
ADEPTS: Adaptive Intrusion Response using Attack Graphs in an E-Commerce
Environment

Bingrui Foo, Yu-Sung Wu, Yu-Chun Mao, Saurabh Bagchi, Eugene Spafford+
School of Electrical and Computer Engineering

Purdue University
+School of Computer Sciences

Purdue University
{foob, yswu, maoy, sbagchi, spaf}@purdue.edu

Abstract

Distributed systems with multiple interacting services,
especially e-commerce systems, are suitable targets for
malicious attacks because of the potential financial impact.
Compared to intrusion detection, automated response has
received relatively less attention. In this paper, we present
the design of automated response mechanisms in an
intrusion tolerant system called ADEPTS. Our focus is on
enforcing containment in the system, thus localizing the
intrusion and allowing the system to provide service, albeit
degraded. ADEPTS uses a graph of intrusion goals, called I-
GRAPH, as the underlying representation in the system. In
response to alerts from an intrusion detection framework,
ADEPTS executes algorithms to determine the spread of the
intrusion and the appropriate responses to deploy. A
feedback mechanism evaluates the success of a deployed
response and uses that in guiding future choices. ADEPTS is
demonstrated on a distributed e-commerce system and
evaluated using a survivability metric.
Keywords: automated intrusion response, intrusion
containment, distributed e-commerce systems, survivability,
attack graphs.

1. Introduction

Distributed systems comprising multiple services
interacting among themselves to provide end-user functions
are becoming an increasingly important platform for
business-to-business (B2B) and business-to-consumer
(B2C) systems. As an example, electronic commerce, or e-
commerce, has been touted as the next wave in the Internet
revolution. The huge financial stakes involved in e-
commerce make the distributed system infrastructure
supporting e-commerce prime candidates for computer
security attacks.

Such motivations have long led to interest in securing
distributed systems through detection of intrusions. This is
typically achieved by analyzing the signatures of incoming
packets and either matching them against known attack
patterns (misuse-based signatures), or against patterns of
expected system behavior (anomaly-based signatures). In

order to meet the challenges of always-on, on-demand
service availability, an e-commerce system needs to be
resilient to security attacks. Resilience must include both
intrusion detection and intrusion response. Compared to the
problem of detection, automated response has received far
less research attention. This has typically been considered
the domain of system administrators who manually "patch"
the system in response to detected attacks. However, as
networked e-commerce services become ubiquitous and
they are often placed in environments difficult to reach for
human intervention, automated tools for intrusion response
gain importance.

The rudimentary response mechanisms often bundled
with anti-virus or intrusion detection system (IDS) products
overwhelmingly consider only immediate local responses
that are directly suggested by the detected symptom. For
example, a file being infected with a virus may cause the
anti-virus product to quarantine the file and disable all
access to the file, or a suspect packet being flagged by a
network IDS may cause the specific network connection to
be terminated. While these may be applicable in stand-
alone systems, they do not account for interaction effects
among multiple components. The few available dedicated
intrusion response systems are found to be lacking in one or
more dimensions that make them unsuitable for protecting
dynamic and complex distributed systems. Some of the
commonly observed shortcomings are the system may have
a static mapping of symptoms from the detector to the
response, may not take feedback into account for
determining future responses, may assume perfect detectors
with no missed and no false alarms, or may assume perfect
success rate for a deployed response. The complex
interactions and the complex software running the
distributed applications, the non-determinism in the
execution environment, and the reality of new forms of
intrusions surfacing would make any one of the above
shortcomings fatal for an intrusion response system for a
distributed enterprise.

In this paper, we focus on one of the most important
kinds of automated response, namely, containment.
Containment implies restricting the effect of the intrusion
to a subset of the entire set of services, which may allow
users access to limited functionality of the system. For

example, browsing a store catalog and checking on a
previously placed order may be available, while placing
new orders may not be. There are several challenges to the
problem of containment. First, the systems often have close
coupling between the services with frequent interactions of
different kinds, such as read, write, and execute. This
allows a compromised service to spread the effect to
multiple services. A second challenge is that the existing
interactions between e-commerce system components
should not be substantially altered during normal execution
in order to enforce containment during periods of intrusion.
Examples of unacceptable change may include mandating
interactions pass through additional checks inlined in the
execution path, intermediaries, or be executed over slower
channels. Third, the system will have to consider the
possibility of imperfect detectors providing false alarms or
missing alarms, and imperfect response actions, which do
not have 100% coverage.

In this paper, we present the design and implementation
of an Adaptive Intrusion Tolerant System, ADEPTS, for
containing intrusions in a distributed system of interacting
services. ADEPTS uses an Intrusion-Graph (I-GRAPH) to
represent paths for the intrusion to spread from one service
to its neighbor. Alarms from a detection system, which may
be off-the-shelf or from our previous work [1], are mapped
to the I-GRAPH nodes. ADEPTS estimates the likely path of
spread of the intrusion from the alarms and the structure of
the I-GRAPH and then determines the appropriate
response(s) to take. This decision is based on the
disruptivity of the response to legitimate system activities,
the previous success of the response, and the confidence
that the determined intrusion is indeed taking place. The
response has the goal of preventing the escalation of the
intrusion and possible spread from one service to another.
ADEPTS can function in multiple levels of “paranoia”
depending on the policy level, from an aggressive mode
with an elevated threat perception to a conservative mode.

The metric used to evaluate an intrusion tolerant system
has to be carefully chosen. Low-level metrics, such as the
latency of detection or false and missed alarm rates do not
fully capture the effect of an intrusion on the system’s
functionality. We propose the use of the metric called
survivability [2] for evaluating the effect of ADEPTS. We
define it such that its value depends on the set of high-level
system transactions that can be achieved and the set of
high-level system goals (e.g., keep users’ private
information secure) that are not violated in the event of an
intrusion. A high level transaction relies on certain chains
of interactions between multiple services being functioning.
Preserving a high level goal implies thwarting certain
intrusion goals from being reached.

