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Abstract 
 

Distributed systems with multiple interacting services, 
especially e-commerce systems, are suitable targets for 
malicious attacks because of the potential financial impact. 
Compared to intrusion detection, automated response has 
received relatively less attention. In this paper, we present 
the design of automated response mechanisms in an 
intrusion tolerant system called ADEPTS. Our focus is on 
enforcing containment in the system, thus localizing the 
intrusion and allowing the system to provide service, albeit 
degraded. ADEPTS uses a graph of intrusion goals, called I-
GRAPH, as the underlying representation in the system. In 
response to alerts from an intrusion detection framework, 
ADEPTS executes algorithms to determine the spread of the 
intrusion and the appropriate responses to deploy. A 
feedback mechanism evaluates the success of a deployed 
response and uses that in guiding future choices. ADEPTS is 
demonstrated on a distributed e-commerce system and 
evaluated using a survivability metric. 
Keywords: automated intrusion response, intrusion 
containment, distributed e-commerce systems, survivability, 
attack graphs. 
 
 
1. Introduction 
 

Distributed systems comprising multiple services 
interacting among themselves to provide end-user functions 
are becoming an increasingly important platform for 
business-to-business (B2B) and business-to-consumer 
(B2C) systems. As an example, electronic commerce, or e-
commerce, has been touted as the next wave in the Internet 
revolution. The huge financial stakes involved in e-
commerce make the distributed system infrastructure 
supporting e-commerce prime candidates for computer 
security attacks. 

Such motivations have long led to interest in securing 
distributed systems through detection of intrusions. This is 
typically achieved by analyzing the signatures of incoming 
packets and either matching them against known attack 
patterns (misuse-based signatures), or against patterns of 
expected system behavior (anomaly-based signatures). In 

order to meet the challenges of always-on, on-demand 
service availability, an e-commerce system needs to be 
resilient to security attacks. Resilience must include both 
intrusion detection and intrusion response. Compared to the 
problem of detection, automated response has received far 
less research attention. This has typically been considered 
the domain of system administrators who manually "patch" 
the system in response to detected attacks. However, as 
networked e-commerce services become ubiquitous and 
they are often placed in environments difficult to reach for 
human intervention, automated tools for intrusion response 
gain importance. 

The rudimentary response mechanisms often bundled 
with anti-virus or intrusion detection system (IDS) products 
overwhelmingly consider only immediate local responses 
that are directly suggested by the detected symptom. For 
example, a file being infected with a virus may cause the 
anti-virus product to quarantine the file and disable all 
access to the file, or a suspect packet being flagged by a 
network IDS may cause the specific network connection to 
be terminated. While these may be applicable in stand-
alone systems, they do not account for interaction effects 
among multiple components. The few available dedicated 
intrusion response systems are found to be lacking in one or 
more dimensions that make them unsuitable for protecting 
dynamic and complex distributed systems. Some of the 
commonly observed shortcomings are the system may have 
a static mapping of symptoms from the detector to the 
response, may not take feedback into account for 
determining future responses, may assume perfect detectors 
with no missed and no false alarms, or may assume perfect 
success rate for a deployed response. The complex 
interactions and the complex software running the 
distributed applications, the non-determinism in the 
execution environment, and the reality of new forms of 
intrusions surfacing would make any one of the above 
shortcomings fatal for an intrusion response system for a 
distributed enterprise. 

In this paper, we focus on one of the most important 
kinds of automated response, namely, containment. 
Containment implies restricting the effect of the intrusion 
to a subset of the entire set of services, which may allow 
users access to limited functionality of the system. For 



example, browsing a store catalog and checking on a 
previously placed order may be available, while placing 
new orders may not be. There are several challenges to the 
problem of containment. First, the systems often have close 
coupling between the services with frequent interactions of 
different kinds, such as read, write, and execute. This 
allows a compromised service to spread the effect to 
multiple services. A second challenge is that the existing 
interactions between e-commerce system components 
should not be substantially altered during normal execution 
in order to enforce containment during periods of intrusion. 
Examples of unacceptable change may include mandating 
interactions pass through additional checks inlined in the 
execution path, intermediaries, or be executed over slower 
channels. Third, the system will have to consider the 
possibility of imperfect detectors providing false alarms or 
missing alarms, and imperfect response actions, which do 
not have 100% coverage. 

In this paper, we present the design and implementation 
of an Adaptive Intrusion Tolerant System, ADEPTS, for 
containing intrusions in a distributed system of interacting 
services. ADEPTS uses an Intrusion-Graph (I-GRAPH) to 
represent paths for the intrusion to spread from one service 
to its neighbor. Alarms from a detection system, which may 
be off-the-shelf or from our previous work [1], are mapped 
to the I-GRAPH nodes. ADEPTS estimates the likely path of 
spread of the intrusion from the alarms and the structure of 
the I-GRAPH and then determines the appropriate 
response(s) to take. This decision is based on the 
disruptivity of the response to legitimate system activities, 
the previous success of the response, and the confidence 
that the determined intrusion is indeed taking place. The 
response has the goal of preventing the escalation of the 
intrusion and possible spread from one service to another. 
ADEPTS can function in multiple levels of “paranoia” 
depending on the policy level, from an aggressive mode 
with an elevated threat perception to a conservative mode. 

