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Abstract 

Reliable multicast protocols are an important class of protocols for reliably disseminating information from a 

sender to multiple receivers in the face of node and link failures. A Tree-based Reliable Multicast Protocol 

(TRAM) provides scalable reliable multicast by grouping receivers in hierarchical repair groups and using a 

selective acknowledgment mechanism. In this paper, we present an improvement to TRAM to minimize the 

resource utilization at intermediate hosts and to localize the effect of slow or malicious receivers on normal 

receivers. We present an evaluation of the existing protocol on a campus-wide wide area network (WAN) with 

respect to end-to-end parameters (latency, jitter, data rate), and resource utilization (buffer utilization and 

memory usage at sender and intermediate hosts). A high-quality streaming mpeg video application is used as the 

workload for the study. The evaluation brings out the effect of scaling the number of receivers on the 

parameters. The study is done for the error-free case and with message delay, drop and reordering errors. Then 

we present the design of an augmented protocol, called TRAM++, that optimizes the buffer requirement at 

intermediate hosts and improves the end-to-end parameters for normal receivers in the presence of some slow or 

malicious receivers. An implementation of TRAM++ is provided and it is evaluated on the campus-wide WAN 

with and without errors. The evaluation brings out that, given a constraint on the buffer availability at 

intermediate hosts of 16% of maximum buffer usage in TRAM, TRAM++ can tolerate the constraint at the 

expense of increasing the end-to-end latency for the normal receivers by only 3.2% in error-free cases. When 

slow or faulty receivers are present, TRAM++ is able to provide the same uninterrupted quality of service to the 

normal nodes while localizing the effect of the faulty ones without incurring any additional memory overhead.  

Keywords: tree based reliable multicast, buffer utilization, message errors, slow or unresponsive receivers, 

evaluation of end-to-end parameters.  
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1 Introduction 

The ability to reliably transmit and update large amounts of data and content in real-time is crucial in a large 

number of domains, such as for financial services, content delivery network providers, large retail chains, 

application service providers (ASPs), interactive TV, wireless entertainment, and e-learning providers. It can 

take considerable time and bandwidth if the sender must send a separate copy to each receiver.  IP multicasting 

allows a sender to distribute data to all interested parties while minimizing the use of network resources.  Many 

applications, however, require reliable data delivery which is resilient to failures of nodes and network links. 

This requirement is supported by reliable multicast protocols. 

A Tree-based Reliable Multicast Protocol (TRAM) is designed to provide multicast reliability that scales to a 

large receiver population. TRAM ensures reliability by using a selective acknowledgment mechanism and 

scalability by adopting a hierarchical tree-based repair mechanism. The receivers and the sender of a multicast 

session dynamically form repair groups.  These repair groups are linked together hierarchically to form a tree 

with the sender at the root of the tree, the receivers at the leaves and entities called Repair Heads (RH) at the 

intermediate levels of the tree. The RHs cache the messages that pass through them and initiate local repair by 

resending messages that are nacked by the receivers.  

From an end-to-end perspective, we consider latency and jitter as parameters of interest for receivers of a 

multicast stream. We consider the scenario of a video stream being delivered by TRAM and measure its output 

parameter values. In addition to the performance metrics, there are resource utilization metrics which 

characterize a reliable multicast protocol. TRAM ensures the recovery from missing messages by nacks and 

retransmissions by the RHs. The RHs therefore need stable storage to buffer messages that have not yet been 

received by all the receivers. The aggregate buffer utilization in the system, combined over the sender and all the 

RHs, is taken as one indicator of resource usage in the system. In this paper, we evaluate the existing TRAM 

implementation with respect to performance and resource utilization, with varying number of receivers. The 

evaluation is performed on a campus-wide wide area network (WAN) with receivers located at different 

distances from the source. The ability of the reliable multicast protocol to tolerate faults is evaluated under 

different message error conditions. The errors injected are message drops, reorders, and delays, and the 

performance metrics are measured under these conditions.  
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It has to be considered that in a large group of multicast receivers, not all the receivers will be identical. 

Considering a practical scenario where different receivers are present in different subnets, each has varying 

traffic conditions and processing constraints.  Some of the receivers will be slow in processing the messages and 

generating acks. Some receivers may be unresponsive for long periods of time, either because of a natural 

failure or performance bottleneck, or because of malicious purpose. The design point should be that the QoS 

measures of the normal receivers should be affected as little as possible because of the slow and unresponsive 

receivers. We propose a protocol based on TRAM, called TRAM++, which localizes the effect of slow or 

unresponsive receivers on the correctly functioning receivers. TRAM++ provides a mechanism to track 

unresponsive receivers and beyond a threshold, prune the receivers. Since the receivers are not homogenous, 

maintenance of synchrony among the receivers is sacrificed as a deliberate design choice to provide fairness to 

normal receivers. Pruning is considered a necessary step to keep the system performance above a tolerable limit, 

bound the resource usage and to eliminate malicious receivers. 