The design of ADEPTS is realized in an implementation
which provides intrusion response service to a realistic
distributed e-commerce system. The e-commerce system
mimics an online book store system and two auxiliary
systems for the warehouse and the bank. Real attack
scenarios are injected into the system and ADEPTS’

responses are deployed, which bring out the latency of the
response action and the adaptive nature of ADEPTS. The
survivability of the system is compared with no response
mechanism, local responses only, and with ADEPTS.

We believe this paper breaks new ground in the
following ways:
1. ADEPTS is the first system, to the best of our

knowledge, that provides a structured methodology for
containing intrusions in a distributed system. It is also
the first system to aggregate the factors of severity of a
response, its effectiveness, and the possibility of
escalation to determine the appropriate set of responses.

2. ADEPTS can handle multiple concurrent alerts, imperfect
detectors, and escalation due to failed response actions.
It can also deal with unanticipated alerts and unknown
vulnerabilities in the system components. Each of these
is of critical importance in an intrusion tolerance system
applied to a real-world system.

3. ADEPTS is demonstrated on a realistic distributed
testbed with realistic transactions and attack scenarios.
However, the work presented here does not have as its

goal any of the following: intrusion detection for an e-
commerce system, provide a methodology for structuring
or composing an e-commerce system, design novel
response actions for specific services in an e-commerce
system, or provide a shrink-wrapped intrusion tolerance
system to make an e-commerce system resilient to specific
classes of attacks.

The rest of the paper is organized as follows. Section 2
refers to related research. Section 3 presents the design of
ADEPTS. Section 4 describes the implementation and the e-
commerce testbed on which ADEPTS is deployed. Section 5
presents the experiments and the results. Section 6
concludes the paper with mention of some future work.

2. Related Research

The devastating impact of computer security attacks to
today’s electronic world has spurred enormous interest in
intrusion detection research, both from academic and
commercial quarters. In order to guarantee the requirement
for continuous availability of the services, it is also
important to consider how the system reacts once the
intrusion is detected. The majority of current IDSs stops
with flagging alarms and relies on manual response by the
security administrator or system administrator. This results
in delays between the detection of the intrusion and the
response which may range from minutes to months. Cohen
showed using simulated attack scenarios that given a ten
hour delay from detection, 80% of the attacks succeed and
given thirty hours, almost all the attacks succeed
irrespective of the skill level of the defending system’s
administrator [3]. This insight has led to research in
survivable systems engineering pioneered by CERT at
CMU. Survivability is loosely defined as the capability of a
system to fulfill its mission, in a timely manner, in the
presence of attacks, failures, or accidents ([2],[4]). The

researchers identify the four key properties of survivable
systems, namely, resistance to attacks, recognition of
attacks and damage, recovery of essential and full services
after attack, and adaptation and evolution to reduce
effectiveness of future attacks. The part of the ADEPTS
system presented in this paper is motivated by the
requirement to provide the second and the fourth properties.

Intrusion response systems (IRS) can be considered to
cover the last three properties and are therefore suitable for
comparison with ADEPTS. A majority of the IRSs are static
in nature in that they provide a set of preprogrammed
responses that the administrator can choose from in
initiating a response. This may reduce the time gap between
detection and response, but still leaves a potentially
unbounded window of vulnerability. The holy grail is an
IRS that can respond to an attack automatically. A handful
of systems provide adaptive responses. In [5], the authors
propose a network model that allows an IRS to evaluate the
effect of a response on the network services. The system
chooses in a greedy manner the response that minimizes the
penalty. There are some studies which present taxonomy of
offensive and defensive responses to aid in selection of
coherent responses in an automated response system
([6],[7],[8]). Cooperating Security Managers (CSM) [9] is a
distributed and host-based intrusion detection and response
system. CSM proactively detects intrusions and reactively
responds to them using the Fisch DC&A taxonomy [6]. It
uses the suspicion level of the user as the only determining
factor in the choice of response. A second system called
EMERALD [10] uses two factors in determining the response
– the amount of evidence furnished to support the claim of
intrusion and the severity of the response. None of the
systems uses record of the past performance of the intrusion
detection system as measured by the incidence of false
positives and false negatives. None keeps track of the
success or failure of the deployed response nor provide a
framework for easily incorporating these factors in the
automated response determination. Another adaptive IRS is
the Adaptive, Agent-based Intrusion Response System
(AAIRS) [11]. The work provides a good framework on
which the IRS can be built. However, it does not provide
any of the system-level techniques and algorithms that will
be required for the AAIRS to work in practice. There is
some previous work on protecting distributed systems
against flooding based distributed denial of service (DDoS)
attacks in an automated manner through rate limiting
([12],[13]).

Fault trees have been used extensively in root cause
analysis in fault tolerant systems. They have also been used
to a limited extent in secure system design ([14],[15]). We
use an attack graph representation with nodes as
intermediate goals since the same intermediate goals show
up in several attack paths. Graph theoretic approaches to
modeling the temporal nature of security attributes is found
in [16],[17]. The notion of privilege graphs introduced in
[17] has some similarity to our I-GRAPH. However, they
represent only attacks launched by escalating the privilege

level of the attacker and the arcs are marked with weights
representing the difficulty of the privilege escalation. The
weights are dependent on several factors, such as the
expertise and resources of the attacker, and are therefore
difficult to predict.

3. Design of ADEPTS

3.1. Overview

The goal of ADEPTS is to monitor and track intrusions as
they occur in real-time and deploy various wide-ranging
responses to contain and restrict the spread of attacks in the
system. The system is subdivided into ADEPTS and the
payload system, which includes the embedded detectors.
The deployment of ADEPTS requires no modification to the
payload and no access to its source code. The I-GRAPH
models the paths an attacker can traverse to reach certain
goals that adversely affect the payload. Our motive in
designing ADEPTS is to proactively prevent an attacker
from moving from one attack goal node to another, by
responding appropriately at specific nodes. Here we give a
high-level description of the process flow shown in Figure
1. As an alert comes into ADEPTS, it is mapped to nodes in
the I-GRAPH followed by the execution of the response
determination algorithm.

