1,θ(y) =
1

√

(2π)P |Υ|
exp

(

−1

2
||y − wf(r)||2Υ−1

)

(6.7)

where r = [ x z ]T , and ||u||2V = uHV u.

Suppose for the moment that θ is known, and let PF be the false alarm rate that

one wishes to achieve. The Neyman-Pearson lemma [133] indicates that a likelihood

ratio test (LRT) produces the highest probability of detection for a specified false

alarm rate of PF . We form the log likelihood ratio L(y, θ) = ln
p1,θ(y)

p0(y)
, compare it

to a threshold k̃PF
(θ) (which is determined by PF ), and declare a tumor present if

L(y, θ) > k̃PF
(θ).

By writing out the ratio of (6.7) and (6.6) and taking the logarithm, we obtain

L(y, θ) = hT (θ)y − c(θ) (6.8)

where hT (θ) = wfT (r)Υ−1 and c(θ) = 1
2
w2fT (r)Υ−1f(r). Hence, the LRT is equiv-

alent to comparing q = hT (θ)y to a threshold, which we call kPF
(θ). Note that the

LRT is similar to matched filtering, as we evaluate a cross-correlation between the

data y and the forward model f(r), and compare it to a threshold.
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The threshold kPF
(θ) may be determined by rewriting the LRT in a more revealing

form, using q rather than y. The 1-D Gaussian distributions p0(q) and p1,θ(q) are

obtained by computing the required moments:

E0[q] = hT (θ)E0[y] (6.9)

= 0 (6.10)

E1,θ[q] = E1,θ[h
T (θ)y]

= w2fT (θ)Υ−1f(θ) (6.11)

σ2
q = E0[h

T (θ)nnT h(θ)] (6.12)

= hT (θ)Υh(θ) (6.13)

By definition, the false alarm rate PF is given by

PF =

∫ ∞

kPF

p0(q)dq = 1− erf∗

(

kPF

σq

)

, (6.14)

where we define

erf∗(r) =

∫ r

−∞

1√
2π

exp

(

−1

2
t2

)

dt. (6.15)

Hence, the threshold kPF
which allows us to achieve a false alarm rate PF is kPF

=

σqerf
−1
∗ (1− PF ).

To assess the achievable performance of the tumor detection approach, we com-

pute the probability of a successful tumor detection. The receiver operating charac-

teristic (ROC) [133], is defined as the probability of detection PD(PF ) specified as

a function of the false alarm rate PF . Using the threshold kPF
computed above, we

obtain

PD =

∫ ∞

kPF

p1,θ(q)dq (6.16)

= 1− erf∗

(

kPF
− q̄

σq

)

(6.17)

= 1− erf∗

(

erf−1
∗ (1− PF )− q̄

σq

)

, (6.18)



97

where q̄ = E1,θ[q]. From (6.18), the ROC is specified for every value of θ (thus, for

any possible tumor location).

In practice, the tumor position and the true value of w are not known. Be-

cause the LRT assumes known θ, we must use a modification of the LRT called

the generalized likelihood ratio test (GLRT) [133]. In the GLRT, we first suppose

that the tumor is present, and we compute the maximum likelihood (ML) estimate

θ̂ = arg maxθ p1,θ(y). We then perform the LRT, using θ̂ in place of θ. Due to the

fact that the GLRT must be used, the ROC specified in (6.18) cannot be achieved

in practice, and must be considered an upper bound for the true probability of de-

tection [133]. Computing the ML estimate θ̂ is the problem of localization, which is

addressed in the following section.

6.4 Localization

If a tumor is present, we wish to localize it by estimating its x and z coordinates.

In the process, we must also estimate w as a nuisance parameter. We use ML

estimation to compute

θ̂ = arg max
θ

p1,θ(y). (6.19)

By taking the logarithm of p1,θ(y), the above optimization is equivalent to minimizing

an objective function

c(r) = min
w
||y − wf(r)||2Υ−1 . (6.20)

Setting the derivative of ||y − wf(r)||2Υ−1 with respect to w to zero results in the

following equivalent representation of c(r):

w̃(r) =
fT (r)Υ−1y

yT Υ−1y
(6.21)

c(r) = ||y − w̃(r)f(r)||2Υ−1 . (6.22)
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The tumor position r̂ is then estimated by determining the position r which mini-

mizes c(r) in (6.22):

r̂ = arg min
r

c(r) (6.23)

ŵ = w̃(r̂) (6.24)

With the use of closed-form Green’s functions in the computation of f , this mini-

mization can be accomplished very quickly, even by evaluating c(r) over an entire

region of interest.

6.4.1 Cramèr-Rao Bound

To assess the precision of our localization procedure for tumors of various depths,

we compute statistical bounds on the estimator variance using a model of the mea-

surement system. Specifically, we compute the Cramèr-Rao lower bound [134] for

the estimator covariance, to determine a measurement’s best-case performance lim-

its. For simplicity, we neglect bias in our computations of the Cramèr-Rao bound, as

has been done previously [129]. Let C = E[(θ̂− θ)(θ̂ − θ)T ] and let J be the Fisher

information matrix [134] defined as Jmn = E
[

− ∂2

∂θm∂θn
ln p1,θ(y)

]

. The Cramèr-Rao

bound requires that C ≥ J−1 (i.e., C − J−1 is nonnegative definite). It can be

shown [134] that

J = f̃ ′(θ)T Υ−1f̃ ′(θ) (6.25)

where

f̃ ′(θ) =
[

∂f̃(r)
∂x

∂f̃(r)
∂z

∂f̃(r)
∂w

]T

(6.26)

=
[

w ∂f(r)
∂x

w ∂f(r)
∂z

f(r)
]T

(6.27)

In Appendix F, we present expressions for the required partial derivatives.
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6.5 Experiment

6.5.1 Folate-indocyanine dye

A new folate-indocyanine dye suitable for use with 785 nm diode lasers was

synthesized. The structural formula is shown in Figure 6.3. The folate-indocyanine

dye synthesis procedure has been presented in detail elsewhere [45].

6.5.2 Animal Studies

To demonstrate the efficacy of the folate-indocyanine, we acquired images of a

fluorescing tumor on a mouse subject. All animal procedures were carried out with

approval from the Purdue Animal Care and Use Committee. Nu/nu mice were

purchased from Harlan (Indianapolis, IN). The mice were at least eight weeks old

when purchased and were immediately placed on folate-deficient chow (Harlan, In-

dianapolis, IN), and this occurred at least two weeks prior to imaging. Tumors were

induced into the mice by injection of approximately 500000 L1210 cells subcuta-

neously. Imaging was performed approximately two weeks after tumor induction or

when tumors reached approximately 1 cm in diameter.