TRAM++ also optimizes the aggregate buffer usage in the system under normal conditions without any 

degradation of the performance parameters. It achieves this by dropping the guarantee of recovery of missing 

messages from the immediate RH to which the receiver is connected. The RH may drop messages from its 

buffer in order to accommodate new messages. The guarantee of recovery is provided by the sender which 

buffers messages in stable storage till they have been acknowledged by every receiver. 

The study shows that both TRAM and TRAM++ scale well with respect to latency as the number of 

receivers is increased, up to a total of 30. TRAM is not successful in isolating the normal receivers from the 

effect of faulty or malicious ones. TRAM++ is able to achieve this through its protocol of differentiated acks 

and buffer management. TRAM++ under a constraint of 16% of the TRAM buffer availability at the RH is able 

to maintain the latency within an overhead of 3.2% in the error free scenario. It is also able to prune malicious 

receivers faster because of local decision making ability at the RH without any additional memory overhead. It 

is also able to isolate and prune a malicious receiver that constantly joins and leaves the multicast group in an 

attempt to cause denial of service in the system. The rest of the paper is organized as follows. Section 2 presents 

previous related work. In section 3, we present the TRAM and the TRAM++ protocols. Section 4 details the 
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implementation of TRAM++. Section 5 gives the experiments and results, under no errors and with errors. 

Section 6 concludes the paper. 

2 Related Work 

IP multicast is a protocol that defines a mechanism for one or more senders to send data to a group of 

receivers  a collection of one or more hosts identified by a single class D IP address [ERI94]. The abstraction 

of multiple hosts into a single entity provides several advantages over unicast, or "point-to-point," protocols: the 

sender(s) only manages a connection with the group, not all of its members; and data can be sent to all the 

receivers without multiple transmissions from the sender(s). In situations where similar data is sent to multiple 

hosts, multicast IP can provide bandwidth conservation, reduced resource requirements for the server, and an 

increase in overall scalability.  

Though the general idea of IP multicast is simple, the message delivery is purely best-effort and there is no 

guarantee that the data is going to reach all the multicast receivers. The loss of messages may be due to 

congestion, failures of nodes, failures of links, etc. To address these concerns, an enhanced category of multicast 

IP called reliable multicast has evolved. It defines mechanisms to monitor host population, congestion, transfer 

speeds, and data loss on a per-host basis, and mechanisms to counter the loss, thus providing a more reliable 

multicast environment. 

Due to the wide variety of applications which require reliable multicast, it is considered that a “one size fits 

all” protocol is infeasible. Therefore, three classes of protocols have been proposed in the literature – (i) NACK 

oriented protocols; (ii) Tree-based ACK oriented protocols; (iii) Asynchronous layered coding protocols that use 

forward error correction (FEC). Of these classes, the second or a hybrid of the first two classes is of relevance to 

our current work. Several protocols have been presented and studied [FLO96, PAU96, YAV95]. We chose 

TRAM as the representative protocol for study since it had openly available source code and a large active user 

community which was extremely useful in setting up and troubleshooting the system. The detailed evaluation of 

TRAM presented here is expected to shed light on the other protocols too since many design decisions are 

similar, such as local recovery at the repair head (or the counterpart in the particular protocol), and ack 

aggregation. The concern about constraining resource usage at intermediate hosts and localizing the effect of 

slow or malicious receivers applies to all reliable multicast frameworks. 
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TRAM was first presented by Chiu et al in [CHI98]. This study evaluated some of the parameters considered 

here, namely, rate, loss and cache occupancy, but using a simulation model. The simulation model made several 

simplifications – all RHs were at a fixed distance from the sender, no node failures were simulated and only a 

small subset of the links (between the RH and the receivers) were injected with failures. The congestion control 

mechanism in TRAM was studied in a recent paper by Chiu et al [CHI02]. The two aspects of congestion 

control – receiver feedback based windowing and server data rate based traffic shaper – are studied using an 

implementation for a LAN and an emulator for a WAN. The study showed how to dynamically adjust the data 

rate used to schedule packet transmission at the sender to smooth the transmission. The authors in [CHI00] 

examine the issue of pruning decisions in multicast transport protocols. The decision boils down to choosing a 

minimum data rate and pruning receivers that fail to meet the minimum rate. It is mentioned that the minimum 

