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DICAS: Detection, Diagnosis and Isolation of Control Attacks in Sensor 

Networks 

 

Abstract 

Sensor networks enable a wide range of applications 
in both military and civilian domains. However, the 
deployment scenarios, the functionality requirements, 
and the limited capabilities of these networks expose 
them to a wide-range of attacks against control traffic 
(such as wormholes, Sybil attacks, rushing attacks, 
etc). In this paper we propose a lightweight protocol 
called DICAS that mitigates these attacks by detecting, 
diagnosing, and isolating the malicious nodes. DICAS 
uses as a fundamental building block the ability of a 
node to oversee its neighboring nodes’ 
communication. On top of DICAS, we build a secure 
routing protocol, LSR, which also produces multiple 
node-disjoint paths. We analyze the security 
guarantees of DICAS and use ns-2 simulations to show 
its effectiveness against three representative attacks. 
Overhead analysis is conducted to prove the 
lightweight nature of DICAS. 
Keywords: sensor network security, neighbor 
monitoring, secure routing, node-disjoint paths, 
control attack. 
 

1. Introduction 
Wireless sensor networks are emerging as a promising 
platform that enable a wide range of applications in 
both military and civilian domains such as battlefield 
surveillance, medical monitoring, biological detection, 
home security, smart spaces, inventory tracking, etc. 
Such networks consist of small, low-cost, resource-
limited (battery, bandwidth, CPU, memory) nodes that 
communicate wirelessly and cooperate to forward data 
in a multi-hop fashion. Thus, they are especially 
attractive in scenarios where it is infeasible or 
expensive to deploy a significant networking 
infrastructure. However, the open nature of the 
wireless communication, the lack of infrastructure, the 
fast deployment practices, and the hostile deployment 
environments, make them vulnerable to a wide range 
of security attacks. Some of the most devastating 
attacks target the control traffic or data traffic in 
wireless networks. Typical examples of control traffic 
are routing, monitoring the liveness of nodes, 

topology discovery, and distributed location 
determination. Control traffic attacks include the (i) 
wormhole attack ([20],[21]), (ii) the rushing attack 
[22], (iii) the Sybil attack [13], (iv) the sinkhole attack 
[18], and (v) the HELLO flood attack [18]. Attacks 
against data traffic include (vi) blackhole and (vii) 
selective forwarding [18] in which a malicious node 
drops entirely or selectively data passing through it. 
Control attacks are especially dangerous because they 
can be used to subvert the functionality of the routing 
protocol and create opportunity for a malicious node 
to launch a data traffic attack such as dropping all or 
selective subset of data packets. Coping with control 
attacks in sensor networks is more challenging than in 
ad hoc wireless and wired networks due to the 
resource constrained environment. 
In this paper we present a lightweight protocol called 
DICAS, which mitigates control traffic attacks in 
sensor networks. DICAS not only detects the 
occurrence of an attack, but also diagnoses the 
malicious nodes involved in the attack and removes 
their capability of launching future attacks by isolating 
them from the network. The detection and isolation 
mechanisms are executed locally, incurring only a 
small overhead. DICAS is suited to the low cost point 
of sensor networks since it does not require any 
specialized hardware (such as directional antennas 
[21] or GPS) nor does it require time synchronization 
among the nodes [20]. The approach that DICAS uses 
to achieve its security goals exploits a well-known 
technique whereby nodes oversee part of the traffic 
going in and out of their neighbors [19], [30], [35], 
[36]). Our novelty lies in presenting the technique as a 
standalone module – local monitoring – and analyzing 
its capabilities and limitations. We systematically lay 
out the fundamental structures and the state to be 
maintained at each node for mitigating five 
representative attacks – modifying routing traffic, 
Sybil, wormhole, sinkhole, and rushing attacks. 
Independent of the detection mechanism, we propose 
a strategy to isolate the malicious nodes locally in a 
distributed manner. 

We use DICAS to build a lightweight secure 
routing protocol called LSR that withstands known 
attacks against the routing infrastructure and supports 
secure node-disjoint route discovery. We provide a 
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security analysis of LSR using DICAS for five 
representative attacks. We analyze the detection 
coverage and the probability of false detection of 
DICAS. Also, we evaluate the memory, communication, 
and computation overhead of DICAS. Finally, we 
simulate the wormhole attack in ns-2 and show its 
effect on the network performance with and without 
DICAS. The results show that DICAS can achieve 100% 
detection of the wormholes for a wide range of 
network densities. They also show that the detection 
and isolation of the nodes involved in the wormhole 
can be achieved in a negligible time after the attack 
starts. In addition, we simulate a combined Sybil and 
rushing attack to bring out the adverse impact on 
node-disjoint multipath routing and show the 
improvement using DICAS. The results show that LSR 
using DICAS is resilient to the combined attack and 
that the average number of node-disjoint routes 
discovered is not reduced. 
The rest of the paper is organized as follows. Section 
2 presents the related work in the area of security in 
wireless ad-hoc and sensor networks. Sections 3 and 4 
describe DICAS and LSR, respectively. Section 5 
presents attacks against routing and their mitigation in 
LSR using DICAS. Section 6 analyzes the coverage and 
overhead of DICAS, while Section 7 shows simulation 
results. Section 8 concludes the paper. 

