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Abstract
This work focuses on a tomographic image reconstruction

method which will be referred to as nonlinear backprojection
(NBP). Rather than explicitly statistically modeling the
forward process and the unknown image, we train an optimal
nonlinear backprojection operator which can be implemented
non-iteratively. Under appropriate assumptions, the method
forms its estimate by applying nonlinear £lters to sinogram
data, followed by conventional backprojection. The nonlinear
£lters are designed through off-line training. Nonlinear
backprojection shows promising results relative to both £ltered
backprojection and MAP Bayesian methods.

I. I NTRODUCTION

Image reconstruction from projections can be approached
through deterministic or statistical methods. The most common
technique is deterministic £ltered backprojection (FBP), which
is quite effective for complete projection data with high SNR.
Control of noise artifacts is restricted primarily to the selection
of the low-pass element of the backprojection £lter, whose
design has been well studied [1]. The other principal methods
that have been introduced are statistical, choosing the estimate
which best matches the probabilistic behavior of the data.
To accomplish this, a probabilistic model for the forward
physical process is introduced. When the maximum-likelihood
(ML) criterion is applied, the reconstruction problem is often
approached via the expectation-maximization (EM) algorithm
[2] or modi£cations thereof, most commonly ordered subsets
EM (OSEM) [3]. When Bayesian estimation is used, ana
priori model that re¤ects beliefs about the image cross section
is necessary [4, 5, 6]. Bayesian methods result in substantial
improvements in many limited data or low SNR problems.
The penalty paid for statistical methods is primarily the cost
of numerical optimization to £nd the maximuma posteriori
probability (MAP) or ML estimate. Thea posteriorimean is
typically still more complex.

In this paper, we take a new statistical direction. Rather
than follow typical inverse problem formulation, we attempt to
learn optimal or quasi-optimal reconstruction operators directly.
This new direction does not require the explicit modeling of
the forward process or unknown image. It will be referred to
as nonlinear backprojection (NBP), since in its current form, it
consists of nonlinear operations on the sinogram, followed by
backprojection. Some interesting potential advantages of this
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method are

a. Elimination of iterative estimation, which should
save computation time relative to common Bayesian
techniques.

b. Elimination of the need to specify a statistical model
for the forward process and for the images to be
reconstructed.

Point b. permits the implicit incorporation of potentially
greater complexity in the statistical behavior of images than the
simple Markov random £eld models found in most Bayesian
formulations. Various nonlinear system effects, such as scatter
and beam-hardening, may also be implicitly included, provided
they appear also in the data used during the learning process.

NBP consists of a training phase and an application
phase. To permit a better understanding of the NBP training
process, a well-known statistical structure is imposed, i.e. the
projection data (sinogram) is modeled by amixture model[7].
Sinogram data conditioned on the image are often modeled as
Poisson. However, in the current problem, we are interested
in the unconditioned distribution of sinogram data, which
must include stochastic behavior of the image ensemble. The
choice of using a mixture model provides a ¤exible and semi-
parametric way to model unknown distribution shapes. Mixture
models can be used where there is no a priori information about
group structure in the data, but we wish to cluster the data into
a number of groups [8]. A one-dimensional case of mixture
parameter estimation for actual sinogram data (from the results
of Fig. 2) is shown. Here, the histogram is approximated by a
mixture model of 4 classes.

The goal of the training phase is the inference of parameters
of the mixture model of the data and the optimization of a set of
linear two-dimensional sinogram £lters. The process of £nding
the number of classes in the mixture and their corresponding
parameters is called clustering. The classes and their descriptive
parameters are later used to classify the sinogram samples of
the training set. Also each class will have an associated two-
dimensional sinogram £lter.

The £lters can then be designed by minimizing, as a
function of their coef£cients, the mean square error (MSE)
between the training images and the images reconstructed by
backprojecting the nonlinearly £ltered sinogram samples. After
this off-line training the cluster model and £lters are applied to
the reconstruction from arbitrary sinograms in a non-iterative,
nonlinear £ltered backprojection.
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Figure 1: Mixture model of 4 classes approximating one-dimensional
empirical probability density function of projection data.

Previously published works have similarly optimized
estimates of the sinogram before conventional backprojection
[9, 10]. NBP differs from previous methods in the replacement
of explicit statistical models for the likelihood function anda
priori models for the image by the training of a very general
model for the data and adaptive two-dimensional £lters. A
preliminary exploration of NBP was presented in [11].