rate has to be chosen carefully so as not to prune genuine receivers experiencing occasional network 

bottlenecks. Determining an optimal data rate for the system is dependent on the kind of network and its traffic 

conditions, and is a complex decision. The rate of the entire group is controlled by the slowest receiver in the 

unpruned set of receivers. This results in slowdown observed by normal receivers even in completely disjoint 

parts of the multicast tree. The scheme in [CHI00] is a simplification of the more general scheme called optimal 

pruning described in [JIA00]. In that paper, the authors propose multiple subgroups of receivers with a utility 

function for individual nodes in the subgroup and one for the subgroup as a whole. The algorithm presented 

aims to pick the subgroup that maximizes the sum of node utility and subgroup utility. We believe that the 

algorithm can work if it is possible to assign utility functions for all possible subgroups. In the practical scenario 

considered in our paper, it was not possible to come up with a utility assignment. Also, the pruning decision 

needs to be rapid to isolate malicious receivers and the choice algorithm in Jiang’s work runs in exponential 

time. 

The design point of providing stable storage only at end points has been proposed and implemented in the 

context of publish-subscribe systems for a system called Gryphon to provide reliable exactly-once message 

delivery in the face of node failures [BHO02]. The work assumed the extreme design point of no stable storage 

available at the intermediate nodes whereas in our study this is a parameter that can be tuned. 
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A promising approach to building reliable distributed systems is group communication [RAY96,HAY98]. 

Reliable group communication is an important paradigm to build distributed applications that require multi-peer 

interaction with different levels of consistency. At least a decade of research has gone into designing and 

improving group communication protocols to provide membership, multicast and ordering services. However, 

such protocols are overkill for our goal. First, the members of a group are considered homogeneous and group 

joins and leaves are made visible to all the group members. Second, the design principle in our system is not to 

enforce synchronicity among the group members which is what the group communication protocols are 

designed to achieve. Finally, group communication paradigm is particularly suited to local area networks with 

tight bounds on end-to-end latency which may not be achievable in the wide area network considered here. 

3 Protocol Description 

3.1 TRAM 
The detailed description of TRAM can be found in [CHIU98]. We provide an overview here and present 

details of the features relevant to the study. TRAM is distributed as a part of the Java Reliable Multicast Service 

(JRMS) by Sun Microsystems [SUN03]. JRMS is a set of libraries and services for building multicast-aware 

applications. TRAM is designed for high scalability targeted towards multicasting streaming data from a single 

sender to a large number of receivers. TRAM ensures reliability by using a selective acknowledgement 

mechanism. An ack is sent in the form of an offset and a bit vector once every ack window (32 packets). It 

provides scalability by adopting a hierarchical tree-based repair mechanism. The receivers and the data source of 

a multicast session in TRAM interact with each other to dynamically form repair groups. These repair groups 

are linked together in a hierarchical manner to form a tree with the sender at the root of the tree. Figure 1 shows 

a typical TRAM repair tree. The nodes participating in TRAM play three roles, some nodes playing multiple 

roles – sender, receiver and repair head (RH). Every repair group has a receiver that functions as a group head; 

the rest function as group members which are said to be affiliated with their head. All members receive data 

multicast by the sender.  The group members report lost and successfully received messages to the group head 

using a selective acknowledgement mechanism. Every ack message contains a start message number indicating 

the first missing message, and a bit vector, with a 1 denoting a missing packet and a 0 denoting a received 

packet. If no packets are missing, the message number indicates all messages prior to and including this one has 
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been received and the bit vector is of zero length. An ack message is sent after every ack window worth of 

packets has been received, or an ack interval timer goes off. The RHs cache every message sent by the sender 

and provide repair service for messages that are reported as lost by the members. The RH’s maintain a high and 

low water mark for monitoring cache occupancy. If the amount of buffer occupied by the packets goes beyond 

the high water mark, an attempt is made to purge the cache. Failure to do so is taken as an indication of 

congestion in the network.  The RHs aggregate acks from all its members and send an aggregate ack up to the 

sender to avoid the problem of ack implosion. The data rate sent out by the sender is bounded by maximum and 

minimum rates configured at the sender. Receivers that cannot keep up with the minimum data rate can be 

pruned from the repair tree. 

(a) (b)

Repair Group Sender Repair Head Receiver Stable storage Control-Data 
Message Connection

Temporary Repair
Group Formation

(a) (b)

Repair Group Sender Repair Head Receiver Stable storage Control-Data 
Message Connection

Temporary Repair
Group Formation  

Figure 1. (a) TRAM hierarchical repair tree (from [CHIU98]) (b) TRAM++ hierarchical repair tree with temporary 

reaffiliation 

Figure 1(a) shows a TRAM deployment with a sender, two levels of RHs and multiple receivers connected 

through links over which bi-directional data and ack messages flow. Two examples of repair groups are shown, 

one involving the sender and the three RHs at the first level, and the second showing a RH and its receivers. 