2. Related Work 
In the last few years, researchers have been actively 
exploring many mechanisms for securing the control 
traffic in wireless networks. These mechanisms can be 
broadly categorized into four classes – customized 
cryptographic primitives, protocols for path diversity, 
protocols that overhear neighbor communication, and 
protocols that use specialized hardware. The 
cryptographic primitives are also used as building 
block for protocols of the other three classes. In the 
context of ad hoc networks, HMAC and digital 
signatures [38] have been used to provide end-to-end 
authentication of the routing traffic [2],[5]. 
Intermediate node authentication of the source traffic 
has been achieved via authentic broadcasting 
techniques using digital signatures [23], hash trees [3], 
or µ-TESLA [4]. These protocols are restrictive and 
only capable of providing the traditional cryptographic 
guarantees, namely confidentiality and authenticity of 
routing traffic. In addition, it is usually infeasible to 
apply them to sensor networks. The public key 
cryptography is far beyond the capabilities of sensor 
nodes and the symmetric key based protocols 
proposed are too expensive in terms of node state and 
communication overhead. 

The path diversity techniques increase route 
robustness by first discovering multipath routes 
([23],[30], [31],) and then using these paths  to 
provide redundancy in the data transmission between 
a source and a destination [29]. The data is encoded 
and divided into multiple shares sent to the destination 
via different routes. Many of these schemes are 
vulnerable to attacks that permit a node to assume 
multiple identities (such as the Sybil attack). 

Mechanisms to overhear neighbor communication 
in a wireless channel have been used to minimize the 
effect of misbehaving nodes [19],[31],[35]-[37]. In the 
watchdog scheme [19], the sender of a packet watches 
the behavior of the next hop node for that packet. If 
the next hop node drops or tampers with the packet, 
the sender announces it as malicious to the rest of the 
network. The scheme is vulnerable to blacklisting, 
does not work correctly when malicious nodes 
collude, and can have a high error rate due to 
collisions in the wireless channel. Neighbor watch has 
also been used to build trust relationships among 
nodes in the network [35],[36], to build cooperative 
intrusion detection systems [37], or to discover 
multiple node-disjoint routes [31]. However, all these 
protocols use the communication overhearing as an 
existing service without studying its feasibility, 
requirements, limitations, or performance in the 
resource-constrained sensor environment. Examples 
of the fourth class are [20][21], the former called 
packet leashes uses either tight time synchronization 
or location awareness through GPS hardware and the 
latter uses directional antennas. These schemes are 
used to detect one form of control attack – the 
wormhole attack.  

On the other hand, many secure sensor network 
routing protocols have also been introduced in the 
literature [6]-[11]. These protocols are less complex 
than ad hoc or wired routing protocols and are 
susceptible to a wide variety of attacks, as 
summarized by Karlof and Wagner [18]. Table 1 
enumerates the protocols and their vulnerabilities.  
 

Table 1: Attacks against secure wireless routing 
protocols (The numbers refer to the numbered list in 

the introduction) 
Routing protocol name Attacks 
Directional diffusion ([6], [9]) iii, iv, v, vii 
GPSR [8]  iii, vii 
Minimum cost forwarding [10] i, iv, v, vii 
LEACH [11], PEGASIS [24] v, vii 
Rumor routing [12] i, iii, iv, vii 
SPAN [15] iii, v 
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Few of the protocols mentioned above discuss the 
method for removing the malicious nodes from 
causing further damage in the network and even fewer 
provide a quantitative analysis of the detection 
coverage, which may be affected due to a faulty 
detector or due to environmental conditions.  

3. Description of DICAS 
 

DICAS consists of a set of two algorithms as primitives 
(Section 3.2) and two main modules - the local 
monitoring module (Section 3.3), and the local 
response module (Section 3.4). 
 

3.1. System Model and Assumptions 
 

Attack model: A malicious node can be either an 
external node that does not know the cryptographic 
keys, or an insider node, that possesses the keys. An 
insider node may be created, for example, by 
compromising a legitimate node. A malicious node 
can perform all the attacks mentioned in Section 1, by 
itself or using arbitrary collusion with other nodes. A 
malicious node can establish out-of-band fast channels 
(e.g., a wired link) or have high powered transmission 
capability. 
 
System assumptions: We assume that all the 
communication links are bi-directional. Also, we 
assume that a finite amount of time is required from a 
node’s deployment for it to be compromised. This 
time is called the compromise threshold time TCT. We 
define the maximum time required for the first and 
second hop neighbor discovery protocol (Section 3.2) 
to complete as TND. Our assumption is that for a given 
node ni, all its first and second hop neighbors are 
deployed within TCT-2TND of the deployment of ni. 
This assumption implies that for a given node, no 
malicious node exists in its one or two hop 
neighborhood till its neighbor discovery protocol 
completes. We assume that the network has sufficient 
redundancy, such that the attacker can not 
compromise all the guards with a certain transmission 
range. This means that any node in the network has 
some good guards. We assume that the network has a 
static topology. This does not rule out route changes 
due to natural and malicious node failures or route 
evictions from the routing cache. Also the functional 
rules of a node, such as cluster head and regular 
sensing node, may change. Finally, we assume a key 
management protocol, such as [26], is used to pre-
distribute pair-wise keys in the network so that any 

two nodes in the network can securely communicate 
with each other. 