Alerts
Compute

likelihoods

1. Detection framework
flags alarms and places
alerts in corresponding

nodes’ alert queues

2. Estimate likelihood
of goal nodes being

achieved

Create
response set

3. Form set of I-
GRAPH nodes for
which response
should be taken

Choose
response

4. Make response
in I-GRAPH node
ready by selecting

opcodes and
operands

Deploy
response

5. Activate response
in I-GRAPH node

Feedback to
responses

6. Update EI

Missed alarm
detection

7. Detect missed
alarms and modify

detector confidence

Alerts
Compute

likelihoods

1. Detection framework
flags alarms and places
alerts in corresponding

nodes’ alert queues

2. Estimate likelihood
of goal nodes being

achieved

Create
response set

3. Form set of I-
GRAPH nodes for
which response
should be taken

Choose
response

4. Make response
in I-GRAPH node
ready by selecting

opcodes and
operands

Deploy
response

5. Activate response
in I-GRAPH node

Feedback to
responses

6. Update EI

Missed alarm
detection

7. Detect missed
alarms and modify

detector confidence
Figure 1. Overall ADEPTS process flow

Throughout ADEPTS, three policy levels are used to

control the behavior of the relevant algorithms −
aggressive, moderate, and conservative. The three policies
can be abstracted to represent a ratio of missed alarms to
false alarms, with the aggressive policy having the lowest
ratio and the conservative policy having the highest ratio.

3.2. I-GRAPH structure

The I-GRAPH is used as the underlying representation for
knowledge about intrusions, as they spread achieving
progressively wider sets of goals.

In the I-GRAPH representation, each intrusion goal is
represented by one node in the graph. The final goal of the
intrusion may be disrupting some high level system
functionality, such as “Denial of service achieved against
the online store”. This final step will be achieved through
multiple small to moderate sized steps. A successful

execution of a step is looked upon as achieving an
intermediate intrusion goal and captured as an I-GRAPH
node. The intrusion goals have dependency relationships
between one another. For example, in order to corrupt the
data in the backend database server, one may need to
exploit a vulnerability in the front-end web server. The
edges are used to model this kind of dependency.

The parents of a node are the nodes reached by the
outgoing edges of the node. They correspond to higher
goals relative to the goal of the node. The children of a
node are the nodes with outgoing edges to the node. They
correspond to lower goals relative to the goal of the node.

1. SSL module
buffer overflow in

Apache host 1

2.Execute
arbitrary code on

Apache host 1

4. Send malicious
chunk encoded

packet

3. Illegal access to
http document root

5. C library code
buffer overflowed

9. MySQL
buffer overflow

6. Chunk handling
buffer overflow

on Apache host 1

12. Execute
arbitrary code on

MySQL host 10. DoS of
MySQL

11. DoS webstore

8. DoS of Apache
host 2

7. DoS of Apache
host 1

13. MySQL
information leak

OR AND

QUORUM

2

n

1. SSL module
buffer overflow in

Apache host 1

2.Execute
arbitrary code on

Apache host 1

4. Send malicious
chunk encoded

packet

3. Illegal access to
http document root

5. C library code
buffer overflowed

9. MySQL
buffer overflow

6. Chunk handling
buffer overflow

on Apache host 1

12. Execute
arbitrary code on

MySQL host 10. DoS of
MySQL

11. DoS webstore

8. DoS of Apache
host 2

7. DoS of Apache
host 1

13. MySQL
information leak

OR AND

QUORUM

2

n

Figure 2. A section of the I-GRAPH

In the I-GRAPH, edges are categorized into three types –

OR, AND, and Quorum edges. For a node with incoming
OR edges to be achieved, at least one of its child nodes
needs to be achieved, while for AND edges, all the child
nodes have to be achieved. For Quorum edges, one can
assign a Minimum Required Quorum (MRQ) on it, which
represents the minimum number of child nodes whose
goals need to be achieved in order for the node with
incoming Quorum edges to be achieved. Conforming to the
traditional definition of quorums in fault tolerant systems,
one may think MRQ as the minimum number of service
replicas whose loss will affect the functionality of the
service. An example fragment of the I-GRAPH used in our
payload system, a distributed e-commerce system, is shown
in Figure 2.

3.3. I-GRAPH generation

A key issue in the usability of ADEPTS is the ease with
which the I-GRAPH can be generated and updated as system
configuration changes or new vulnerabilities are brought to
light. We employ a semi-automated method called Portable
I-GRAPH Generation (PIG) for this. PIG requires two inputs
− vulnerability descriptions and system services description
(SNet). Of the two inputs, the SNet is target system
dependent. This is a directed graph, in which each node
represents an individual service in the target system and an

edge from node A to node B represents an intrusion-centric
channel. An intrusion-centric channel means if A is
compromised, then the intrusion can spread to B through
the channel. An intrusion-centric channel may be of five
kinds – (i) DOS channel: if the source service is subjected
to a successful DoS attack, then the destination service can
also be subjected to DoS; (ii) Network channel: there is a
network data connection between A and B; (iii) Shared file
channel; (iv) Shared memory channel; (v) Super channel:
which combines the functionality of all of the above. The
SNet is currently manually created for the target system,
though in the future, some tool which can perform service
discovery and interaction discovery (each an area of current
research [18]) can perform this task automatically.

The second input to PIG is the target independent
vulnerability descriptions. Information on the
vulnerabilities can be obtained by querying the common
vulnerability databases, such as CERT, Bugtraq, and
CERIAS-VDB. For use in PIG, the vulnerability is
specified through four fields – (i) Name: which is primarily
useful for human reference. (ii) Affected service: which
gives the service(s) in the SNet affected by the
vulnerability; (iii) Manifestation: this is a Boolean
expression in disjunctive normal form composed of five
elementary manifestations, namely, leaking of information,
execution of arbitrary code, incorrect behavior of service,
DoS, and service termination. (iv) Dependent vulnerability
and services: which denotes the dependence on other
vulnerabilities and services that have to be compromised to
exploit this vulnerability. The vulnerability definitions are
analogous to the virus definitions used in anti-virus
products. They can be developed either by the ADEPTS
developer or by a third party. The basic idea behind the I-
GRAPH generation algorithm is that when a vulnerability
description is read in, a corresponding node in the I-GRAPH
is created, thus creating a one-to-one map. In the next step,
the algorithm checks for nodes in the I-GRAPH that this
newly created node can get connected to. For this step, it
relies on information from both the SNet and the
vulnerability descriptions to decide whether spread of the
intrusion is possible from the newly created node to the
other nodes and vice-versa.

