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ABSTRACT 
 
Khanna, Gunjan.  Masters of Science.  Purdue University, Dec 2003.  Self Checking 
Network Protocols : A Monitor Based Approach.  Major Professor:  Saurabh Bagchi. 
 

The wide deployment of high-speed computer networks has made distributed 
systems ubiquitous in today’s connected world. The systems are affected by disruption 
i.e. errors within the protocol or intrusions. This motivates the need for building 
distributed systems that are capable of tolerating disruptions and providing highly 
available and correctly functioning services. The machines on which the applications are 
hosted are heterogeneous in nature, the applications often run legacy code without the 
availability of their source code, the systems are of very large scales (of the order of tens 
of thousands of protocol participants) and the systems often have soft real-time 
guarantees. While it may be possible to devise very optimized and targeted solutions for 
individual distributed applications, such approaches are not very interesting from a 
research standpoint due to their limited applicability. In developing this thesis we have 
focused on Monitor based detection of disruptions in a distributed environment. Monitor 
detects the disruptions by looking at only the external message exchanges, without 
looking at the internal transitions of the monitored entity. It is made to run 
asynchronously to the application thus avoiding the performance bottleneck. We have 
chosen a black box Monitor approach suitable for any generic protocol. By developing 
the "Monitor Based Detection Approach", aim is to provide higher reliability and 
dependability.  

We propose a Hierarchical Monitoring approach by placing a hierarchy of local 
and Global Monitors in the system. A Local Monitor only monitors a set of local nodes 
while a Global Monitor can have several local monitors reporting local interactions to it. 
This provides increased coverage and accuracy of detection. The Monitor consists of a 
Rule Classifier, Data Capture and Matching Engine as the main components. The rules 
are classified into Local and Global rules intelligently by the rule classifier. The 
Matching Engine consists of fast matching algorithms each for Temporal and 
Combinatorial rules. Testing of the Monitor is done on a Distributed Reliable Multicast 
Protocol called TRAM.  The Monitor is tested by injecting faults into the running 
protocol using a Fault Injector.  
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1 INTRODUCTION 

 
The wide deployment of high-speed computer networks has made distributed 

systems ubiquitous in today’s connected world. Distributed middleware, such as 
CORBA, DCOM, GLOBE, distributed file systems, such as NFS, XFS and distributed 
coordination based systems, such as publish-subscribe systems, distributed network 
protocols, such as reliable multicast, and above all, the distributed infrastructure of the 
world wide web form the backbone of much of the information technology infrastructure 
of the world today. The infrastructure, however, is increasingly facing the challenge of 
dependability outages. The outages result both from naturally occurring failures and 
malicious attacks. The naturally occurring failures can be crash failures (server halts but 
works correctly till it halts), omission send or receive failures (server fails to send or 
receive incoming messages), timing failures (server’s response falls outside the 
acceptable time bound), response failures (server’s response is incorrect because of value 
failure or incorrect flow of control), or, the worst scenario, arbitrary or Byzantine failures 
(server may produce arbitrary responses at arbitrary times). The potential causes of 
downtime are manifold – hardware failures, system or application software failures, 
operational failures (or operator errors), maintenance (such as, backups and software 
upgrades), environmental problems (such as, power outages and communication lines 
being down).  

An example from recent memory is AT&T’s ATM network outage in February, 
2001 which caused a downtime of 4 hours for 7% of all its ATM customers and was 
caused by a misconfiguration in its WAN switch resulting in a firestorm of system 
management messages  [2]. The outages may also be caused by malicious intruders 
launching attacks against the infrastructure through sending viruses, worms, malformed 
network packets, etc. designed to exploit vulnerabilities in the hardware or software 
design of the systems. An example from recent times is the distributed denial of service 
(DDoS) attack that brought down 9 of the 13 root DNS servers that control the internet 
traffic. We refer to the combination of failures and intrusions as disruptions in the rest of 
this proposal. The consequences of downtime of distributed systems are catastrophic. A 
survey of 450 Fortune 1000 companies found the mean loss of revenue due to an hour of 
network outage was $82,500, with financial institutions being in the higher end of the 
curve with downtime costs of $6M/hour [32]. Failures of distributed systems employed in 
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safety critical applications, such as, flight control, nuclear plant monitoring, and railway 
signaling, can lead to loss of human lives.  

This motivates the need for building distributed systems that are capable of 
tolerating disruptions and providing highly available and correctly functioning services. 
The challenges to providing this in today’s distributed systems are manifold. The 
machines on which the applications are hosted are heterogeneous in nature, the 
applications often run legacy code without the availability of their source code, the 
systems are of very large scales, of the order of tens of thousands of protocol participants 
(such as, a system with DNS clients and servers), and the systems have soft real-time 
guarantees. While it may be possible to devise very optimized and targeted solutions for 
individual distributed applications, such approaches are not very interesting from a 
research standpoint due to their limited applicability.  

In our research, we propose a Generic Monitor approach to detect disruptions in 
the protocol. Disruptions is the term coined for collective set of errors and intrusions 
which cause discrepancies in the operating protocols. We propose a Monitor-based 
solution to detect disruptions that can be applied to a large class of distributed 
applications. The solution approach employs a Monitor that snoops on the 
communication between application modules (also referred to as, protocol participants) 
and performs matching of the observed communication against a rule base which 
characterizes acceptable protocol behavior. The research addresses the following critical 
issues: 

The Monitor should not become a performance bottleneck. The Monitor functions 
asynchronously to the application protocol and runs on independent hosts, not those of 
the participants.  

The Monitor should be scalable. We propose a Hierarchical Monitor structure. 
The Local Monitors oversee the local communication among the participants, while the 
higher level monitors are invoked if the behavior to be monitored spans multiple local 
clusters. Since for a well-designed protocol, the local communication should be the 
common communication pattern, the proposed architecture can scale with the number of 
participants.  

The Monitor should be generic and widely applicable. The design of the Monitor 
is generic and applicable to message passing based distributed protocols. The Rule Base 
is specific to the application. The rule base is specified in a commonly understandable 
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temporal and combinatorial logic format. The monitor is designed to take the rule base as 
input and partition it into local and global rules according to the deployment.  

The Monitor should have low latency of detection. This is ensured by partitioning 
the rules intelligently into local and global rules, which reduces the number of rules to be 
matched at each monitor. Highly speed optimized matching algorithms are designed for 
matching the temporal and the combinatorial rules. The matching algorithm uses multiple 
threads and therefore can leverage any concurrency available in the host.   

We extend the Monitor approach by developing Hierarchical Monitor based 
detection system. In the hierarchical structure there are several Monitors placed at 
different logical levels in the system making a hierarchy of local, intermediate and global 
monitors. The Local Monitors directly snoop on the messages exchanged between the 
protocol participants. The Intermediate and Global Monitors are invoked for interactions 
that span across the hosts monitored by a local monitor. The Intermediate and Global 
monitors observe only messages forwarded by the local monitors and therefore perform 
rule matching on a subset (hopefully, a small subset) of messages. Each of the 
Intermediate and Global Monitors have several Local Monitors working on a subset of 
entire nodes which they are monitoring respectively. Diving the entire space under 
several Local and Global Monitors reduces the number of rules matched at each level. It 
helps in reducing the detection of latency because of reduction of load and also improves 
in coverage of the detection system because not all interaction patterns in distributed 
systems are local.   

The Monitor-based approach is demonstrated on two real world distributed 
applications - A reliable multicast protocol called TRAM and a control protocol for 
managing sessions called SIP. In the next chapter we explain the protocols TRAM and 
SIP, their characteristics and how these protocols suffer from attacks. In chapter we 
demonstrate an orthogonal way of making a protocol robust – by augmenting the protocol 
with carefully designed extensions and embedding the extensions within the protocol 
with non-trivial code additions. We demonstrate the methodology on TRAM and come 
up with a new protocol called TRAM++ which is resilient to malicious and slow 
receivers and reduces the buffer requirement of the system as well. Chapter 4 discusses 
the monitor based detection approach. It describes the Monitor architecture and rule 
classification.  Implementation and results form chapter 5 with system details included. 
Chapter 6 discusses the related research. Finally we conclude in chapter 7 and provide 
directions for future work. 
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2 SYSTEM DESCRIPTION 
 

The networked systems are forming an integral part of human lives causing 
increased reliance on distributed computing. Several support systems and even critical 
life systems rely on these distributed protocols. Hence the need to make these underlying 
protocols robust is imperative and not just necessary. We look at the two protocols that 
are in wide use in building information technology infrastructures, are deployed in 
critical environments, and have a distributed nature. The two protocols are the Session 
Initiation Protocol (SIP) and the reliable multicast protocol called TRAM. These are 
described below. 

 
2.1 Session Initiation Protocol (SIP) 
 

It is an application layer control protocol for creating, modifying and terminating 
sessions involving internet telephone calls, multimedia distribution and conferences 
between two or more participants. SIP is an initiation protocol which helps the clients to 
agree on the characterization of the session which will exist between the two. It is not a 
vertically integrated system nor does it have any network reservation capabilities. But it 
does provide some security methods like DoS prevention, authentication, encryption etc. 
SIP supports the five facets namely : 

1. User location 
2. User availability 
3. User capabilities 
4. Session setup 
5. Session Management 

SIP message or packet consists of a method name, request URI, protocol version. 
The method name is the type of the message carried by the packet. The various type of 
messages which exist in SIP are REGISTER, INVITE, ACK, CANCEL and BYE. The 
status codes represent the type of response and fall in 6 categories. 

I. 1xx: Provisional -- request received, continuing to process the request; 
II. 2xx: Success -- the action was successfully received, understood, and accepted; 
III. 3xx: Redirection -- further action needs to be taken in order to complete the 

request; 
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IV. 4xx: Client Error -- the request contains bad syntax or cannot be fulfilled at this 
server; 

V. 5xx: Server Error -- the server failed to fulfill an apparently valid request; 
VI. 6xx: Global Failure -- the request cannot be fulfilled at any server. 

SIP initiation causes a message to go to the server which looks for that particular 
client, if its available then the request is forwarded otherwise the request is forwarded to 
the proxy server which looks for the requested client. A detailed description of the 
protocol can be found at  [34] [35] [36]. 
 
 
2.1.1 Potential Threats 
 
The protocol is designed to initiate a session and manage it but it suffers from several 
vulnerabilities. Some of them are listed below along with the word description of the rule 
to detect the attack.  
 

