Nonlinear Backprojection for Tomographic Reconstruction

Blanca I. Anda?, Ken D. Sauerand Charles A. Boumdan
2 Department of Electrical Engineering, 275 Fitzpatrick
University of Notre Dame, Notre Dame, IN 46556-5637

3 School of Electrical Engineering, Purdue University
West Lafayette, IN 47907-0501

Abstract method are

This work focuses on a tomographic image reconstruction
method which will be referred to as nonlinear backprojection
(NBP). Rather than explicitly statistically modeling the
forward process and the unknown image, we train an optimal
nonlinear backprojection operator which can be implemented ,, Ejimination of the need to specify a statistical model
non-iteratively. Under appropriate assumptions, the method ¢4 the forward process and for the images to be
forms its estimate by applying nonlinear £lters to sinogram reconstructed.
data, followed by conventional backprojection. The nonlinear
Elters are designed through off-line training.  Nonlinear pgint 1y permits the implicit incorporation of potentially
backprojection shows promising results relative to both £lterefloater complexity in the statistical behavior of images than the
backprojection and MAP Bayesian methods. simple Markov random £eld models found in most Bayesian

l. INTRODUCTION formulations. Various nonlinear system effects, such as scatter
aHd beam-hardening, may also be implicitly included, provided

Image reconstruction from projections can be approach ey appear also in the data used during the learning process
through deterministic or statistical methods. The most common y app 9 gp '

technique is deterministic £ltered backprojection (FBP), which NBP consists of a training phase and an application
is quite effective for complete projection data with high SNRPhase. To permit a better understanding of the NBP training
Control of noise artifacts is restricted primarily to the selectiorocess, a well-known statistical structure is imposed, i.e. the
of the low-pass element of the backprojection £lter, whog¥ojection data (sinogram) is modeled bynaxture mode[7].
design has been well studied [1]. The other principal metho&1ogram data conditioned on the image are often modeled as
that have been introduced are statistical, choosing the estim@@sson. However, in the current problem, we are interested
which best matches the probabilistic behavior of the dat. the unconditioned distribution of sinogram data, which
To accomp”sh this, a probab”istic model for the forwardnust include stochastic behavior of the image ensemble. The
physical process is introduced. When the maximum-likelihogdoice of using a mixture model provides a rexible and semi-
(ML) criterion is app”ed7 the reconstruction prob|em is ofte@arametric way to model unknown distribution Shapes. Mixture
approached via the expectation-maximization (EM) algorithiiodels can be used where there is no a priori information about
[2] or modiEcations thereof, most commonly ordered subsed§oup structure in the data, but we wish to cluster the data into
EM (OSEM) [3]. When Bayesian estimation is used, @n @ humber of groups [8]. A one-dimensional case of mixture
priori model that rezects beliefs about the image cross sectiparameter estimation for actual sinogram data (from the results
is necessary [4, 5, 6]. Bayesian methods result in substanfaFig. 2) is shown. Here, the histogram is approximated by a
improvements in many limited data or low SNR problemgnixture model of 4 classes.

The penalty paid for statistical methods is primarily the cost The goal of the training phase is the inference of parameters
of numerical optimization to £nd the maximuenposteriori  of the mixture model of the data and the optimization of a set of
probability (MAP) or ML estimate. Th@ posteriorimean is |inear two-dimensional sinogram £lters. The process of £nding
typically still more complex. the number of classes in the mixture and their corresponding

In this paper, we take a new statistical direction. Rath&arameters is called clustering. The classes and their descriptive
than follow typical inverse problem formulation, we attempt tfarameters are later used to classify the sinogram samples of
learn optimal or quasi-optimal reconstruction operators directiji€ training set. Also each class will have an associated two-
This new direction does not require the explicit modeling gfimensional sinogram £lter.
the forward process or unknown image. It will be referred to The £lters can then be designed by minimizing, as a
as nonlinear backprojection (NBP), since in its current form, fiinction of their coeffcients, the mean square error (MSE)
consists of nonlinear operations on the sinogram, followed ytween the training images and the images reconstructed by
backprojection. Some interesting potential advantages of thigckprojecting the nonlinearly £ltered sinogram samples. After