It is noted that though temporary countermeasures are
usually provided (before patches appear) in some
vulnerability databases (e.g. CERT), they typically require
disabling affected services. Without ADEPTS, disabling
affected services when a vulnerability is discovered can be
quite disruptive; but with ADEPTS, the advantage is that the
decision is made at runtime based on system status, and can
be configured to be aggressive or conservative (with
respect to disabling the services). Also some detector rules
are due to anomalous behavior observed in the system and
not directly attributable to a vulnerability, and therefore no
patches are applicable.

3.4. Determining response locations

3.4.1. CCI computation algorithm. The goal of the
algorithm is to determine, based on the received alerts from
the detectors, which of the I-GRAPH goal nodes are likely to
have been achieved. Each detector provides confidence
values for its alerts, termed alert confidence. If the detector
does not provide an inbuilt confidence value with the alert,
then the alert confidence value is set to one. When a
detector flags an intrusion, the alerts are placed in the I-
GRAPH nodes with the corresponding intrusion event. The
Compromised Confidence Index (CCI) of a node in the I-
GRAPH is a measure of the likelihood that the node has been
achieved. It is computed based on the alert confidence
corresponding to the node and the CCI of its immediate
children nodes. Mathematically, the CCI of a node is given
by








=

elseconfidencealertCCIff
tectorsdenoCCIf

childrennoconfidencealert
CCI

i

i

),,('(
),('

,

















 >

=

edgeQuorum
metnotQuorum
metQuorumCCICCImean

edgeANDCCInmi
edgeORCCIxma

f

ii

i

i

,0
),|(

),(
),(

'
τ

where CCIi corresponds to the CCI of the ith child and τ is a
per node threshold.

The intuition is that for an OR edge, the node can be
achieved if any of its children nodes is achieved and
therefore the likelihood (due to its children) is the
maximum of all of its children. For an AND edge, all the
children nodes have to be achieved and therefore the
likelihood is as much as the least likely child node. For
Quorum edges, if the quorum is not met, then the higher
goal is not achieved, but if met, the likelihood of it being
achieved only depends on the children nodes that have
achieved the quorum. The function ƒ allows various
weights to be assigned to determine the relative effect of
the alert confidence and the children’s CCI. The function
for the current design is the statistical mean.

When new alerts arrive, the nodes corresponding to
these alerts are reordered within a fixed time window and
passed to this algorithm. The I-GRAPH is traversed in
breadth-first-search (BFS) order starting from the lowest
nodes with new alerts, and the CCIs of the nodes are
computed until each reachable node has been traversed at
most once. This prevents infinite cycling to occur even
though there may be cycles in the I-GRAPH. The
disadvantage of such a traversal is that some causal relation
between nodes may be lost. However, the alerts are usually
temporally ordered according to the order in which the
events occurred, thus the causal order is more likely to be
obeyed in the CCI computation. Since the CCI of a parent
node is dependent on that of its child nodes, a BFS traversal
starting from the lowest node with an alert, rather than
DFS, is justified.

The alert confidence used to update the CCI is chosen
based on policy. For an aggressive policy, the maximum
alert confidence in the alert queue is used; for a moderate
policy, the maximum of a subset of alert confidences based
on the most recent alerts is chosen; for a conservative
policy, the alert confidence corresponding to the most
recent alert is chosen. The alert confidence provided by a
detector has to be moderated by the confidence on the
detector. ADEPTS has a mechanism to determine if a
detector misses alarms and adjust the detector confidence
accordingly. Qualitatively, if ADEPTS sees that for a given
node, its children nodes as well as parent nodes are flagged
but it is not, then it anticipates probabilistically that the
detectors have missed flagging the alert.

3.4.2. Response set computation algorithm. The purpose
of this algorithm is to determine the nodes where the
current attack will most likely spread to. This will allow the
response algorithm to deploy appropriate responses at those
locations. The I-GRAPH is traversed in reverse order of the
CCI computation algorithm, continuing until all reachable
nodes are traversed at most once. During the traversal, each
node is labeled as one of: (i) Strong Candidate (SC), if CCI
> τ; (ii) Weak Candidate (WC), if CCI ≤ τ but further
traversal across only AND edges can reach a SC node; (iii)
Very Weak Candidate (VWC), if CCI ≤ τ but further
traversal across any type of edge can reach a SC node; (iv)
Non-Candidate (NC), otherwise. If the CCI of a node is
computed to be greater than τ, the system concludes the
node has been achieved, where τ is a deployment
parameter. Therefore the SC label on a node is a strong
indicator that the node has been achieved, while the WC or
VWC label indicates smaller likelihoods due to evidence
from their parents.

Next, some nodes are placed in a response set,
indicating to the response system where responses should
be deployed. For an aggressive policy, all SC nodes, and
WC and VWC nodes which have at least one immediate
NC parent node are placed in the response set. For a
moderate policy, all SC and WC nodes that have at least
one immediate NC parent node are chosen. For a
conservative policy, all SC nodes that have at least one
immediate NC parent node are chosen. The aggressive,
moderate, and conservative policies provide increasingly
less disruption as well as less protection.