The folate-indocyanine conjugate was injected into the femoral vein of the mice by

making an incision in the leg to expose the vein. 100 µL of a PBS solution containing

20 µg of the folate-dye conjugate was then injected and images were collected two

hours later. The wound was closed using Vetbond (The Butler Co., Indianapolis,

IN), and the mice were euthanized at the specified times prior to imaging.

Figure 6.4 shows images of a nu/nu mouse with an L1210 tumor. The mouse

was illuminated under an expanded laser diode beam at 785 nm, and images were

acquired using a Roper PI-MAX intensified CCD camera. For the fluorescence mea-

surements, a bandpass filter in the 820 nm range with 10 nm FWHM was placed

over the camera. Figure 6.4(b) shows an image at the 785 nm laser excitation, and

Figure 6.4(c) shows the fluorescence emitted from the mouse. From these images,



100

it is clear that the dye provides high contrast between tumors and the surrounding

tissue.

6.5.3 Tumor Localization Measurement

Figure 6.5 schematically depicts an experiment to localize a fluorescent mouse

tumor submerged under a lipid suspension. A Nu/nu mouse was induced to grow

a lung tumor, injected intravenously with folate-indocyanine, and euthanized as

described in Section 6.5.2. The tumor was excised and cut into two fragments.

Each of the two tumor fragments was glued (using Vetbond) to the bottom of a

cylindrical, 8.6 cm diameter, 1.8 cm deep plastic Petri dish. Each tumor fragment

was approximately 5 mm in diameter and no thicker than 2 mm. The Petri dishes

were then filled with a solid gel phantom, prepared from a suspension of 1% Intralipid

and agarose [137]. In the 800 nm light wavelength range, 1% Intralipid has µa = 0.030

cm−1 and D = 0.033 cm [57, 58], similar to the properties of human tissue. One of

the Petri dishes was filled to a height of 0.79 cm, while the other was filled to a height

of 1.20 cm. Assuming that the tumor centers were approximately 0.1 cm from the

bottom of the Petri dishes, the true tumor depths were taken to be 0.69 cm and 1.1

cm.

To perform the fluorescence scan measurement, a previously described near-IR

Raman imaging microscope (NIRIM) system [138, 139] was used. This system was

originally designed for fast Raman spectral imaging using a 2-D square fiber bundle, a

spectrograph, and a CCD detector. Rather than collecting a 2-D spatial grid of spec-

tral data, we used the system to collect only a single fluorescence spectrum for each

sample position. A diode laser (SDL-8630) operating at 785 nm was fiber-coupled

into a microscope, illuminating the sample from above with about 100 mW of power.

The same microscope simultaneously collected the fluorescence migrating from the

obscured tumor to the top of the sample. The spectra were recorded by use of a

spectrograph and a CCD detector (Princeton Instruments LN/CCD-1024 EHRB).
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The sample was moved in one dimension with a motorized translation stage to 15

different positions, at a spacing of 0.2 cm, with the middle measurement position

directly above the tumor. To minimize noise in our measurements, integration times

of 20 seconds were used (although the emission could be clearly observed for shorter

integration times). For each sample, a background spectrum was recorded over the

Intralipid far from the tumor position. This measurement was used to subtract any

effects due to dark current or background signal from the tumor fluorescence signal.

For each recorded spectrum, an intensity measurement was formed by integrating

over wavelength from 800 nm to 840 nm. The resulting intensity measurement scans

for both samples, with each scan normalized to arbitrary units, are shown in Figure

6.6. The localization procedure described in (6.24) was used to estimate the tumor’s

location, and the resulting best-fit diffusion model computations are plotted in Figure

6.6 for comparison purposes. The surface plots of Figure 6.7 show c(r) in the vertical

plane of points directly underneath the measurement scan computed for each of the

two phantoms. The tumor coordinates were estimated to be at (x, z) = (0.00, 0.68)

cm and (x, z) = (0.02, 0.95) cm, compared with the corresponding true coordinates

(x, z) = (0.00, 0.69) cm and (x, z) = (0.00, 1.1) cm.

To compute the results of Figure 6.7, we used [Υ]ii = |yi|, rather than (6.5), due

to the fact that α was unknown. This results in an unknown scalar factor for the

cost function c(r), which has no effect on the optimization in (6.24). We address the

question of determining α in Section 6.5.4.

6.5.4 Detection and localization performance bounds

To assess the diagnostic capabilities of the detection and localization methods, we

considered the question of how deeply a realistic tumor could be embedded but still

detected with high probability and localized with good precision. Due to the geo-

metric constraints imposed by the microscope, we were unable to measure Intralipid-

agarose samples substantially thicker than the ones described in Section 6.5.3. Hence,



102

we computed theoretical performance bounds using the methods of Sections 6.3 and

6.4.1. In order to develop a model for the measurement system, it was necessary to

determine the noise scaling parameter α. From the data and fit depicted in Figure

6.6(b), we computed the ML estimate of α as [25]

α̂ =
1

P
||y − ŵf(r̂)||2

Υ̃−1 , (6.28)

where [Υ̃]ii = |yi| and P is the number of measurements.

Using the model of the measurement system, we obtained bounds on the tumor

detection probability and on the tumor localization error as described in Sections

6.3 and 6.4.1. To compute the probability of detection and the Cramèr-Rao bounds

as a function of tumor position r for a realistic tumor, we used Υ = α̂ŵdiag|f(r)|,
where ŵ was the estimate obtained in Section 6.5.3 using the data of Figure 6.6.

This shot noise model is similar to the one described in (6.5), but with yi replaced

by its expected value ŵfi(r). Figure 6.8(a) shows the probability of tumor detection

as a function of z, for a false alarm rate of 0.03, computed using (6.18). This plot is

an idealization due to the model simplifications described in Section 6.2.1 and due

to the fact that the ROC is based on the LRT, rather than the GLRT. Nevertheless,

it provides useful best-case information and shows that it is difficult to detect a

tumor deeper than approximately 3.5 cm (the cutoff in Figure 6.8(a) ) using this

measurement device. Figure 6.8(b) and 6.8(c) shows lower bounds on the standard

deviations σX and σZ of the position estimates of x and z, respectively, computed

using (6.25). The assumption of a point source representation is considered to be

valid for all positions in this example.

6.6 Conclusion

We have presented an approach for detecting and localizing an obscured, fluo-

rescing tumor. We considered a 1-D measurement scan, with the excitation and

collection at the same location above the sample. The method could be extended

to 2-D planar measurement geometries for 3-D localization. In principle, a similar
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geometry could be incorporated into a scanning fluorescence probe which is waved

over a tissue region, or a small probe placed on a tissue surface. Such measure-

ments could facilitate intraoperative detection and localization of tumors, allowing

a surgeon to remove all tumors while minimizing damage to surrounding tissue.