LThis work was supported by National Science Foundation grai{tiS Off-line training the cluster model and £lters are applied to
CCR97-07763. the reconstruction from arbitrary sinograms in a non-iterative,

nonlinear £Itered backprojection.

a. Elimination of iterative estimation, which should
save computation time relative to common Bayesian
techniques.




nonlinear £lter as a weighted sum of the linear £Iters optimized
for each class. The £ltering is similar to methodology
previously applied in image restoration and compression
[13] and interpolation [14]. Afterwards, the reconstruction is

] obtained by backprojecting the £Itered sinogram. The behavior
of the nonlinear £lter depends only on the local characteristics
of the sinogram. At the cost of higher complexity, the £lter’s
characteristics could also depend on the pixel-domain structure,
though the work done so far does not include this option.
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LetY be a vector containing all the sinogram daXa, be a
pixel in the unknown image cross section, arjdoe the vector

Tw e wm m m S W e % of sinogram samples taken from t}i€ window, where each
Figure 1: Mixture model of 4 classes approximating one-dimension&alCOrrésponds to a single point in the sinogram (the window
empirical probability density function of projection data. has a unique position along both the radialgnd angular)

coordinates). This window will normally be a two-dimensional
] . o _ . region centered at sinogram datymAlso let{;j} be the set of
Previously published works have similarly optimized,gices of data that inauence pix&l;; thus, in the discretized
estimates of the sinogram before conventional backprOJectlegse, the choice of indice§j} approximately describes a

[9, 10]. NBP differs from previous methods in the replacemegbjymn of the projection matrix corresponding to the given
of explicit statistical models for the likelihood function aad pixe|,

priori models for the image by the training of a very general . ) . .
model for the data and adaptive two-dimensional £lters. A Under a standard mixture density for multi-dimensional

preliminary exploration of NBP was presented in [11]. data, we model each window of sinogram da, as being
generated by a discrete clagg, where0 < C; < M. We will

An analogy between nonlinear backprojection and neufghye 1/ glters of the size of the window used fbF, denoted
networks can also be observed. A neural network is a massivgblFC where0 < ¢ < M. one for each class. With this notation
parallel distributed processor that has a natural propensity fﬁrmind, we will make two key assumptions expressed in the

storingexperientialknowledge and making it available for US€rollowing two equations, which will make an optimal estimate
[12]. It resembles natural neural systems in that kn°W|ed%mputationally feasible.

acquired through a learning process is stored in interneuron

connection strengths.  The similarity between nonlinear EXi{Y;}1{C;} = ZFC:’:],Y]-, 1)
backprojection and neural networks is in their need of a j
“learning” process that comes from examples. Both acquire, P[C; = c{Y;}] = »p(dY)) )

through this training, a non-explicitly described transformation

optimized with respect to the characteristics of the training s&duation (1) states that given the class information, the
Rather than apply the full generality of large-scale netwofRinimum mean square error (MMSE) pixel estimate\gfmay
necessary for the sort of reconstruction problems we wish 6§ obtained by applying an appropriate £lter to each sinogram
solve, we develop a non-linear, non-iterative estimator withVindow that inauences pixef; (i.e. the set of windows$Y’;}),

limited number of unknown parameters and commensuratéfd then backprojecting the result. Equation (2) states that the
simpler training. distribution of each class is dependent on only the projection

data in the associated window. These two assumptions simplify
the estimation process while, it is hoped, preserving suffcient
generality to improve on current methods.

Using (1) and (2), we compute the MMSE estimatotXgf
en the data in the set of windowW¥’;} by,

Il. THEORETICAL BACKGROUND OFNBP

Without limits on its form, the design and training of
an optimal tomographic inverse operator appears infeasitgxl
complex. We therefore impose a Gaussian mixture model on
windows of the data in the sinogram to allow inference of a EXy{Y;}] = EEXi{Y;}{CHHY;} (3)
limited number of parameters while maintaining the capability
of approximating varied distributions. These parameters will
be used to classify the training data.