1. Repeated Calling and Hanging Up: The client repeatedly initiates a request with 
the proxy and then cancels it, thus launching a DoS attack against the proxy. Time 
between receipt of any 1XX response and sending of ‘Cancel’ message cannot be 
less than ‘t’ where ‘t’ is the Expire time specified in the invite header. 

2. Babbling: A client tries to set up various sessions with the proxy with out killing 
the previous sessions. .The number N of invite messages in any time duration t 
with different CSeq numbers cannot be more than n, where n = floor(t/expire). 

 
           0<|Mi|<n t ∈ (ti,ti+k)  k is ∞ and i=0, where Mi is number of invite messages 
 
3. Malicious session termination through SIP ID spoofing: A malicious user can 

spoof the ID of a valid client and send a false Bye message. It can be prevented 
by ensuring that a 200OK/487 response to a false BYE message must not be 
initiated by that particular user agent indicating compromised IP. 

4. Compromised Clients: A compromised client can send various message request 
with the same session id. Avoid it by ensuring that clients cannot send 
consecutive requests with different header/message body without changing the 
sequence number of the request. 

5. Repeated Connecting and Hanging up: A client can repeatedly call and then 
terminate the session. A rule to avoid it should prevent a next transaction 
immediately after a 2XX receipt cannot be a BYE more than ‘n’ times in time 
duration t. 

6. Client Error: A client can send the same request of the session once the 
termination message is received. So one should ensure that after receiving a 4XX 
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message from a particular domain, CUA should not resend the same request 
without modifying request and changing CSeq. 

7. Compromised Proxy Server: A compromised proxy can send malicious responses 
to client instead of sending the original response forwarded by other proxy. Hence 
if a proxy server receives a 2XX response to a request that it had sent, it has to 
forward the same response upstream, and cannot generate a non-2XX response.  

 
∀ ∈ + ⇒ ⇒ ∈ +T t t k V U q t t bN N T q I I( , ) ( , ) where VT stands for receipt 

of 2XX response, and Uq stands for passing on response upstream. 
8. If proxy does not generate response to request received, it is faulty 
                    T : Vti ≠ Vti+∆ where ∆ is the expire time in the request header. 
9. Looping: It could happen that the proxy generated too many responses which are 

circulating in the system. A proxy cannot generate ‘n’ 482 responses in time 
period t, where n = no. of requests serviced in time period t and this number is 
greater than a threshold over a reasonably wide time interval. 

 
∀ ∈t (ti,ti+k) L ≤ |Vt|  ⇒  L’ ≤ |Bq| ≤ (n-1) ∀ ∈q  (ti,ti+k) where Vt is 

requests generated in time ti to ti+k, and B is 482 responses generated. 
These are some of the vulnerabilities that SIP inherits because of a design which is 

not robust.  
 

2.2 Tree Based reliable Multicast Protocol (TRAM) 
 
IP Multicast is the basic multicasting framework which exists in the internet. This 

multicast is unreliable and earned a bad name because of initial problems like large 
network bandwidth usage and lack of underlying support mechanism. At the other front 
Reliable multicast protocols are important classes of protocols which reliably 
disseminating information from a sender to multiple receivers in the face of node and link 
failures. Guarantee of packet delivery make them important over the simple unreliable IP 
Multicast. A Tree-based Reliable Multicast Protocol (TRAM) provides scalable reliable 
multicast by grouping receivers in hierarchical repair groups and using a selective 
acknowledgment mechanism. The detailed description of TRAM can be found in  [3] [4]. 
TRAM is distributed as a part of the Java Reliable Multicast Service (JRMS) by Sun 
Microsystems  [10]. JRMS is a set of libraries and services for building multicast-aware 
applications.  
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2.2.1 TRAM Protocol Features  
 
TRAM ensures a reliability of packet delivery in case of network and node 

failures as long as the sender has sent that packet and received by at least one node. It 
ensures this reliability by placing Repair Heads (RH) at intermediate locations in each 
LAN for local repair. If a receiver in a particular LAN loses a packet then it asks for its 
local Repair Head for repair of that packet. The entire structure is formed like a TREE 
with the sender as root. RH’s form the intermediate repair nodes with receivers or 
multiple RH below each. Each RH is responsible for local repair in its region. This makes 
the protocol scalable as each RH is only responsible for a small group of receivers. The 
RH’s are dynamically chosen  within each LAN called the LAN Head. In each LAN a 
node is chosen to serve as RH for the local nodes. If RH dies or goes dysfunctional then 
another node from the same LAN is made the RH.  

 
2.2.1.1 Ack Implosion : 

The local repair heads are also responsible for Ack processing of the nodes under 
them. Each repair head sends a cumulative ack for all the nodes under them to the RH up 
above and so on until it reaches the sender. The sender deletes the packet from buffer 
only if all the nodes below (one level below) have acked the packet. This policy is 
followed by all RH’s as well i.e. until all the nodes ack the packet its not deleted from the 
RH’s local buffer. Since all nodes are not responsible to send ack’s to sender this 
prevents the Ack implosion problem and sender doesn’t get bogged down by too many 
acks. TRAM removes the problem of Ack implosion. 

 
2.2.1.2 Tree Formation: 

TRAM has various options which can be set to do tree formation. One can do an 
optimized LAN formation in which if a sender is in some other LAN and the receivers 
are in another LAN then a node is chosen in that LAN to serve as repair head to the local 
receivers. TRAM tries to place RH’s optimally so that inter LAN traffic is minimized. A 
suitable LAN can be chosen by looking at the TTL fields of the packets. TRAM has 
different tree formation for unidirectional multicast and bidirectional multicast. For our 
study we have chosen unidirectional multicast mechanism. It assumes that only sender 
can do a multicast to the receivers and not other way round. Sender initiates the process 
of Tree formation by sending a Beacon message. The nodes interested in the data respond 
by sending a Head Bind message. The sender (or repair head) responds by sending an 
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Accept member or reject member response. A receiver could be rejected because the 
sender might have got a large number of Head bind request which it is unable to 
acknowledge.   

 
2.2.1.3 Ack Mechanism: 

TRAM is designed for high scalability targeted towards multicasting streaming 
data from a single sender to a large number of receivers. TRAM ensures reliability by 
using a selective acknowledgement mechanism. An ack is sent in the form of an offset 
and a bit vector once every ack window (32 packets).  Ack is only sent to the next level 
repair head (could be sender as well) which does ack accumulation. . Every ack message 
contains a start message number indicating the first missing message, and a bit vector, 
with a 1 denoting a missing packet and a 0 denoting a received packet. If no packets are 
missing, the message number indicates all messages prior to and including this one has 
been received and the bit vector is of zero length. An ack message is sent after every ack 
window worth of packets has been received, or an ack interval timer goes off. 

 
 
 
 
 
 
 
 
 
 

Figure 1:A simple TRAM build tree with sender at  root, Repair Heads at the intermediate level and 

receivers as leaves. 

The Figure 1 shows a simple TRAM tree with sender at root, RH at the middle 
level and receivers at the leaf level. 

TRAM provides scalability by adopting a hierarchical tree-based repair 
mechanism. The receivers and the data source of a multicast session in TRAM interact 
with each other to dynamically form repair groups. These repair groups are linked 
together in a hierarchical manner to form a tree with the sender at the root of the tree. 
Figure 1 shows a typical TRAM repair tree. The nodes participating in TRAM play three 
roles, some nodes playing multiple roles – sender, receiver and repair head (RH). Every 

Receivers Receivers 

RH RH

S



 

 

9 

repair group has a receiver that functions as a group head; the rest function as group 
members which are said to be affiliated with their head. All members receive data 
multicast by the sender.  The group members report lost and successfully received 
messages to the group head using a selective acknowledgement mechanism. The RH’s 
maintain a high and low water mark for monitoring cache occupancy. If the amount of 
buffer occupied by the packets goes beyond the high water mark, an attempt is made to 
purge the cache. Failure to do so is taken as an indication of congestion in the network.  
The RHs aggregate acks from all its members and send an aggregate ack up to the sender 
to avoid the problem of ack implosion. The data rate sent out by the sender is bounded by 
maximum and minimum rates configured at the sender. Receivers that cannot keep up 
with the minimum data rate can be pruned from the repair tree. 

 
2.2.1.4 Flow Control 

 
TRAM incorporates rate based flow control to control the flow of packets and  

prevent cascading effects. Each RH and sender has a high and low water mark. When the 
buffer value reaches the high water mark any new packets are discarded and acks are 
demanded from the receiver below to get the buffer empty. Entities below also report the 
congestion above to the sender by setting their congestion bit in the flags.  Congestion is 
detected on the basis of missing packets.  
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Figure 2: The above state diagrams represent (a) Receiving Module of a Repair Head (b) State 

Transitions caused by Hello Messages. 
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2.2.2 Lacking Security and Robustness in TRAM 
  

TRAM is designed without security and with only simple crash failures in mind. 
It assumes that every receiver will be behaving according to the protocol and sending 
acks at regular rate. But in a real system and wide deployment different nodes have 
different real time constraints because they might be lying in completely different LAN’s 
with different available bandwidths. In TRAM a single malicious receiver could withhold 
the acks. This will inhibit the repair head up above to send acks and the effect ripples up 
to the sender bringing the whole system’s performance down. Also all the repair heads 
keep a copy of the data maintaining a huge buffer and it is maintained at all the RH’s 
including sender. If a single node withholds the acks then buffer for all the RH’s in the 
path to sender gets filled up to the high water mark. A simple application of video on 
demand using this protocol will make it inefficient if one receiver is slow because that 
will cause jitter in other receivers video as well.( because the entire tree data rate is 
governed by the slowest receiver.) We propose an efficient protocol called TRAM++ 
which is based on TRAM but is resilient to slow and malicious receivers and efficiently 
manages buffer in the system. Some of the other potential threats to the protocol are as 
follows : 

1. Buffer Overflow can be caused by withholding the acks by a single receiver . 
2. A malicious node can cause repeated LAN optimizations in TRAM by 

volunteering for being Repair head and then resigning later. 
3. A receiver can malfunction by sending repeated Nacks.  

a. 0≤ |Nrate| ≤ Nmax t ∈ (ti,ti+k)  k is an integral multiple of the Ack 
Windows. where Nmax << Nindividual_max * Max number of members 

4. A malicious repair head could feign overloading by not accepting any more 
members under it. 

5. A receiver could feign congestion by repeatedly sending packets with 
congestion bit set. 

6. A bit flip could cause error in the height variable of each node which might 
lead to inappropriate affiliations by new members. 