The measurement system used to perform the experiment was not originally de-

signed for this application, and several improvements could be made in subsequent

work. The NIRIM system used in the experiment collects emitted light from an area

which is on the order of 1 µm in diameter [138]. A larger-aperture detection sys-

tem could be used to reduce the exposure times. Using time- or frequency-domain

measurements, rather than only CW measurements, would potentially provide ad-

ditional detection and localization criteria which are useful. In addition, all of the

methods and analyses presented here can be extended to more sophisticated, multiple

source/detector geometries which are typically used in FODT. Another possibility is

that the dual-interfering source approach [102, 140] studied for 2-D tumor localiza-

tion could be combined with our approach for estimating tumor depth, potentially

resulting in a more accurate 3-D localization.

The fast detection and localization approach presented here could serve as a

real-time complement to more computationally demanding, but more quantitative,

FODT reconstruction algorithms. In addition, detection and localization of a fluo-

rescing tumor might provide useful prior knowledge that can be incorporated into

Bayesian FODT reconstruction approaches [42]. The ROC and the Cramèr-Rao

bound results presented here could also be used to optimize an FODT measure-

ment system geometry for the tasks of detection and localization. These possibil-

ities, combined with the high tumor-to-background contrast offered by the folate-

indocyanine imaging agent, could improve the performance in fluorescence-enhanced

optical mammography [12] or other diagnostic imaging applications.
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Fig. 6.1. (a) Illustration of fluorescence scan measurement, with
photons migrating within the scattering tissue. (b) Semi-infinite ge-
ometry used to derive forward model. The method of images is used
to insure that φ = 0 for the boundary at a distance of ls outside of
the physical air-tissue interface.
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Fig. 6.2. Simulated measurement of tumor of diameter d at depth
zdepth, with all datasets normalized to the maximum value. (a) Ge-
ometry. (b) Plot of simulated normalized intensity profile for a small
tumor at different depths. (c) Plot of the intensity profile for a
large tumor at different depths. (d) Superimposed plots from two
different-sized tumors, showing the relative invariance to size.
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Fig. 6.4. A nu/nu mouse injected with folate-indocyanine, which
selectively targets folate receptors on tumors.
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(a) (b)

Fig. 6.5. Schematic depictions of tumor localization experiment.
(a) A tumor-bearing mouse is injected with folate-indocyanine,
and excised tumor fragments are bonded to Petri dishes and cov-
ered with Intralipid-agarose. (b) The sample is scanned in a
near-IR fluorescence microscope and measurements are recorded.
HNF=Holographic Notch Filter
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Fig. 6.6. Normalized mouse tumor fluorescence intensity scans for
two different Intralipid depths: (a) 0.69 cm deep (b) 1.1 cm deep.
The dashed lines show the best fit to a diffusion model with a point
fluorophore.
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(a) (b)

Fig. 6.7. Cost function versus tumor position, for a mouse tumor
obscured under (a) 0.69 cm and (b) 1.1 cm of Intralipid. The ×
symbol marks the true tumor location, while the + symbol marks
the estimated location.
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Fig. 6.8. Theoretical performance bounds for tumor measurement as
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alarm rate of 0.03. (b) Cramèr-Rao bound for σX . (c) Cramèr-Rao
bound for σZ .
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7. OPTIMAL TIME-SEQUENTIAL MEASUREMENTS IN

DYNAMIC OPTICAL DIFFUSION TOMOGRAPHY

7.1 Background

In the application of functional brain imaging, one of the principle advantages of

ODT over other modalities such as fMRI is the potential for high temporal resolution

[141]. Recently, researchers [86] have demonstrated the potential for reconstructing

absorption changes in the brain due to hemodynamics, an indirect measure of brain

activity. In addition, some recent work [142] has suggested that neuronal activity (a

direct indication of brain activity) can produce observable changes in the scattering

coefficient. However, these changes often take place on the order of seconds or

fractions of a second, which is comparable to the acquisition time of most ODT

instruments. As a result, new approaches must be developed for reconstructing an

accurate time series of images.

Recently, Kaipio et al. [87,88] have presented a state-estimation approach for the

dynamic ODT problem using Kalman filtering and Kalman smoothing techniques.

While other dynamic models for inverse problems have been investigated and com-

pared [89–91], we consider a state-space model similar to the one used by Kaipio et

al.. Let the unknown µa and D image at time index i be denoted by the state vector

Xi, and let the measurements at that time be denoted by Yi. In addition, assume

that Xi is a Gaussian, first-order Markov process, with a transition rule given by

Xi+1 = Xi + ∆Xi, (7.1)

where ∆Xi is a Gaussian process which is uncorrelated from one time index to the

next. Ignoring nonlinearities, assume that the measurements are described by

Yi = JiXi + Vi (7.2)
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where Vi is independent Gaussian noise and Ji is the linear forward operator at time

i. The Kalman filter is a recursive procedure for computing the estimate

x̂i = E[Xi|Yi, Yi−1, . . . ]. (7.3)

Using the recursive update equations, the estimate x̂i+1 is computed from Yi+1, x̂i,

and the covariance matrix

Ci|i = E[(Xi − x̂i)(Xi − x̂i)
H |Yi, Yi−1, . . . ]. (7.4)

One potential difficulty with the Kalman filter approach is the requirement for com-

puting Ci|i, a non-sparse N × N matrix (where N is the size of Xi). For practical,

3-D imaging, storing and updating this entire matrix may be difficult. One way to

circumvent this potential difficulty is to simultaneously optimize over all xi, rather

than sequentially estimating xi from estimates at previous times. This method can

be applied to both D and µa, and apply prior models such as the GMRF which are

more sophisticated than those used to date. We also investigate a new, computation-

ally tractable method for computing the optimal order in which the measurements

should be made.

7.2 Bayesian Dynamic ODT

Suppose that measurements have been taken at time indices i = 1, 2, . . . T , and

let

X =
[

XT
1 XT

2 · · · XT
T

]T

Y =
[

Y T
1 Y T

2 · · · Y T
T

]T

One way to consider the dynamic imaging problem is to estimate each xi sequentially,

leaving the previous estimates x̂i−1, x̂i−2, · · · fixed:

x̂i = arg max
xi≥0
{ p(xi|yi, yi−1, . . . ) } , (7.5)
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for each i. In effect, the Kalman filtering approach used by Kaipio et al. [87] is

equivalent to (7.5). One difficulty with the sequential estimation approach is the ap-

pearance of the N×N covariance matrices for p(xi|yi−1, yi−2, . . . ) (or their inverses).