An analogy between nonlinear backprojection and neural
networks can also be observed. A neural network is a massively
parallel distributed processor that has a natural propensity for
storingexperientialknowledge and making it available for use
[12]. It resembles natural neural systems in that knowledge
acquired through a learning process is stored in interneuron
connection strengths. The similarity between nonlinear
backprojection and neural networks is in their need of a
“learning” process that comes from examples. Both acquire,
through this training, a non-explicitly described transformation
optimized with respect to the characteristics of the training set.
Rather than apply the full generality of large-scale network
necessary for the sort of reconstruction problems we wish to
solve, we develop a non-linear, non-iterative estimator with a
limited number of unknown parameters and commensurately
simpler training.

II. T HEORETICAL BACKGROUND OFNBP
Without limits on its form, the design and training of

an optimal tomographic inverse operator appears infeasibly
complex. We therefore impose a Gaussian mixture model on
windows of the data in the sinogram to allow inference of a
limited number of parameters while maintaining the capability
of approximating varied distributions. These parameters will
be used to classify the training data.

An important assumption that simpli£es the training
process is the following: the minimum mean square error
(MMSE) estimate of a point in the reconstruction, given the
proper classi£cation of all data, will be a linear function of
the sinogram data in the appropriate windows (i.e. the set of
sinogram windows which have an effect on the reconstruction
of such point). Under the data-dependence of classi£cations,
this requires a nonlinear £ltering of the sinogram, with the

nonlinear £lter as a weighted sum of the linear £lters optimized
for each class. The £ltering is similar to methodology
previously applied in image restoration and compression
[13] and interpolation [14]. Afterwards, the reconstruction is
obtained by backprojecting the £ltered sinogram. The behavior
of the nonlinear £lter depends only on the local characteristics
of the sinogram. At the cost of higher complexity, the £lter’s
characteristics could also depend on the pixel-domain structure,
though the work done so far does not include this option.

Let Y be a vector containing all the sinogram data,Xk be a
pixel in the unknown image cross section, andYj be the vector
of sinogram samples taken from thejth window, where each
j corresponds to a single point in the sinogram (the window
has a unique position along both the radial (t) and angular (θ)
coordinates). This window will normally be a two-dimensional
region centered at sinogram datumj. Also let{j} be the set of
indices of data that in¤uence pixelXk; thus, in the discretized
case, the choice of indices{j} approximately describes a
column of the projection matrix corresponding to the given
pixel.

Under a standard mixture density for multi-dimensional
data, we model each window of sinogram data,Yj , as being
generated by a discrete class,Cj , where0 ≤ Cj < M . We will
haveM £lters of the size of the window used forYj , denoted
by Fc where0 ≤ c < M , one for each class. With this notation
in mind, we will make two key assumptions expressed in the
following two equations, which will make an optimal estimate
computationally feasible.

E[Xk|{Yj}, {Cj}] =
∑

j

FT
Cj

Yj , (1)

P [Cj = c|{Yj}] = p(c|Yj) (2)

Equation (1) states that given the class information, the
minimum mean square error (MMSE) pixel estimate ofXk may
be obtained by applying an appropriate £lter to each sinogram
window that in¤uences pixelXk (i.e. the set of windows{Yj}),
and then backprojecting the result. Equation (2) states that the
distribution of each class is dependent on only the projection
data in the associated window. These two assumptions simplify
the estimation process while, it is hoped, preserving suf£cient
generality to improve on current methods.

Using (1) and (2), we compute the MMSE estimator ofXk

given the data in the set of windows{Yj} by,

E[Xk|{Yj}] = E[E[Xk|{Yj}, {Cj}]|{Yj}] (3)

= E


∑

j

FT
Cj

Yj

∣∣∣∣∣∣ {Yj}



=
∑

j

E
[
FT

Cj
|{Yj}

]
Yj

=
∑

j

(∑
c

FT
c p(c|Yj)

)
Yj .

Thus the estimator is formed by applying a spatially varying
£lter,

∑
c FT

c p(c|Yj) to the set of sinogram windows{Yj}.