The metric used to evaluate an intrusion tolerant system 
has to be carefully chosen. Low-level metrics, such as the 
latency of detection or false and missed alarm rates do not 
fully capture the effect of an intrusion on the system’s 
functionality. We propose the use of the metric called 
survivability [2] for evaluating the effect of ADEPTS. We 
define it such that its value depends on the set of high-level 
system transactions that can be achieved and the set of 
high-level system goals (e.g., keep users’ private 
information secure) that are not violated in the event of an 
intrusion. A high level transaction relies on certain chains 
of interactions between multiple services being functioning. 
Preserving a high level goal implies thwarting certain 
intrusion goals from being reached. 

The design of ADEPTS is realized in an implementation 
which provides intrusion response service to a realistic 
distributed e-commerce system. The e-commerce system 
mimics an online book store system and two auxiliary 
systems for the warehouse and the bank. Real attack 
scenarios are injected into the system and ADEPTS’ 

responses are deployed, which bring out the latency of the 
response action and the adaptive nature of ADEPTS. The 
survivability of the system is compared with no response 
mechanism, local responses only, and with ADEPTS. 

We believe this paper breaks new ground in the 
following ways: 
1. ADEPTS is the first system, to the best of our 

knowledge, that provides a structured methodology for 
containing intrusions in a distributed system. It is also 
the first system to aggregate the factors of severity of a 
response, its effectiveness, and the possibility of 
escalation to determine the appropriate set of responses. 

2. ADEPTS can handle multiple concurrent alerts, imperfect 
detectors, and escalation due to failed response actions. 
It can also deal with unanticipated alerts and unknown 
vulnerabilities in the system components. Each of these 
is of critical importance in an intrusion tolerance system 
applied to a real-world system. 

3. ADEPTS is demonstrated on a realistic distributed 
testbed with realistic transactions and attack scenarios. 
However, the work presented here does not have as its 

goal any of the following: intrusion detection for an e-
commerce system, provide a methodology for structuring 
or composing an e-commerce system, design novel 
response actions for specific services in an e-commerce 
system, or provide a shrink-wrapped intrusion tolerance 
system to make an e-commerce system resilient to specific 
classes of attacks. 

The rest of the paper is organized as follows. Section 2 
refers to related research. Section 3 presents the design of 
ADEPTS. Section 4 describes the implementation and the e-
commerce testbed on which ADEPTS is deployed. Section 5 
presents the experiments and the results. Section 6 
concludes the paper with mention of some future work. 
 
2. Related Research 
 

The devastating impact of computer security attacks to 
today’s electronic world has spurred enormous interest in 
intrusion detection research, both from academic and 
commercial quarters. In order to guarantee the requirement 
for continuous availability of the services, it is also 
important to consider how the system reacts once the 
intrusion is detected. The majority of current IDSs stops 
with flagging alarms and relies on manual response by the 
security administrator or system administrator. This results 
in delays between the detection of the intrusion and the 
response which may range from minutes to months. Cohen 
showed using simulated attack scenarios that given a ten 
hour delay from detection, 80% of the attacks succeed and 
given thirty hours, almost all the attacks succeed 
irrespective of the skill level of the defending system’s 
administrator [3]. This insight has led to research in 
survivable systems engineering pioneered by CERT at 
CMU. Survivability is loosely defined as the capability of a 
system to fulfill its mission, in a timely manner, in the 
presence of attacks, failures, or accidents ([2],[4]). The 



researchers identify the four key properties of survivable 
systems, namely, resistance to attacks, recognition of 
attacks and damage, recovery of essential and full services 
after attack, and adaptation and evolution to reduce 
effectiveness of future attacks. The part of the ADEPTS 
system presented in this paper is motivated by the 
requirement to provide the second and the fourth properties. 

Intrusion response systems (IRS) can be considered to 
cover the last three properties and are therefore suitable for 
comparison with ADEPTS. A majority of the IRSs are static 
in nature in that they provide a set of preprogrammed 
responses that the administrator can choose from in 
initiating a response. This may reduce the time gap between 
detection and response, but still leaves a potentially 
unbounded window of vulnerability. The holy grail is an 
IRS that can respond to an attack automatically. A handful 
of systems provide adaptive responses. In [5], the authors 
propose a network model that allows an IRS to evaluate the 
effect of a response on the network services. The system 
chooses in a greedy manner the response that minimizes the 
penalty. There are some studies which present taxonomy of 
offensive and defensive responses to aid in selection of 
coherent responses in an automated response system 
([6],[7],[8]). Cooperating Security Managers (CSM) [9] is a 
distributed and host-based intrusion detection and response 
system. CSM proactively detects intrusions and reactively 
responds to them using the Fisch DC&A taxonomy [6]. It 
uses the suspicion level of the user as the only determining 
factor in the choice of response. A second system called 
EMERALD [10] uses two factors in determining the response 
– the amount of evidence furnished to support the claim of 
intrusion and the severity of the response. None of the 
systems uses record of the past performance of the intrusion 
detection system as measured by the incidence of false 
positives and false negatives. None keeps track of the 
success or failure of the deployed response nor provide a 
framework for easily incorporating these factors in the 
automated response determination. Another adaptive IRS is 
the Adaptive, Agent-based Intrusion Response System 
(AAIRS) [11]. The work provides a good framework on 
which the IRS can be built. However, it does not provide 
any of the system-level techniques and algorithms that will 
be required for the AAIRS to work in practice. There is 
some previous work on protecting distributed systems 
against flooding based distributed denial of service (DDoS) 
attacks in an automated manner through rate limiting 
([12],[13]). 