To demonstrate, we rewrite (7.5), with T = 2, in a more revealing form to obtain:

x̂2 = arg max
x2≥0
{p(x2|y2, y1)} (7.6)

= arg max
x2≥0
{p(x2, y2, y1)} (7.7)

= arg max
x2≥0
{p(y2|x2, y1)p(x2, y1)} (7.8)

= arg max
x2≥0
{p(y2|x2)p(x2|y1)} (7.9)

where we have used the fact that p(y2|x2, y1) = p(y2|x2), and thrown out functions

of only y which do not affect the optimization. (We omit the subscript from the

overloaded p(·) expression, for notational simplicity.) Note that the appearance of

the p(x2|y1) term requires us to consider its N×N covariance matrix (or its inverse).

In general, this term may not have a computationally convenient form.

Another method of performing dynamic ODT is to jointly optimization over all

of x, using all of y. In other words, one may compute

x̂ = arg max
x≥0
{ p(x|y) } , (7.10)

For the T = 2 case, if we do the joint optimization over x1 and x2, we obtain

x̂1, x̂2 = arg max
x1,x2≥0

{p(x2, x1|y2, y1)} (7.11)

= arg max
x1,x2≥0

{p(y2, x2, x1, y1)} (7.12)

= arg max
x1,x2≥0

{p(y2|x2, x1, y1)p(x2, x1, y1)} (7.13)

= arg max
x1,x2≥0

{p(y2|x2)p(x2, x1, y1)} (7.14)

= arg max
x1,x2≥0

{p(y2|x2)p(x2|x1, y1)p(x1, y1)} (7.15)

= arg max
x1,x2≥0

{p(y2|x2)p(x2|x1)p(y1|x1)p(x1)} . (7.16)

With appropriate models for p(x2|x1) and p(x1) that have convenient forms (e.g., the

GMRF), we do not have to deal explicitly with the problematic covariance matrices,
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due to the lack of any terms of the form p(xi|yi−1, yi−2, . . . ). The joint optimization

can also be expected to yield better estimates than the sequential estimation ap-

proach. Due to the potentially large number of unknowns in (7.10), computational

efficiency and robust convergence are essential. For very large T , we can reduce

storage requirements by breaking up the entire time series into overlapping blocks

of tractable size, and optimizing over each block separately.

7.3 Optimal Measurement Sequence

In their initial treatise, Kaipio et al. [87] observed that the order in which the

dynamic ODT measurements were performed greatly affected the reconstruction

quality. Intuitively, if measurements at consecutive time indices are localized to

the same general area, then they are not very informative. Instead, consecutive

measurements should sample different regions within the domain in order to get

better spatial coverage. This observation is related to the concept of time-sequential

sampling presented by Allebach [143]. Willis and Bresler [144] have studied the

optimal scan for projection tomography applications. Here we examine the optimal

order in which measurements are made in optical diffusion tomography. We optimize

the mutual information I(X; Y ) over the measurement order. The order of the

measurements is changed by permuting the indices i for the Ji terms in (7.2). In the

static FODT problem, we have observed previously [42] that I(X; Y ) is tractable

to compute because it requires only determinants of P × P matrices (where P is

the number of measurements, typically much smaller than the number of voxels N).

Our preliminary findings indicate that similar computational tractability exists for

the dynamic problem as well.

Let I(X; Y ) be the mutual information between X and Y . Then

I(X; Y ) = H(Y )−H(Y |X) (7.17)
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where H(Y ) and H(Y |X) denote the differential entropy and the conditional dif-

ferential entropy, respectively. Using the chain rule for differential entropy [65], we

obtain

H(Y |X) =
T

∑

i=1

H(Yi|X,Y1, . . . , Yi−1). (7.18)

Note that Yi is completely specified by Xi and the detector noise process Vi. When

Xi is known, knowledge of Yj or Xj for j 6= i does not affect our uncertainty about

Yi. Hence,

H(Yi|X,Y1, . . . , Yi−1) = H(Yi|Xi) (7.19)

and

H(Y |X) =
T

∑

i=1

H(Yi|Xi). (7.20)

Let Γi be the covariance for the detector noise Vi. Suppose we perform M mea-

surements at each time index (i.e., we use one source and all M detectors at each

measurement time). Then, using the results of Appendix D,

H(Yi|Xi) = log(π)M + M + log |Γi| (7.21)

and

H(Y |X) =
T

∑

i=1

log(π)M + M + log |Γi| (7.22)

= T × (log(π)M + M) +
T

∑

i=1

log |Γi|. (7.23)

Suppose we change the measurement order by permuting the indices i for all of the

Ji and Γi. It is clear that the summation (7.23) would still contain all of the same

terms as before, appearing in a different order. Hence, H(Y |X) is independent of the

order in which the measurements are made. We may neglect H(Y |X) as a constant

in any optimization of I(X; Y ) over the measurement sequence, and consider only

the H(Y ) component. Intuitively, this is reasonable, as maximization of information

I(X; Y ) implies minimization of the statistical redundancy in the measurements.



115

For simplicity, we continue to assume a linearized forward operator for computing

the mutual information. Let x̂i = E[Xi|Yj, Yj−1, . . . ] and Ci|j = E[(Xi − x̂i)(Xi −
x̂i)

H |Yj, Yj−1, . . . ], and let C∆x be the covariance matrix for all ∆Xi. In addition,

assume that Ci|j = CH
i|j and that C∆x = CH

∆x. Let Γi be the covariance for Vi. From

standard optimal filtering results [145], it is possible to compute Ci|i and Ci+1|i from

Ci−1|i and C∆x using the following recursive equations:

Ci|i = Ci|i−1 − Ci|i−1J
H
i (JiCi|i−1J

H
i + Γi)

−1JiCi|i−1 (7.24)

Ci+1|i = Ci|i−1 − Ci|i−1J
H
i (JiCi|i−1J

H
i + Γi)

−1JiCi|i−1 + C∆x (7.25)

Define

W i
ab = JaCi|i−1J

H
b (7.26)

W∆x
ab = JaC∆xJ

H
b . (7.27)

By premultiplying (7.25) by Ja and postmultiplying by JH
b , we obtain

W i+1
ab = W i

ab −W i
ai(W

i
ii + Γi)

−1W i
ib + W∆x

ab (7.28)

We can compute H(Y ) by taking determinants of terms of the form appearing

in (7.28). Using the same procedure that is used to derive (D.8) in Appendix D, we

obtain

H(Yi|Y1, . . . , Yi−1) = log(π)M + M + log |JiCi|i−1J
H
i + Γi| (7.29)

= (constant) + log |W i
ii + Γi|. (7.30)

Using the chain rule for conditional differential entropy

H(Y ) =
T

∑

j=1

H(Yj|Y1, . . . , Yj−1) (7.31)

and applying (7.30) the resulting expression for H(Y ) is given by

H(Y ) =
T

∑

i=1

log |W i
ii + Γi|+ (constant). (7.32)



116

Note that computing H(Y ) requires the determinants of several M×M matrices. To

evaluate H(Y ), we can use (7.28) recursively to obtain all of the required W i
ab matrix

terms. A suitable recursive procedure for computing H(Y ) is given in Appendix G.