Items 1-5 can be caused by malicious entities or an unfortunate sequence of natural 
errors. It is impossible to determine intent, e.g., if there is a transient condition at the 
repair head which causes it to detect wrongly that there is overloading, or it is being 
malicious. In our system, there is no cause to distinguish between the two. Item 6 is 
caused by a natural error, but it is conceivable that incorrect tree height may have been 
sent in by an entity keen to disrupt the multicast tree formation. 
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All the above disruptions make TRAM non-dependable and motivates a generic solution 
to improve dependability. 
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3 Making Protocol Robust : TRAM++ 
 
Making a protocol reliable and fail safe requires knowing the vulnerabilities that a 

protocol suffers from. In the previous chapter we looked at two example protocols 
namely SIP and TRAM which are widely deployed and popular in the research 
community for the standardization and availability of source code. We described a few 
potential threats to the protocol which hamper their deployment for in critical 
applications. In this chapter we have analyzed TRAM for one vulnerability and one 
inefficiency and propose an augmented protocol called TRAM++ [33].  
 

3.1 TRAM++ 
 

TRAM++ builds upon TRAM with the following two goals 
1. Handle slow or malicious receivers in the environment while localizing their effect 

on correctly functioning receivers. 
2. Reduce the resource requirement at the repair heads, chiefly cache utilization, but 

also processing. 
To achieve these goals, TRAM++ introduces the changes described below. A 

figure of the hierarchical structure in TRAM++ with a sender, receivers and repair heads 
is shown in Figure 3(b).  

 
3.1.1 Buffer management at RH:  
 

The design point in TRAM++ is that the RHs may be spread over a wide area and 
have constraints on available buffer, while the sender has higher, though not infinite, 
buffer capacity. TRAM++ optimizes the buffer requirement at the RHs by pruning old 
messages even if they have not been acknowledged by all its receivers. The advantage is 
that this frees up the buffer resources at the RH for accommodating new messages which 
are required for the well-behaved receivers to make progress. Consequently, a nack from 
a receiver may not always be satisfied locally at the immediate RH. A message is not 
discarded from the sender’s storage till it has been acked by all the receivers. Therefore, 
a nack can always be satisfied by the sender. When a RH cannot satisfy a nack, it 
indicates to the receiver to initiate a temporary re-affiliation with a RH at a higher level. 
This is shown through the dotted arrow in Figure 3(b), where the receiver re-affiliates 
temporarily for recovering the messages its RH does not have. Reaffiliation is transient 
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and lasts for the duration of recovery of the single packet. This process is repeated 
recursively if recovery is not successful at the higher level, till the receiver reaffiliates 
with the sender at which point its nack is guaranteed to be satisfied. 

 
3.1.2 Handling Slow or Malicious Receivers:  
 

TRAM lets the data rate be driven by the slowest receiver. Therefore, the effect of 
a slow receiver is visible to the correctly functioning receivers all across the network. 
Even if the pruning feature of TRAM is turned on (which it is not for most deployments), 
the threshold minimum tolerable data rate is set quite conservatively and there are likely 
to be large periods of slowdown to the normal receivers. On the contrary, TRAM++ 
localizes the disruption to the part of the tree where the lagging receivers reside. In 
TRAM++, the RH uses two types of acks – a greedy ack and a permanent ack. The 
maximum sequence number of the packet that the sender should send down is sent 
piggybacked with acks. The greedy ack is sent by the RH upwards when its buffer 
reaches the low water mark. The purpose of sending the greedy ack is to indicate to the 
sender to send new data down even though all the receivers have not acked yet. The 
permanent ack is sent once all the receivers have acked. The role of this ack is to let the 
sender know that reclamation of storage is possible. In TRAM, the sequence number sent 
upwards is determined by the slowest receiver thus affecting the data rate observed by all 
the receivers, normal or laggard. In TRAM++, the sequence number is determined by the 
RH’s available buffer capacity. Incorporating the additional ack requires additional 
computation at the sender and the RHs which is the same cost as for the basic ack 
determination in TRAM. But in a failure free system where all receivers are keeping up 
with the data rate, the greedy acks are not sent and therefore, the additional processing 
overhead is not observed. TRAM++ has the functionality to prune receivers which are 
considered lagging beyond an acceptable degree. The metric used for the pruning 
decision is the percentage of retransmission requests which cannot be locally satisfied as 
a fraction of the total number of packets. When the metric exceeds a tunable threshold 
parameter, the receiver is pruned. This is an effective means of removing malicious 
receivers which may increase the processing load in the system by requesting repeated 
retransmissions. This may serve as an indication to the receiver to disassociate from the 
current RH because of its resource constraints and reaffiliate with a more resource rich 
RH.  
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Temporary Repair
Group Formation  

Figure 3: (a) Shows the TRAM interrelationships amongst the receiver, RH’s and Sender; (b) Shows 

the interrelationship amongst the  receivers, RH’s and Sender in TRAM++ 

Figure 3(a) shows a TRAM deployment with a sender, two levels of RHs and 
multiple receivers connected through links over which bi-directional data and ack 
messages flow. Two examples of repair groups are shown, one involving the sender and 
the three RHs at the first level, and the second showing a RH and its receivers. 

 

3.2 TRAM Implementation   
 

The TRAM code is multi-threaded. These threads are responsible for carrying out 
the group management functions in addition to basic sending and receiving of data 
packets. GroupMgmtThread is the main thread which is responsible for starting up 
TRAM, initiation of the beacon messages by the sender and affiliation of the receivers to 
the senders or repair heads. The beacon messages are used to advertise the session and 
invite nodes to join the multicast session. This thread performs the task of sending 
periodic hello messages among the receivers and its head. Each receiver also maintains a 
backup list of heads which it can switch to if the current head resigns or fails. Once the 
data transmission phase starts, InputDispThread and OutputDispThread come into 
picture. OutputDispThread transmits the packets. InputdispThread gives the packet to all 
the listeners and hence, each entity calls its received packet method to get the desired 
packet.  The sender and the repair head’s sending functionality use HeadAck class to 
receive ack packets.  The receivers use MemberAck class to receive data packets and to 
send acks. Repair head uses MemberAck class, as it is a receiver for the sender above, to 
send cumulative acks. Figure 4 shows pictorially the threads or methods which are used 
for upstream and downstream communication in TRAM. In the case of errors, the 
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downstream path is identical to the error free case. In the upstream path, the receiver 
sends nacks to the RH which transmits the requested packets; the RH adjusts the data rate 
and sends to the sender which finally adjusts the data rate.  
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Figure 4.TRAM message processing (a) downstream with no errors, (b) upstream with no errors, (c) 

upstream with message, node or link errors 

3.3 Modifications for TRAM++ 

To create TRAM++ from TRAM, we have added new message types to the existing 
message and sub-message types of TRAM. We have tried to minimize the changes to the basic 
TRAM structure and be able to add a separate layer of functionality which transforms TRAM to 
TRAM++. The processing of messages downstream and acks upstream in the no error scenario is 
shown in Figure 5 

Figure 5.TRAM++ Implementation. Without errors: (a) Downstream. (b) Upstream. With errors: (c) 

Downstream. (d) Upstream. 
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Recollect that a RH may not be able to satisfy a receiver’s nack. In order for the RH to 
indicate to the receiver that it doesn’t have the packet in cache, we have introduced a sub-
message type called NOT_REPAIRED. This sub-message type forces the receiver to go for 
temporary reaffiliation. The data packet sent by the RH in response to the above type of nack, has 
a payload which only contains information about the higher-level repair head, also called grand 
repair head (GRH). The receiver uses this information and sends a request for the missing packet 
to the new GRH. The GRH unicasts the requested data packet to the receiver. In TRAM, only 
multicast data exists so there is no notion of sending data through unicast. To enable this, we 
added a message type called UCAST_DATA. A flag is added to the ack packet of TRAM to 
differentiate between greedy and permanent ack types. 

The ack processing mechanism of TRAM is modified for TRAM++.  In TRAM++ as the 
ack (implicit nack) is received by the repair head, it checks which packets the receiver has asked 
for retransmission. If the packet is not in the cache, the repair head sends a packet to the receiver 
giving it the information that the requested packet could not be repaired and provides it with the 
address and port of the GRH. The execution steps of TRAM++ with errors are shown in Figure 5. 
The downstream processing is identical to the TRAM case except that the sender may send a 
unicast if some receiver had directly requested a retransmission through the temporary 
reaffiliation process.  

 

3.4 Experiments and Results 
 

TRAM and TRAM++ are installed on a campus-wide WAN and experiments are 
conducted on the test-bed. The experiments have two broad goals:  

• Evaluate the scalability and robustness of TRAM with respect to different types 
of message errors. 

• Evaluate the improvement provided by TRAM++ in the event of failures and 
overhead incurred by TRAM++ under failure-free conditions.  

 
3.4.1 Test-bed Setup 
 

The test-bed has a sender, multiple repair heads and varying number of receivers. 
The computing machines are distributed across campus in the Mathematics (clusters al-
zn), Electrical Engineering (named pegasus and lyra, together with its cluster) and 
Materials Science (msee190) buildings. The machine named msee190 is always used 
exclusively as the sender. All the machines run RedHat Linux. It is important to note that 
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the implementation is done and the experiments performed on a production campus-wide 
wide area network with normal traffic coexisting with the reliable multicast traffic. 

 
MSEE machine (Sender) Pentium IV 1.5 GHz machine with 1 GB of memory 

EE machines Pentium 4 2.26 GHz processor with 1 GB memory, 533 FSB and 512 

KB cache 

Math machines 450 MHz Pentium II machines with 256 MB of memory divided into 13 

clusters with 48 machines each 

RtrMSEE Cisco 5505 switch 

RtrMATH Cisco 6509 switch 

Links Intra-cluster links 100 Mbps, inter-cluster links 1 Gbps 

Table 1. Hardware configuration 
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Figure 6. Sample physical and logical configuration for deployment with (a) 2 hops (b) 4 hops 

between sender & receivers. 

Different experiments are conducted with the receivers at different hops distance from the 
sender. In Figure 6, we show the physical and logical views of two different hop topologies. The 

physical topologies show the routers as well as the protocol participants (sender, receiver or RH), 
while the logical topologies only show the participants. A hop is defined as a link in the physical 
topology. This is different from the traditional definition of TTL in networking. For example, 
traversal from a receiver within a Math cluster machine to its RH in the same cluster does not 
decrement the TTL, but is considered a hop. We felt this to be reasonable because there is a cost 
of processing both at protocol participants and at the routers. 
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We use the reliable multicast infrastructure to send a high bandwidth Mpeg-2 
video data feed from the sender to the receivers. A 40 kbps feed is sent in 1316 bit 
payload packets, leaving space for the TRAM and the IP headers to fit within 1500 
Ethernet MTU. The number of packets sent is at least 8000, with a larger number if the 
initial transients, which are discarded from our results, are longer. The parameters of the 
protocol set at the participants are shown in Table 2.  

