
1

DICAS: Detection, Diagnosis and Isolation of Control Attacks in Sensor

Networks

Abstract

Sensor networks enable a wide range of applications
in both military and civilian domains. However, the
deployment scenarios, the functionality requirements,
and the limited capabilities of these networks expose
them to a wide-range of attacks against control traffic
(such as wormholes, Sybil attacks, rushing attacks,
etc). In this paper we propose a lightweight protocol
called DICAS that mitigates these attacks by detecting,
diagnosing, and isolating the malicious nodes. DICAS
uses as a fundamental building block the ability of a
node to oversee its neighboring nodes’
communication. On top of DICAS, we build a secure
routing protocol, LSR, which also produces multiple
node-disjoint paths. We analyze the security
guarantees of DICAS and use ns-2 simulations to show
its effectiveness against three representative attacks.
Overhead analysis is conducted to prove the
lightweight nature of DICAS.
Keywords: sensor network security, neighbor
monitoring, secure routing, node-disjoint paths,
control attack.

1. Introduction
Wireless sensor networks are emerging as a promising
platform that enable a wide range of applications in
both military and civilian domains such as battlefield
surveillance, medical monitoring, biological detection,
home security, smart spaces, inventory tracking, etc.
Such networks consist of small, low-cost, resource-
limited (battery, bandwidth, CPU, memory) nodes that
communicate wirelessly and cooperate to forward data
in a multi-hop fashion. Thus, they are especially
attractive in scenarios where it is infeasible or
expensive to deploy a significant networking
infrastructure. However, the open nature of the
wireless communication, the lack of infrastructure, the
fast deployment practices, and the hostile deployment
environments, make them vulnerable to a wide range
of security attacks. Some of the most devastating
attacks target the control traffic or data traffic in
wireless networks. Typical examples of control traffic
are routing, monitoring the liveness of nodes,

topology discovery, and distributed location
determination. Control traffic attacks include the (i)
wormhole attack ([20],[21]), (ii) the rushing attack
[22], (iii) the Sybil attack [13], (iv) the sinkhole attack
[18], and (v) the HELLO flood attack [18]. Attacks
against data traffic include (vi) blackhole and (vii)
selective forwarding [18] in which a malicious node
drops entirely or selectively data passing through it.
Control attacks are especially dangerous because they
can be used to subvert the functionality of the routing
protocol and create opportunity for a malicious node
to launch a data traffic attack such as dropping all or
selective subset of data packets. Coping with control
attacks in sensor networks is more challenging than in
ad hoc wireless and wired networks due to the
resource constrained environment.
In this paper we present a lightweight protocol called
DICAS, which mitigates control traffic attacks in
sensor networks. DICAS not only detects the
occurrence of an attack, but also diagnoses the
malicious nodes involved in the attack and removes
their capability of launching future attacks by isolating
them from the network. The detection and isolation
mechanisms are executed locally, incurring only a
small overhead. DICAS is suited to the low cost point
of sensor networks since it does not require any
specialized hardware (such as directional antennas
[21] or GPS) nor does it require time synchronization
among the nodes [20]. The approach that DICAS uses
to achieve its security goals exploits a well-known
technique whereby nodes oversee part of the traffic
going in and out of their neighbors [19], [30], [35],
[36]). Our novelty lies in presenting the technique as a
standalone module – local monitoring – and analyzing
its capabilities and limitations. We systematically lay
out the fundamental structures and the state to be
maintained at each node for mitigating five
representative attacks – modifying routing traffic,
Sybil, wormhole, sinkhole, and rushing attacks.
Independent of the detection mechanism, we propose
a strategy to isolate the malicious nodes locally in a
distributed manner.

We use DICAS to build a lightweight secure
routing protocol called LSR that withstands known
attacks against the routing infrastructure and supports
secure node-disjoint route discovery. We provide a

2

security analysis of LSR using DICAS for five
representative attacks. We analyze the detection
coverage and the probability of false detection of
DICAS. Also, we evaluate the memory, communication,
and computation overhead of DICAS. Finally, we
simulate the wormhole attack in ns-2 and show its
effect on the network performance with and without
DICAS. The results show that DICAS can achieve 100%
detection of the wormholes for a wide range of
network densities. They also show that the detection
and isolation of the nodes involved in the wormhole
can be achieved in a negligible time after the attack
starts. In addition, we simulate a combined Sybil and
rushing attack to bring out the adverse impact on
node-disjoint multipath routing and show the
improvement using DICAS. The results show that LSR
using DICAS is resilient to the combined attack and
that the average number of node-disjoint routes
discovered is not reduced.
The rest of the paper is organized as follows. Section
2 presents the related work in the area of security in
wireless ad-hoc and sensor networks. Sections 3 and 4
describe DICAS and LSR, respectively. Section 5
presents attacks against routing and their mitigation in
LSR using DICAS. Section 6 analyzes the coverage and
overhead of DICAS, while Section 7 shows simulation
results. Section 8 concludes the paper.