3.5. Response Repository

The deployment of the response is achieved by a
Response Repository, a Response Control Center, and
distributed Response Execution Agents. The Response
Repository stores the responses available for deployment in
a payload system. Each response in the repository consists
of an opcode and one or more operands, with wildcards
allowed for each. The opcode is the response command,
and the operands are the different parameters that need to
be specified in order to execute the response. For example,

the opcode for the response command of dropping
incoming packets from a remote IP to a local port is
DROP_INPUT, and the corresponding operands are
REMOTE_IP and LOCAL_PORT. The opcode and the
operands together make up a complete response command.
The response structure allows ADEPTS fine-grained
customization of the available responses

3.6. Response Control Center

The opcode is selected based on the ability of the
opcode to cut off the attack-centric channels as defined in
Section 3.3. The Response set computation algorithm
(Section 3.4.2.) sends to the Response Control Center the
list of I-GRAPH nodes which are candidates for the
deployment of responses. For each node, the Response
Control Center selects a set of candidate response opcodes
that can be used to prevent attacks from spreading via the
node’s outgoing intrusion-centric channels. The choice is
determined by the type of the channel. For example, the file
access based opcodes, such as DENY_FILE_ACCESS or
DISABLE_WRITE, are selected as candidate response
opcodes if an outgoing shared file channel is present.

After the opcodes have been chosen, the Response
Control Center generates a list of complete response
commands by collecting suitable operands. For this, it
examines the alert events stored in the alert queue of the
node and uses them to fill in the operands that are required
by the selected opcodes. An opcode can be combined with
multiple operands during this phase. For example, for an
opcode KILL_PROCESS, the control center may extract
PID#1 from alert event#1 and PID#2 from alert event #2,
both in the alert queue. Then, the response command
KILL_PROCESS PID#1, PID#2 is generated for
subsequent evaluation.

3.6.1. Picking responses to deploy. For each selected
response command, the Response Control Center computes
the Response Index (RI). The RI takes into the account the
estimated effectiveness of the response to the particular
attack, measured by the Effectiveness Index (EI), and the
perceived disruptiveness of the response to legitimate users
of the system, measured by the Disruptiveness Index (DI).
The EI and the DI are both specific to the response
command (opcode-operand combination) and the node in
the I-GRAPH to which the response is mapped. The RI is
given by RI = a.EI – b.DI, where a and b are deployment
parameters.

Note that EI of an identical response command may
differ for different attacks that map to different I-GRAPH
nodes. For example, blocking port 65000 or 16660 may be
useful against the stacheldraht DDoS attack but is unlikely
to be effective against the TFN DDoS attack. The two
attacks can be differentiated by their packet signatures. The
control center chooses the response with the highest RI
among the candidate responses, with a threshold being used
to suppress a response that falls below it. This ensures that

ineffective or highly disruptive responses are not deployed.
If no response is chosen for a particular node, then the next
higher level node is searched for possible responses. A
chosen response is deployed using a Response Execution
Agent. When response mechanisms or Response Execution
Agents on a particular compromised host have been
disabled, responses will be taken at other hosts, as
determined by the spread of the attack through the I-
GRAPH.

In the event that the payload system is under multiple
concurrent attacks, ADEPTS deploys responses for different
alerts received in a short span of time, which may
correspond to each individual attack instance. A heuristic to
distinguish different concurrent attacks, involving
clustering source IP addresses, destination IP addresses,
source ports, destination ports, user accounts and initiated
processes, proposed in [19], can be easily integrated into
ADEPTS.

3.6.2. Contradiction, equivalence, subset, and super set
relations between responses. Before initiating execution
of the chosen responses, the Response Control Center
identifies the relations between the active responses and the
pending responses. The newly selected response is
suppressed if the new command is a subset or the
equivalent of an active response or the new response
contradicts an active response. If there is overlap between
the new response and an active response, the ideal strategy
would be to deploy the non-overlapping part of the new
response. Since it is difficult to extract the differences
between responses in an automated manner, we enforce the
design choice on the responses in ADEPTS that they be non-
overlapping. This is possible to achieve because of the fine
granularity of the responses.

3.6.3. Handling unknown alerts. In a real-world
deployment, it is quite probable that the I-GRAPH for the
payload system is incomplete. Thus, ADEPTS would be
unable to map an incoming alert from a detector to a node.
To handle this situation, ADEPTS has the provision of a
general node per host. The alert would be mapped to the
general node for the host that is the destination of the attack
as it is easily deducible from the alert. In this case, the
Response Control Center can simply report the instance to
the administrator and take one of a set of pre-specified
general responses. The general responses are the commands
that would be possible to deploy with very little knowledge
of the operands, such as killing a process (need process ID),
shutting down a service (need service ID), or restarting a
host (need host ID).

3.7. Providing feedback to responses

Feedback to the response system is crucial for ADEPTS,
providing the runtime mechanism to bias response choices
in favor of those that have been effective in the past. This
feedback is provided by dynamically varying the EI of the

response. After a response has been deployed, the feedback
system checks to see if any active response action is
deployed on an edge that can be used to reach a node in the
currently computed response set. If such a response action
exists, it is indication that the response action possibly
failed and its EI is decreased.

The amount by which the EI of the response is
decreased depends on whether the response is on an AND
edge, OR edge, or Quorum edge to the node in the response
set. If it is on an AND edge, then it is certain that the
response failed and thus the node was achieved. Therefore,
the EI is decreased by a fixed fraction for responses on all
the edges. If the response is on an OR or Quorum edge,
then the EI is decreased in the proportion of the CCI values
of the nodes, the maximum decrease being the same as in
the AND case. When a response's Time To Live (TTL)
expires or when an administrator manually deactivates a
response, the EI of the response action is increased by a
fixed percentage under the intuition that the response was
successful since further alerts were not observed.

Referencing Figure 2, suppose an active response is
present on the edge between node 1 and 7, and node 10 is
in the response set. Suppose the fixed fraction to decrease is
α. Then for the active response,

16

1

78

7

CCICCI
CCI

CCICCI
CCIEIEI oldnew ++

−= α .

4. Implementation of ADEPTS and testbed

4.2. Description of e-commerce application

Apache

Clients

Firewall

MySQL

PHP

Data backup

Data mining
Warehouse
/Shipping

Bank

Applications

FirewallLoad
Balancer

ADEPTS Control Center

Response
Command via SSH

Detector Alerts via
Message QueueADEPTS-payload

interaction

Intra-host communication

Inter-host communication

Payload

PHP
Applications

Apache

Apache

Clients

Firewall

MySQL

PHP

Data backup

Data mining
Warehouse
/Shipping

Warehouse
/Shipping

BankBank

Applications

FirewallLoad
Balancer

ADEPTS Control Center

Response
Command via SSH

Detector Alerts via
Message QueueADEPTS-payload

interaction

Intra-host communication

Inter-host communication

Payload

PHP
Applications

Apache

Figure 3. Layout of e-commerce testbed

Figure 3 depicts the testbed that we use for experiments.