 
Parameter Value Parameter Value 
(Max, Min) data rate (40 kbps, 1 kbps) Stable storage size at RH 

(TRAM) 
Low water mark: High 
water mark (num 
packets) 

1200 packets 
 
400:800 

Stable storage size at RH 
(TRAM++) 
Low water mark: High 
water mark (num 
packets) 

200 packets 
 
32:120 

Pruning of receiver (% 
of packets asking for 
reaffiliation) (TRAM++) 

0.08% 

Table 2 TRAM and TRAM++ configuration settings 

  
3.4.2 Output measures 
 

 The output metrics studied in the experiments are shown in Table 3 along with a 
brief interpretation of each.  
 
Latency End-to-end measure between sender and receiver. Clocks on the machines are synchronized 

using the nntp service. 

Jitter The difference in latencies between successive packets. This metric is important for a smooth 

video playback. 

Data rate The data rate computed at the sender which should lie between the max and the min data 

rates specified. If a slow receiver tends to reduce it beyond the limit, it will be pruned. 

Buffer utilization Stable storage used at the sender or the RH (which one it is will be clarified in the context). 

Memory utilization The amount of main memory used by the RH process. This is taken as an indicator of the 

processing resources needed at the RH since the processor utilization stays very close to zero. 

Table 3. Output metrics used in the evaluation 

 
3.4.3 Normal and Error Injection Runs 
 

 A single run of the experiment is defined as the transfer of at least 8,000 packets 
of the video feed. A normal run is one where no errors are injected, though the variability 
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of the environment may create congestion and transient instability such as spikes in 
latency. In the error injection runs, three kinds of message errors are simulated in the 
network – drops, delays and reordering. The first type of error is message drop where a 
message is dropped on the downward link between the RH and a single receiver. In one 
error injection run, a single receiver is identified as the faulty (or, malicious) one and the 
error injector works on its link. For simulating message delays, the ack packet from the 
faulty receiver is delayed on the upstream link to the RH. For injecting message 
reorderings, we vary the inter-message gap (Md) between the messages which are to be 
reordered. Recollect that the ack window (Wa) is the number of packets for which one 
ack gets sent. If Md<Wa, then TRAM buffers the out-of-order packet and delivers it when 
an ordered sequence of packets can be created. This results in behavior identical to the 
error free case since the element in the ack bit vector is reset to 0 when the message is 
delivered in-order. If Md>ƒWa, then the receiver sends a nack in the next ack window for 
the message whose place was taken by the out-of-order packet. This is identical to the 
message drop case and hence we do not separately show results for the message 
reordering case.  
 

3.5 Evaluation of TRAM 
 
3.5.1 Error-free Case 

 
In this experiment, we investigate how TRAM scales with the number of 

receivers. The latency curves in Figure 7 (a) show that the latency is substantially less for 
the single hop case since the message is on a direct connection and does not have to 
traverse a router. The latency for 2, 3 or 4 hops is comparable. None of the latencies 
become substantially worse with increasing number of receivers. The jitter for our 
environment is found to be below 1 ms on an average which is lower than the granularity 
of our timing mechanism.  
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Figure 7: Latency and Buffer Utilization in TRAM for error free run. 

The next experiment investigates the buffer utilization at the RH and scalability of 
the protocol with the number of receivers shown in. TRAM is set up to use one-thirds of 
maximum buffer capacity (1200 packets) as the low water mark and two-thirds as the 
high water mark. Therefore, the buffer utilization oscillates between 400 and 800 
packets, i.e., between 526.4 KB and 1.0528 MB Figure 9. This is found to be true as the 
number of receivers is increased and is also independent of whether the utilization is at 
the RH or the sender. When we measure the data rate against time (or equivalently the 
number of the ack packet), it is found that in the normal case, after the initial transient, 
the data rate picks up and tends towards the max data rate specified in the configuration.   
 
3.5.2 Error Injection Case 

 
For TRAM, the effect of the error on the faulty receiver and the normal receiver 

will be identical, and therefore no distinction is made in the presentation. Figure 8 shows 
the variation of latency with the number of receivers for different message drop rates. 
The drop rates considered here are 1 every 50 packets,  3 every 50 and 5 every 50. The 
dropped packets are all consecutive. Figure 8(a), (d) show the variation of latency and 
Figure 8 (b), (e) show data rate variations against time for 2 different packet drop rates – 
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3 out of 50 and 5 out of 50. The buffer utilization at the RH (Figure 8(c),(f)) shows an 
interesting trend. The purging of the buffer begins when its size reaches the high water 
mark (800 packets), and while under error-free conditions, the purging would have been 
able to reduce the buffer utilization to 400 packets, here the reduction is only down to 
about 750 packets. If the drop rate is increased to 5 out of every 50 packets, the affected 
receiver is pruned. On pruning, the buffer is purged completely since the packets were 
being buffered to accommodate the receiver that just got pruned. Therefore the utilization 
comes down to zero. Immediately after pruning, the sender tries to increase the data rate 
and the utilization goes back to the usual oscillation between 400 and 800 packets till the 
pruning happens next.  
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Figure 8. Effect of message drop on TRAM: (a)&(d) Latency for 3 and 5 packets dropped out of 50, 

(b)&(e)Respective Data Rates, (c)&(f)Respective Buffer Occupancy  

 
In Figure 11, we show the effect of introducing message delays in TRAM. In the 

first experiment, a delay of 8,000 ms is introduced. The latency shows a regular spike of 
8,000 ms and this spike repeats roughly every 32 packets since the ack window is set to 
32 and a delay is introduced for every ack. The data rate shows congestion control at 
work. The sender tries to increase the data rate to the max rate (40 kbps), but is forced 
back because of the delayed ack. It reduces the data rate, but is able to sustain a rate 
greater than 1 kbps, and as a result, the receiver does not get pruned. The buffer 
utilization varies between the low and high water mark as in the error free case (Figure 
7(c)) and is therefore not shown here again. It is found that a delay of 10,000 ms causes 
pruning of the slow receiver. Thus, it is seen that in TRAM, once pruning of misbehaving 
receivers happens, the remaining receivers continue to see performance as in the error 
free case.  

 

3.6 Evaluation of TRAM++ 
 
3.6.1 Error-free Case 

 
The results of the scalability test of TRAM++ are shown in Figure 10. It is 

observed that the protocol is scalable like TRAM in the range under consideration (5-30 
receivers). The variation in latency in this range is about 1.01%. The average latency in 
the range is 584.44 ms, which gives a 3.2% overhead over TRAM. As the buffer 
constraint is varied in TRAM++, the relative overhead is found to remain constant in the 
error free case. This is expected since the buffer is not completely utilized in the absence 
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of errors. The overhead is ascribed to three main reasons: extra message schema 
matching due to the introduction of new message types, aggressive cache pruning to 
satisfy the storage constraints at the RH, and additional control messages – two kinds of 
acks being sent upstream by the RHs. 
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Figure 9. Effect of message delay on TRAM: (a)-(c) – 5 receivers, delay of 8000 ms, no pruning; (d) – 

2 receivers, delay of 10000 ms, pruning 

 

Regarding the comparative resource usage, the CPU utilization is very close to 
zero for the maximum data rate that the network infrastructure can support and therefore 
cannot form a meaningful point of comparison between the two protocols. The main 
memory utilization for both TRAM and TRAM++ vary between 7.5% and 30.0%. The 
sender buffer utilization curve shown in Figure 10(b) oscillates between 400 and 800 
packets as in TRAM’s buffer utilization. In TRAM++ a maximum of 5 reaffiliations are 
allowed per receiver. If a receiver tries to reaffiliate more than that, it is pruned assuming 
malicious nature. The RH buffer utilization varies between the maximum pruning level 
(32 kB) and the high water mark (120 kB) and is shown in Figure 10(c). In the no error 
case, this buffer utilization does not depend on the number of receivers. A system 
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designer can set the buffer upper bound knowing the stable storage constraints and 
TRAM++ will operate under the bound. The data rate supported by TRAM++ also 
approaches the max data rate parameter set in the system (40 kbps).  
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Figure 10. Evaluation of TRAM++ in error-free case: (a) Receiver latency (b) Sender buffer 

utilization and (c) Repair Head buffer utilization for 27 receivers  

 
3.6.2 Error Injection 

 
For the error scenarios in TRAM++, the metrics are expected to be improved for 

the normal receivers compared to the faulty receivers.  
For message drops, we conduct two sets of experiments, one with 5 packets out of 

50 being dropped, and the second with 2 out of 50. For the 5 of 50 case (Figure 11), it is 
observed that the malicious receiver gets pruned at around 650 packets, after which the 
system behaves as in the error free case. The sender’s buffer utilization once drops to 
zero because of purging of entire cache at the time of pruning. Then the utilization 
oscillates as usual between 400 and 800 packets, and the data rate also tends towards the 
maximum. However, the buffer utilization at the RH goes up to the maximum buffer 
space, before purging occurs. For 2 out of 50 packets being dropped (Figure 12), the 
receiver is repeatedly pruned and rejoins the multicast group. The normal or non-faulty 
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node is not affected at all and its latency remains around the no error scenario value. This 
achieves the important design goal of TRAM++ of isolating the effect of a 
malfunctioning receiver to its part of the repair tree. Contrast this to the behavior in 
TRAM shown in Figure 8 where the latency of the normal receiver is shown to go above 
10,000 ms for similar drop rates. We can see in Figure 12(b) that the malicious receiver 
latency shows spikes followed by drop to zero latency which indicates the point when the 
receiver is disconnected. We had the malicious receiver repeatedly reconnect to the 
multicast group to test the robustness of TRAM++ to this kind of malicious behavior. It 
can be argued that once a receiver has been detected as misbehaving, then its subsequent 
attempts to reconnect will be denied by keeping track of IP addresses of such receivers. 
However, it is well known that IP spoofing can defeat such a scheme. Therefore, we 
decided to use this error model to simulate a real-world malicious receiver. The sender 
data rate fluctuates between a rise towards the maximum and a steep descent to near zero 
as each pruning operation occurs. The sender buffer utilization remains as in the higher 
drop rate case. 
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Figure 11. Evaluation of TRAM++ under message drop rate of 5 out of 50 packets. 
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(a) Message Drop: 2 out of 50 packets
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Figure 12. Evaluation of TRAM++ under message drop rate of 2 out of 50 packets 

 
In the case of message delays, the pruning is found to happen for delays of  8000 

ms and above. Figure 13 shows a scenario where pruning is not done (delay = 1000 ms) 
and Figure 14 shows a pruning scenario (delay = 8000 ms). For the no-pruning scenario, 
the sender data rate and buffer utilization behave as in the error free case (see (b) & 
Figure 10(b) respectively). The latency of the normal receiver remains unaffected though 
the sender detected congestion causes its latency to rise towards the end of the 
experimental run. The malicious receiver has a saw-tooth latency pattern with the peak 
separated from the base by the delay amount.  