3.2. Primitives: Neighbor Discovery and One 
Hop Source Authentication  

 
Neighbor discovery: This protocol is used to build a 
data structure of the first hop neighbors of each node 
and the neighbors of each neighbor. The data structure 
is used in local monitoring to detect malicious nodes 
and in local response to isolate these nodes. A 
neighbor of a node, X, is any node that lies within the 
transmission range of X. As soon as a node, say A, is 
deployed in the field, it sends a one-hop broadcast of a 
HELLO message. Any node that receives the 
message, sends an authenticated reply to A, using the 
pair-wise shared key. For each reply received within a 
pre-defined timeout (TROUT,), A verifies the 
authenticity of the reply and adds the responder to its 
neighbor list, RA. Let RA = n1, .., np and M = 
RA||Kcommit(A), where Kcommit(A) is the commitment key A 
uses to authenticate itself to its neighbors. Node A 
computes P = M||KAn1

(M)||…|| KAnp
(M). Then A sends 

a one-hop broadcast of packet P. A node nj that 
receives P, verifies M using KAnj

. If the message is 
correctly verified, nj stores RA (nj’s second hop 
neighbors) and Kcommit(A). Hence, at the end of this 
neighbor discovery process, each node has a list of its 
direct neighbors and the neighbors and the 
commitment key of each one of its direct neighbors. 
This process is performed only once in the lifetime of 
a node and is secure in static wireless networks 
because of the system model assumptions on time to 
compromise a node and the deployment of a node and 
its neighbors. 
Commitment key generation and update: This 
protocol is used to generate and update the 
commitment key used by the one-hop source 
authentication protocol. The values of the 
commitment key at a node S (Kcommit(S)) are derived 
from a random seed (Kseed(S)) as Kcommit(S) = H(i) 
(Kseed(S)), where H is a one-way collision resistant hash 
function, i  takes values between 0 and l(≥2), and l is 
the length of the sequence of values of Kcommit(S) that 
we call the commitment string. The first value of the 
commitment key Kcommit(S) that is exchanged with the 
neighbors during neighbor discovery is H(l)(Kseed(S)) = 
vl. The subsequent values of the commitment key (vl-

1,…, v0) are progressively disclosed to the neighbors 
during subsequent transmissions. Before the current 
commitment string {vl, vl-1,…, v0} is exhausted, a new 
one is generated at S {ul, ul-1,…,u0}. The commitment 
key ul from the new string is authenticated to the 
neighbors using the last undisclosed key from the 
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current string with the one-hop source authentication 
protocol. 
One-hop source authentication: This protocol allows 
a node to distinguish between its neighbors to prevent 
identity spoofing among them. A node S authenticates 
its transmitted packets to the neighbors by attaching 
the last undisclosed value from the commitment string 
Kcommit(S).  When a neighbor of S, say B, receives the 
packet, it verifies the validity of Kcommit(S) by 
computing a hash function over it and comparing the 
result with the stored value of Kcommit(S). If the Kcommit(S)   
is valid, B stores it as the new commitment key value 
of S. However, this protocol may fail to provide the 
required authentication if an attacker blocks the 
transmission range of a certain source from the rest of 
network except himself. Therefore, the attacker can 
impersonate that source and generate valid packets. In 
such case, we revert to the well-known µTESLA 
authentication scheme [25] that countermeasure such 
attacks. 

3.3. Local monitoring: Detection & 
Diagnosis 

 
This module detects various attacks against the control 
traffic and diagnoses the malicious nodes involved in 
these attacks. Local monitoring starts immediately 
after the completion of the neighbor discovery. It uses 
a collaborative detection strategy, where a node 
monitors the traffic going in and out of its neighbors.  

S DB X

M

N

A

AX YY

The transmission 
range of node Y

 
Figure 1: X, M, and N are guards of A over the link 

from X to A 
For a node, say M, to be able to monitor a node, say A, 
two conditions are required: (i) each packet forwarder 
must explicitly announce the immediate source of the 
packet it is forwarding, and (ii) M must be a neighbor 
of both A and the previous hop from A, say X. The 
first condition is guaranteed universally by the routing 
protocol and therefore the second condition is the 
deciding criterion. In such a case, we call M a guard 
node of A over the link from X to A. In Figure 1, nodes 
M, N, and X are the guards of A over the link from X 
to A. For a link (i, j), the sender i is a guard node for 
node j. Information for each packet sent from X to A is 
saved in a watch buffer at each guard for a time τ. The 
information maintained depends on the particular 
attack under consideration.  

A malicious counter (MalC(i,j)) is maintained at each 
guard node, i, for every  node, j, which i is monitoring. 
MalC(i,j) is incremented for any suspect malicious 
activity of j that is detected by i. In Figure 1, if a 
guard, say M, does not hear A forwarding a packet 
sent by X within τ, it accuses A of dropping or 
delaying the packet. If M hears A transmitting the 
packet within τ but detects a change in the packet’s 
content or header, it accuses A of modifying the 
packet. If M hears A transmitting a packet, claiming 
that it was sent by X, but M does not have the 
corresponding incoming packet in its watch buffer, M 
accuses A of fabricating the packet. To account for 
intermittent natural failures that can occur at 
legitimate nodes, a node is determined to be 
misbehaving, only if the MalC goes above a threshold. 
 

3.4. Local Response and Isolation 
 

Detection and diagnosis is only the first step towards 
protecting the network. The local response and 
isolation module is used to propagate the detection 
knowledge to the neighbors of the malicious node and 
to take appropriate response to isolate it from the 
network. The following local response algorithm is 
triggered by a guard node, say α, when a suspect 
malicious node, say A, is diagnosed.   
1. When the MalC(α,A) crosses a threshold, Ct , α 

revokes A from its neighbor list, and sends to 
each neighbor of A, say D, an authenticated alert 
message indicating A is a suspected malicious 
node. This communication is authenticated using 
the shared key between α and D to prevent false 
accusations. Alternately, if the clocks of all the 
nodes in the network are loosely synchronized, α 
can do authenticated local two-hop multicast as in 
[16] to inform the neighbors of A 

2. When D receives the alert, it verifies its 
authenticity, that α is a guard to A, and that A is 
D’s neighbor. It then stores IDα in an alert buffer 
associated with A.  