The payload system mimics an e-Commerce webstore,
which has two Apache web servers running webstore
applications, which are based on Cubecart
(http://www.cubecart.com) and are written in the PHP
scripting language. In the backend, there’s a MySQL
database which stores all the store’s information, which
includes products inventory, products description, customer
accounts, and order history. There are two other
organizations with which the webstore interacts – a Bank
and a Warehouse. The Bank is a home-grown application
which verifies credit card requests from the webstore. The
Warehouse is also a home-grown application, which takes

shipping requests from the webstore, checks inventory,
applies charges on the customer’s credit card account, and
ships the product. The clients submit transactions to the
webstore through a browser. Some important transactions
are given in Table 1.

We set certain security goals for the system, the
complement of which are specified in Table 2, along with
the weights. Thus adding the word “prevent” before each
gives the goal. The attached weights to the transactions and
security goals are used for survivability computation in
Section 5.

Table 1. List of e-commerce transactions
Name Services involved Weight
Browse webstore Apache, MySQL 10
Add to shopping cart Apache, MySQL 10
Place order Apache, MySQL 10
Charge credit card Warehouse, Bank 5
Admin work Variable 10

Table 2. List of e-commerce security goals

Illegal read of file (20) Illegal process being run (50)
Illegal write to file (30) Corruption of MySQL db (70)
Unauthorized credit card
charges (80)

Confidentiality leak of customer
info (100)

Cracked administrator
password (90)

Unauthorized orders created or
shipped (80)

4.2. Detectors

For our testbed, multiple detectors which communicate
with ADEPTS through secure channels are used. We use two
off-the-shelf detectors − Snort and Libsafe, and create three
home-grown detectors. Snort is used for detecting intrusion
patterns in network traffic while Libsafe is used to detect
buffer overflows in protected C-library calls. We create a
kernel-based File Access Monitor, which can detect file
access attempts of monitored processes and compare these
access attempts against preset rules to detect illegitimate
activity. Also, we create a Transaction Response Monitor,
which monitors the transaction response time of the
webstore using requests from the Apache Benchmark
(http://httpd.apache.org/docs-2.0/programs/ab.html).
Finally, there is an Abnormal Account Activity Detector at
the Bank, which detects abnormal account activities such as
excessive number of credit card transactions on one
account. The detectors used are all imperfect ones, with the
possibility of missed alarms and false alarms. The detectors
are not optimized for each attack scenario that the system is
tested with. This is because the process is clearly labor-
intensive and relies heavily on administrator expertise. For
the off-the-shelf detectors, the rules are taken from the
public distribution, while for the others, the rules are
created by a researcher separate from the group that
generates the attack scenarios.

4.3. Attack scenarios

The ADEPTS implementation is tested with different
attack scenarios classified into three categories − leaking
information, illegal transaction, and DoS. Each attack
scenario consists of a set of attack steps, with an ultimate
high-level goal. Each step of the attack scenario may be
detected by none, one, or more of the detectors. A detector
vector with the elements (Snort, Libsafe, File Access
Monitor, Bank Monitor., Transaction Response Monitor) is
assigned to each step of the attack scenario. A ‘1’ means
that step can be detected by the corresponding detector. We
show in Table 3 one sample scenario from each category –
Scenario 0 is leaking of user information in the database
(Leaking information), Scenario 1 is placing unauthorized
orders (Illegal transaction), and Scenario 8 is vandalize
webstore (DoS).

Table 3. Attack steps for three attack scenarios
Step Scenario 0
1 Apache ModSSL buffer overflow (10000)
2 Insert malicious code (00000)
3 IP/port scan to find vulner. SQL server (10000)
4 Buffer overflow MySQL to create a shell (00100)
5 Use shell to steal info stored in MySQL (00100)
 Scenario 1
1 Apache php_mime_split buffer overflow (10000)
2 ‘ls’ to list webstore document root and identify code

regarding warehouse shipments (00100)
3 Send shipping request to warehouse, crafting request

form to cause buffer overrun to fill form with victim’s
credit card number (01000)

4 Make unauthorized orders (00010)
 Scenario 8
1 Buffer overflow Apache ModSSL (10000)
2 Create Apache privilege shell (00100)
3 Execute crontab command (00100)
4 Insert malicious data into Apache’s crontab (00100)
5 Root privilege shell created (00000)
6 Corrupt web server document root (00100)

We also test ADEPTS with other attack scenarios

involving buffer overflow attacks to steal client info, and
other DoS attack scenarios entailing memory exhaustion in
the Apache mime handling components or DDoS through
huge number of legitimate transactions, such as product
search. The entire I-GRAPH automatically generated by the
PIG algorithm consists of 57 nodes and 1148 edges and is
too large to be shown. A fragment of the I-GRAPH has been
shown in Figure 2.

4.4. Response Repository for testbed

Four types of response commands are included in the
Response Repository − general, file, network, and denial-
of-service types. The general-type commands can be
deployed to block any types of intrusion-centric channels
in the I-GRAPH, corresponding to the super channel. The
other types of commands have a one-to-one map to the
kinds of intrusion channels introduced in Section 3.3. The
implementation of the file-type commands is achieved by

using the Linux Intrusion Detection System (LIDS) version
2.2.0. The implementation of the network-type commands
is performed by using iptables. The general type commands
are killing a process and restarting or shutting down a
service or a host. The file-type commands are to deny any
access to a file, or selectively disable read, write, or execute
access. The network-type commands are to block incoming
or outgoing network connections, parameterized by source
or destination port, IP, or protocol. The DOS-type
commands are to limit the rates of various types of packets,
such as SYN, ICMP echo, ICMP host not reachable, and
SYN-ACK.