Suppose we wish to change the measurement order and reevaluate H(Y ). To

change the order, we permute the indices i for all of the Ji and and Γi matrices. As

a result, the W i
ab matrix terms which are used to compute H(Y ) also must change

accordingly. With the new indices i assigned to Ji and Γi, we run the algorithm in

Appendix G to compute the new value of H(Y ). The optimization of H(Y ) over

the measurement order may be performed by a direct search over several different

measurement configurations.



117

8. ONGOING WORK TOWARD PRACTICAL IMAGING

In the previous Chapters, we have presented Bayesian methods for ODT, FODT,

and kinetic model parameter imaging. We have also addressed the problem of fluo-

rescent tumor localization and detection from a statistical framework. In principle,

all of these methods can be applied to clinical diagnostic imaging of tumors to obtain

high-quality images. We have also shown that the statistical framework, with rea-

sonable models of the measurement system and the unknown image variability, can

be used to obtain performance bounds which can be useful in determining and op-

timizing experimental design. The fast localization/detection methods and the full,

quantitative ODT/FODT image reconstruction methods can be regarded as opposite

ends of the entire spectrum of techniques that can be applied for tumor diagnosis.

In particular, the kinetic model parameter imaging opens up new possibilities for

clinical molecular imaging applications, where capillary permeability in the vicinity

of tumors and the uptake kinetics of receptor-targeted dyes provide new possibilities

for examining tumor physiology.

One of the major focuses of practical ODT research in the clinic has been op-

tical breast imaging. To date, a number of preliminary clinical results have been

reported [146–149], but useful results have been difficult to obtain on a consistent

basis. To improve the diagnostic capabilities of optical breast imaging, one must

consider all the ways a tumor may be distinguished from its surroundings. One

possibility is its spectral characteristics. Blood oxygenation may be increased in the

vicinity of a tumor due to increased metabolism. This phenomenon is observable in

the optical absorption spectrum due to the different spectral peaks of oxy- and deoxy-

hemoglobin. Such effects have been observed in preliminary clinical imaging [147],

and direct reconstruction of oxy- and deoxyhemoglobin from multiwavelength optical
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measurements has been investigated [150]. Another possibility is the use of tempo-

ral information, perhaps through the use of periodic breathing exercises. Due to the

expected higher concentration of blood in the vicinity of tumors, such a procedure

might produce observable contrast and allow a self-calibrating difference imaging

problem, similar to work which has been done in imaging of the human brain [86].

Still another possible means of distinguishing tumors from surrounding tissue is via

the use of spatial resolution. Due to the need in the area of early tumor diagnosis, it

is hoped that the tumor would be small and well localized compared with the more

slowly-varying features of the background tissue. This suggests the possibility that

multiresolution reconstruction algorithms employing wavelets may be advantageous.

In addition, multiscale localization algorithms based on hypothesis testing [132], or

generalizations of the methods of Chapter 6 utilizing a point-absorber model with

an appropriate random field model for the background tissue could be applied. Such

localization algorithms could provide prior information for more quantitative recon-

struction algorithms, and they could directly characterize an instrument’s diagnostic

capabilities in terms of the ROC.

Recent investigations in the clinic have also made use of multimodality imag-

ing [12, 151, 152]. ODT reconstructions have been performed simultaneously with

other imaging modalities in order to validate the ODT results. In addition, sensor

fusion algorithms have been studied for image reconstruction. Barnett et al. [152]

have investigated Bayesian methods for estimating piecewise constant tissue prop-

erty values using tissue type boundaries provided by segmented MRI images. This

approach is related to earlier methods applied to PET image reconstruction [153]. Li

et al. [146] have developed an algorithm for using X-ray images to divide the ODT re-

construction volume into regions with different Tikhonov regularization parameters.

However, to the best of my knowledge, sensor fusion approaches which use Markov

random fields as prior models have yet to be considered for ODT. Previously, Chen

et al. [154] have presented a method for using MRI images as a priori information

for emission tomography. The emission tomography images were reconstructed using
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a Gibbs prior model to enforce smoothness and a line process [155] initialized with

boundary information from the MRI images to model edges. A similar approach

may be effective for sensor fusion involving ODT reconstruction.
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APPENDICES

Appendix A: Fréchet Derivatives

Here we describe the computation of the Fréchet derivatives of the forward oper-

ators used in this study. Let g(rsrc, robs; x) be the diffusion equation Green’s function

for the problem domain computed using the image vector x and a numerical forward

solver, with rsrc as the source location and robs as the observation point. In addition,

suppose that for a particular image x there are K sources and M detectors, and a

total of P = KM measurements. Let rsk
represent the position of the kth source

and let rdm′
represent the position of the {m′}th detector. (Here, we use the letter m

to denote detector number, as in our previous publications [24,25,27,28], but with a

prime mark to avoid confusion with the fluorescence emission subscript.) It follows

that the computed data vector f(x) is given by

f(x) =



































g(rs1 , rd1 ; x)

g(rs1 , rd2 ; x)
...

g(rs1 , rdM
; x)

g(rs2 , rd1 ; x)
...

g(rsK
, rdM

; x)



































. (A.1)
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For image vectors x of size 2N , the Fréchet derivative is the P ×2N complex matrix

given by

f ′(x) =



































∂g(rs1 ,rd1
;x)

∂x1

∂g(rs1 ,rd1
;x)

∂x2
· · · ∂g(rs1 ,rd1

;x)

∂x2N−1

∂g(rs1 ,rd1
;x)

∂x2N

∂g(rs1 ,rd2
;x)

∂x1

∂g(rs1 ,rd2
;x)

∂x2
· · · ∂g(rs1 ,rd2

;x)

∂x2N−1

∂g(rs1 ,rd2
;x)

∂x2N

...
...

. . .
...

...
∂g(rs1 ,rdM

;x)

∂x1

∂g(rs1 ,rdM
;x)

∂x2
· · · ∂g(rs1 ,rdM

;x)

∂x2N−1

∂g(rs1 ,rdM
;x)

∂x2N

∂g(rs2 ,rd1
;x)

∂x1

∂g(rs2 ,rd1
;x)

∂x2
· · · ∂g(rs2 ,rd1

;x)

∂x2N−1

∂g(rs2 ,rd1
;x)

∂x2N

...
...

. . .
...