B | Y FEYi| (Y3}
j

An important assumption that simplifes the training
process is the following: the minimum mean square error
(MMSE) estimate of a point in the reconstruction, given the

> B [FE VY,

proper classiEcation of all data, will be a linear function of B T _ _
the sinogram data in the appropriate windows (i.e. the set of - Z ZFC plel¥;) | ;.
sinogram windows which have an effect on the reconstruction / ¢

of such point). Under the data-dependence of classifcatioi$us the estimator is formed by applying a spatially varying
this requires a nonlinear £ltering of the sinogram, with thélter, > Fp(c|Y;) to the set of sinogram windows§Y;}.



Since the £lter depends on the data in the window througis well as neighboring rays. These sets of vectors are fed into
p(clY;), this weighted superposition of many conditionallya clustering program [14] that obtains the underlying mixture
optimal £lters is nonlinear, and may be thought of as afistribution for the data, i.e., it divides the training data into
adaptive £lter. Finally, in summing over the nonlinearly £lteredlusters parameterized by their means, variancesaapdori
sinogram windows, pixeK, is reconstructed via conventionalprobabilities. Such ML estimation problems for mixtures’
backprojection. parameters are degenerate in the absence of constraints

The distributionp(c|Y;) must be estimated and the glterd18, 19].  Experimental work has shown an advantage in
F, designed as the training phase of NBP. Under a GaussEgpstraining covariance matrices to be diagonal and equal in

mixture model forY;, wherep(Y;|c) is a multivariate Gaussian modestly-sized Fralnmg sets, which reduces the number of
ST M—1 parameters and improves robustness.
distribution, andy_." " 7. = 1, we have

p(Yjle)me

The use of such small windows is possible because of the
ple]Y;) = . 4) use of project_ion data that is pre_-£lt§red in the radial variable.
I Yoo p(Yjle)me The pre-£ltering used a multiplication of the ramp £lter as
dictated by £ltered backprojection theory explained in [20]
The parameters of(Yj|c) and the probabilitiest. may be ang a raised cosine roll-off £lter for noise attenuation. This
estimated using the EM algorithm within an agglomerativgreserves nonlocal properties of backprojection. The raised
clustering algorithm [15, 16, 17]. cosine roll-off £lter has cut-off signifcantly higher than would
To design the £lter’., we £rst rewrite (3) in the form be desirable for FBP.

It is important to note that no £ltering is applied to the
ZFTY ) training data during the clustering and classi£cation process.
c e A £lter such as that used for pre-£ltering includes signiEcant
high-frequency noise emphasis, therefore it reduces the
jaccuracy of classitcation. Pre-£ltering is applied to the data
before NBP’s non-linear £ltering and backprojection both
during the training phase and the application phase.

B = Y FT [ o ple)y; | =

C

whereY, = >_; p(clY;)Y;, forms the component of the pixe
estimate that will result from the £ltering by thé" £lter.

By de£ning the matrices andY” as Another important issue which is currently under study is

2 that of choice of data discriminants for classifcation. Simple

F Euclidean distance among clusters is found not to be generally
F = ) indicative of the difference among corresponding £lters.
: Finding optimal discriminants would result in a clustering

L taking greatest advantage of the nonlinear £lters’ adaptability.

These discriminants could also lower the dimensionality of
the data used for clustering and result in lower computational
cost. Toward this end, the windows of projection data are
Karhunen-Léve (KL) transformed before being clustered.