2. Related Work
In the last few years, researchers have been actively
exploring many mechanisms for securing the control
traffic in wireless networks. These mechanisms can be
broadly categorized into four classes – customized
cryptographic primitives, protocols for path diversity,
protocols that overhear neighbor communication, and
protocols that use specialized hardware. The
cryptographic primitives are also used as building
block for protocols of the other three classes. In the
context of ad hoc networks, HMAC and digital
signatures [38] have been used to provide end-to-end
authentication of the routing traffic [2],[5].
Intermediate node authentication of the source traffic
has been achieved via authentic broadcasting
techniques using digital signatures [23], hash trees [3],
or µ-TESLA [4]. These protocols are restrictive and
only capable of providing the traditional cryptographic
guarantees, namely confidentiality and authenticity of
routing traffic. In addition, it is usually infeasible to
apply them to sensor networks. The public key
cryptography is far beyond the capabilities of sensor
nodes and the symmetric key based protocols
proposed are too expensive in terms of node state and
communication overhead.

The path diversity techniques increase route
robustness by first discovering multipath routes
([23],[30], [31],) and then using these paths to
provide redundancy in the data transmission between
a source and a destination [29]. The data is encoded
and divided into multiple shares sent to the destination
via different routes. Many of these schemes are
vulnerable to attacks that permit a node to assume
multiple identities (such as the Sybil attack).

Mechanisms to overhear neighbor communication
in a wireless channel have been used to minimize the
effect of misbehaving nodes [19],[31],[35]-[37]. In the
watchdog scheme [19], the sender of a packet watches
the behavior of the next hop node for that packet. If
the next hop node drops or tampers with the packet,
the sender announces it as malicious to the rest of the
network. The scheme is vulnerable to blacklisting,
does not work correctly when malicious nodes
collude, and can have a high error rate due to
collisions in the wireless channel. Neighbor watch has
also been used to build trust relationships among
nodes in the network [35],[36], to build cooperative
intrusion detection systems [37], or to discover
multiple node-disjoint routes [31]. However, all these
protocols use the communication overhearing as an
existing service without studying its feasibility,
requirements, limitations, or performance in the
resource-constrained sensor environment. Examples
of the fourth class are [20][21], the former called
packet leashes uses either tight time synchronization
or location awareness through GPS hardware and the
latter uses directional antennas. These schemes are
used to detect one form of control attack – the
wormhole attack.

On the other hand, many secure sensor network
routing protocols have also been introduced in the
literature [6]-[11]. These protocols are less complex
than ad hoc or wired routing protocols and are
susceptible to a wide variety of attacks, as
summarized by Karlof and Wagner [18]. Table 1
enumerates the protocols and their vulnerabilities.

Table 1: Attacks against secure wireless routing
protocols (The numbers refer to the numbered list in

the introduction)
Routing protocol name Attacks
Directional diffusion ([6], [9]) iii, iv, v, vii
GPSR [8] iii, vii
Minimum cost forwarding [10] i, iv, v, vii
LEACH [11], PEGASIS [24] v, vii
Rumor routing [12] i, iii, iv, vii
SPAN [15] iii, v

3

Few of the protocols mentioned above discuss the
method for removing the malicious nodes from
causing further damage in the network and even fewer
provide a quantitative analysis of the detection
coverage, which may be affected due to a faulty
detector or due to environmental conditions.

3. Description of DICAS

DICAS consists of a set of two algorithms as primitives
(Section 3.2) and two main modules - the local
monitoring module (Section 3.3), and the local
response module (Section 3.4).

3.1. System Model and Assumptions

Attack model: A malicious node can be either an
external node that does not know the cryptographic
keys, or an insider node, that possesses the keys. An
insider node may be created, for example, by
compromising a legitimate node. A malicious node
can perform all the attacks mentioned in Section 1, by
itself or using arbitrary collusion with other nodes. A
malicious node can establish out-of-band fast channels
(e.g., a wired link) or have high powered transmission
capability.