Fault trees have been used extensively in root cause 
analysis in fault tolerant systems. They have also been used 
to a limited extent in secure system design ([14],[15]). We 
use an attack graph representation with nodes as 
intermediate goals since the same intermediate goals show 
up in several attack paths. Graph theoretic approaches to 
modeling the temporal nature of security attributes is found 
in [16],[17]. The notion of privilege graphs introduced in 
[17] has some similarity to our I-GRAPH. However, they 
represent only attacks launched by escalating the privilege 

level of the attacker and the arcs are marked with weights 
representing the difficulty of the privilege escalation. The 
weights are dependent on several factors, such as the 
expertise and resources of the attacker, and are therefore 
difficult to predict. 
 
3. Design of ADEPTS 
 
3.1. Overview 
 

The goal of ADEPTS is to monitor and track intrusions as 
they occur in real-time and deploy various wide-ranging 
responses to contain and restrict the spread of attacks in the 
system. The system is subdivided into ADEPTS and the 
payload system, which includes the embedded detectors. 
The deployment of ADEPTS requires no modification to the 
payload and no access to its source code. The I-GRAPH 
models the paths an attacker can traverse to reach certain 
goals that adversely affect the payload. Our motive in 
designing ADEPTS is to proactively prevent an attacker 
from moving from one attack goal node to another, by 
responding appropriately at specific nodes. Here we give a 
high-level description of the process flow shown in Figure 
1. As an alert comes into ADEPTS, it is mapped to nodes in 
the I-GRAPH followed by the execution of the response 
determination algorithm. 
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Figure 1. Overall ADEPTS process flow 

 
Throughout ADEPTS, three policy levels are used to 

control the behavior of the relevant algorithms − 
aggressive, moderate, and conservative. The three policies 
can be abstracted to represent a ratio of missed alarms to 
false alarms, with the aggressive policy having the lowest 
ratio and the conservative policy having the highest ratio. 
 
3.2. I-GRAPH structure 
 

The I-GRAPH is used as the underlying representation for 
knowledge about intrusions, as they spread achieving 
progressively wider sets of goals. 

In the I-GRAPH representation, each intrusion goal is 
represented by one node in the graph. The final goal of the 
intrusion may be disrupting some high level system 
functionality, such as “Denial of service achieved against 
the online store”. This final step will be achieved through 
multiple small to moderate sized steps. A successful 



execution of a step is looked upon as achieving an 
intermediate intrusion goal and captured as an I-GRAPH 
node. The intrusion goals have dependency relationships 
between one another. For example, in order to corrupt the 
data in the backend database server, one may need to 
exploit a vulnerability in the front-end web server. The 
edges are used to model this kind of dependency. 

The parents of a node are the nodes reached by the 
outgoing edges of the node. They correspond to higher 
goals relative to the goal of the node. The children of a 
node are the nodes with outgoing edges to the node. They 
correspond to lower goals relative to the goal of the node. 
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Figure 2. A section of the I-GRAPH 

 
In the I-GRAPH, edges are categorized into three types – 

OR, AND, and Quorum edges. For a node with incoming 
OR edges to be achieved, at least one of its child nodes 
needs to be achieved, while for AND edges, all the child 
nodes have to be achieved. For Quorum edges, one can 
assign a Minimum Required Quorum (MRQ) on it, which 
represents the minimum number of child nodes whose 
goals need to be achieved in order for the node with 
incoming Quorum edges to be achieved. Conforming to the 
traditional definition of quorums in fault tolerant systems, 
one may think MRQ as the minimum number of service 
replicas whose loss will affect the functionality of the 
service. An example fragment of the I-GRAPH used in our 
payload system, a distributed e-commerce system, is shown 
in Figure 2. 
 
3.3. I-GRAPH generation 
 

A key issue in the usability of ADEPTS is the ease with 
which the I-GRAPH can be generated and updated as system 
configuration changes or new vulnerabilities are brought to 
light. We employ a semi-automated method called Portable 
I-GRAPH Generation (PIG) for this. PIG requires two inputs 
− vulnerability descriptions and system services description 
(SNet). Of the two inputs, the SNet is target system 
dependent. This is a directed graph, in which each node 
represents an individual service in the target system and an 

edge from node A to node B represents an intrusion-centric 
channel. An intrusion-centric channel means if A is 
compromised, then the intrusion can spread to B through 
the channel. An intrusion-centric channel may be of five 
kinds – (i) DOS channel: if the source service is subjected 
to a successful DoS attack, then the destination service can 
also be subjected to DoS; (ii) Network channel: there is a 
network data connection between A and B; (iii) Shared file 
channel; (iv) Shared memory channel; (v) Super channel: 
which combines the functionality of all of the above. The 
SNet is currently manually created for the target system, 
though in the future, some tool which can perform service 
discovery and interaction discovery (each an area of current 
research [18]) can perform this task automatically. 