3.2 TRAM++ 
TRAM++ builds upon TRAM with the following two goals 

1. Reduce the resource requirement at the repair heads, chiefly cache utilization, but also processing. 

2. Handle slow or malicious receivers in the environment while localizing their effect on correctly 

functioning receivers. 

To achieve these goals, TRAM++ introduces the changes described below. A figure of the hierarchical structure 

in TRAM++ with a sender, receivers and repair heads is shown in Figure 1(b).  
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Buffer management at RH: The design point in TRAM++ is that the RHs may be spread over a wide area and 

have constraints on available buffer, while the sender has higher, though not infinite, buffer capacity. TRAM++ 

optimizes the buffer requirement at the RHs by pruning old messages even if they have not been acknowledged 

by all its receivers. The advantage is that this frees up the buffer resources at the RH for accommodating new 

messages which are required for the well-behaved receivers to make progress. Consequently, a nack from a 

receiver may not always be satisfied locally at the immediate RH. A message is not discarded from the sender’s 

storage till it has been acked by all the receivers. Therefore, a nack can always be satisfied by the sender. When 

a RH cannot satisfy a nack, it indicates to the receiver to initiate a temporary re-affiliation with a RH at a higher 

level. This is shown through the dotted arrow in Figure 1(b), where the receiver re-affiliates temporarily for 

recovering the messages its RH does not have. The reaffiliation is transient and lasts for the duration of recovery 

of the single packet. This process is repeated recursively if recovery is not successful at the higher level, till the 

receiver reaffiliates with the sender at which point its nack is guaranteed to be satisfied. 

Handling Slow or Malicious Receivers: TRAM lets the data rate be driven by the slowest receiver. Therefore, 

the effect of a slow receiver is visible to the correctly functioning receivers all across the network. Even if the 

pruning feature of TRAM is turned on (which it is not for most deployments), the threshold minimum tolerable 

data rate is set quite conservatively and there are likely to be large periods of slowdown to the normal receivers. 

On the contrary, TRAM++ localizes the disruption to the part of the tree where the lagging receivers reside. In 

TRAM++, the RH uses two types of acks – a greedy ack and a permanent ack. The maximum sequence number 

of the packet that the sender should send down is sent piggybacked with acks. The greedy ack is sent by the RH 

upwards when its buffer reaches the low water mark. The purpose of sending the greedy ack is to indicate to the 

sender to send new data down even though all the receivers have not acked yet. The permanent ack is sent once 

all the receivers have acked. The role of this ack is to let the sender know that reclamation of storage is possible. 

In TRAM, the sequence number sent upwards is determined by the slowest receiver thus affecting the data rate 

observed by all the receivers, normal or laggard. In TRAM++, the sequence number is determined by the RH’s 

available buffer capacity. Incorporating the additional ack requires additional computation at the sender and the 

RHs which is the same cost as for the basic ack determination in TRAM. But in a failure free system where all 
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receivers are keeping up with the data rate, the greedy acks are not sent and therefore, the additional processing 

overhead is not observed. 

TRAM++ has the functionality to prune receivers which are considered lagging beyond an acceptable 

degree. The metric used for the pruning decision is the percentage of retransmission requests which cannot be 

locally satisfied as a fraction of the total number of packets. When the metric exceeds a tunable threshold 

parameter, the receiver is pruned. This is an effective means of removing malicious receivers which may 

increase the processing load in the system by requesting repeated retransmissions. This may serve as an 

indication to the receiver to disassociate from the current RH because of its resource constraints and reaffiliate 

with a more resource rich RH. 

4 Implementation 

In this section, we present the details of the TRAM implementation which are of importance to the protocol 

and the changes that have been made in TRAM++. 