 

3.7 Highlights of Result 
 

Some of the important results coming out of the study are summarized here. 
1. Both TRAM and TRAM++ scale well with respect to latency as the number of  
receivers is increased, up to a total of 30. Also, the jitter is negligible even for 4 hops 
spread across campus. Under error-free conditions, both were able to maintain a 
streaming video of data rate 40 Kbps, but the next higher 
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Figure 13. Effect of message delay on TRAM++ for 1000 ms delay 
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Figure 14. Effect of message delay on TRAM++ for 8000 ms delay (Faulty receiver is 

pruned) 
 
step of 60 Kbps that we tried was not stable. This is because the testbed network was shared and 
though the rated bandwidth was 100 Mbps, it could not support jitter free 60 Kbps traffic.   
2.  TRAM is not successful in isolating the normal receivers from the effect of faulty 
or malicious ones. TRAM++ is able to achieve this through its protocol of differentiated 
acks and buffer management. 
3.  TRAM++ under a constraint of 16% of the TRAM buffer availability at the RH is 
able to maintain the latency within an overhead of 3.2% in the error free case. TRAM++ 
achieves this without any additional memory overhead. In cases with errors, the latency 
of normal receivers in TRAM++ is better by a factor of up to 30. TRAM++ is also able to 
prune malicious receivers faster because of local decision-making ability at the RH based 
on temporary reaffiliations. 

The comparison brings out that both protocols are scalable in latency in the range 
in which the experiments are done. TRAM++ incurs a minor latency penalty in failure-
free conditions. If constraints are enforced on the intermediate nodes, then TRAM++ can 
enforce the conditions and yet localize the disruption to the system due to a few slow or 
malicious nodes. TRAM++ also includes an algorithm for pruning nodes deemed too 
slow or suspected to be malicious.  
 

3.8 Why do we Need a Generic Method ? 
 
In this chapter we highlighted an approach to make an existing protocol TRAM 

robust to malicious and slow receivers and also optimize resource utilization at  the local 
repair heads. This process is highly labor intensive. It involves detailed understanding of 
the current protocol – not just the specification, but also the implementation. The effort 
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described here does not generalize. Even for TRAM, it handles only one vulnerability 
and one source of inefficiency. To handle a more comprehensive set of disruptions, and 
for a wide class of applications through a method similar to this will be practically 
infeasible. Also the method assumes the availability of the source code. All of this 
motivates the need for coming up with a generic solution which is widely applicable and 
independent of the underlying protocol. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

30 

4 Monitor Based Detection Approach 
 

We propose to provide a detection infrastructure to message passing based 
distributed protocols through a monitor based approach. We assume a black box model 
for the applications to be monitored meaning no access to the source code or the 
execution hosts. The specification of the protocol is, however, available to the system. 
The monitor has access to the external interactions of the protocol participants, or in 
other words the messages exchanged by the monitored entities. The monitor design 
makes the solution independent of the underlying protocol and hence generic.  We 
assume that the monitor is able to examine the communication header and payload. Since 
the monitor is considered a friendly entity in the system, we assume any cryptographic 
keys will be made available to it.    

 

4.1 Monitor Placement  
 
Monitor is like another entity running somewhere in vicinity (not constrained to 

run on the monitored node) and detecting invalid transitions through snooping over the 
message exchanges. Depending upon resource constraints sometimes it might not be 
feasible and advisable to run monitor on the same node because it might slow down the 
entity, hindering the protocol’s overall performance. Monitor is also made to run 
asynchronously to the application thus not constraining protocol operations to wait for 
monitor to match instruction by instruction.  Monitor is provided with the protocol 
information and rule base against which the matching has to be done. Following 
subsections will build up on this approach and describe the whole architecture.  
 

4.2 Monitor Architecture 
 

The Monitor architecture consists of several components classified according to 
their functional role. These components are the Rule Classifier (which is invoked at 
initialization time or when rules are updated) and the remaining ones, in the order in 
which they are invoked, the Data Capturer, the State Maintainer, the Matching Engine, 
and the Decision Maker. Figure 15 gives a pictorial representation of the Monitor 
components. Each component is described in the detail in the next subsections. 
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Figure 15: Monitor Components. 

 
4.2.1 Data Capture 
 

This component has the responsibility of getting the messages exchanged between 
the monitored entities from the communication channel for processing by the monitor. 
The capture can be carried out in two ways, either Active or Passive. In the active mode 
the protocol participant itself sends a copy of the message to the monitor. In case of 
passive mode the participant keeps silent and the monitor snoops over the packet in the 
communication medium. The obtained message is provided to the State Maintainer for 
processing.  
 
4.2.2 State Maintainer 

 
This component comes into play for the first time during the setup phase of the 

monitor. This part basically is the store house for the monitor. Information about the 
monitored protocol, including the state transitions, the event space protocol headers, etc. 
are stored in the State Maintainer. The Rule Base is linked to the state maintainer but is 
not a part of it. When the input is provided, the state space (i.e. all possible states for an 
entity) are stored in a global hash table, which is indexed by the state name. Hash table 
has state objects stored in it which store information about the state like state variables, 
rules associated with a state etc. Each state has a list of events associated with it i.e. all 
the possible events which can take place in that state. For each event corresponding next 
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state information is also stored in the a hash table within the state object, which is 
indexed by the event name. The global event space of the system gets stored in another 
hash table. The global event space of the system is all the possible events which are 
linked with the entire state transition diagram. The state variables are a part of the state 
object itself. The State Maintainer is responsible for checking the incoming messages for 
any event occurrence, performing the appropriate state transitions, and triggering the rule 
matching engine accordingly.  

 
 
4.2.3 Rule Classifier 
 

The Rule Classifier has the important task of deciding whether a particular rule is 
to be matched at this monitor or not. It is invoked at initialization time and whenever 
edits are  made to the Rule Base. It does the stratification of the rules into two major 
classes: Local and Global. A rule is local to a Monitor if the matching has to be carried 
out at the current level otherwise the rule is global. The rule classification is carried out 
automatically by the classifier. The basic classification of a rule is done into following 
classes: 
1.   Local Rules: Rules pertaining to my nodes (nodes which ‘this’ monitor is monitoring. 

a. Processable: Rules for which processing will be required at local level 
only  and the message will not be passed up. Example: The Number of 
Nacks in a certain given interval (interval should be defined in terms of 
number of ack windows) should be restricted by Nmax << Nindividual_max * 
Max number of members. 

b. Non-Processable: Rules which would be matched and the message passed 
up above. Example: the total number of children in the tree should be less 
than Nglobal. 

2. Global Rules: Rules which will be required by other monitors. Basically these rules 
involve nodes outside the monitored area of ‘this’ monitor. Example: The average data 
rate should be > Dmin  based on a set of Ack windows. This is global with respect to RH 
so only the global monitor will match it. 

The rules are specified in terms of state and their variables. Monitor contains a 
mapping to specify which state variables correspond to which nodes. Monitor has a list of 
entries which it is monitoring. Monitor carries out processing for each input rule and 
matches each rule variable against the set of variables which correspond to the node 
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which it is monitoring. If the rule contains only state variables which correspond to the 
monitored node then that rule is considered local. Monitor outputs the rules into local 
processable, local non processable and global rules. The pseudo code for the algorithm is 
given below. 

 For each rule in input file 
 do 

GetRule(); 
inGlobal = false; 
inState= false; 
For each variable (v) in the rule   
do  
 if(v.isInStateVariableList) 
  inState = true; 

  else 
   inGlobal = true; 
 if((inState=false)&&(inGlobal==true)) 
  rule.IsGlobal; 
 elseif((instate==true)&&(inGlobal==true)) 
  rule.IsLocalNonProcessable; 
 elseif(instate==true)&&(inGlobal==false)) 
  rule.isLocalProcessable; 
end 

4.3 Types of rules  
 

So far we have not formally defined the syntax for the rules. The syntax is of 
importance in the system because it captures the expressibility of the system, and 
determines the speed of matching that can be achieved. The rules as defined in our 
system could be specifications of the protocol or QoS restrictions placed by the 
administrator or the application. The rules are entered by the user or administrator who is 
running the monitor during the set up phase. Another important characteristic of the 
system is that rules defined must be misuse based and not anomaly based. A primary 
reason for that is because the space of anomaly based rules could be potentially infinite 
for real-world large scale distributed systems.  

When defining the syntax of the rule base, several competing approaches are to be 
evaluated. Previous researchers have tried to use Petri Nets [23], some with only 
combinatorial state equations [25] and others using temporal logic [30]. The next 
subsection details on our rule classification and underlying assumptions. 
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4.3.1 Temporal Rules  
 

After carefully studying the properties of the rules [27] [30] [31].  exhaustively we 
came up with following classification for the Temporal rules. 

1. Type I 
∀ ∈ + ⇒ ⇒ ∈ +T t t k V U q t t bN N T q I I( , ) ( , )  

The above rule represents the fact that if for some time tN a state is true then it 
will cause the state Uq to be true for some time b starting from tI. 
 

2. Type II 
Vt is the state of an object at time t : Vt ≠ Vt+∆ 
The state Vt will not remain constant for more than ∆ time units if an event E1 
takes place.  
 

3. Type III 
L ≤ |Vt| ≤ U t ∈ (ti,ti+k) 
A state (variable)will be bounded by L and U for some time k. 
 

4. Type IV 
∀ ∈t (ti,ti +k) L ≤ |Vt| ≤ U ⇒  L’ ≤ |Bq| ≤ U’ ∀ ∈q (tn,tn+b) 

A state (variable) being bounded by upper and lower bounds will cause another 
state (variable)  to be bounded by some bounds and will hold true for some time 
interval b. If one look at the rule carefully it is actually the parent rule or the 
master rule. Basically all the first 3 rules can be derived from this rule. But we 
still need the above because matching this rule requires more variables to be 
matched instead of the above cases and increases the latency of detection. 
 