3. When D receives enough alerts, γ, about A, it 
isolates A by marking A’s status as revoked in the 
neighbor list.  We call γ  the detection confidence 
index.   

4. After isolation, D does not accept any packet 
from or forward any packet to a revoked node.  

In addition to removing the malicious nodes from the 
network, this module makes the response process fast 
since the detection knowledge does not need to 
propagate to all the nodes in the network. Also this 
module is lightweight in the number of messages (one 
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to each neighbor of A only on malicious node 
detection) and the number of hops each message 
traverses (maximum two hops). 

4. LSR: Lightweight Secure Routing 
LSR is an on-demand routing protocol, sharing many 
similarities with the AODV [28] protocol. However, 
LSR has significant differences to enhance security. 
The design features of LSR described below make it 
resilient to a large class of control attacks such as 
wormhole, Sybil, and rushing attacks, as well as 
authentication and ID spoofing attacks. Combined 
with DICAS, LSR can deterministically detect and 
isolate nodes involved in launching these attacks. 
Section 6.1 provides detailed analysis of the detection 
and isolation coverage of control attacks in LSR with 
DICAS. 

4.1. Route Discovery and Maintenance 
Route Request: When a node, say S, needs to discover 
a route to a destination, say D, it generates a route 
discovery packet (REQ) that contains: a flag to 
indicate that it is a route request packet (FREQ), the 
sender identity (IDS), the destination identity (IDD), 
and a unique sequence number (SN). The SN is 
incremented with every new REQ and is used to 
prevent the replay of the REQ packet. Node S then 
calculates a message authentication code (MAC) of the 
packet using the shared key between S and D (KSD). 
Finally, S generates and attaches the next value of the 
commitment key Kcommit(S) to the REQ packet and 
broadcasts it. 
1. [At S] REQ = FREQ || IDS || IDD || SN  

2. S Broadcast→  REQ || MACKSD
(REQ) || 

Kcommit(S)||IDS 
A neighbor Z of S accepts the REQ packet if the 
associated Kcommit(S) is valid. Then Z removes Kcommit(S) 
from the REQ, attaches IDZ, and forwards the REQ. 
An intermediate node B that is not a direct neighbor to 
S stores the first REQ packet it receives. Node B also 
keeps the identity of every different neighbor that 
forwards a subsequent copy of the same REQ during a 
rush time, Tr, selected randomly from [Tmin, Tmax], as in 
[22]. When Tr runs out or when a certain number of 
requests, Nr, is collected, whichever occurs first, B 
broadcasts a randomly selected copy of the REQ 
copies that it has. Assume without loss of generality 
that B selects the one forwarded by W. For each 
source-destination pair, node B keeps the identity of 
the node from which it receives the forwarded REQ 
(IDW). Node B then appends IDB and IDW to the REQ 
and broadcasts it. The process continues until the REQ 
reaches D.  

1. [At B] Save “REQ||MACKSD
(REQ)”, and set Tr. 

2. [At B] Save the identity of every neighbor that 
sends a REQ copy within Tr. 

3. [At B] Select random copy of the REQ.  
4. [At B] Store IDS, IDD, SN, and IDW. 

5. B Broadcast→ REQ||MACKSD
(REQ)||IDW|| IDB 

Route Reply: When D receives the REQ packet, it 
verifies the authenticity of the source using the shared 
key KSD. Then D generates a route reply packet REP 
that contains: a flag to indicate that it is a route reply 
packet (FREP), the sender identity (IDS), the destination 
identity (IDD), and a SN. Node D then calculates a 
MAC value over the packet using the pair-wise shared 
key (KSD). Node D generates and attaches the next 
value of the commitment key Kcommit(D) to the REP 
packet. Finally, D unicasts the REP packet back to the 
previous hop as determined by the REQ packet. Let A 
be the immediate previous hop from D and C be the 
immediate previous hop from A. 
1. [At D] REP = FREP||IDS||IDD|| SN 
2. D  A: REP || MACKSD

(REP) || 
Kcommit(D)||IDD||IDA  

When A receives the REP packet, it verifies and 
removes Kcommit(D), updates its routing table as follows 
- <Destination, Next hop>: {D, D}, {S, C}. Node A 
then appends IDD||IDA||IDC and sends the REP packet 
to C.  
1. [At A]  Verify and remove Kcommit(D). Set 

<Destination, Next hop>: {D, D}, {S, C} 
2. A  C: REP||MACKSD

(REP)|| IDD || IDA || IDC  

The REP continues to propagate using the reverse path 
of the corresponding REQ towards S. Node S verifies 
the authenticity of the reply using KSD and updates its 
routing table to the destination.  
The route maintenance in LSR is triggered when a 
broken link is detected and a new route is discovered 
by using the above protocol for route discovery. In 
this respect, it is similar to AODV. 
Note that in LSR, the source chooses the route 
corresponding to the fastest route reply and not the 
shortest hop route, to guard against attacks that 
modify the hop count. A longer but less congested 
route is preferred to a shorter but congested route, as 
in [23].   