Since the £lter depends on the data in the window through
p(c|Yj), this weighted superposition of many conditionally
optimal £lters is nonlinear, and may be thought of as an
adaptive £lter. Finally, in summing over the nonlinearly £ltered
sinogram windows, pixelXk is reconstructed via conventional
backprojection.

The distributionp(c|Yj) must be estimated and the £lters
Fc designed as the training phase of NBP. Under a Gaussian
mixture model forYj , wherep(Yj |c) is a multivariate Gaussian
distribution, and

∑M−1
c=0 πc = 1, we have

p(c|Yj) =
p(Yj |c)πc∑
c p(Yj |c)πc

. (4)

The parameters ofp(Yj |c) and the probabilitiesπc may be
estimated using the EM algorithm within an agglomerative
clustering algorithm [15, 16, 17].

To design the £ltersFc, we £rst rewrite (3) in the form

E[Xk|{Yj}] =
∑

c

FT
c


∑

j

p(c|Yj)Yj


 =

∑
c

FT
c Ȳc , (5)

whereȲc =
∑

j p(c|Yj)Yj , forms the component of the pixel
estimate that will result from the £ltering by thecth £lter.

By de£ning the matricesF andȲ as

F =




F0

F1

...
FM−1




Ȳ =




...
Ȳ T

0 Ȳ T
1 · · · Ȳ T

M−1 (pixel k)
Ȳ T

0 Ȳ T
1 · · · Ȳ T

M−1 (pixel k+1)
...




the collection of optimal £ltersF ∗ may be computed as the least
squares solution to

F ∗ = arg min
F

E
[
(X − Ȳ F )T

(
X − Ȳ F

)]
. (6)

The computation of the expectation in (6) is impractical,
especially since we wish to avoid explicitly modeling pixels
Xk as well as the conventional likelihood linkingX and Y .
Therefore, it is replaced by an ensemble average across a set
of training images (as realizations ofX) and pseudo-random
projection data from forward projections of theseX (as
realizations ofY ). Following the training of cluster parameters
and £lters, the NBP system is ready to be applied to arbitrary
sinogram data sets outside the training set.

III. I MPLEMENTATIONAL CONSIDERATIONS

In the current implementation, the vector for clustering and
classi£cation of each projection point consisted of 9 data from
a3× 3 window in the sinogram, including both adjacent angles

as well as neighboring rays. These sets of vectors are fed into
a clustering program [14] that obtains the underlying mixture
distribution for the data, i.e., it divides the training data into
clusters parameterized by their means, variances anda priori
probabilities. Such ML estimation problems for mixtures’
parameters are degenerate in the absence of constraints
[18, 19]. Experimental work has shown an advantage in
constraining covariance matrices to be diagonal and equal in
modestly-sized training sets, which reduces the number of
parameters and improves robustness.

The use of such small windows is possible because of the
use of projection data that is pre-£ltered in the radial variable.
The pre-£ltering used a multiplication of the ramp £lter as
dictated by £ltered backprojection theory explained in [20]
and a raised cosine roll-off £lter for noise attenuation. This
preserves nonlocal properties of backprojection. The raised
cosine roll-off £lter has cut-off signi£cantly higher than would
be desirable for FBP.

It is important to note that no £ltering is applied to the
training data during the clustering and classi£cation process.
A £lter such as that used for pre-£ltering includes signi£cant
high-frequency noise emphasis, therefore it reduces the
accuracy of classi£cation. Pre-£ltering is applied to the data
before NBP’s non-linear £ltering and backprojection both
during the training phase and the application phase.

Another important issue which is currently under study is
that of choice of data discriminants for classi£cation. Simple
Euclidean distance among clusters is found not to be generally
indicative of the difference among corresponding £lters.
Finding optimal discriminants would result in a clustering
taking greatest advantage of the nonlinear £lters’ adaptability.
These discriminants could also lower the dimensionality of
the data used for clustering and result in lower computational
cost. Toward this end, the windows of projection data are
Karhunen-LoÁeve (KL) transformed before being clustered.
Such a distance preserving transform will have no effect on
the optimal clusterings, though some effect on our sub-optimal
clusters is likely. However, the KL transform produces a set
of uncorrelated components and dimensionality reduction
could be achieved by selecting components according to their
variances. The KL transform is obtained by generating an
ensemble-averaged correlation matrix from the windows of
data that belong to the training set. The DC component, for
example, does not appear to provide relevant information for
the £lter design problem, and is therefore eliminated from
classi£cation criteria. The type of classi£cation for these
experiments is “soft”, as given in (3), i.e the testing data is
not assigned to a single class (single £lter), and £ltering is
a weighted combination of the linear £lters, with weights
obtained from thea posterioriprobabilities of classes.