The second input to PIG is the target independent 
vulnerability descriptions. Information on the 
vulnerabilities can be obtained by querying the common 
vulnerability databases, such as CERT, Bugtraq, and 
CERIAS-VDB. For use in PIG, the vulnerability is 
specified through four fields – (i) Name: which is primarily 
useful for human reference. (ii) Affected service: which 
gives the service(s) in the SNet affected by the 
vulnerability; (iii) Manifestation: this is a Boolean 
expression in disjunctive normal form composed of five 
elementary manifestations, namely, leaking of information, 
execution of arbitrary code, incorrect behavior of service, 
DoS, and service termination. (iv) Dependent vulnerability 
and services: which denotes the dependence on other 
vulnerabilities and services that have to be compromised to 
exploit this vulnerability. The vulnerability definitions are 
analogous to the virus definitions used in anti-virus 
products. They can be developed either by the ADEPTS 
developer or by a third party. The basic idea behind the I-
GRAPH generation algorithm is that when a vulnerability 
description is read in, a corresponding node in the I-GRAPH 
is created, thus creating a one-to-one map. In the next step, 
the algorithm checks for nodes in the I-GRAPH that this 
newly created node can get connected to. For this step, it 
relies on information from both the SNet and the 
vulnerability descriptions to decide whether spread of the 
intrusion is possible from the newly created node to the 
other nodes and vice-versa. 

It is noted that though temporary countermeasures are 
usually provided (before patches appear) in some 
vulnerability databases (e.g. CERT), they typically require 
disabling affected services. Without ADEPTS, disabling 
affected services when a vulnerability is discovered can be 
quite disruptive; but with ADEPTS, the advantage is that the 
decision is made at runtime based on system status, and can 
be configured to be aggressive or conservative (with 
respect to disabling the services). Also some detector rules 
are due to anomalous behavior observed in the system and 
not directly attributable to a vulnerability, and therefore no 
patches are applicable. 
 
3.4. Determining response locations 
 



3.4.1. CCI computation algorithm. The goal of the 
algorithm is to determine, based on the received alerts from 
the detectors, which of the I-GRAPH goal nodes are likely to 
have been achieved. Each detector provides confidence 
values for its alerts, termed alert confidence. If the detector 
does not provide an inbuilt confidence value with the alert, 
then the alert confidence value is set to one. When a 
detector flags an intrusion, the alerts are placed in the I-
GRAPH nodes with the corresponding intrusion event. The 
Compromised Confidence Index (CCI) of a node in the I-
GRAPH is a measure of the likelihood that the node has been 
achieved. It is computed based on the alert confidence 
corresponding to the node and the CCI of its immediate 
children nodes. Mathematically, the CCI of a node is given 
by 
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where CCIi corresponds to the CCI of the ith child and τ is a 
per node threshold. 

The intuition is that for an OR edge, the node can be 
achieved if any of its children nodes is achieved and 
therefore the likelihood (due to its children) is the 
maximum of all of its children. For an AND edge, all the 
children nodes have to be achieved and therefore the 
likelihood is as much as the least likely child node. For 
Quorum edges, if the quorum is not met, then the higher 
goal is not achieved, but if met, the likelihood of it being 
achieved only depends on the children nodes that have 
achieved the quorum. The function ƒ allows various 
weights to be assigned to determine the relative effect of 
the alert confidence and the children’s CCI. The function 
for the current design is the statistical mean. 

When new alerts arrive, the nodes corresponding to 
these alerts are reordered within a fixed time window and 
passed to this algorithm. The I-GRAPH is traversed in 
breadth-first-search (BFS) order starting from the lowest 
nodes with new alerts, and the CCIs of the nodes are 
computed until each reachable node has been traversed at 
most once. This prevents infinite cycling to occur even 
though there may be cycles in the I-GRAPH. The 
disadvantage of such a traversal is that some causal relation 
between nodes may be lost. However, the alerts are usually 
temporally ordered according to the order in which the 
events occurred, thus the causal order is more likely to be 
obeyed in the CCI computation. Since the CCI of a parent 
node is dependent on that of its child nodes, a BFS traversal 
starting from the lowest node with an alert, rather than 
DFS, is justified. 

The alert confidence used to update the CCI is chosen 
based on policy. For an aggressive policy, the maximum 
alert confidence in the alert queue is used; for a moderate 
policy, the maximum of a subset of alert confidences based 
on the most recent alerts is chosen; for a conservative 
policy, the alert confidence corresponding to the most 
recent alert is chosen. The alert confidence provided by a 
detector has to be moderated by the confidence on the 
detector. ADEPTS has a mechanism to determine if a 
detector misses alarms and adjust the detector confidence 
accordingly. Qualitatively, if ADEPTS sees that for a given 
node, its children nodes as well as parent nodes are flagged 
but it is not, then it anticipates probabilistically that the 
detectors have missed flagging the alert. 
 