4.2. Node-Disjoint Multipath Discovery  
A desirable feature of LSR is its ability to increase the 
number of node-disjoint routes between a source and a 
destination. LSR supports secure discovery of these 
routes as a by-product of the local monitoring module 
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of the underling DICAS protocol without incurring any 
additional overhead. In many on demand ad-hoc and 
sensor network routing protocols, an intermediate 
node forwards the first announcement of a request and 
suppresses any following announcements, such as in 
AODV [28]. As a result, multiple routing paths may 
have common nodes in them. In LSR, each node, say 
B, backs off for a random time (Tr) before forwarding 
the REQ. During Tr, B buffers all the announcements 
of the same request. At the same time, B listens to any 
neighbor, say E, whose rush timer, Tr times out and 
which forwards one of its REQ copies. If B has the 
same REQ copy, from the same previous hop, as that 
forwarded by E, B deletes that copy from its buffer 
and thus will not be a candidate for REQ forwarding 
by B. 
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Figure 2: Example of node-disjoint routes. 

An example is shown in Figure 2. Let B receive REQs 
from nodes X, Y, and Z, and let E be a neighbor of B 
which also receives from X, and let the REQ from X 
be the first to arrive at both B and E, Figure 2(a). If 
nodes B and E forward the first REQ they receive and 
drop the others as in AODV, then multiple paths will 
be formed with X in them (Figure 2(b)). However, 
using our technique, assuming that the timer of E runs 
out before that of B and that E broadcasts the message 
it received from X, then B will drop X’s packet from 
its buffer. Thus B will not forward the REQ forwarded 
by X, The resulting paths are disjoint (Figure 2(c)). 
The destination replies to every REQ copy it receives 
through a different neighbor. An intermediate node 
creates a routing table entry when it forwards the reply 
for the first time. Subsequently it does not forward any 
further replies to prevent itself from being inserted in 
multiple routes. In order to detect malicious behavior 
by its neighbors, each node monitors replies going out 
of the neighbors. If a neighbor forwards a specific 
reply more than once, it is considered malicious and 
dropped from all the routes the node has.  For 
example, let node B forward the REQ that has been 
forwarded by A. Let the two non-neighbor nodes, X 
and Y, receive and forward the REQ they get from B. 
The REP packet takes the reverse path, i.e. B gets the 
REP packets from X and Y. Without loss of generality,  
let the REP  packets come from X then from Y. A 
correct node forwards only the first REP. However, if 
B is malicious, it may send the two replies to two 
different neighbors, say A and α respectively. 
Therefore, B succeeds in including itself in two 

“different routes”. However, in LSR, this misbehavior 
can be detected by X and Y since they overhear B’s 
forwarded REPs. Then they evict all the routes 
through B.  

5. Attacks and Countermeasures 
 
In this section, we present a set of 5 attacks that can be 
launched against a routing protocol and show how 
they can be detected in LSR with DICAS. 

5.1. Route Traffic Manipulation 
An attacker may attack the routing infrastructure by 
injecting false control packets, modifying the 
forwarded control packets, or replaying old 
authenticated control packets. This may result in 
creating routing loops, attracting network traffic, 
extending or shortening routes, generating false error 
messages, partitioning the network, or increasing the 
end-to-end delay. 
Conjecture#1: DICAS detects any injection, alteration, 
or replaying of the routing traffic in LSR. 
Proof sketch:  The end-to-end authentication prevents 
a malicious node from injection or alteration of the 
REQ and the REP packets. The increasing sequence 
number associated with each REQ and REP prevents 
the replay attack. 

5.2. ID Spoofing and Sybil Attacks 
 

In this attack, an attacker presents one (ID 
spoofing) or more (Sybil attack) spoofed identities to 
the network [13]. Those identities could either be new 
fabricated identities or stolen identities from 
legitimate nodes. The Sybil attack can have many 
adverse impacts, such as on multipath routing [14] and 
collaborative protocols that use aggregation and 
voting [40]. 
Conjecture#2: In LSR with DICAS, malicious node ID 
spoofing or Sybil attack attempts can be easily 
detected. 
Proof sketch: (i) The single hop neighbor list data 
structure prevents a node from spoofing the identity of 
a non-neighbor node. A node will not accept (forward) 
traffic from (to) a non-neighbor node. (ii) The one-hop 
authenticated source broadcasting prevents a node 
from generating traffic using spoofed identity of a 
neighbor node since each node must authenticate its 
generated traffic to the neighbors. (iii) Local 
monitoring prevents a forwarding node from spoofing 
a neighbor’s identity. As shown in Figure 1, if A 
receives a packet from X, then A can not forward the 
packet claiming that it is being forwarded by one of its 
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neighbors, say M. None of the guards of M over the 
link from X to M overhear such a packet; also the 
guards of A over the link from X to A accuse A of not 
forwarding the packet.  

5.3. Wormhole Attack 
In the wormhole attack [20],[21] a malicious node 
captures packets from one location in the network, and 
“tunnels” them to another malicious node at a distant 
point, which replays them locally. The tunnel can be 
established in many different ways, such as through an 
out-of-band hidden channel (e.g., a wired link), packet 
encapsulation, or high powered transmission. The 
tunnel creates the illusion that the two end points are 
very close to each other, by making tunneled packets 
arrive either sooner or with lesser number of hops 
compared to the packets sent over normal routes. This 
allows an attacker to subvert the correct operation of 
the routing protocol, by controlling numerous routes 
in the network. Later, he can use this to perform traffic 
analysis or selectively drop data traffic. 
The wormhole attack can affect network routing, data 
aggregation and clustering protocols, and location-
based wireless security systems. Finally, it is worth 
noting that the wormhole attack can be launched even 
without having access to any cryptographic keys or 
compromising any legitimate node in the network. 
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Figure 3: A wormhole attack scenario 