...
∂g(rsK

,rdM
;x)

∂x1

∂g(rsK
,rdM

;x)

∂x2
· · · ∂g(rsK

,rdM
;x)

∂x2N−1

∂g(rsK
,rdM

;x)

∂x2N



































.(A.2)

For the absorption and scattering coefficients, the discrete representations of

the Fréchet derivative matrix elements have been derived and reported previously

[26,156] as

∂g(rsk
, rdm′

; x)

∂µa(ri)
' −g(rdm′

, ri; x)g(rsk
, ri; x)V (A.3)

∂g(rsk
, rdm′

; x)

∂D(ri)
' −∇g(rdm′

, ri; x) · ∇g(rsk
, ri; x)V , (A.4)

where ' is used due to domain discretization errors, V is the voxel volume, ri is

the position of the ith voxel, and reciprocity [157] (which allows replacement of

g(rsrc, robs; x) with g(robs, rsrc; x)) has been used to reduce computation. Here, ∇ is

the spatial gradient operator, which, in our computations, is evaluated numerically

as a symmetric first difference. The separability of (A.3) and (A.4) with respect

to source index and detector index enables additional savings in computation and

in storage [28]. Rather than creating the entire KM × 2N matrix, it suffices to
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initially compute and store two Green’s function matrices of sizes K×N and M×N ,

respectively:

G(s) =











g(rs1 , r1; x) · · · g(rs1 , rN ; x)
...

. . .
...

g(rsK
, r1; x) · · · g(rsK

, rN ; x)











(A.5)

G(d) =











g(rd1 , r1; x) · · · g(rd1 , rN ; x)
...

. . .
...

g(rdM
, r1; x) · · · g(rd1 , rN ; x)











. (A.6)

During the ICD scan, when the ith voxel of x is to be modified, the ith column of

f ′(x) can be formed from (A.5) and (A.6).

For the fluorescence problem, more specific notation is needed. We define the

expression gx(rsrc, robs; xx) to denote the λx Green’s function obtained by solving

(3.1), and let gm(rsrc, robs; xm) denote the λm Green’s function obtained by solving

(3.3). We denote the Green’s function matrices accordingly:

G(s)
x =











gx(rs1 , r1; xx) · · · gx(rs1 , rN ; xx)
...

. . .
...

gx(rsK
, r1; xx) · · · gx(rsK

, rN ; xx)











(A.7)

G(d)
x =











gx(rd1 , r1; xx) · · · gx(rd1 , rN ; xx)
...

. . .
...

gx(rdM
, r1; xx) · · · gx(rdM

, rN ; xx)











(A.8)

G(s)
m =











gm(rs1 , r1; xm) · · · gm(rs1 , rN ; xm)
...

. . .
...

gm(rsK
, r1; xm) · · · gm(rsK

, rN ; xm)











(A.9)

G(d)
m =











gm(rd1 , r1; xm) · · · gm(rd1 , rN ; xm)
...

. . .
...

gm(rdM
, r1; xm) · · · gm(rdM

, rN ; xm)











. (A.10)

Consider one reparameterization of the right hand side of (3.2):

ηµaf
(r)

1− jωτ(r)

1 + [ωτ(r)]2
= βR(r)− jβI(r). (A.11)
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It follows immediately that the inverse problem for βR and βI is linear. We define the

expression gf (rsrc, robs; xx, xm) to denote the fluorescence observed at robs emitted in

response to excitation at rsrc. The Fréchet derivatives for βI and βR are given by

∂gf (rsk
, rdm′

; xx, xm)

∂βR(ri)
' gm(rdm′

, ri; xm)gx(rsk
, ri; xx)V (A.12)

∂gf (rsk
, rdm′

; xx, xm)

∂βI(ri)
' −jgm(rdm′

, ri; xm)gx(rsk
, ri; xx)V. (A.13)

It is possible to solve the fluorescence inverse problem using this parameterization,

and then convert the result into the physical parameters ηµaf
and τ . However, the

computation of τ requires a division of βI by βR, an operation which could result in

large noise artifacts in regions where βR is small. To circumvent this problem, we use

the γ and τ parameterization of (3.8), permitting us to apply regularization directly

to τ . In our sequential update scheme, τ is assumed constant while updates of γ

are performed, and vice versa. As a result, we use the following Fréchet derivative

expressions:

∂gf (rsk
, rdm′

; xx, xm)

∂γ(ri)
' gm(rdm′

, ri; xm)gx(rsk
, ri; xx)(1− jωτ̂(ri))V (A.14)

∂gf (rsk
, rdm′

; xx, xm)

∂τ(ri)
' −jωγ̂(ri)gm(rdm′

, ri; xm)gx(rsk
, ri; xx)V. (A.15)

After the reconstructions x̂x and x̂m are obtained, Gx(rs, r; xx) and Gm(rd, r; xm)

have already been stored, and the Green’s functions of (A.14) and (A.15) need not

be recomputed. As the estimates γ̂ and τ̂ are updated, they are incorporated into

the derivative expressions.



136

Appendix B: Pseudocode for Fluorescence Optical Tomography Inversion

Algorithm

main {
1. Initialize x̂x, x̂m, and x̂f with background estimates.

2. Repeat until converged: {
(a) α̂x ←

1

Px

|| yx − fx(x̂x) ||2Λx

(b) For k = 1 : K {
Compute gx(rsk

, r; x̂x) by solving Eq. (3.1) with source at rsk

}

(c) For m′ = 1 : M {
Compute gx(rdm′

, r; x̂x) by solving Eq. (3.1) with source at rdm′

}

(d) Form G
(s)
x and G

(d)
x using Eq. (A.7) and Eq. (A.8)

(e) x̂x ← ICD update(x̂x, α̂x, G
(s)
x , G

(d)
x )}

3. Repeat until converged: {
(a) α̂m ←

1

Pm

|| ym − fm(x̂m) ||2Λm

(b) For k = 1 : K {
Compute gm(rsk

, r; x̂m) by solving Eq. (3.3) with source at rsk

}

(c) For m′ = 1 : M {
Compute gm(rdm′

, r; x̂m) by solving Eq. (3.3) with source at rdm′

}

(d) Form G
(s)
m and G

(d)
m using Eq. (A.9) and Eq. (A.10)

(e) x̂m ← ICD update(x̂m, α̂m, G
(s)
m , G

(d)
m )

4. Repeat until converged: {
(a) α̂f ←

1

Pf

|| yf − ff (x̂f , x̂x, x̂m) ||2Λf

(b) x̂f ← ICD update(x̂f , α̂f , G
(s)
x , G

(d)
m )}}

x̂ ← ICD update(x̂, α̂, G(s), G(d); x)) {
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1. For i = 1, . . . , N (in random order), {
(a) Compute [f ′(x̂)]∗(i), as described in Appendix A