The type of the rule is easily identified by matching the template to the input rule.  

Also a Temporal rule can be distinguished easily from the Combinatorial rule by looking 
for the time factor i.e. ‘t’ (or ‘T’) variable in the input rule. We restrict the variable ‘t’(or 
‘T’)  to be used only for time and not for representing any state, state variable or event.  
 
4.3.2 Combinatorial Rule 
  

These are the rules independent of time and expected to be valid for all times 
except transients.  An example of the combinatorial rule is take a simplex protocol in 
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which only one node can send at one time. So if ‘s’ and ‘r’ represent sending and 
receiving (listening) states, then for nodes A and B we can say that  

 
((A= =s) && (B= =r)) | | ((A= =r) && (B= =s)) : 

 
It states that either A or B is sending assuming infinite data to send. We can see 

that a combinatorial rule might consist of states, state variables and events.  But each of 
the expressions will finally yield a Boolean true or. An arbitrary combinatorial rule has 
the operators: ‘¬’ stands for logical NOT, ‘V’ stands for logical OR and ‘Λ’ stands for 
logical AND operation. We cannot really subdivide these rules further as there is no 
distinct feature to look for. All the rules will be some combination of these boolean 
operators only.   

Although the combinatorial rules must be valid for all the time, there could be 
fluctuations and transients which cause the value to flip to an incorrect value and then 
return to the normal correct value.  If the rule matching takes place at one of such 
occasions then the decision maker will flag an error. We must not flag an error for such 
cases because these are transients which do not last for long enough to cause errors. The 
rule matching algorithm also handles this case. 
 

4.4 Matching Engine 
 

The Rule Matching Engine is invoked by the State Maintainer when an incoming 
event triggers a rule to be checked. The Rule Matching Engine is the most resource 
intensive workhorse of the Monitor. In order to bound the detection latency, it is crucial 
that the matching algorithms be optimized for speed. Due to the different nature of 
temporal and combinatorial rules, we provide separate matching algorithms for them.  

 
4.4.1 Combinatorial Rule Matching 

 
Since Combinatorial rules are expressed with Boolean variables and matching 

requires simple calculation of the expression, the algorithm takes O(n)time to evaluate it 
given an expression with n literals.  This is assuming the uniform cost model. In a 
uniform cost model we assume that each mathematical computation takes the same 
amount of time irrespective of the size of the input in bits. Even if we use a logarithmic 
cost model still we would not achieve much gain because each input is only 1 bit 
(boolean input).  
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We propose to optimize the matching by converting the combinatorial rule into an 
expression tree. An expression tree has the operators in the intermediate nodes and the 
operands at the leaf levels. An observation for our system is that the same rule may be 
matched many times. For each invocation of the matching algorithm, not all the variables 
in the expression would have changed. Hence, the algorithm needs to be incremental in 
its output Boolean value computation. The expression tree stores at each node two sets of 
variables, one corresponding to the left child sub-tree and the other corresponding to the 
right child sub-tree. Each node also stores its value from the previous matching of the 
rule.  

When a rule is triggered, it is passed a list of variables that have changed since the 
last invocation. Only the parts of the tree which contain the modified variables are re-
evaluated and for the other parts, the previous values are used. In this way only part of 
the tree is recalculated. The matching time is minimized by using hashing. We can 
maintain a hash table at each node of the variable in the left and right sub-tree. Searching 
if a literal exists in a has table or not takes a constant amount of time. 

 
The second optimization used in the data structure is to keep the tree ordered. The 

order is in terms of frequency of change of the variables and the arrangement is 
decreasing from left to right. Thus, the variable which changes most frequently is the 
leftmost node in the expression tree. The matching algorithm explores the tree from left 
to right. If the rule is such that no variable is repeated, then when a match occurs, the 
algorithm terminates and does not need to search the tree any further. Since the more 
frequently changing variables are kept towards the left, the matching can terminate early.   
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Figure 16: Expression Tree used for Combinatorial Matching 

 
Example: 
Assume an event occurs which changes the value of the variable b in Figure 16. The 
procedure followed according to the proposed algorithm is as follows 

1. The algorithm checks at the root for the variable b, detects that it lies in left sub-
tree so moves to the left sub-tree. 

2. It recursively arrives at the node ‘V’ of depth 2 and knows that this has to be 
evaluated. 

3. It evaluates the new value for bVc and pushes that value (v1=1) up the tree. 
4. Now at node ‘Λ’ the new value (v1) arrives and it uses previous ‘1’ as the value 

for the left sub-tree for calculation of the expression. 
5. This way the new value is propagated up to the root to get the final expression. 
 

Handling transients: As mentioned in Section  4.3.2, there may be transients in the system 
that cause violation of the system properties for a short period of time. The period of the 
transient can be input by the system administrator, say ∆ time units. If the combinatorial 
rule matching flags an error, it is re-executed after ∆ time units. If the re-execution also 
flags an error, it is taken as a valid detection. The pseudo code for the expression tree 
evaluation algorithm is given below :  

 
evaluateExpTree(TreeNode, Variable a) 
          If(a.existsInLeftSubTree) 
                     r = evaluateExpTree(Treenode.left,a); 
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                     Treenode.previousRightValue=r; 
                     l=node.previousLeftValue; 
 else(a.existsInRightSubTree) 

                                 r = evaluateExpTree(Treenode.right,a); 
                    Treenode.previousRightValue=r; 
                    l=node.previousLeftValue; 
 Op = TreeNode.operator; 
  return (r.Op.l) 
end 
 

4.4.2 Temporal Rule Matching 
 

There are four kinds of temporal rules as described in Section  4.3.1. The temporal 
rule matching algorithm handles all the four types of rules.  

The algorithm translates the rules that are mentioned in the rule base into the 
master rules associated with events that are maintained in the State Maintainer module. 
The master rule consists of the basic parameters necessary for rule checking and rule 
specification, and is used as a template to spawn off new rules on occurrence of suitable 
events. On narrowing down arrival of a packet to a particular event in a particular state, 
all master rules associated with that event are triggered. This leads to the creation of a 
new rule object with the same parameters as the master rule, which is added to a list, and 
the invocation of a Timer object, which handles alarm generation and the actual rule 
checking. 

To deal with the inevitable latency that might creep up in an asynchronous 
matching system, the design incorporates two Timer objects. One Timer object deals with 
storing the appropriate state variables in the rule itself on generation of alarms, and the 
other Timer object deals with checking the state variables stored against the values 
expected, to do the actual rule checking. A thread pool has been implemented to ensure 
parallel checking of multiple rules. 
 

4.5 Decision Maker 
 
This component has the task of flagging an error. Once the matching algorithm 

returns the match the decision maker flags an appropriate flag reporting the error. The 
part of the decision maker currently is very limited because we are restricting our system 
to only detection of disruptions. Motivation of making another logical entity such as 
decision maker is to provide scope for addition of features of not only detection but 
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recovery action depending upon the type of disruptions.  Separation of the functions 
provides easy access to the part to be modified for additional changes. If the rules are all 
not completely accurate and multiple matches are weighted by the confidence in the 
rules, the decision maker may come up with an aggregate decision and assign it a 
confidence metric [37]. 
 

4.6 Hierarchical Monitor 
 

The previous discussion of the monitor may give the impression that it is a single 
point of failure and a potential performance bottleneck in the system. Also if a Monitor is 
trying to monitor all the protocol participants then it will be overwhelmed by the 
computation making the latency of detection high.  On the other hand, if the Monitor is 
only monitoring selected nodes out of the entire set, then a failure in some other part will 
go undetected. 

Critics might think that Global and Local monitors only make sense for Tree 
based protocols but not in general but that thought is not true. In this Monitor based 
detection, we incorporate the idea of using not a single but a hierarchy of monitors, 
working in conjunction at multiple levels to ensure failure and intrusion free operation of 
the protocol. The entire structure is divided into Local, Intermediate and Global Monitor. 
The Local Monitor are concerned with the a local set of nodes. They monitor and do rule 
matching at the local level and eliminate the major part of  rules which are governing 
with the operation of the protocol. The Intermediate Monitor might have several Local 
Monitors which send information to it regarding the operation of their local set of nodes. 
It can also have some nodes directly beneath it. Finally the Global Monitor looks at the 
global view of the protocol. It does not have to do a lot of matching because message 
filtering takes place at the local and intermediate monitors.  

Dividing the single Monitor into several monitors has multiple advantages 
namely: 
1. Task gets evenly (more or less) distributed among the various monitors. At each level 

message filtering is carried out so that the higher level only sees the messages which are 
relevant. 
2. This hierarchical structuring works the best for well designed distributed protocols 

because most interaction is local and therefore substantial filtering can happen at local 
monitors. 
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3. It increases the accuracy and coverage of the detection system for example: If a Local 
Monitor fails to detect an error in a local region then the monitor up above will detect the 
error and prevent it from causing a complete shutdown of the protocol. Also if local 
nodes in a region are malfunctioning then a Local Monitor can easily prune it from the 
logical set of protocol participants. 
4. There are several features which an administrator would like to look at collectively 

instead of individual behavior. The rules governing the collective behavior might be 
different from the rules governing individual behavior and so we need something more 
than a Local Monitor to capture it.  

A second thought might lead one to a more basic application where this 
Hierarchical Monitor based system could be used. Take an example of Purdue Network. 
We can keep a Local Monitor to monitor the nodes in MSEE while another one for 
Computer Science. And we can keep a Global Monitor which can collective look at the 
behavior of the two LANs and coordinate with the Local Monitors to flag any disparities.   

 
A significant point to be noted is that although we are placing multiple monitors 

in the system at various levels, each Monitor has the same implementation but monitors 
either completely disjoint or overlapping set of nodes.  Each Monitor has the identical 
rule base which is derived from the protocol specification. The rule base is split into the 
different kinds of rules by each monitor based on its placement and the entities it is 
monitoring.  

 
C: Cluster; LR: Local Rule; IR: Intermediate Rule; GR: Global Rule; LM: Local 
Monitor; IM: Intermediate Monitor; GM: Global Monitor;       : Rule repository 
 

Figure 17: Example of Hierarchical Monitor Placement with respect to the protocol TRAM.  