Conjecture#3: DICAS detects and isolates malicious 
nodes that are involved in a wormhole attack. 
Proof sketch: Local monitoring detects the nodes 
involved in tunneling the route control packets and 
local response disables the tunnel from being 
established in the future by isolating the malicious 
nodes. Each guard saves the SN, the type, the source, 
the destination, the immediate sender, and the 
immediate receiver of every input packet to the 
monitored node. Consider the scenario in Figure 3. 
Two colluding nodes, M1 and M2, use an out-of-band 
channel or packet encapsulation to tunnel routing 
information between them. When M1 receives the 
REQ initiated by S, it tunnels the REQ to M2. Node M2 
has two choices for the previous hop — either to 

append the identity of M1, or append the identity of 
one of M2’s neighbors, say X. In the first choice all the 
neighbors of M2 reject the REQ because they all know, 
from the stored data structure of the two-hop 
neighbors, that M1 is not a neighbor to M2. In the 
second case, all the guards of the link from X to M2 (X, 
N, and L) detect M2 as fabricating the route request 
since they do not have the information for the 
corresponding packet from X in their watch buffer. In 
both cases M2 is detected, and the guards increment 
the MalC of M2. Similarly, when M1 receives the REP 
tunneled from M2 it has the same choices as M2 and a 
similar scheme is used by the guards of the incoming 
link to M1. 

5.4. Sinkhole  
In the sinkhole attack [18], a malicious node manages 
to attract routes from many nodes to go through it thus 
acting as a “sinkhole”. This attack typically works by 
making the malicious node look especially attractive 
for the surrounding nodes, for example, by claiming a  
short or a fast route to the destination. If the attacker 
succeeds, he can launch data traffic attacks and can 
prevent the discovery of other legitimate routes.  
Conjecture#4: DICAS detects any malicious attempts 
to establish a Sinkhole in LSR. 
Proof sketch: In DICAS end-to-end authentication and 
local monitoring prevent the sinkhole attack. An 
intermediate node does not accept any routing traffic 
from a non-neighbor nor does it forward any routing 
traffic to a non-neighbor. Also a destination node does 
not accept any routing traffic from a source node 
unless that traffic is authenticated using the shared 
key.  

5.5. Rushing Attack 
In the rushing attack [22], an adversary who receives a 
REQ rushes to broadcast it in an attempt to make the 
REQ forwarded by him to be the first to reach all the 
neighbors of the destination. If the attacker succeeds, 
then any route discovered by this rushed REQ includes 
a hop through the attacker.  
Conjecture#5: LSR mitigates the rushing attack. 
Proof:  The design of the route discovery module of 
LSR implements a variant of the rushing attack 
prevention protocol (RAP) as proposed in [22]. An 
intermediate node does not forward the first route 
request it receives (may be from a rushing malicious 
node), but rather, waits and collects copies of the REQ 
from different neighbors and randomly selects one of 
them to rebroadcast. The waiting stops the rushing of 
the attacker and the random selection reduces the 
likelihood of selecting a route through the attacker 
node. Also the multiple node-disjoint route creation 
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protocol prevents a single malicious node from 
affecting multiple routes between a source-destination 
pair. 

6. DICAS analysis 
6.1. Coverage analysis 
In this section, we quantify the probability of missed 
detection and false detection of a generic control 
attack as the network density increases and the 
detection confidence index varies. The results provide 
some interesting insights. For example, we are able to 
find the required network density d to detect p% of an 
attack under consideration for a given detection 
confidence index γ.  Consider a homogeneous network 
where the nodes are uniformly distributed in the field. 
Consider any two randomly selected neighbor nodes, 
S and D (Figure 4(a)). Nodes S and D are separated by 
a distance x, and the communication range is r.  The 
value of x follows a random variable with probability 
density function of f(x) = 2x/r2 with range (0,r). This 
follows from the assumption of uniform distribution 
of the nodes.  
The guard nodes for the link between S and D are 
those nodes that lie within the communication range 
of S and D, the shaded area in Figure 4(a). This area is 

given by ( )
2
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Therefore, the expected number of guards is 
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Figure 4: (a) The area where a node can guard the link 
between S and D; (b) Illustration for detection accuracy 

 
Now, as in [33] where IEEE 802.11 was analyzed, we 
assume that each packet collides on the channel with a 
constant and independent probability, PC. As shown in 
Figure 4(b), a guard G will not detect a packet sent by 
D, claiming it was received from S, if G experienced a 
collision at the time that D transmits. Thus, the 
probability of missed detection is PC. Assume that µ 
packet attacks (fabrication, modify, drop, etc.) occur 
within a certain time window, T. Also assume that a 
guard must detect at least β attacks to cause the MalC 
for a node to cross the threshold, and thus generate an 
alert. Then, the alert probability at a guard is given 
by ( ) ( )| 1 i i

C C
i

P P P
i

µ
µ

β µ
β

µ −

=

 
= − 

 
∑ . Thus, assuming 

independence of collision events among the different 
guards, the probability that at least γ of the guards 
generate an alert is given by 
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where, ( , 1)B gγ γ− +  is the Beta function and 

|( ; , 1)B P gβ µ γ γ− +  is the incomplete Beta function. 