4.1 TRAM Implementation  
The TRAM code is multi-threaded. These threads are responsible for carrying out the group management 

functions in addition to basic sending and receiving of data packets. GroupMgmtThread is the main thread 

which is responsible for starting up TRAM, initiation of the beacon messages by the sender and affiliation of the 

receivers to the senders or repair heads. The beacon messages are used to advertise the session and invite nodes 

to join the multicast session. This thread performs the task of sending periodic hello messages among the 

receivers and its head. Each receiver also maintains a backup list of heads which it can switch to if the current 

head resigns or fails. Once the data transmission phase starts, InputDispThread and OutputDispThread come 

into picture. OutputDispThread transmits the packets. InputdispThread gives the packet to all the listeners and 

hence, each entity calls its received packet method to get the desired packet.  The sender and the repair head’s 

sending functionality use HeadAck class to receive ack packets.  The receivers use MemberAck class to receive 

data packets and to send acks. Repair head uses MemberAck class, as it is a receiver for the sender above, to 

send cumulative acks. Figure 2 shows pictorially the threads or methods which are used for upstream and 

downstream communication in TRAM. 
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Figure 2. TRAM message processing (a) downstream with no errors, (b) upstream with no errors, (c) upstream with 

message, node or link errors 

In the case of errors, the downstream path is identical to the error free case. In the upstream path, the receiver 

sends nacks to the RH which transmits the requested packets; the RH adjusts the data rate and sends to the 

sender which finally adjusts the data rate.  

4.2 Modifications for TRAM++ 

To create TRAM++ from TRAM, we have added new message types to the existing message and sub-

message types of TRAM. We have tried to minimize the changes to the basic TRAM structure and be able to 

add a separate layer of functionality which transforms TRAM to TRAM++. The processing of messages 

downstream and acks upstream in the no error scenario is shown in Figure 3. 

Figure 3. TRAM++ Implementation. Without errors: (a) Downstream. (b) Upstream. With errors: (c) Downstream. 

(d) Upstream. 

Recollect that a RH may not be able to satisfy a receiver’s nack. In order for the RH to indicate to the 

receiver that it doesn’t have the packet in cache, we have introduced a sub-message type called NOT_REPAIRED. 
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This sub-message type forces the receiver to go for temporary reaffiliation. The data packet sent by the RH in 

response to the above type of nack, has a payload which only contains information about the higher-level repair 

head, also called grand repair head (GRH). The receiver uses this information and sends a request for the 

missing packet to the new GRH. The GRH unicasts the requested data packet to the receiver. In TRAM, only 

multicast data exists so there is no notion of sending data through unicast. To enable this, we added a message 

type called UCAST_DATA. A flag is added to the ack packet of TRAM to differentiate between greedy and 

permanent ack types. 

The ack processing mechanism of TRAM is modified for TRAM++.  In TRAM++ as the ack (implicit nack) 

is received by the repair head, it checks which packets the receiver has asked for retransmission. If the packet is 

not in the cache, the repair head sends a packet to the receiver giving it the information that the requested packet 

could not be repaired and provides it with the address and port of the GRH. The execution steps of TRAM++ 

with errors are shown in Figure 3. The downstream processing is identical to the TRAM case except that the 

sender may send a unicast if some receiver had directly requested a retransmission through the temporary 

reaffiliation process.  

5 Experiments and Results 

TRAM and TRAM++ are installed on a campus-wide WAN and experiments are conducted on the testbed. 

The experiments have two broad goals:  

1. Evaluate the scalability and robustness of TRAM with respect to different types of message errors. 

2. Evaluate the improvement provided by TRAM++ in the event of failures and overhead incurred by 

TRAM++ under failure-free conditions.  

5.1 Testbed Setup 
The testbed has a sender, multiple repair heads and varying number of receivers. The computing machines 

are distributed across campus in the Mathematics (clusters al-zn), Electrical Engineering (named pegasus and 

lyra, together with its cluster) and Materials Science (msee190) buildings. The machine named msee190 is 

always used exclusively as the sender. All the machines run RedHat Linux. It is important to note that the 

implementation is done and the experiments performed on a production campus-wide wide area network with 

normal traffic coexisting with the reliable multicast traffic. 
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MSEE machine (Sender) Pentium IV 1.5 GHz machine with 1 GB of memory 
EE machines Pentium 4 2.26 GHz processor with 1 GB memory, 533 FSB and 512 KB 

cache 
Math machines 450 MHz Pentium II machines with 256 MB of memory divided into 13 

clusters with 48 machines each 
RtrMSEE Cisco 5505 switch 
RtrMATH Cisco 6509 switch 
Links Intra-cluster links 100 Mbps, inter-cluster links 1 Gbps 

Table 1. Hardware configuration
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Figure 4. Sample physical and logical configuration for deployment with (a) 2 hops (b) 4 hops between sender & 
receiver

Different experiments are conducted with the receivers at different hops distance from the sender. In Figure 

4, we show the physical and logical views of two different hop topologies. The physical topologies show the 

routers as well as the protocol participants (sender, receiver or RH), while the logical topologies only show the 

participants. A hop is defined as a link in the physical topology. This is different from the traditional definition 

of TTL in networking. For example, traversal from a receiver within a Math cluster machine to its RH in the 

same cluster does not decrement the TTL, but is considered a hop. We felt this to be reasonable because there is 

a cost of processing both at protocol participants and at the routers. 