3.4.2. Response set computation algorithm. The purpose 
of this algorithm is to determine the nodes where the 
current attack will most likely spread to. This will allow the 
response algorithm to deploy appropriate responses at those 
locations. The I-GRAPH is traversed in reverse order of the 
CCI computation algorithm, continuing until all reachable 
nodes are traversed at most once. During the traversal, each 
node is labeled as one of: (i) Strong Candidate (SC), if CCI 
> τ; (ii) Weak Candidate (WC), if CCI ≤ τ but further 
traversal across only AND edges can reach a SC node; (iii) 
Very Weak Candidate (VWC), if CCI ≤ τ but further 
traversal across any type of edge can reach a SC node; (iv) 
Non-Candidate (NC), otherwise. If the CCI of a node is 
computed to be greater than τ, the system concludes the 
node has been achieved, where τ is a deployment 
parameter. Therefore the SC label on a node is a strong 
indicator that the node has been achieved, while the WC or 
VWC label indicates smaller likelihoods due to evidence 
from their parents. 

Next, some nodes are placed in a response set, 
indicating to the response system where responses should 
be deployed. For an aggressive policy, all SC nodes, and 
WC and VWC nodes which have at least one immediate 
NC parent node are placed in the response set. For a 
moderate policy, all SC and WC nodes that have at least 
one immediate NC parent node are chosen. For a 
conservative policy, all SC nodes that have at least one 
immediate NC parent node are chosen. The aggressive, 
moderate, and conservative policies provide increasingly 
less disruption as well as less protection. 
 
3.5. Response Repository 
 

The deployment of the response is achieved by a 
Response Repository, a Response Control Center, and 
distributed Response Execution Agents. The Response 
Repository stores the responses available for deployment in 
a payload system. Each response in the repository consists 
of an opcode and one or more operands, with wildcards 
allowed for each. The opcode is the response command, 
and the operands are the different parameters that need to 
be specified in order to execute the response. For example, 



the opcode for the response command of dropping 
incoming packets from a remote IP to a local port is 
DROP_INPUT, and the corresponding operands are 
REMOTE_IP and LOCAL_PORT. The opcode and the 
operands together make up a complete response command. 
The response structure allows ADEPTS fine-grained 
customization of the available responses 
 
3.6. Response Control Center 
 

The opcode is selected based on the ability of the 
opcode to cut off the attack-centric channels as defined in 
Section 3.3.  The Response set computation algorithm 
(Section 3.4.2.) sends to the Response Control Center the 
list of I-GRAPH nodes which are candidates for the 
deployment of responses. For each node, the Response 
Control Center selects a set of candidate response opcodes 
that can be used to prevent attacks from spreading via the 
node’s outgoing intrusion-centric channels. The choice is 
determined by the type of the channel. For example, the file 
access based opcodes, such as DENY_FILE_ACCESS or 
DISABLE_WRITE, are selected as candidate response 
opcodes if an outgoing shared file channel is present. 

After the opcodes have been chosen, the Response 
Control Center generates a list of complete response 
commands by collecting suitable operands. For this, it 
examines the alert events stored in the alert queue of the 
node and uses them to fill in the operands that are required 
by the selected opcodes. An opcode can be combined with 
multiple operands during this phase. For example, for an 
opcode KILL_PROCESS, the control center may extract 
PID#1 from alert event#1 and PID#2 from alert event #2, 
both in the alert queue. Then, the response command 
KILL_PROCESS PID#1, PID#2 is generated for 
subsequent evaluation. 
 
3.6.1. Picking responses to deploy. For each selected 
response command, the Response Control Center computes 
the Response Index (RI). The RI takes into the account the 
estimated effectiveness of the response to the particular 
attack, measured by the Effectiveness Index (EI), and the 
perceived disruptiveness of the response to legitimate users 
of the system, measured by the Disruptiveness Index (DI).  
The EI and the DI are both specific to the response 
command (opcode-operand combination) and the node in 
the I-GRAPH to which the response is mapped. The RI is 
given by RI = a.EI – b.DI, where a and b are deployment 
parameters. 

Note that EI of an identical response command may 
differ for different attacks that map to different I-GRAPH 
nodes. For example, blocking port 65000 or 16660 may be 
useful against the stacheldraht DDoS attack but is unlikely 
to be effective against the TFN DDoS attack. The two 
attacks can be differentiated by their packet signatures. The 
control center chooses the response with the highest RI 
among the candidate responses, with a threshold being used 
to suppress a response that falls below it. This ensures that 

ineffective or highly disruptive responses are not deployed. 
If no response is chosen for a particular node, then the next 
higher level node is searched for possible responses. A 
chosen response is deployed using a Response Execution 
Agent. When response mechanisms or Response Execution 
Agents on a particular compromised host have been 
disabled, responses will be taken at other hosts, as 
determined by the spread of the attack through the I-
GRAPH. 

In the event that the payload system is under multiple 
concurrent attacks, ADEPTS deploys responses for different 
alerts received in a short span of time, which may 
correspond to each individual attack instance. A heuristic to 
distinguish different concurrent attacks, involving 
clustering source IP addresses, destination IP addresses, 
source ports, destination ports, user accounts and initiated 
processes, proposed in [19], can be easily integrated into 
ADEPTS. 
 
3.6.2. Contradiction, equivalence, subset, and super set 
relations between responses. Before initiating execution 
of the chosen responses, the Response Control Center 
identifies the relations between the active responses and the 
pending responses. The newly selected response is 
suppressed if the new command is a subset or the 
equivalent of an active response or the new response 
contradicts an active response. If there is overlap between 
the new response and an active response, the ideal strategy 
would be to deploy the non-overlapping part of the new 
response. Since it is difficult to extract the differences 
between responses in an automated manner, we enforce the 
design choice on the responses in ADEPTS that they be non-
overlapping. This is possible to achieve because of the fine 
granularity of the responses. 
 