For fewer than 100 classes inC, the least-squares problem
of (6) is solved directly via matrix inversion routines using
MATLAB. That is, the solution for (6) can be expressed
as, F ∗ = (Ȳ T Ȳ )−1Ȳ T X. For larger numbers, iterative
descent methods are used to solveF ∗, with £lters that contain
unity in their center coef£cient and zero elsewhere as initial



conditions. While gradient methods may be applied, we have
found that signi£cantly faster convergence is achieved using
Iterative Coordinate Descent (ICD) in the domain of the £lter
coef£cients, similar to the image reconstruction methods of
[21]. Since this training is off-line, though, its cost is of limited
importance.

IV. EXPERIMENTAL RESULTS

For Fig. 2, the training was realized on a set of phantoms
whose projection data consisted of 64 uniformly spaced
projections of 128 rays each from a £eld of diameter 200 mm.
These phantoms have been created with limited resolution
to mimic more realistic medical problems. For comparison,
we include in all cases below results using FBP and MAP
estimation under variations of the Generalized Gaussian
Markov Random Field (GGMRF) as thea priori image model,
with density function of the form

gx(x) =
1
z

exp


− 1

qσq

∑
{j,k}∈N

bj,k|xj − xk|q



where N is the set of all neighboring pixel pairs,bj,k is
the coef£cient linking pixelsj and k, σ represents the scale
of the prior image, and1 ≤ q ≤ 2 is a parameter which
controls the smoothness of the reconstruction. This model
includes a Gaussian MRF forq = 2, and an absolute-value
potential function withq = 1. In general, smaller values of
q allow sharper edges to form in reconstructed images. Prior
information may also be available in the form of constraints on
the reconstructed solution. We assume that the set of feasible
reconstructionsΩ is convex, and we chooseΩ to be the set
of non-negative reconstructions. Parameter selections for the
GGMRF include both heuristic choices and ML estimation of
the scale as in [22].

The £lters obtained in the training process are applied to
the phantom of Fig. 2 which was not part of the training set. A
comparison of the original phantom, the FBP reconstruction,
the MAP reconstruction and the NBP reconstruction is
presented. The measure of performance used for these results
is the MSE, calculated only within the circular region inscribed
in the square image. NBP provides good edge preservation;
however, it introduces some artifacts across the image which do
not appear in the FBP or MAP reconstructions. Numerically,
the MSE results are comparable, but NBP does less well.

Fig. 3(a) shows the set of linear £lters that are used on Fig. 2.
Each slice of the graph represents the3 × 3 £lter values for a
speci£c class, concatenated into a one-dimensional array. The
clustering determined 30 quasi-optimal classes; therefore there
are 30 linear £lters with widely varying frequency responses.
The number of clusters which is optimal under the Rissanen
criterion applied in [14] is likely greater than 30; since here we
are interested in the simplicity of a relatively small numbers of
classes, this number is used as the maximum throughout the
results below. Fig. 3(b) shows the prior probabilities for each of
the classes corresponding to these £lters.

a b
c d

Figure 2: Comparison of tomographic reconstruction techniques
on projection data generated by a synthetic phantom image. The
projection data has Poisson noise added. Total Counts = 1,310,720.
(a) Original Phantom; (b) FBP reconstruction with Gaussian £lter
(MSE = 1.7616); (c) MAP reconstruction with Gaussian prior model
(MSE = 1.708); (d) NBP reconstruction using 30 training £lters (MSE
= 2.2786);

The issue of £nding discriminants for the projection data is
under study. Some of the experimental work is shown in Fig. 4.
Fig. 4(a) provides a measure of the dispersion in the space of
£lters. Notice that clusters10, 22 and27 are the most distant
clusters from the origin; they also are among the ones with the
lowesta priori probability of occurrence as shown in Fig. 3(b).
Fig. 4(b) shows the sinogram of the noisy phantom in Fig. 2
and the locations having highesta posterioriprobability of the
clusters corresponding to £lters farthest from the origin. Many
of these locations are near high intensity edges.