We use the reliable multicast infrastructure to send a high bandwidth Mpeg-2 video data feed from the sender 

to the receivers. A 40 kbps feed is sent in 1316 bit payload packets, leaving space for the TRAM and the IP 

headers to fit within 1500 Ethernet MTU. The number of packets sent is at least 8000, with a larger number if 

the initial transients, which are discarded from our results, are longer. The parameters of the protocol set at the 

participants are shown in Table 2.  

Logical Physical 

Physical 

Logical 
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Parameter Value Parameter Value 
(Max, Min) data rate (40 kbps, 1 kbps) Stable storage size at RH 

(TRAM) 
Low water mark: High 
water mark (num packets) 

1200 packets 
 
400:800 

Stable storage size at RH 
(TRAM++) 
Low water mark: High 
water mark (num packets) 

200 packets 
 
32:120 

Pruning of receiver (% of 
packets asking for 
reaffiliation) (TRAM++) 

0.08% 

Table 2. TRAM and TRAM++ configuration settings 

Output measures: The output metrics studied in the experiments are shown in Table 3 along with a brief 

interpretation of each.  

Latency End-to-end measure between sender and receiver. Clocks on the machines are synchronized 
using the nntp service. 

Jitter The difference in latencies between successive packets. This metric is important for a smooth 
video playback. 

Data rate The data rate computed at the sender which should lie between the max and the min data 
rates specified. If a slow receiver tends to reduce it beyond the limit, it will be pruned. 

Buffer utilization Stable storage used at the sender or the RH (which one it is will be clarified in the context). 
Memory utilization The amount of main memory used by the RH process. This is taken as an indicator of the 

processing resources needed at the RH since the processor utilization stays very close to zero. 
Table 3. Output metrics used in the evaluation 

Normal and Error Injection Runs: A single run of the experiment is defined as the transfer of at least 8,000 

packets of the video feed. A normal run is one where no errors are injected, though the variability of the 

environment may create congestion and transient instability such as spikes in latency. In the error injection runs, 

three kinds of message errors are simulated in the network – drops, delays and reordering. The first type of error 

is message drop where a message is dropped on the downward link between the RH and a single receiver. In one 

error injection run, a single receiver is identified as the faulty (or, malicious) one and the error injector works on 

its link. For simulating message delays, the ack packet from the faulty receiver is delayed on the upstream link 

to the RH. For injecting message reorderings, we vary the inter-message gap (Md) between the messages which 

are to be reordered. Recollect that the ack window (Wa) is the number of packets for which one ack gets sent. If 

Md<Wa, then TRAM buffers the out-of-order packet and delivers it when an ordered sequence of packets can be 

created. This results in behavior identical to the error free case since the element in the ack bit vector is reset to 

0 when the message is delivered in-order. If Md úWa, then the receiver sends a nack in the next ack window for 

the message whose place was taken by the out-of-order packet. This is identical to the message drop case and 

hence we do not separately show results for the message reordering case.  
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5. Evaluation of TRAM 

5.1.1 Error-free Case 

In this experiment, we investigate how TRAM scales with the number of receivers. The latency curves in 

Figure 5(a) show that the latency is substantially less for the single hop case since the message is on a direct 

connection and does not have to traverse a router. The latency for 2, 3 or 4 hops is comparable. None of the 

latencies become substantially worse with increasing number of receivers. The jitter for our environment is 

found to be below 1 ms on an average which is lower than the granularity of our timing mechanism.  
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Figure 5. Evaluation of TRAM in error-free case 

The next experiment investigates the buffer utilization at the RH. TRAM is set up to use one-thirds of 

maximum buffer capacity (1200 packets) as the low water mark and two-thirds as the high water mark. 

Therefore, the buffer utilization oscillates between 400 and 800 packets, i.e., between 526.4 KB and 1.0528 MB. 

This is found to be true as the number of receivers is increased and is also independent of whether the utilization 

is at the RH or the sender. When we measure the data rate against time (or equivalently the number of the ack 

packet), it is found that in the normal case, after the initial transient, the data rate picks up and tends towards the 

max data rate specified in the configuration.   