Such a distance preserving transform will have no effect on
the optimal clusterings, though some effect on our sub-optimal
the collection of optimal £lter8™* may be computed as the leastlusters is likely. However, the KL transform produces a set

}:/OT }:/1T }:/]\571 .(pixel k)
Y& vio-.o YL | (pixelk+1)

squares solution to of uncorrelated components and dimensionality reduction
. ) o _ could be achieved by selecting components according to their
= arngmE (X -YF)" (X -YF)]. (6) variances. The KL transform is obtained by generating an

ensemble-averaged correlation matrix from the windows of
The computation of the expectation in (6) is impracticaljata that belong to the training set. The DC component, for
especially since we wish to avoid explicitly modeling pixelgxample, does not appear to provide relevant information for
X as well as the conventional likelihood linking andY".  the giter design problem, and is therefore eliminated from
Therefore, it is replaced by an ensemble average across acggdsiccation criteria. The type of classi€cation for these
of training images (as realizations &f) and pseudo-random experiments is “soft”, as given in (3), i.e the testing data is
projection data from forward projections of thesé (as not assigned to a single class (single £lter), and £ltering is
realizations oft”). Following the training of cluster parametersy weighted combination of the linear £lters, with weights

and £lters, the NBP system is ready to be applied to arbitragytained from the posterioriprobabilities of classes.

sinogram data sets outside the training set.
9 9 For fewer than 100 classes @, the least-squares problem

of (6) is solved directly via matrix inversion routines using
IIl. | MPLEMENTATIONAL CONSIDERATIONS MATLAB. That is, the solution for (6) can be expressed
In the current implementation, the vector for clustering arals, F* = (Y1Y)"'YTX. For larger numbers, iterative
classifcation of each projection point consisted of 9 data frod@scent methods are used to salg with £lters that contain
a3 x 3 window in the sinogram, including both adjacent anglesnity in their center coefEcient and zero elsewhere as initial



conditions. While gradient methods may be applied, we have
found that signifcantly faster convergence is achieved using
Iterative Coordinate Descent (ICD) in the domain of the £lter
coeffcients, similar to the image reconstruction methods of
[21]. Since this training is off-line, though, its cost is of limited
importance.

IV. EXPERIMENTAL RESULTS

For Fig. 2, the training was realized on a set of phantomg
whose projection data consisted of 64 uniformly spaced
projections of 128 rays each from a £eld of diameter 200 mm|,
These phantoms have been created with limited resolutiol
to mimic more realistic medical problems. For comparison,
we include in all cases below results using FBP and MAP
estimation under variations of the Generalized Gaussial
Markov Random Field (GGMRF) as tlzepriori image model,
with density function of the form

1 1
9s(x) = —exp Tt D bjlzy —wpl?
{j.k}reN Lc[d]

. ) ) ] ) ) Figure 2: Comparison of tomographic reconstruction techniques
where V' is the set of all neighboring pixel paird,; ;. is on projection data generated by a synthetic phantom image. The
the coefEcient linking pixelg and k, o represents the scale projection data has Poisson noise added. Total Counts = 1,310,720.
of the prior image, and < ¢ < 2 is a parameter which (a) Original Phantom; (b) FBP reconstruction with Gaussian £lter
controls the smoothness of the reconstruction. This mod®SE = 1.7616); (c) MAP reconstruction with Gaussian prior model
includes a Gaussian MRF for = 2, and an absolute-value (MSE = 1.708); (d) NBP reconstruction using 30 training £lters (MSE
potential function withy = 1. In general, smaller values of = 2.2786);

q allow sharper edges to form in reconstructed images. Prior

information may also be available in the form of constraints on The issue of £nding discriminants for the projection data is

the reconstructed solution. We assume that the set of feasiple, study. Some of the experimental work is shown in Fig. 4
reconstruction is convex, and we choos to be the set g (4 provides a measure of the dispersion in the space of
of non-negative reconstructions. Parameter selections for }& < " Notice that clusters). 22 and27 are the most distant

GGMREF include both heuristic choices and ML estimation oélusters from the origin; they also are among the ones with the

the scale as in [22]. lowesta priori probability of occurrence as shown in Fig. 3(b).