5. Experiments and results

We perform three sets of experiments demonstrating the
following (i) effect of attack scenarios on survivability with
and without ADEPTS, (ii) the ability of ADEPTS to deploy
responses as the speed of propagation of the attack varies,
(iii) the adaptation in ADEPTS in choosing responses. All
these experiments are conducted using the moderate policy
with actual attack scenarios on the e-commerce testbed.
Our experiments here show the behavior of ADEPTS under a
limited number of parameter configurations. They are not
meant to bring out trends in the performance of ADEPTS or
provide predictability under new attack scenarios or
different parameter configurations. Comparing ADEPTS to
other automated IRSs mentioned in Section 2 was not
possible since they are not publicly available. For
experiment 1 and 2, we define the survivability based on
the high level transactions and security goals in Table 1 and
2. The metric thus shows the effect of ADEPTS on the high
level functioning of the e-commerce system.

Survivability = 1000 – Σ unavailable transactions – Σ
failed security goals.

When a transaction becomes unavailable or the security
goal is violated, the survivability drops by its corresponding
weight. Transactions become unavailable due to responses,
such as rebooting a host, or attacks. Security goals may be
violated due to the successful execution of an attack step. If
a security goal is violated multiple times during an attack,
then each violation causes a decrease in the survivability.

5.1. Effect of attack scenarios on survivability

The goal of this experiment is to show the comparative
performance of ADEPTS in maintaining the survivability of
the e-commerce system with respect to having no responses
and only local responses. Three different attack scenarios
are executed and the survivability calculated at each step of
the attack scenario. For local responses, the responses that
came with the deployed detectors are used – Snort (IP
blocking) and bank monitor (freeze credit card).

For the leak of information attack (Figure 4), ADEPTS far
outperforms the other two. The File Access Monitor detects
a malicious shell being created with Apache privileges
while Snort detects an Apache SSL module buffer overflow

packet. Consequently, ADEPTS deploys aggressive
responses to kill the process and block all following
incoming packets from the attacker. The inability of the
local response implemented by Snort to drop the IP packets
in time causes the attack to continue to spread. For the
illegal transaction attack (Figure 5), the performance of the
local response is noticeably worse than ADEPTS. ADEPTS
deploys a successful response disallowing shell commands
with Apache privileges, earlier than the local response at
the bank monitor. For the distributed denial of service
attack (Figure 5), the graph shows the inability of any of
the setups to respond effectively to the attack. The
responses deployed by ADEPTS to limit the overall
incoming packet rate, such as, blocking packets from the IP
address with the highest rate of packet transmission,
allowed for a slight decrease in the effectiveness of the
DoS.

Figure 4. Survivability during scenario 0

Figure 5. Survivability during scenario 1 and 4

5.2. Effect of prop. speed on survivability

This experiment inspects the relationship between the
ability of ADEPTS to protect the payload system and the
attack propagation speed. We vary the delay between the
attack steps in scenario 0 between 0-7 s. This could
simulate a variety of factors, such as the attacker’s skill
level, condition of the network, difficulty of an attack step,
etc. Figure 6 shows the survivability with different attack
propagation speeds. The legend ‘0004’ means there is a
delay of zero seconds before attack step 0 is begun,
between steps 0 and 1, and 1 and 2, while there is a delay of
4 s for all subsequent steps. We see that ADEPTS performs
well with delays ≥ 4 s since the attack is stopped in the very
first step. If however, the first step has zero delay, then
ADEPTS is only able to block the attack at a later step,
leading to a decreased survivability. With no delay at all
between the steps, ADEPTS is only able to block the attack

at the last step, which is still better than the no response
case. In all cases, ADEPTS can maintain the survivability at
a constant level once the blocking is successful.

0

200

400

600

800

1000

Attack Steps

S
ur

vi
va

bi
lit

y

no response
delay 7 sec
delay 4 sec
0004
000011
no delay

Figure 6. Effect of attack propagation speed

5.3. Adaptation of response mechanism

Table 4. Scenario 8’s intrusion responses
R1 Block port 443 from
attacker’s src IP

R2 Kill Apache privilege shell

R3 Block attacker’s src IP R4 Kill crontab process
R5 Restart Apache R6 Reboot Apache host
R7 Deny access to crontab
command and kill process if
it is still running

R8 Set Apache’s HTTP
document directory as
READONLY

Table 5. Response actions during runs

Step Responses EI changes
Run 1
1
2 X R1; X R2
3 X R3; X R4 R1 1.1→1.072; R2 1.1→1.058
4 X R5 R2 1.058→1.024; R4 1.1→1.064

R3 1.1→1.076; R1 1.072→1.049
5
6 O R6

X R7
X R8

R2 1.024→0.993; R4
1.064→1.031
R5 1.1→1.077; R3 1.076→1.054
R1 1.049→1.028

Attack stopped R8 1.1→1.21; R7 1.1→1.21
R6 1.1→1.21

Run 3
1
2 X R1; X R7
3 O R6; X R4 R7 1.21→1.164; R1 0.96→0.936
4 X R3 R7 1.164→1.126; R4 1.1→1.064

R1 0.936→0.916; R6
1.331→1.302

Attack stopped R3 1.010→1.111
Run 6
1
2 O R6; O R7
Attack stopped R7 1.1→1.21; R6 1.401→1.541

Here we demonstrate the adaptive nature of ADEPTS

through which it can change the response strategy as an
attack escalates. Scenario 8, having 6 steps, with delay

Scenario 1

-400

-200

0

200

400

600

800

1000

1200

Su
rv

iv
ab

ili
ty

Scenario 4

500

600

700

800

900

1000

1100

Su
rv

iv
ab

ili
ty

Scenario 0

0

200

400

600

800

1000

1200

Su
rv

iv
ab

ili
ty

No response

Local response

ADEPTS

characteristic ‘00015’ is used for demonstrating the
process. This experiment is composed of multiple runs of
scenario 8 (we show runs 1, 3, and 6). We see in run 1, the
initial choice of responses is poor (‘X’ by response implies
failed) and the final step of scenario 8 is reached, where the
attacker can create a root privilege shell and tamper with
Apache’s HTTP documents. In run 3, after a series of EI
tuning from runs 1 and 2, the response of rebooting Apache
is deployed in step 3. In run 6, the response of rebooting
Apache is moved to step 2. The earlier the attack is
blocked, the less likely the final attack goal is achieved.
Thus, the choice of responses in run 6 is the best and
ADEPTS is seen to improve its response choices through
observing multiple attacks.