5.1.2 Error Injection Case 

For TRAM, the effect of the error on the faulty receiver and the normal receiver will be identical, and 

therefore no distinction is made in the presentation. Figure 6 shows the variation of latency with the number of 

receivers for different message drop rates. The drop rates considered here are 1 every 50 packets,  3 every 50 

and 5 every 50. The dropped packets are all consecutive. Figure 6(a), (d) show the variation of latency and 

Figure 6 (b), (e) show data rate variations against time for 2 different packet drop rates – 3 out of 50 and 5 out of 

50. The buffer utilization at the RH (Figure 6(c),(f)) shows an interesting trend. The purging of the buffer begins 
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when its size reaches the high water mark (800 packets), and while under error-free conditions, the purging 

would have been able to reduce the buffer utilization to 400 packets, here the reduction is only down to about 

750 packets. If the drop rate is increased to 5 out of every 50 packets, the affected receiver is pruned. On 

pruning, the buffer is purged completely since the packets were being buffered to accommodate the receiver that 

just got pruned. Therefore the utilization comes down to zero. Immediately after pruning, the sender tries to 

increase the data rate and the utilization goes back to the usual oscillation between 400 and 800 packets till the 

pruning happens next.  
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(d) Message Drop: 5 out of 50 packets
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Figure 6. Effect of message drop on TRAM: (a)&(d) Latency for 3 and 5 packets dropped out of 50, 

(b)&(e)Respective Data Rates, (c)&(f)Respective Buffer Occupancy  

In Figure 7, we show the effect of introducing message delays in TRAM. In the first experiment, a delay of 

8,000 ms is introduced. The latency shows a regular spike of 8,000 ms and this spike repeats roughly every 32 

packets since the ack window is set to 32 and a delay is introduced for every ack. The data rate shows 

congestion control at work. The sender tries to increase the data rate to the max rate (40 kbps), but is forced 

back because of the delayed ack. It reduces the data rate, but is able to sustain a rate greater than 1 kbps, and as a 

result, the receiver does not get pruned. The buffer utilization varies between the low and high water mark as in 

the error free case (Figure 5(b)) and is therefore not shown here again. It is found that a delay of 10,000 ms 
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causes pruning of the slow receiver. Thus, it is seen that in TRAM, once pruning of misbehaving receivers 

happens, the remaining receivers continue to see performance as in the error free case.  
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Figure 7. Effect of message delay on TRAM: (a)-(b) – 5 receivers, delay of 8000 ms, no pruning; (c) – 2 receivers, 

delay of 10000 ms, pruning.  

5.2 Evaluation of TRAM++ 
5.2.1 Error-free Case 

The results of the scalability test of TRAM++ are shown in Figure 8. It is observed that the protocol is 

scalable like TRAM in the range under consideration (5-30 receivers). The variation in latency in this range is 

about 1.01%. The average latency in the range is 584.44 ms, which gives a 3.2% overhead over TRAM. As the 

buffer constraint is varied in TRAM++, the relative overhead is found to remain constant in the error free case. 

This is expected since the buffer is not completely utilized in the absence of errors. The overhead is ascribed to 

three main reasons: extra message schema matching due to the introduction of new message types, aggressive 

cache pruning to satisfy the storage constraints at the RH, and additional control messages – two kinds of acks 

being sent upstream by the RHs. 

Regarding the comparative resource usage, the CPU utilization is very close to zero for the maximum data 

rate that the network infrastructure can support and therefore cannot form a meaningful point of comparison 

between the two protocols. The main memory utilization for both TRAM and TRAM++ vary between 7.5% and 

30.0%. The sender buffer utilization curve shown in Figure 8(b) oscillates between 400 and 800 packets as in 

TRAM’s buffer utilization. In TRAM++ a maximum of 5 reaffiliations are allowed per receiver. If a receiver 

tries to reaffiliate more than that, it is pruned assuming malicious nature. The RH buffer utilization varies 

between the maximum pruning level (32 kB) and the high water mark (120 kB) and is shown in Figure 8(c). In 

the no error case, this buffer utilization does not depend on the number of receivers. A system designer can set 
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the buffer upper bound knowing the stable storage constraints and TRAM++ will operate under the bound. The 

data rate supported by TRAM++ also approaches the max data rate parameter set in the system (40 kbps). 
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Figure 8. Evaluation of TRAM++ in error-free case: (a) Receiver latency (b) Sender buffer utilization and (c) Repair 

Head buffer utilization for 27 receivers  

5.2.2 Error Injection 

For the error scenarios in TRAM++, the metrics are expected to be improved for the normal receivers 

compared to the faulty receivers.  