3.6.3. Handling unknown alerts. In a real-world 
deployment, it is quite probable that the I-GRAPH for the 
payload system is incomplete. Thus, ADEPTS would be 
unable to map an incoming alert from a detector to a node. 
To handle this situation, ADEPTS has the provision of a 
general node per host. The alert would be mapped to the 
general node for the host that is the destination of the attack 
as it is easily deducible from the alert. In this case, the 
Response Control Center can simply report the instance to 
the administrator and take one of a set of pre-specified 
general responses. The general responses are the commands 
that would be possible to deploy with very little knowledge 
of the operands, such as killing a process (need process ID), 
shutting down a service (need service ID), or restarting a 
host (need host ID). 
 
3.7. Providing feedback to responses 
 

Feedback to the response system is crucial for ADEPTS, 
providing the runtime mechanism to bias response choices 
in favor of those that have been effective in the past. This 
feedback is provided by dynamically varying the EI of the 



response. After a response has been deployed, the feedback 
system checks to see if any active response action is 
deployed on an edge that can be used to reach a node in the 
currently computed response set. If such a response action 
exists, it is indication that the response action possibly 
failed and its EI is decreased. 

The amount by which the EI of the response is 
decreased depends on whether the response is on an AND 
edge, OR edge, or Quorum edge to the node in the response 
set. If it is on an AND edge, then it is certain that the 
response failed and thus the node was achieved. Therefore, 
the EI is decreased by a fixed fraction for responses on all 
the edges. If the response is on an OR or Quorum edge, 
then the EI is decreased in the proportion of the CCI values 
of the nodes, the maximum decrease being the same as in 
the AND case. When a response's Time To Live (TTL) 
expires or when an administrator manually deactivates a 
response, the EI of the response action is increased by a 
fixed percentage under the intuition that the response was 
successful since further alerts were not observed. 

Referencing Figure 2, suppose an active response is 
present on the edge between node 1 and 7, and node 10 is 
in the response set. Suppose the fixed fraction to decrease is 
α. Then for the active response, 
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4. Implementation of ADEPTS and testbed 
 
4.2. Description of e-commerce application 
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Figure 3. Layout of e-commerce testbed 

 
Figure 3 depicts the testbed that we use for experiments. 

The payload system mimics an e-Commerce webstore, 
which has two Apache web servers running webstore 
applications, which are based on Cubecart 
(http://www.cubecart.com) and are written in the PHP 
scripting language. In the backend, there’s a MySQL 
database which stores all the store’s information, which 
includes products inventory, products description, customer 
accounts, and order history. There are two other 
organizations with which the webstore interacts – a Bank 
and a Warehouse. The Bank is a home-grown application 
which verifies credit card requests from the webstore. The 
Warehouse is also a home-grown application, which takes 

shipping requests from the webstore, checks inventory, 
applies charges on the customer’s credit card account, and 
ships the product. The clients submit transactions to the 
webstore through a browser. Some important transactions 
are given in Table 1. 

We set certain security goals for the system, the 
complement of which are specified in Table 2, along with 
the weights. Thus adding the word “prevent” before each 
gives the goal. The attached weights to the transactions and 
security goals are used for survivability computation in 
Section 5. 
 

Table 1. List of e-commerce transactions 
Name Services involved Weight 
Browse webstore Apache, MySQL 10 
Add to shopping cart Apache, MySQL 10 
Place order Apache, MySQL 10 
Charge credit card Warehouse, Bank 5 
Admin work Variable 10 

 
Table 2. List of e-commerce security goals 

Illegal read of file (20) Illegal process being run (50) 
Illegal write to file (30) Corruption of MySQL db (70) 
Unauthorized credit card 
charges (80) 

Confidentiality leak of customer 
info (100) 

Cracked administrator 
password (90) 

Unauthorized orders created or 
shipped (80) 

 
4.2. Detectors 
 

For our testbed, multiple detectors which communicate 
with ADEPTS through secure channels are used. We use two 
off-the-shelf detectors − Snort and Libsafe, and create three 
home-grown detectors. Snort is used for detecting intrusion 
patterns in network traffic while Libsafe is used to detect 
buffer overflows in protected C-library calls. We create a 
kernel-based File Access Monitor, which can detect file 
access attempts of monitored processes and compare these 
access attempts against preset rules to detect illegitimate 
activity. Also, we create a Transaction Response Monitor, 
which monitors the transaction response time of the 
webstore using requests from the Apache Benchmark 
(http://httpd.apache.org/docs-2.0/programs/ab.html). 
Finally, there is an Abnormal Account Activity Detector at 
the Bank, which detects abnormal account activities such as 
excessive number of credit card transactions on one 
account. The detectors used are all imperfect ones, with the 
possibility of missed alarms and false alarms. The detectors 
are not optimized for each attack scenario that the system is 
tested with. This is because the process is clearly labor-
intensive and relies heavily on administrator expertise. For 
the off-the-shelf detectors, the rules are taken from the 
public distribution, while for the others, the rules are 
created by a researcher separate from the group that 
generates the attack scenarios. 
 