(b) Update xi, as described by Ye et al. [24]:

x̂i ← arg min
xi≥0

{

1

α̂

∣

∣

∣

∣

∣

∣y − f(x̂)− [F ′(x̂)]∗(i) (xi − x̂i)
∣

∣

∣

∣

∣

∣

2

Λ

+
1

paσa
pa

∑

j∈Ni

bi−j |xi − x̂i|pa

}

}
2. For i = N + 1, . . . , 2N (in random order), {

(a) Compute [f ′(x̂)]∗(i), as described in Appendix A

(b) Update xi, as described by Ye et al. [24]:

x̂i ← arg min
xi≥0

{

1

α̂

∣

∣

∣

∣

∣

∣y − f(x̂)− [F ′(x̂)]∗(i) (xi − x̂i)
∣

∣

∣

∣

∣

∣

2

Λ

+
1

pbσb
pb

∑

j∈Ni

bi−j |xi − x̂i|pb

}

}
3. Return x̂.}
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Appendix C: Pseudocode for Multifrequency FODT Inversion Algorithm

main {

1. Form G
(s)
x and G

(d)
m

2. Repeat until converged: {

(a) α̂f ← 1
Pf
|| yf − ff (x̂f , x̂x, x̂m) ||2Λf

(b) x̂f ← ICD update(x̂f , α̂f , G
(s)
x , G

(d)
m )

}

}
x̂ ← ICD update(x̂, α̂, G(s), G(d); x)) {

1. For q = 1, . . . , Q {

(a) zωq
← yωq

− fωq
(x̂)

}

2. For i = 1, . . . , N (in random order), {

(a) x̃i ← x̂i

(b) For q = 1, . . . , Q {

i. Compute [Jωq
]∗(i), by taking the ith column in Eq. (4.12)

ii. θ1,ωq
← −2Re

{

[Jωq
]H∗iΛωq

zωq

}

iii. θ2,ωq
← 2[Jωq

]H∗iΛωq
[Jωq

]∗i

}

(c) x̂i ← arg minxi≥0 {
1
α̂

∑Q
q=1

(

θ1,ωq
[h(x, ri, ωq)− h(x̃, ri, ωq)]

+
θ2,ωq

2
[h(x, ri, ωq)− h(x̃, ri, ωq)]

2
)

+ 1
ρAσA

ρA

∑

j∈Ni
bi−j |xi − x̃j|ρA

}

(d) For q = 1, . . . , Q {

i. zωq
← zωq

+ [Jωq
]∗i[h(x̂, ri, ωq)− h(x̃, ri, ωq)]
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}

}

3. For i = N + 1, . . . , 2N (in random order), {

(a) x̃i ← x̂i

(b) For q = 1, . . . , Q {

i. Compute [Jωq
]∗(i−N), by taking the (i−N)th column in Eq. (4.12)

ii. θ1,ωq
← −2Re

{

[Jωq
]H∗(i−N)Λωq

zωq

}

iii. θ2,ωq
← 2[Jωq

]H∗(i−N)Λωq
[Jωq

]∗(i−N)

}

(c) x̂i ← arg minxi≥0 {
1
α̂

∑Q
q=1

(

θ1,ωq
[h(x, ri−N , ωq)− h(x̃, ri−N , ωq)]

+
θ2,ωq

2
[h(x, ri−N , ωq)− h(x̃, ri−N , ωq)]

2
)

+ 1
ρBσB

ρB

∑

j∈Ni
bi−j |xi − x̃j|ρB

}

(d) For q = 1, . . . , Q {

i. zωq
← zωq

+ [Jωq
]∗(i−N)[h(x̂, ri−N , ωq)− h(x̃, ri−N , ωq)]

}

}

}
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Appendix D: Mutual Information Derivation

Here, we derive the expression for the mutual information which is is given in Eq.

(4.26). The mutual information given by Eq. (4.21) depends on H(Y ) and H(Y |X).

We obtain the expressions for H(Y ) and H(Y |X), and use them to compute I(X; Y ).

Let pX(x), pY |X(y|x), σ, α, the linear forward operator J , and the matrices C,

and Λ be as in Eqs. (3.10),(3.13),(4.24), and (4.25). Define the shot noise process

Z = Y − JX, and assume that Z is independent of X. Then Y = JX + Z is

Gaussian, and

E[Y ] = E[E[Y |X]] = E[JX] = JE[X] = 0. (D.1)

In addition,

E[Y Y H ] = E[(JX + Z)(JX + Z)H ] (D.2)

= E[ZZH ] + E[(JX)ZH ] + E[Z(JX)H ] + E[JXXHJH ] (D.3)

= E[ZZH ] + JE[XXH ]JH (D.4)

= αΛ−1 + σ2JC−1JH . (D.5)

Hence,

pY (y) =
1

(π)P |Υ| exp
{

−||y||2Υ−1

}

. (D.6)

where

Υ = αΛ−1 + σ2JC−1JH . (D.7)

Using Eqs. (4.22) and (D.6), H(Y ) is given by [65]

H(Y ) = log(π)P + P + log |Υ|. (D.8)

Similarly, using Eq. (4.23),

H(Y |X) = log(π)P + P + log |αΛ−1|. (D.9)
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Substituting Eqs. (D.8) and (D.9) into Eq. (4.21)

I(X; Y ) = H(Y )−H(Y |X)

= log
|Υ|
|αΛ−1|

= log
|αΛ−1 + σ2JC−1JH |

|αΛ−1|

= log

∣

∣

∣

∣

I +
σ2

α
ΛJC−1JH

∣

∣

∣

∣

(D.10)

where I is the identity matrix, and we have used the determinant identity |A||B| =
|AB|.
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Appendix E: Pseudocode for Kinetic Model Inversion Algorithm

main {

1. Form G
(s)
x and G

(d)
m

2. Repeat until converged: {

(a) α̂f ← 1
Pf
|| yf − ff (x̂f , x̂x, x̂m) ||2Λf

(b) x̂f ← ICD update(x̂f , α̂f , G
(s)
x , G

(d)
m )

}

}
x̂ ← ICD update(x̂, α̂, G(s), G(d); x)) {

1. For c = 1, . . . , C {

(a) For q = 1, . . . , Q {

i. zωq ,tc ← yωq ,tc − fωq ,tc(x̂)

}

}

2. For i = 1, . . . , N (in random order), {

(a) x̃i ← x̂i

(b) For c = 1, . . . , C {

i. For q = 1, . . . , Q {

A. Compute [Jωq ,tc ]∗(i), by taking the ith column in Eq. (4.12)

B. θ1,ωq ,tc ← −2Re
{

[Jωq ,tc ]
H
∗iΛωq ,tczωq ,tc

}

C. θ2,ωq ,tc ← 2[Jωq ,tc ]
H
∗iΛωq ,tc [Jωq ,tc ]∗i

}

}

(c) τ̂ ← arg minx(0),i≥0 {
1
α̂

∑C
c=1

∑Q
q=1

(

θ1,ωq ,tc [h(x(∗),i, ωq, tc)− h(x̃(∗),i, ωq, tc)]
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+
θ2,ωq,tc