The hierarchical structure is an important design decision in view of any protocol. 
Figure 17 illustrates the hierarchical nature of the monitor in respect to the target 
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application protocol TRAM. One can see that Local Monitors are monitoring nodes 
under local repair heads, intermediate monitors for intermediate repair heads and a 
Global Monitor has a global view of the operation of the protocol.  
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5 Experiments and Results 
 
5.1 Systems Details 
 

 The Monitor system is implemented in JAVA as a separate entity which is multi-
threaded. Currently the system is only being tested on a single protocol i. e. TRAM. The 
monitor code is running on   Pentium 4 2.26 GHz processor with 1 GB memory, 533 FSB 
and 512 KB cache (EE machines) for the initial testing. TRAM is run with the same 
settings as done previously for the TRAM testing and comparison with TRAM++. All the 
configurations for the TRAM remain the same as in the previous experiments. In this 
case again implementation is done and the experiments performed on a production 
campus-wide wide area network with normal traffic coexisting with the reliable multicast 
traffic. 
 
 
 
 
 
 
 
 
 
 
 
 
  

LM: Local Monitor; IM: Intermediate Monitor; GM: Global Monitor;     : Rule 
repository; R: Router.  

 

Figure 18 Monitor Placements in the actual testing on TRAM protocol 

The Figure 18 above gives a sample configuration of placement of the monitors in 
respect to the TRAM protocol. Monitor is set up by inputting the rule base, State 
transitions diagrams, event information and packet header information.  A sample rule 
file is given below:  
 
T R1 S1 E1 t1 S2 t2 t3 

T R2 S1 E1 t1 S2 

T R3 S1 E1 L U 

Sender

R

R

Cluster1 Cluster2

LM1LM1

GM1
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T R4 S1 E1 L U S2 E2 L U 

C (S1ΛS2) 

C (¬ (S1ΛS2)V(E1ΛS2)) 

 
Each line represents a rule. The first alphabet informs the monitor if it is reading a 

temporal or combinatorial rule. This information is also deduced automatically by the 
monitor by simply looking for the variable ‘T’ in the rule equation. For the Temporal 
rules the second letter or argument provides the type of temporal rule followed by its 
parameters. We explain the rule file in detail when we specify the exact rule file for 
TRAM used in the experiments(section  5.4). 
 

5.2 Fault Injection  
 

A normal run of the protocol would not really test out a monitor which is 
designed for detecting errors. Hence fault injection is necessary to bring out the 
performance and latency of detection of the Monitor. We have adopted the method of 
random error injection. We are injecting non fail silent errors. We randomly inject bit 
flips in the TRAM header. If the application keeps running then we try to measure the 
latency of detection by the monitor if the bit flip has caused an error. The method of 
causing random bit flip can cause the application to crash because it might inject error in 
a field which causes application to abort. We measure the accuracy and latency of the 
monitor only for the successful runs of the application (TRAM).  We have also adopted 
specific error injection into only specified fields in the header.  

The header field of TRAM consist of the Flags, MessageType, SubMessageType, 
InetAddress etc. The first three fields is flags MessageType and SubMessageType are 
each of one byte only. Each of the three fields is 1 byte in length. For error injection in a 
general experiment we pick a bit out of the total bits in the header randomly and flip it.  
 

5.3 Instantiation of the RuleBase 
 
The rule base is given as in input to the Monitor. Since currently testing is carried out on 
TRAM we have rule base and STD for TRAM which are given as input to the Monitor. A 
sample rule and state transition file is shown below.  
     RuleBase.txt 
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T R2 S3 E3 20  

T R4 S1 E1 0 32 10 S2 E2 0 5 8 15 

T R3 S1 E4 0 32 10 

T R3 S1 E3 0 10 20 

C ( ( S1 V E1 ) V ( S2 Λ E4 ) ) 
StateTransition.txt 

: S1 
E1 S2 
! 
: S2 
E3 S3 
E2 S1 
! 
: S3 
E1 S2 
E3 S4 
! 
: S4 
E4 S1 
E1 S1 
 

 

E1 
2 1 1 
! 
$ 
E2 
2 1 4 
! 
$ 
E3 
2 1 2 
! 
$ 
E4 
2 1 5 

 

Explanation : Here the symbols S1–S4 and E1-E4 correspond to states and events  
respectively. The special characters are only used as delimiters for file reading. The event 
definition is given below : 
E1 : Message received is Data Type   
E2 : Message is ACK 
E3 : Message is a NACK 
E4 :Message is a Head Bind (Reaffiliation with a new Repair Head) 
 

The states represented above are a small subset of the complete state transition 
diagram of TRAM. The one advantage which we get by specifying the state transition 
diagram is that the Monitor will only be monitoring these states only and you can give 
reduced set of states to be monitored.  
 

5.4 Preliminary Results  
 

The initial testing of the monitor is being carried out on the TRAM’s receiver 
state transitions diagram. We allow the monitor to look into the receiver’s state  transition 
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diagram. Monitor is monitoring the packet which are getting into the receiver and sent 
out of the receiver. For the initial measurements we allow monitor to monitor the header 
fields of the TRAM packet. The input to the state monitor consists of  the state transition 
diagram for the receiver. The description about the state transition depicted in Figure 2 
diagram which is fed to the Monitor is given in Table 4.   
 
: S1 
E1 S2 
E4 S1 
E3 S1 
! 
: S2 
E3 S3 
E2 S1 
E1 S2 
! 
: S3 
E1 S3 
E3 S4 
! 
: S4 
E4 S1 
E1 S4 
E3 S4 
! 

 

S1 
1 1 1 
! 
S2 
2 1 1 
! 
S3 
2 1 1 
! 
E1 
2 1 1 
! 
E2 
2 1 4 
! 
E3 
2 1 2 
! 
E4 
2 1 5 

Table 4  STD of receiver as given to the monitor. 

The Table 4 gives the STD which is given as input to the monitor. The states are 
given in separate lines followed by the events and corresponding states. The description 
about the state and the events is given in the second column. The second column contains 
the information about the events with respect to their location in the header fields of the 
packets of that protocol and their corresponding values. The rules which are inputted to 
the Monitor are given below. 
 
T R2 S1 E1 200    
T R3 S4 E3 0 5 5000 
T R3 S2 E2 0 31 1000 
T R4 S1 E1 0 2 30 S2 E2 0 2 1000 
T R2 S2 E2 200 
 

Above are the rules used for the experiment of the monitor on a TRAM receiver. 
If we see the STD’s we can easily comprehend that the first rule expects that if the state 
is S1 and the event E1 occurs then the state must not be the same after 20 ms i.e. it must 
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change. Hence it is a 2 temporal rule. The second rule states that in state S4 a receiver 
should not be sending more than 5 nacks (event E3) within 5000 ms. The rule gets 
instantiated only if the monitor sees at least one nack in state S4. 

 
Fault Rate 
(per packet) 

Injected 
Faults  

Error Flagged Total Time in 
Matching 

Latency  

1/8 1007 49 2.52 4902.92 
1/16 541 49 1.84 4902.24 
1/32 296 49 1.705 4902.12 

Table 5  Results for Monitor detection monitoring  Receiver 

Explanation : The Monitor is monitoring the state transition diagram for the receiver 
part. The error free operation expected behavior of the state diagram is that the receiver 
will be getting 32 data packets after which it sends an ack. A receiver might send a nack 
depending upon the missing packets for which data retransmission takes place.  
The faults are injected into the packets header by doing a specific fault injection for the 
above case as a first experiment. Later we inject faults by doing a random bit flip 
randomly in the header. We are varying the fault rate by injecting at varying rates of 1 
per 8, 16 or 32 packets. Fault is injected in the form of sending nacks instead of acks by 
the receiver. We use the rule base which we have developed and input it to TRAM. The 
rule file is shown above.  

As we can see that since the rule base has rule which governs the transitions of 
the receiver in an orderly fashion. It has a rule which ensures that once a data packet is 
received then a receiver must respond with a ack or nack depending upon the packets 
received. Another rule is governing the number of nacks received in a particular interval. 
The number of nacks in a particular state must be less than 5 (current setting for the 
above system)  for the receiver within a time interval set to 5000 ms. The data packets are 
sent in at 1pkt/20 ms.  In the table the first column represents the rate at which the faults 
are injected.  The second column contains the number of faults injected for that run of the 
experiment. The last 3 columns represent the results in the form of errors flagged, the 
latency in detection and the total average time taken in rule matching which includes the 
time for which a rule waits after  the rule is instantiated. We can see that latency of 
matching is very low and is varying from 1.7 to 2.5 ms. We see a slight increase in the 
latency of the system as the workload increases in this round of experiments. The 
numbers of errors flagged remain the same because we are simulated for a fixed numbers 
of error detection.  We are keeping this parameter fixed. One can see that although the 
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number of errors injected in system are varying for the same number of the errors 
detected. A close inspection of the state transition diagram and the rule base explains the 
results. We can see that in the STD’s there are several states which expect nacks and are 
taken as normal, so of course all the nacks which are injected in the system are not 
treated as faults but the initial few nacks are taken to be correct operation of protocol. 
Now the rule states that the number of nacks must be less than 5 for the entity in state S4 
within 5000 ms. Once a nack is received in state S4 , a rule is created which sets an alarm 
time for 5000ms. After the alarm time the thread wakes and checks for the number of 
nacks. If they are more than 5 then an error is flagged. 

If we inject more errors also the number of nacks will keep on building in that 
state but since the matching is done only after 5000 ms are over hence only a single error 
will be flagged. It is the primary reason that although the injected faults are different for 
the three cases but the detected are the same. The average matching time is close to 4900 
ms because the thread has to wait for 5000 ms before a matching is carried out. As the 
injected faults are more than the errors flagged so we measured the number of packets 
which actually invoke a  transition in the state transition diagram. Since the packets are 
random they might be carrying events which are not expected in a particular state and 
hence will be discarded by the Monitor based on the STD which given as input to 
monitor. The percentage of packets which cause the transition in STD are found to be 
close to 22 %.  

In another set of experiments we withhold the acks to simulate a malicious 
receiver. The Monitor only sees the data packet. One can see that the number of errors 
flagged are close to the errors injected because the rule base requires the protocol to send 
an ack after every 32 packets and the errors injected are via withholding those acks. The 
number of injected faults are 34 and errors flagged by the monitor is 32. The average 
Latency of detection is 1.67ms and the average matching time (including the wait time) 
measured was 221.24ms.  

 
We also do a loadability test on the Monitor. We increase the load on the Monitor 

in terms of increased packets to be matched and measure the total time for matching 
(including the waiting time).   