The clusters most distant from the origin tend to generate
£lters which are most nearly impulsive, as shown in Fig. 5(a).
This suggests that higher-pass £ltering of such data can reduce
MSE provided it is applied selectively. The least impulsive
£lters from the chart of Fig. 5(a) appear to be relatively low-
pass, as can be seen in Fig. 3(a). Fig. 5(b) illustrates a relatively
uniform pattern of application for these £lters under MMSE
training.

In Fig. 6 FBP, MAP with Gaussiana priori image models,
and NBP are compared for a120 × 128 SPECT heart imaging
data having approximately 150,000 total counts. NBP for
this case was trained using synthetic phantoms of similar
characteristics to apparently typical cross sections. There is
a better subjective quality of the NBP result here with good
edge preservation and good noise smoothing qualities. The
NBP image is competitive in quality with the iterative MAP
reconstructions using either the ML scale parameter or the
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Figure 3: Resulting £lters after training on synthetic phantom data. (a)
Linear £lters used on projection data generated by phantom images.
Conventional FBP with little noise attenuation would result from
£lters each having a single pulse at the center index; (b) Maximum
likelihood estimation of probabilities of occurrence of these £lters’
respective classes.

larger value resulting in less regularization. The £lters for this
case (Fig. 7) demonstrate signi£cantly more variety than those
of the synthetic phantom.

Fig. 9 represents the testing of the £lters resulting from
three training processes on different sets of synthetic heart data,
to determine NBP’s sensitivity to accurate choice for training
data. All data sets consist of 120 projections and 128 rays each
from a £eld diameter of 456 mm, similar to the ones used for
Fig. 6. The £rst training set resembled data from the heart of
Fig. 9, the second training set resembled cross sections from
the male heart of Fig. 6, and the third training set included
both sets. The results of these training processes are applied
to the real SPECT heart data from a female. The results and
comparisons to other methods are shown in Fig. 9. The results
show that the training on male, female or the combination
of both data provides similar results. NBP reconstruction
provides comparable results to the MAP reconstruction with
p = 2.0 but with potentially better resolution in addition to
reduced computation. As in the previous SPECT data, these
£lters are signi£cantly more varied than those of the synthetic
phantom. Fig. 9(b) and (c) show a potential liability of the
edge-preserving MAP reconstruction: contouring in low SNR
data. Finally, Fig. 8 shows the set of £lters obtained after
training on a combined set of phantom heart male and female
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Figure 4: (a) Normalized distance of each cluster from the center
point; (b) Points in the sinogram where the £lters corresponding to the
most distant clusters are applied (∗ 10,◦ 22,¦ 27).

images. These £lters are signi£cantly more varied than those
of Fig. 3.

V. CONCLUSION

Nonlinear backprojection aims to achieve a tomographic
reconstruction method with improved visual quality
relative to FBP reconstructions and comparable to iterative
reconstructions such as Bayesian MAP estimates or OSEM
approximations to ML. The goal is costs near those of
FBP, and signi£cantly below that of conventional statistical
reconstruction methods. The results here show quality
competitive with statistical estimates; however, veri£cation
across a broader variety of imaging conditions will be needed.

Training of the £lters is computationally costly, but it is
an off-line process and is therefore not an important factor in
the cost of reconstruction. Classi£cation speed, however, is of
fundamental importance. Fast methods for data classi£cation
will be a key aspect of future work. Finding adequate
discriminants to reduce the dimension of the feature vector
may improve ef£ciency by both simplifying the classi£cation
process and reducing the number of necessary £lters.
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Figure 9: Comparison of tomographic reconstruction techniques
on SPECT data generated by a human female heart. Total Counts
≈ 150,000. (a) FBP reconstruction; (b) MAP reconstruction with
edge-preserving generalized Gaussian prior model (q = 1.1) and ML
value ofσ = 0.018 mm−1; (c) MAP reconstruction withq = 1.1 and
σ = 0.035 mm−1; (d) MAP reconstruction with Gaussian prior model
(q = 2.0), σ = 0.028 mm−1; (e) MAP reconstruction with Gaussian
prior, σ = 0.058 mm−1; (f) NBP reconstruction using 30 £lters
trained on synthetic female heart data. (g) NBP reconstruction using
30 £lters trained on synthetic male heart data. (h) NBP reconstruction
using 30 £lters trained on synthetic female and male heart data.