4.3. Attack scenarios 
 



The ADEPTS implementation is tested with different 
attack scenarios classified into three categories − leaking 
information, illegal transaction, and DoS. Each attack 
scenario consists of a set of attack steps, with an ultimate 
high-level goal. Each step of the attack scenario may be 
detected by none, one, or more of the detectors. A detector 
vector with the elements (Snort, Libsafe, File Access 
Monitor, Bank Monitor., Transaction Response Monitor) is 
assigned to each step of the attack scenario. A ‘1’ means 
that step can be detected by the corresponding detector. We 
show in Table 3 one sample scenario from each category – 
Scenario 0 is leaking of user information in the database 
(Leaking information), Scenario 1 is placing unauthorized 
orders (Illegal transaction), and Scenario 8 is vandalize 
webstore (DoS). 
 

Table 3. Attack steps for three attack scenarios 
Step Scenario 0 
1 Apache ModSSL buffer overflow (10000) 
2 Insert malicious code (00000) 
3 IP/port scan to find vulner. SQL server (10000) 
4 Buffer overflow MySQL to create a shell (00100) 
5 Use shell to steal info stored in MySQL (00100) 
 Scenario 1 
1 Apache php_mime_split buffer overflow (10000) 
2 ‘ls’ to list webstore document root and identify code 

regarding warehouse shipments (00100) 
3 Send shipping request to warehouse, crafting request 

form to cause buffer overrun to fill form with victim’s 
credit card number (01000) 

4 Make unauthorized orders (00010) 
 Scenario 8 
1 Buffer overflow Apache ModSSL (10000) 
2 Create Apache privilege shell (00100) 
3 Execute crontab command (00100) 
4 Insert malicious data into Apache’s crontab (00100) 
5 Root privilege shell created (00000) 
6 Corrupt web server document root (00100) 

 
We also test ADEPTS with other attack scenarios 

involving buffer overflow attacks to steal client info, and 
other DoS attack scenarios entailing memory exhaustion in 
the Apache mime handling components or DDoS through 
huge number of legitimate transactions, such as product 
search. The entire I-GRAPH automatically generated by the 
PIG algorithm consists of 57 nodes and 1148 edges and is 
too large to be shown. A fragment of the I-GRAPH has been 
shown in Figure 2. 
 
4.4. Response Repository for testbed 
 

Four types of response commands are included in the 
Response Repository − general, file, network, and denial-
of-service types. The general-type commands can be 
deployed to block any types of intrusion-centric channels 
in the I-GRAPH, corresponding to the super channel. The 
other types of commands have a one-to-one map to the 
kinds of intrusion channels introduced in Section 3.3. The 
implementation of the file-type commands is achieved by 

using the Linux Intrusion Detection System (LIDS) version 
2.2.0. The implementation of the network-type commands 
is performed by using iptables. The general type commands 
are killing a process and restarting or shutting down a 
service or a host. The file-type commands are to deny any 
access to a file, or selectively disable read, write, or execute 
access. The network-type commands are to block incoming 
or outgoing network connections, parameterized by source 
or destination port, IP, or protocol. The DOS-type 
commands are to limit the rates of various types of packets, 
such as SYN, ICMP echo, ICMP host not reachable, and 
SYN-ACK. 
 
5. Experiments and results 
 

We perform three sets of experiments demonstrating the 
following (i) effect of attack scenarios on survivability with 
and without ADEPTS, (ii) the ability of ADEPTS to deploy 
responses as the speed of propagation of the attack varies, 
(iii) the adaptation in ADEPTS in choosing responses. All 
these experiments are conducted using the moderate policy 
with actual attack scenarios on the e-commerce testbed. 
Our experiments here show the behavior of ADEPTS under a 
limited number of parameter configurations. They are not 
meant to bring out trends in the performance of ADEPTS or 
provide predictability under new attack scenarios or 
different parameter configurations. Comparing ADEPTS to 
other automated IRSs mentioned in Section 2 was not 
possible since they are not publicly available. For 
experiment 1 and 2, we define the survivability based on 
the high level transactions and security goals in Table 1 and 
2. The metric thus shows the effect of ADEPTS on the high 
level functioning of the e-commerce system. 

Survivability = 1000 – Σ unavailable transactions – Σ 
failed security goals. 

When a transaction becomes unavailable or the security 
goal is violated, the survivability drops by its corresponding 
weight. Transactions become unavailable due to responses, 
such as rebooting a host, or attacks. Security goals may be 
violated due to the successful execution of an attack step. If 
a security goal is violated multiple times during an attack, 
then each violation causes a decrease in the survivability. 
 
5.1. Effect of attack scenarios on survivability 
 

The goal of this experiment is to show the comparative 
performance of ADEPTS in maintaining the survivability of 
the e-commerce system with respect to having no responses 
and only local responses. Three different attack scenarios 
are executed and the survivability calculated at each step of 
the attack scenario. For local responses, the responses that 
came with the deployed detectors are used – Snort (IP 
blocking) and bank monitor (freeze credit card). 