2
[h(x(∗),i, ωq, tc)− h(x̃(∗),i, ωq, tc)]

2
)

+ 1
ρ(0)σ(0)

ρ(0)

∑

j∈Ni
bi−j

∣

∣x(0),i − x̃(0),j

∣

∣

ρ(0)

}

(d) γ̂1 ← arg minx(1),i≥0 {
1
α̂

∑C
c=1

∑Q
q=1

(

θ1,ωq ,tc [h(x(∗),i, ωq, tc)− h(x̃(∗),i, ωq, tc)]

+
θ2,ωq,tc

2
[h(x(∗),i, ωq, tc)− h(x̃(∗),i, ωq, tc)]

2
)

+ 1
ρ(1)σ(1)

ρ(1)

∑

j∈Ni
bi−j

∣

∣x(1),i − x̃(1),j

∣

∣

ρ(1)

}

(e) γ̂2 ← arg minx(2),i≥0 {
1
α̂

∑C
c=1

∑Q
q=1

(

θ1,ωq ,tc [h(x(∗),i, ωq, tc)− h(x̃(∗),i, ωq, tc)]

+
θ2,ωq,tc

2
[h(x(∗),i, ωq, tc)− h(x̃(∗),i, ωq, tc)]

2
)

+ 1
ρ(2)σ(2)

ρ(2)

∑

j∈Ni
bi−j

∣

∣x(2),i − x̃(2),j

∣

∣

ρ(2)

}

(f) if (γ̂2 > γ̂1){

γ̂1, γ̂2 ← arg minx(1),i=x(2),i≥0 {
1
α̂

∑C
c=1

∑Q
q=1

(

θ1,ωq ,tc [h(x(∗),i, ωq, tc)− h(x̃(∗),i, ωq, tc)]

+
θ2,ωq,tc

2
[h(x(∗),i, ωq, tc)− h(x̃(∗),i, ωq, tc)]

2
)

+ 1
ρ(1)σ(1)

ρ(1)

∑

j∈Ni
bi−j

∣

∣x(1),i − x̃(1),j

∣

∣

ρ(1)

+ 1
ρ(2)σ(2)

ρ(2)

∑

j∈Ni
bi−j

∣

∣x(2),i − x̃(2),j

∣

∣

ρ(2)

}

}

(g) γ̂3 ← arg minx(3),i≥0 {
1
α̂

∑C
c=1

∑Q
q=1

(

θ1,ωq ,tc [h(x(∗),i, ωq, tc)− h(x̃(∗),i, ωq, tc)]

+
θ2,ωq,tc

2
[h(x(∗),i, ωq, tc)− h(x̃(∗),i, ωq, tc)]

2
)

+ 1
ρ(3)σ(3)

ρ(3)

∑

j∈Ni
bi−j

∣

∣x(3),i − x̃(3),j

∣

∣

ρ3
}

(h) γ̂4 ← arg minx(4),i≥0 {
1
α̂

∑C
c=1

∑Q
q=1

(

θ1,ωq ,tc [h(x(∗),i, ωq, tc)− h(x̃(∗),i, ωq, tc)]
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+
θ2,ωq,tc

2
[h(x(∗),i, ωq, tc)− h(x̃(∗),i, ωq, tc)]

2
)

+ 1
ρ(4)σ(4)

ρ(4)

∑

j∈Ni
bi−j

∣

∣x(4),i − x̃(4),j

∣

∣

ρ(4)

}

(i) if (γ̂3 > γ̂4){

γ̂3, γ̂4 ← arg minx(3),i=x(4),i≥0 {
1
α̂

∑C
c=1

∑Q
q=1

(

θ1,ωq ,tc [h(x(∗),i, ωq, tc)− h(x̃(∗),i, ωq, tc)]

+
θ2,ωq,tc

2
[h(x(∗),i, ωq, tc)− h(x̃(∗),i, ωq, tc)]

2
)

+ 1
ρ(3)σ(3)

ρ(3)

∑

j∈Ni
bi−j

∣

∣x(3),i − x̃(3),j

∣

∣

ρ(3)

+ 1
ρ(4)σ(4)

ρ(4)

∑

j∈Ni
bi−j

∣

∣x(4),i − x̃(4),j

∣

∣

ρ(4)

}

}

(j) [x̂(0),i, x̂(2),i, x̂(3),i, x̂(4),i]← [τ̂ , γ̂1, γ̂2, γ̂3]

(k) For c = 1, . . . , C {

i. For q = 1, . . . , Q {

A. zωq ,tc ← zωq ,tc + [Jωq ,tc ]∗i[h(x̂(∗),i, ωq, tc)− h(x̃(∗),i, ωq, tc)]

}

}

}

}
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Appendix F: Partial Derivatives for Cramèr-Rao Bound

Here, we compute the partial derivatives required in (6.25). We first rewrite fi(r):

fi(r) = [ai(r)− bi(r)]
2, (F.1)

where ai and bi are the first and second terms in the brackets of (6.3), respectively.

The partial derivatives are as follows:

∂fi

∂x
= 2 [ai − bi]

[

∂ai

∂x
− ∂bi

∂x

]

(F.2)

∂fi

∂z
= 2 [ai − bi]

[

∂ai

∂z
− ∂bi

∂z

]

(F.3)

∂ai

∂x
= −(x− xsi

)ai

[

r−2
a + kr−1

a

]

(F.4)

∂ai

∂z
= −(z − zsi

)ai

[

r−2
a + kr−1

a

]

(F.5)

∂bi

∂x
= −(x− xsi

)bi

[

r−2
b + kr−1

b

]

(F.6)

∂bi

∂z
= −(z + zsi

+ 2ls)bi

[

r−2
b + kr−1

b

]

(F.7)
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Appendix G: Pseudocode for Computing H(Y ) in Dynamic Optical Dif-

fusion Tomography

For a = 1, . . . , T {

For b = 1, . . . , a {

W∆x
ab ← JaC∆xJ

H
b

W∆x
ba ←

(

W∆x
ab

)H

W 1
ab ← JaC1|0J

H
b

W 1
ba ← (W 1

ab)
H

} /* end b */

} /* end a */

H̃ ← log |W 1
11 + Γ1|

For i = 2, . . . , T {

For a = i, . . . , T {

For b = i, . . . , a {

W i
ab ← W i−1

ab −W i−1
a(i−1)(W

(i−1)
(i−1)(i−1) + Γi−1)

−1W i−1
(i−1)b + W∆x

ab

W i
ba ← (W i

ab)
H

} /* end b */

} /* end a */

H̃ ← H̃ + log |W i
ii + Γi|

} /* end i */
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