Figure 5 shows the probability of detecting an attack 
(e.g. the wormhole) with µ = 7, β = 5, γ  = 3, the 
number of compromised nodes M = 2, and PC = 0.05 
at NB = 3. Thereafter, PC is assumed to increase 
linearly with the number of neighbors. The number of 
guards is determined from NB using Equation (I). 
Since the number of guards increases as the number of 
neighbors increases, the probability of detection 
increases since it becomes easier to receive the alarm 
from γ guards. However, the collision probability also 
increases with increasing node density, and thus the 
probability of detection starts to fall rapidly beyond a 
point. 
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Figure 5: Probability of attack detection 

Figure 9 shows, for the same µ, β, and PC as in Figure 
5, the probability of attack detection as a function of γ 
when NB = 15 and M = 2. As γ increases, the 
probability decreases. As shown in Figure 4(b), a false 
alarm occurs when D receives a packet sent from S, 
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while G does not receive that packet, and later, G 
receives the corresponding packet forwarded by D. 
Thus, the probability of false alarm is 2(1 )FA C CP P P= − . 
Assume that S sends µ packets to D for forwarding, 
within a certain time window, T. The probability that 
D is falsely accused is the probability that β or more 
packets are falsely suspected as wrong packets. This is 
given by 

( ) ( )( | ) 1i i
FA FA FA
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Figure 6: Probability of false alarm 

 Figure 6 shows the probability of false alarm as a 
function of the number of nodes for the same 
parameters as in Figure 5. The non monotonic nature 
of the plot can be explained as follows. As the number 
of neighbors increases, so does the number of guards. 
Initially, this increases the probability that at least γ 
guards miss the packet from S to the guard but not 
from D to the guard, leading to false detection at these 
γ guards. Beyond a point, however, the increase in the 
number of neighbors increases the collision 
probability. This increases the probability that both of 
these packets are missed at the guard and thus does 
not lead to false detection. The worst case false alarm 
probability is still negligible (less than 0.3×10-6). 

6.2. Cost Analysis 
In this section, we show the memory, the computation, 
and the bandwidth overheads of DICAS to evaluate its 
suitability to resource-constrained environments. 
 Memory overhead: Each node needs to store a 
neighbor list, a commitment key of each first hop 
neighbor, its own commitment string, a watch buffer, 
and an alert buffer. Assuming that the identity of a 
node is 2 bytes and reusing the notation from the 
previous subsection, the size of the neighbor list is 
NBL = πr2d entries. Each entry in NBL uses 3 bytes; 2 

for identity of the neighbor and 1 for the MalC 
associated with that neighbor. Each first hop entry in 
NBL requires 20 more bytes (e.g. SHA-
1[38],[25],[39]) for the storage of the commitment 
key. So the total NBL storage, NBLS = 25(πr2d)2. Also, 
a commitment string of length l requires 20l bytes. For 
example, NBLS and the commitment string use less 
than a kilobyte when NB = 10 and l = 20. The alert 
buffer has γ number of 2 byte entries. If we monitor 
the REP packets of LSR, then the watch buffer size 
depends on the average number of hops between a 
source-destination pair (h), the frequency of route 
establishment aggregated over the network (f) and the 
node density (d). We calculate the average number of 
nodes involved in monitoring a REP, NREP = 
2r2(h+1)d, by creating a rectangular bounding box of 
dimensions ((h+1) r × 2r) containing the nodes that 
may overhear the REP sent from A to B. This is an 
overestimate since we use a square that circumscribes 
the circular transmission range. Thus, given N as the 
total number of nodes in the network, each node is 
involved in monitoring at most (NREP/N)f  route replies 
per unit time. For example, if N = 100 nodes, h = 4 
hops, and f = 1 route every 4 time units, then NREP = 
17, and each node monitors 4 route replies every 100 
time units. Because the time τ for which the packet is 
kept in the watch buffer is relatively small being 
determined by the MAC layer delay for acquiring the 
channel, a watch buffer size of 4 entries is sufficient 
(for τ≤10). If we also monitor the REQ, then each 
node is involved in monitoring f+(NREP/N)f packets. 
This requires each node to monitor 4 packets every 16 
time units. Again a 4-entry watch buffer is sufficient.  
Each entry in the watch buffer is 14 bytes − 2 bytes 
each for the immediate source, the immediate 
destination, and the original source, and 8 bytes for 
the sequence number of the REP (REQ).  

Computation and bandwidth overhead: Each 
monitored REP (REQ) requires one lookup for the 
current source and destination in the neighbor list, 
adding an entry to the watch buffer (incoming) or 
deleting an entry from the watch buffer (outgoing). 
Since the size of the watch buffer and the neighbor list 
structure are relatively small, the computation time 
required for these operations is negligible. For 
example, a lookup in a 100 entry buffer takes the 
MICA mote with an Atmega128 4 MHZ processor, 
about 2µ seconds. The bandwidth overhead is incurred 
after deployment of a node for neighbor discovery and 
in the case of wormhole detection for informing the 
neighbors of the detected node. This is therefore a 
negligible fraction of the total bandwidth over the 
lifetime of the network.  
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7. Simulation Results 
We use the ns-2 simulator [34] to simulate a data 
exchange protocol over LSR, individually without 
DICAS (the baseline) and with DICAS. We distribute 
the nodes randomly over a square area with a fixed 
average node density. Thus, the length of the square 
varies (80m to 204 m) with the number of nodes (20-
150).  We first simulate the wormhole attack using 
out-of-band direct channels between the colluding 
nodes. After a wormhole is established, the malicious 
nodes at each end of the wormhole drop all the 
packets forwarded to them.  
Each node acts as a source and generates data using an 
exponential random distribution with inter-arrival rate 
of µ. The destination is chosen at random and is 
changed using an exponential random distribution 
with rate ξ. A route is evicted if unused for TOutRoute 
time. The experiment parameters are presented in 
Table 2. The results are obtained by averaging over 30 
runs. For each run, the malicious nodes are chosen at 
random so that they are more than 2 hops away from 
each other. 