The £lters obtained in the training process are applied Fig. 4(b) shows the sinogram of the noisy phantom in Fig. 2
the phantom of Fig. 2 which was not part of the training set. And the locations having highesiposterioriprobability of the
comparison of the original phantom, the FBP reconstructiodlusters corresponding to £lters farthest from the origin. Many
the MAP reconstruction and the NBP reconstruction isfthese locations are near high intensity edges.

the MSE results are comparable, but NBP does less well. pass, as can be seen in Fig. 3(a). Fig. 5(b) illustrates a relatively

Fig. 3(a) shows the set of linear £lters that are used on Fig.uhiform pattern of application for these £lters under MMSE
Each slice of the graph represents the 3 £lter values for a training.
specifc class, concatenated into a one-dimensional array. Theln Fig. 6 FBP, MAP with Gaussiaa priori image models

clustering determined 30 quasi-optimal classes; therefore thgiey NBP are compared forl0 x 128 SPECT heart imaging
are 30 linear £lters with widely varying frequency responsegy;, having approximately 150,000 total counts. NBP for
The number of clusters which is optimal under the Rissanglls .ase was trained using synthetic phantoms of similar
criterion applied in [14] is likely greater than 30; since here Wey o4 creristics to apparently typical cross sections. There is
are interested in the simplicity of a relatively small numbers of et sypjective quality of the NBP result here with good
classes, this number is used as the maximum throughout H?fge preservation and good noise smoothing qualities. The

results below. Fig. 3(b) ;hows the prior probabilities for each NBP image is competitive in quality with the iterative MAP
the classes corresponding to these £lters. reconstructions using either the ML scale parameter or the
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Figure 4: (a) Normalized distance of each cluster from the center
LD oint; (b) Points in the sinogram where the £lters corresponding to the
Figure 3: Resulting £lters after training on synthetic phantom data. &)ost distant clusters are applied10, o 22, 27).
Linear £lters used on projection data generated by phantom images.
Conventional FBP with little noise attenuation would result from

Elters each having a single pulse at the center index; (b) Maximumages. These £lters are signifcantly more varied than those
likelihood estimation of probabilities of occurrence of these £ltersf Fig. 3.
respective classes.

V. CONCLUSION

larger value resulting in less regularization. The £lters for this Nonlinear backprojection aims to achieve a tomographic

case (Fig. 7) demonstrate signi£cantly more variety than thaseonstruction method with improved visual quality

of the synthetic phantom. relative to FBP reconstructions and comparable to iterative
Fig. 9 represents the testing of the £lters resulting frofgconstructions such as Bayesian MAP estimates or OSEM

three training processes on different sets of synthetic heart d@@Proximations to ML. The goal is costs near those of
to determine NBP’s sensitivity to accurate choice for traininEBP' and s_,|gn|£cantly below that of conventional stat|st|c§1I
data. All data sets consist of 120 projections and 128 rays edgfenstruction methods.  The results here show quality
from a £eld diameter of 456 mm, similar to the ones used fGPMPetitive with statistical estimates; however, veri€cation
Fig. 6. The £rst training set resembled data from the heart 8ff0SS & broader variety of imaging conditions will be needed.

Fig. 9, the second training set resembled cross sections fromTraining of the £lters is computationally costly, but it is
the male heart of Fig. 6, and the third training set includeah off-line process and is therefore not an important factor in
both sets. The results of these training processes are apptheei cost of reconstruction. Classifcation speed, however, is of
to the real SPECT heart data from a female. The results aiutidamental importance. Fast methods for data classi£cation
comparisons to other methods are shown in Fig. 9. The resultil be a key aspect of future work. Finding adequate
show that the training on male, female or the combinatiafiscriminants to reduce the dimension of the feature vector
of both data provides similar results. NBP reconstructiomay improve efEciency by both simplifying the classiEcation
provides comparable results to the MAP reconstruction wifirocess and reducing the number of necessary £lters.

p = 2.0 but with potentially better resolution in addition to
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