6. Conclusions

In the paper we have presented the design and
implementation of an automated intrusion containment
system called ADEPTS. ADEPTS uses a graph of intrusion
goals called I-GRAPH. It provides a method to determine the
possible path of spread of the intrusion, appropriate
services where to deploy the response, and appropriately
choose the response. ADEPTS is demonstrated on an e-
commerce system with real attack scenarios.

We are currently investigating ways to synthesize new
responses at runtime from the repository; designing
protocols for better handling concurrent attacks,
distinguishing between attacks, and increasing tolerance
towards faulty detectors; and lastly, evaluating the
convergence of its adaptation feature and systematically
evaluating the performance of ADEPTS with more control
parameters being varied.

References

[1] Y.-S. Wu, B. Foo, Y. Mei, and S. Bagchi, “Collaborative

Intrusion Detection System (CIDS): A Framework for
Accurate and Efficient IDS”, Proceedings of the 19th Annual
Computer Security Applications Conference (ACSAC), Dec
8-12, 2003.

[2] R. Ellison, R. Linger, T. Longstaff, and N. Mead, “Case
Study in Survivable Network System Analysis”, Technical
Report CMU/SEI-98-TR-014, SEI, CMU, 1998.

[3] F. Cohen, “Simulating Cyber Attacks, Defenses, and
Consequences,” Available at
http://all.net/journal/ntb/simulate/simulate.html, 1999.

[4] R. Anderson, A. Hearn, and R. Hundley, “Studies of
Cyberspace Security Issues and the Concept of a U.S.
Minimum Essential Information Infrastructure”, Proceedings
of the 1997 Information Survivability Workshop, CERT,
1997.

[5] T. Toth and C. Kruegel, “Evaluating the Impact of
Automated Intrusion Response Mechanisms”, 18th Annual
Computer Security Applications Conference (ACSAC), Dec
9-13, 2002.

[6] E. Fisch, “Intrusion Damage Control and Assessment: A
Taxonomy and Implementation of Automated Responses to

Intrusive Behavior”, Ph.D. Dissertation, Texas A&M U,
College Station, TX, 1996.

[7] C. Carver and U. Pooch, “An Intrusion Response Taxonomy
and its Role in Automatic Intrusion Response”, Proceedings
of the 2000 IEEE Workshop on Information Assurance and
Security, USMA, West Point, NY, 2000.

[8] U. Lindqvist and E. Jonsson, “How to Systematically
Classify Computer Security Intrusions”, Proceedings of the
1997 IEEE Symposium on Security and Privacy, Oakland,
CA, May 4-7, 1997, pp. 154 - 163.

[9] G. White, E. Fisch, and U. Pooch, “Cooperating Security
Managers: A Peer-based Intrusion Detection System”, IEEE
Network, vol 10, no. 1, 1996, pp. 20-23.

[10] P. Porras and P. Neumann, “EMERALD: Event Monitoring
Enabling Responses to Anomalous Live Disturbances,”
Proceedings of the 20th National Information Systems
Security Conference, Baltimore, MD, Oct 7-10, 1997, pp.
353-365.

[11] D. Ragsdale, C. Carver, J. Humphries, and U. Pooch,
“Adaptation Techniques for Intrusion Detection and Intrusion
Response Systems”, Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics, Nashville,
Tennessee, Oct 8-11, 2000, pp. 2344-2349.

[12] D. Sterne, K. Djahandari, B. Wilson, B. Babson, D.
Schnackenberg, H. Holliday, and T. Reid, “Autonomic
Response to Distributed Denial of Service Attacks”,
Proceedings of the 4th International Symposium on Rapid
Advances in Intrusion Detection (RAID), Davis, CA, USA,
Oct 2001.

[13] R. Mahajan, S. Bellovin, S. Floyd, J. Ioannidis, V. Paxson,
and S. Shenker, “Controlling High Bandwidth Aggregates in
the Network”, AT&T Center for Internet Research at ICSI
(ACIRI), DRAFT, Available at
http://www.research.att.com/~smb/papers/DDOS-lacc.pdf,
Feb 5, 2001.

[14] P. Brooke and R. Paige, “Fault Trees for Security System
Analysis and Design”, Journal of Computers and Security,
22(3):256-264, Elsevier, May 2003.

[15] G. Helmer, J. Wong, M. Slagell, V. Honavar, L. Miller, and
R. Lutz, “A Software Fault Tree Approach to Requirements
Analysis of an Intrusion Detection System”, Proceedings of
the 1st Symposium on Requirements Engineering for
Information Security, 2001.

[16] M. Dacier, Y. Deswarte, and M. Kaaniche, “Quantitative
Assessment of Operational Security: Models and Tools”,
LAAS Research Report 96493, May 1996 (Extended version
of “Models and Tools for Quantitative Assessment of
Operational Security,” Proc IFIP/SEC 1996).

[17] R. Ortalo, Y. Deswarte, M. Kaaniche, “Experimenting with
Quantitative Evaluation Tools for Monitoring Operational
Security”, IEEE Transactions on Software Engineering, vol
25 , issue 5 , pp. 633-650, Sep-Oct 1999.

[18] A. Brown, G. Kar, A. Keller, “An Active Approach to
Characterizing Dynamic Dependencies for Problem
Determination in a Distributed Application Environment”,
IEEE/IFIP International Symposium on Integrated Network
Management, pp. 377-390, 2001.

[19] C. Carver, J. Hill, and U. Pooch, “Limiting Uncertainty in
Intrusion Response”, Proceedings of the 2001 IEEE
Workshop on Information Assurance and Security, USMA,
West Point, NY, Jun 5-6, 2001.