Table 2: Input parameter values  
Parameter Value Par Value 
Tx Range (r) 30 m γ 2-8 
NB 8 µ 100 ms 
TOutRoute 50 sec M 0-4 
τ, Nr 0.05 s, 5 β 5  
Channel BW 40 kbps ξ 5m s 
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Figure 7: Cumulative number of dropped packets 

Figure 7 shows the number of packets dropped as a 
function of simulation time for the 100-node setup 
with 2 and 4 colluding nodes.  The attack is started 50 
sec after the start of the simulation. Since the numbers 
are vastly different in the baseline and with Dicas, 
they are shown on separate Y-axes. In the baseline 
case, since wormholes are not detected and isolated, 
the cumulative number of packets dropped continues 
to increase steadily with time. But in Dicas, as 
wormholes are identified and isolated permanently, 
the cumulative number stabilizes. Note that the 

cumulative number of packets dropped grows for 
some time even after the wormhole is locally isolated 
at 75 sec, due to the cached routes that contain the 
wormhole and continue to be used till route timeout 
occurs. 
Figure 8 shows a snapshot, at simulation time of 2000 
sec, of the fraction of the total number of packets 
dropped to the total number of packets sent, and the 
fraction of the total number of routes that involve 
wormholes to the total number of routes established. 
This is shown for 0-4 compromised nodes for the 
baseline and with DICAS. With 0 or 1 compromised 
node, there is no adverse effect on normal traffic since 
no wormhole is created. The relationship between the 
number of dropped packets and the number of 
malicious routes is not linear. This is because the route 
established through the wormhole is more heavily 
used by data sources due to the aggressive nature of 
the malicious nodes at the ends of the wormhole. If we 
track these output parameters over time, with DICAS, 
they would tend to zero as no more malicious routes 
are established or packets dropped, while with 
baseline case they would reach a steady state as a 
fixed percentage of traffic continues to be affected by 
the undetected wormholes. 
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Figure 8: Fraction of dropped packets & malicious 

routes 
Figure 9 bears out the analytical result for the 
detection probability as γ is varied with NB  = 15 and 
M = 2. As γ increases, the detection probability goes 
down due to the need for alarm reporting by a larger 
number of guards, in the presence of collisions.  Also 
the isolation latency goes up, though it is very small 
(less than 30 s) even at the right side of the plot. 
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Figure 9: Detection probability and isolation latency 
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Next, we simulate the combined rushing and Sybil 
attacks over a network of 250 nodes deployed in a 300 
m× 300 m field. We compare the average number of 
node-disjoint paths discovered per route request of an 
ideal search algorithm, AODVM [32], and LSR with 
DICAS. In the ideal search, the topology of the entire 
network is known to the source which uses shortest 
path first search algorithm. AODVM creates node-
disjoint routes by having every node overhear 
neighboring nodes’ REP packets and deciding to 
forward its own REP such that a neighbor is not 
included in two routes for a given source-destination 
pair. However, it does not consider any control 
attacks.  
Figure 10 shows the average number of node-disjoint 
paths as a function of the number of hops in the 
shortest path between two nodes. The figure shows 
that, in a failure free environment, LSR and AODVM 
performs almost identically. In a malicious scenario, 
each of 10 malicious nodes launches rushing and Sybil 
attacks. When a malicious node receives a REQ 
packet, it rushes to broadcast Nr copies of the REQ, 
each with a different fake identity. Figure 10 shows 
that LSR with DICAS is robust to the attack (LSR and 
LSR_mal plots overlap), while the average number of 
node-disjoint paths in AODVM is reduced by 22% 
(for distant source-destination pairs) to 32% (for 
closer pairs). Note that as the length of the path 
increases, the effect of the attacks in AODVM 
decreases. This is because even though the multiple 
routes appear to be disjoint at the attacker they may 
converge at some other intermediate node. These are 
then discarded by the source thereby ultimately foiling 
the attacker’s goal.  
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Figure 10: Average number of node-disjoint paths in 

ideal case, AODVM, and LSR 

8. Conclusion 
We have presented a distributed protocol, called 
DICAS, for detection, diagnosis, and isolation of nodes 
launching control attacks, such as, wormhole, Sybil, 
rushing, sinkhole, and replay attacks. DICAS uses local 
monitoring to detect control traffic misbehavior, and 
local response to diagnose and isolate the suspect 
nodes. We analyze the security guarantees of DICAS 

and show its ability to handle control attacks through a 
representative set of these attacks. We present a 
coverage analysis and find the probability of false 
alarm and missed detection. The overhead analysis 
shows that DICAS is a good choice for securing 
resource constrained sensor networks. On top of 
DICAS, we build a secure lightweight routing protocol, 
called LSR, which also supports node-disjoint path 
discovery.  
We note that although designed for static networks, 
DICAS can potentially be extended to mobile 
networks. In mobile networks the neighborhood 
changes and therefore the neighbor discovery is 
required to be executed during the lifetime of the 
network. Therefore, the neighbor discovery protocol 
presented here cannot be secure for mobile networks. 
Note that incremental deployment of nodes is 
equivalent to a node moving to the new position and 
the situation can be handled similarly. Two existing 
protocols can be used to enable secure neighbor 
discovery in mobile wireless networks: (i) directional-
antenna-based neighbor detection [21], which uses 
the knowledge of the direction of a received packet 
and the direction of the corresponding transmission 
and  (ii) propagation delay based neighbor detection 
[22], which uses packet delay of certain control 
packets to measure the distance to a neighbor. These 
protocols, however, are not well-suited to sensor 
networks because of the non-negligible 
communication overhead and the expensive hardware. 
As future work we are investigating secure neighbor 
discovery protocols appropriate for mobile networks. 
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