For message drops, we conduct two sets of experiments, one with 5 packets out of 50 being dropped, and the 

second with 2 out of 50. For the 5 of 50 case (Figure 9), it is observed that the malicious receiver gets pruned at 

around 650 packets, after which the system behaves as in the error free case. The sender’s buffer utilization once 

drops to zero because of purging of entire cache at the time of pruning. Then the utilization oscillates as usual 

between 400 and 800 packets, and the data rate also tends towards the maximum. However, the buffer utilization 

at the RH goes up to the maximum buffer space, before purging occurs. For 2 out of 50 packets being dropped 

(Figure 10), the receiver is repeatedly pruned and rejoins the multicast group. The normal or non-faulty node is 

not affected at all and its latency remains around the no error scenario value. This achieves the important design 

goal of TRAM++ of isolating the effect of a malfunctioning receiver to its part of the repair tree. Contrast this to 

the behavior in TRAM shown in Figure 6 where the latency of the normal receiver is shown to go above 10,000 

ms for similar drop rates. We can see in Figure 10(b) that the malicious receiver latency shows spikes followed 

by drop to zero latency which indicates the point when the receiver is disconnected. We had the malicious 

receiver repeatedly reconnect to the multicast group to test the robustness of TRAM++ to this kind of malicious 

behavior. It can be argued that once a receiver has been detected as misbehaving, then its subsequent attempts to 

reconnect will be denied by keeping track of IP addresses of such receivers. However, it is well known that IP 

spoofing can defeat such a scheme. Therefore, we decided to use this error model to simulate a real-world 
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malicious receiver. The sender data rate fluctuates between a rise towards the maximum and a steep descent to 

near zero as each pruning operation occurs. The sender buffer utilization remains as in the higher drop rate case. 
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Figure 9. Evaluation of TRAM++ under message drop rate of 5 out of 50 packets. 

(a) Message Drop: 2 out of 50 packets
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Figure 10. Evaluation of TRAM++ under message drop rate of 2 out of 50 packets 

In the case of message delays, the pruning is found to happen for delays of  8000 ms and above. Figure 11 

shows a scenario where pruning is not done (delay = 1000 ms) and Figure 12 shows a pruning scenario (delay = 

8000 ms). For the no-pruning scenario, the sender data rate and buffer utilization behave as in the error free case 

(see Figure 5(b) & Figure 8(b) respectively). The latency of the normal receiver remains unaffected though the 

sender detected congestion causes its latency to rise towards the end of the experimental run. The malicious 

receiver has a saw-tooth latency pattern with the peak separated from the base by the delay amount.  

5.3 Highlights of Result 
Some of the important results coming out of the study are summarized here. 

1. Both TRAM and TRAM++ scale well with respect to latency as the number of receivers is increased, up to a 

total of 30. Also, the jitter is negligible even for 4 hops spread across campus. Under error-free conditions,  
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Figure 11. Effect of message delay on TRAM++ for 1000 ms delay  
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Figure 12. Effect of message delay on TRAM++ for 8000 ms delay (Faulty receiver is pruned) 

both were able to maintain a streaming video of data rate 40 Kbps, but the next higher step of 60 Kbps that we 

tried was not stable. This is because the testbed network was shared and though the rated bandwidth was 100 

Mbps, it could not support jitter free 60 Kbps traffic.   

2. TRAM is not successful in isolating the normal receivers from the effect of faulty or malicious ones. 

TRAM++ is able to achieve this through its protocol of differentiated acks and buffer management. 

3. TRAM++ under a constraint of 16% of the TRAM buffer availability at the RH is able to maintain the latency 

within an overhead of 3.2% in the error free case. TRAM++ achieves this without any additional memory 

overhead. In cases with errors, the latency of normal receivers in TRAM++ is better by a factor of up to 30. 

TRAM++ is also able to prune malicious receivers faster because of local decision-making ability at the RH 

based on temporary reaffiliations. 

6 Conclusion 

In this paper, we have presented an evaluation of a reliable multicast protocol based around hierarchical 

trees, called TRAM. An implementation of TRAM was installed on machines situated on different parts of the 

campus, and then an evaluation study was performed. The evaluation brings out its performance in the absence 

as well as presence of failures. Two design improvements to TRAM were presented and the new protocol called 
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TRAM++ is evaluated under similar conditions to TRAM. The comparison brings out that both protocols are 

scalable in latency in the range in which the experiments are done. TRAM++ incurs a minor latency penalty in 

failure-free conditions. If constraints are enforced on the intermediate nodes, then TRAM++ can enforce the 

conditions and yet localize the disruption to the system due to a few slow or malicious nodes. TRAM++ also 

includes an algorithm for pruning nodes deemed too slow or suspected to be malicious.  

We are currently working on distributed monitor architecture to detect failures or intrusions and work 

collaboratively with the TRAM++ participants to isolate the failed or compromised entity. The goal is to be able 

to diagnose participants that are failed or malicious with low detection latency. 
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