In these set of experiments when we do a random injection its important to note 
that there could be packets which might not even cause a message transition. So if an 
event is there is a randomly injected packet but even in the current state of the entity that  
event is not expected then the packet would be dropped by the Monitor after verifying fro 
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STD that it is not a valid packet. After the STD is invoked by the packets there could be 
certain events which only cause the state variable to be incremented and not generate a 
new rule. This is the primary reason for the disparity in the number of injected faults and 
the numbers of errors flagged. If we do a very specific injection of a particular kind of 
fault for which there is a rule in rule base , then that would be testing the implementation 
of the Monitor’s Matching Engine because the accuracy would be 100%. It would not be 
a very good measure of the monitor’s capabilities.  

 

Loadability Test
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 Figure 19  Loadability Test on Monitor  

 
Figure 19 shows the behavior of the Monitor with respect to increasing load. We 

can see that for 50 packets the Monitor’s latency remains within 30 ms. As the number of 
packets are increased the latency increases but it tends to saturate hinting that Monitor is 
scalable with respect to the load of the system. 
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6 Related Research 
 

Error detection is an important field of study for dependable and reliable 
community. Trying to come up with a system which is reliable involves a lot of thought 
process into detecting and identifying the errors in the system and taking recovery 
actions. Traditionally focus on reliable systems has been divided into two major areas 
1. Developing specialized systems which are fault tolerant and reliable. Primarily 

reliability has been provided using replication in hardware and software. for eg. 
Tandem systems. 

2. Developing specific error and fault tolerant techniques for existing applications.   
 
Several researchers have come up with  specialized solutions for some specific 

protocols but an important challenge is to come up with solutions which uses Cheap off 
the shelf (COTS) equipments and use them to provide enhanced reliability and 
dependability to the system. 

There is a need to come up with systems which are self checking because self 
checking components tend to have lower latency of detection compared to remote 
detection. Also these methods try to inhibit any rippling effect by containing the problem 
to a much smaller domain. The work by Madeira[15] shows that on an example Z68 
microprocessor by using signature monitoring scheme the latency for detecting fail-
silence violations come down to 0.4msec compared to an Error Capturing Technique 
which causes the latency of 47.8msec. Previously work has been carried out in 
developing fault tolerant systems like the MARS architecture, which uses specialized 
hardware and software to provide fail silence guarantees. It aims to provide 98.7% 
coverage using the specialized hardware and software techniques [18]. There has been 
further studies and testing on the system as well [17][16].    

Recently there has been work in developing self checking systems like the 
Chameleon which is a software implemented fault tolerant middleware[12]. Through 
interactions among the entities called ARMOR’s they make an application fault tolerant. 
ARMOR’s are adaptive reconfigurable mobile objects for reliability. ARMOR’s are 
processes which run on the node and can send messages to other ARMOR’s [13]. These 
ARMOR’s could be embedded in the application or can be made to run independently 
but in synchrony to the application. They have specialized managers which can have 
several ARMOR’s underneath it but they don’t have the same architecture as that of the 
ARMOR. Also each ARMOR only checks for a specialized error in only one entity. The 
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system is not designed for distributed systems. Results have shown that with Chameleon 
in place a system can achieve an availability of 0.9720 when the error rate is 0.5/hour. 
The availability is more if the error rate is reduced.  Techniques also exist [14] which use 
pre-emptive control flow signature (PECOS) to provide error detection. This signature 
embedding prevents the program from taking an incorrect control flow path. Since it is 
pre-emptive it reduces the number of process crashes and lead to graceful termination of 
the program. It is able to detect 87% of all the generated errors and fail silence coverage 
is improved by a factor of 36.  Such a technique requires access to the application’s 
source code and not feasible in all practical situations.  

 
The concept of self checking in the form of Observer architecture is mentioned in 

 [12]. An observer is a formal observer i.e. it implements exactly the formal specification 
of the system. The task of the observer is to do verification of the output of the 
underlying worker. Worker is the normal existing running system. The approach is based 
on detection by matching against a formal and verified model of the system. They have 
described formally what a self checking system comprises of and its behavior with 
respect to set of faults.  An observer is like a replicated entity which will be checking the 
output of the worker against the formal specification of the system.  Diaz et al [11] 
discuss how an observer can be used for a doing an online validation of MAC and OSI 
protocol.   

   Since the thesis aims to develop a self checking protocol one must have a 
method of defining the system or in other words formal specification of the system.  
There have been several approaches to designing formal models and specification of the 
system[22][23][24][25]. As described by [11] a formal model must be able to express the 
specifications of the system, support verification procedures and should be worth 
matching against in case of an observer model. The formal specification of the protocol is 
just one part of making the system reliable. In order to be able to tolerate disruptions the 
formal specification language must also have tools to handle intrusions.    

Lot of research has been carried out in finding ways of specifying the distributed 
systems.  It is important to specify the system in as precise ways possible because 
specification of a distributed system is used for its implementation. If the specification is 
inexact then there are bound to be errors in the implementation of the system. Lamport 
describes what is called transitional axiom [27]. It gives the conceptual foundation for 
developing a formal specification for a system. It defines what are the differences if a 
system and its environment and how to handle interactions between the two. It describes 
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the temporal logic but with respect to eventual states and not intermittent changes. The 
paper provides an in-depth knowledge of the concept but fails to provide and 
specification language which can be used for specifying the system.  

Time forms an important part of the specification of the distributed systems. 
Several researchers have worked on what is called Temporal Logic [30][29] . In temporal 
logic specifications the behavior pf the protocol is captured with time as one of the 
variable. Thomesse et al  [38] have described the system characteristics by specifying 
Timing Constraints. They describe the time characteristic as a physical greatness 
expressed in time units. It introduces the concept of Deadline constraint and time window 
constraint. It discusses the interactions between the entities in Cooperation based model 
like producer/consumer and client/server models.  We have used a similar concept in 
developing our own Temporal Rules to specify the systems. We have kept the 
interactions of the various entities and dependent structure in mind before coming up 
with the generic temporal rules to specify the systems.  

Rainer Schlor and Werner Damm [27] have come up with timing diagrams to 
specify and do formal verification of distributed systems. They demonstrate their 
graphical model on hardware designs. Their method is a hybrid of Temporal logic 
specification and graphical approach. The approach seems to be more valid towards the 
system which have graphical interface and CAD environments. Although the Timing 
diagram approach provides a more lucid picture to a reader who is trying to understand 
the distributed framework but from a point of view of person who has to implement the 
system, the approach lacks the precision.  The diagrams have to be again interpreted and 
transformed into temporal equations for them to be implemented. Temporal Methodology 
has also been developed by Manna and Pnueli in [29].  

For testing the monitor we have chosen TRAM because it forms a good 
representative of the reliable multicast protocols. Also TRAM is being developed by the 
research group at Sun which makes the source code available. It makes it easy to install 
and debug and provides deeper insight into the protocol. TRAM was first presented by 
Chiu et al in [2]. This study evaluated some of the parameters considered here, namely, 
rate, loss and cache occupancy, but using a simulation model. The simulation model 
made several simplifications – all RHs were at a fixed distance from the sender, no node 
failures were simulated and only a small subset of the links (between the RH and the 
receivers) were injected with failures. The congestion control mechanism in TRAM was 
studied in a recent paper by Chiu et al [4]. The two aspects of congestion control – 
receiver feedback based windowing and server data rate based traffic shaper – are studied 
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using an implementation for a LAN and an emulator for a WAN. The study showed how 
to dynamically adjust the data rate used to schedule packet transmission at the sender to 
smooth the transmission. The authors in [3] examine the issue of pruning decisions in 
multicast transport protocols. The decision boils down to choosing a minimum data rate 
and pruning receivers that fail to meet the minimum rate. It is mentioned that the 
minimum rate has to be chosen carefully so as not to prune genuine receivers 
experiencing occasional network bottlenecks. Determining an optimal data rate for the 
system is dependent on the kind of network and its traffic conditions, and is a complex 
decision. The rate of the entire group is controlled by the slowest receiver in the un-
pruned set of receivers. This results in slowdown observed by normal receivers even in 
completely disjoint parts of the multicast tree. The scheme in [3] is a simplification of the 
more general scheme called optimal pruning described in [6]. In that paper, the authors 
propose multiple subgroups of receivers with a utility function for individual nodes in the 
subgroup and one for the subgroup as a whole. The algorithm presented aims to pick the 
subgroup that maximizes the sum of node utility and subgroup utility. We believe that the 
algorithm can work if it is possible to assign utility functions for all possible subgroups. 
In the practical scenario considered in this thesis, it was not possible to come up with a 
utility assignment. Also, the pruning decision needs to be rapid to isolate malicious 
receivers and the choice algorithm in Jiang’s work runs in exponential time. The design 
point of providing stable storage only at end points has been proposed and implemented 
in the context of publish-subscribe systems for a system called Gryphon to provide 
reliable exactly-once message delivery in the face of node failures [5]. The work assumed 
the extreme design point of no stable storage available at the intermediate nodes whereas 
in our study this is a parameter that can be tuned. At least a decade of research has gone 
into designing and improving group communication protocols to provide membership, 
multicast and ordering services. However, such protocols are overkill for our goal. First, 
the members of a group are considered homogeneous and group joins and leaves are 
made visible to all the group members. Second, the design principle in this thesis is not to 
enforce synchronicity among the group members which is what the group communication 
protocols are designed to achieve. Finally, group communication paradigm is particularly 
suited to local area networks with tight bounds on end-to-end latency which may not be 
achievable in the wide area network considered here. 

By providing generic method and a specific method for improving the protocol’s 
reliability in this thesis we have tried to draw out the differences between the two 
approaches highlighting the importance of coming up with a generic monitor.   
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7 Conclusions and Future Work 
 

In this thesis we have presented a Hierarchical Monitor based detection approach 
which is applicable to a large class of message exchanging protocols. We show that 
although it is feasible to make  a particular system robust but its not feasible to do it for 
every existing protocol . We demonstrated the approach of making a system robust via 
TRAM++. We showed how TRAM++ performs better than TRAM in resource 
constrained situations. It is also robust to malicious and slow receivers. The Monitor 
based approach presents a unique method to detect disruptions in the protocols. We have 
tried to make a system which is automatic and performs matching based on a 
comprehensive rule base given as input. We test the system on TRAM measure its 
performance. We have shown that the monitor is scalable with respect to number of input 
packets.  By providing generic method and a specific method for improving the 
protocol’s reliability in this thesis we have tried to draw out the differences between the 
two approaches highlighting the importance of coming up with a Generic Monitor.   

 
The system as stands is only being tested on a single protocol. As a future work 

we plan to test the monitor on SIP and other protocols. The method of rule classification 
can be improved to do a better classification for rules lying in grey region. A further 
insight into the temporal rules is needed to determine their completeness.   
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