For the leak of information attack (Figure 4), ADEPTS far 
outperforms the other two. The File Access Monitor detects 
a malicious shell being created with Apache privileges 
while Snort detects an Apache SSL module buffer overflow 



packet. Consequently, ADEPTS deploys aggressive 
responses to kill the process and block all following 
incoming packets from the attacker. The inability of the 
local response implemented by Snort to drop the IP packets 
in time causes the attack to continue to spread. For the 
illegal transaction attack (Figure 5), the performance of the 
local response is noticeably worse than ADEPTS. ADEPTS 
deploys a successful response disallowing shell commands 
with Apache privileges, earlier than the local response at 
the bank monitor. For the distributed denial of service 
attack (Figure 5), the graph shows the inability of any of 
the setups to respond effectively to the attack. The 
responses deployed by ADEPTS to limit the overall 
incoming packet rate, such as, blocking packets from the IP 
address with the highest rate of packet transmission, 
allowed for a slight decrease in the effectiveness of the 
DoS. 
 

 
Figure 4. Survivability during scenario 0 

 

 
Figure 5. Survivability during scenario 1 and 4 

 
5.2. Effect of prop. speed on survivability 
 

This experiment inspects the relationship between the 
ability of ADEPTS to protect the payload system and the 
attack propagation speed. We vary the delay between the 
attack steps in scenario 0 between 0-7 s. This could 
simulate a variety of factors, such as the attacker’s skill 
level, condition of the network, difficulty of an attack step, 
etc. Figure 6 shows the survivability with different attack 
propagation speeds. The legend ‘0004’ means there is a 
delay of zero seconds before attack step 0 is begun, 
between steps 0 and 1, and 1 and 2, while there is a delay of 
4 s for all subsequent steps. We see that ADEPTS performs 
well with delays ≥ 4 s since the attack is stopped in the very 
first step. If however, the first step has zero delay, then 
ADEPTS is only able to block the attack at a later step, 
leading to a decreased survivability. With no delay at all 
between the steps, ADEPTS is only able to block the attack 

at the last step, which is still better than the no response 
case. In all cases, ADEPTS can maintain the survivability at 
a constant level once the blocking is successful. 
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Figure 6. Effect of attack propagation speed 

 
5.3. Adaptation of response mechanism 
 

Table 4. Scenario 8’s intrusion responses 
R1 Block port 443 from 
attacker’s src IP 

R2 Kill Apache privilege shell 

R3 Block attacker’s src IP R4 Kill crontab process 
R5 Restart Apache R6 Reboot Apache host 
R7 Deny access to crontab 
command and kill process if 
it is still running 

R8 Set Apache’s HTTP 
document directory as 
READONLY 

 
Table 5. Response actions during runs 

Step Responses EI changes 
Run 1 
1   
2 X R1; X R2  
3 X R3; X R4 R1 1.1→1.072; R2 1.1→1.058 
4 X R5 R2 1.058→1.024; R4 1.1→1.064 

R3 1.1→1.076; R1 1.072→1.049 
5   
6 O R6 

X R7 
X R8 

R2 1.024→0.993; R4 
1.064→1.031 
R5 1.1→1.077; R3 1.076→1.054 
R1 1.049→1.028 

Attack stopped R8 1.1→1.21; R7 1.1→1.21 
R6 1.1→1.21 

Run 3 
1   
2 X R1; X R7  
3 O R6; X R4 R7 1.21→1.164; R1 0.96→0.936 
4 X R3 R7 1.164→1.126; R4 1.1→1.064 

R1 0.936→0.916; R6 
1.331→1.302 

Attack stopped R3 1.010→1.111 
Run 6 
1   
2 O R6; O R7  
Attack stopped R7 1.1→1.21; R6 1.401→1.541 

 
Here we demonstrate the adaptive nature of ADEPTS 

through which it can change the response strategy as an 
attack escalates. Scenario 8, having 6 steps, with delay 
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characteristic ‘00015’ is used for demonstrating the 
process. This experiment is composed of multiple runs of 
scenario 8 (we show runs 1, 3, and 6). We see in run 1, the 
initial choice of responses is poor (‘X’ by response implies 
failed) and the final step of scenario 8 is reached, where the 
attacker can create a root privilege shell and tamper with 
Apache’s HTTP documents. In run 3, after a series of EI 
tuning from runs 1 and 2, the response of rebooting Apache 
is deployed in step 3. In run 6, the response of rebooting 
Apache is moved to step 2. The earlier the attack is 
blocked, the less likely the final attack goal is achieved. 
Thus, the choice of responses in run 6 is the best and 
ADEPTS is seen to improve its response choices through 
observing multiple attacks. 
 
6. Conclusions 
 

In the paper we have presented the design and 
implementation of an automated intrusion containment 
system called ADEPTS. ADEPTS uses a graph of intrusion 
goals called I-GRAPH. It provides a method to determine the 
possible path of spread of the intrusion, appropriate 
services where to deploy the response, and appropriately 
choose the response. ADEPTS is demonstrated on an e-
commerce system with real attack scenarios. 

We are currently investigating ways to synthesize new 
responses at runtime from the repository; designing 
protocols for better handling concurrent attacks, 
distinguishing between attacks, and increasing tolerance 
towards faulty detectors; and lastly, evaluating the 
convergence of its adaptation feature and systematically 
evaluating the performance of ADEPTS with more control 
parameters being varied. 
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