System assumptions: We assume that all the
communication links are bi-directional. Also, we
assume that a finite amount of time is required from a
node’s deployment for it to be compromised. This
time is called the compromise threshold time TCT. We
define the maximum time required for the first and
second hop neighbor discovery protocol (Section 3.2)
to complete as TND. Our assumption is that for a given
node ni, all its first and second hop neighbors are
deployed within TCT-2TND of the deployment of ni.
This assumption implies that for a given node, no
malicious node exists in its one or two hop
neighborhood till its neighbor discovery protocol
completes. We assume that the network has sufficient
redundancy, such that the attacker can not
compromise all the guards with a certain transmission
range. This means that any node in the network has
some good guards. We assume that the network has a
static topology. This does not rule out route changes
due to natural and malicious node failures or route
evictions from the routing cache. Also the functional
rules of a node, such as cluster head and regular
sensing node, may change. Finally, we assume a key
management protocol, such as [26], is used to pre-
distribute pair-wise keys in the network so that any

two nodes in the network can securely communicate
with each other.

3.2. Primitives: Neighbor Discovery and One
Hop Source Authentication

Neighbor discovery: This protocol is used to build a
data structure of the first hop neighbors of each node
and the neighbors of each neighbor. The data structure
is used in local monitoring to detect malicious nodes
and in local response to isolate these nodes. A
neighbor of a node, X, is any node that lies within the
transmission range of X. As soon as a node, say A, is
deployed in the field, it sends a one-hop broadcast of a
HELLO message. Any node that receives the
message, sends an authenticated reply to A, using the
pair-wise shared key. For each reply received within a
pre-defined timeout (TROUT,), A verifies the
authenticity of the reply and adds the responder to its
neighbor list, RA. Let RA = n1, .., np and M =
RA||Kcommit(A), where Kcommit(A) is the commitment key A
uses to authenticate itself to its neighbors. Node A
computes P = M||KAn1

(M)||…|| KAnp
(M). Then A sends

a one-hop broadcast of packet P. A node nj that
receives P, verifies M using KAnj

. If the message is
correctly verified, nj stores RA (nj’s second hop
neighbors) and Kcommit(A). Hence, at the end of this
neighbor discovery process, each node has a list of its
direct neighbors and the neighbors and the
commitment key of each one of its direct neighbors.
This process is performed only once in the lifetime of
a node and is secure in static wireless networks
because of the system model assumptions on time to
compromise a node and the deployment of a node and
its neighbors.
Commitment key generation and update: This
protocol is used to generate and update the
commitment key used by the one-hop source
authentication protocol. The values of the
commitment key at a node S (Kcommit(S)) are derived
from a random seed (Kseed(S)) as Kcommit(S) = H(i)
(Kseed(S)), where H is a one-way collision resistant hash
function, i takes values between 0 and l(≥2), and l is
the length of the sequence of values of Kcommit(S) that
we call the commitment string. The first value of the
commitment key Kcommit(S) that is exchanged with the
neighbors during neighbor discovery is H(l)(Kseed(S)) =
vl. The subsequent values of the commitment key (vl-

1,…, v0) are progressively disclosed to the neighbors
during subsequent transmissions. Before the current
commitment string {vl, vl-1,…, v0} is exhausted, a new
one is generated at S {ul, ul-1,…,u0}. The commitment
key ul from the new string is authenticated to the
neighbors using the last undisclosed key from the

4

current string with the one-hop source authentication
protocol.
One-hop source authentication: This protocol allows
a node to distinguish between its neighbors to prevent
identity spoofing among them. A node S authenticates
its transmitted packets to the neighbors by attaching
the last undisclosed value from the commitment string
Kcommit(S). When a neighbor of S, say B, receives the
packet, it verifies the validity of Kcommit(S) by
computing a hash function over it and comparing the
result with the stored value of Kcommit(S). If the Kcommit(S)
is valid, B stores it as the new commitment key value
of S. However, this protocol may fail to provide the
required authentication if an attacker blocks the
transmission range of a certain source from the rest of
network except himself. Therefore, the attacker can
impersonate that source and generate valid packets. In
such case, we revert to the well-known µTESLA
authentication scheme [25] that countermeasure such
attacks.

3.3. Local monitoring: Detection &
Diagnosis

This module detects various attacks against the control
traffic and diagnoses the malicious nodes involved in
these attacks. Local monitoring starts immediately
after the completion of the neighbor discovery. It uses
a collaborative detection strategy, where a node
monitors the traffic going in and out of its neighbors.

S DB X

M

N

A

AX YY

The transmission
range of node Y

Figure 1: X, M, and N are guards of A over the link

from X to A
For a node, say M, to be able to monitor a node, say A,
two conditions are required: (i) each packet forwarder
must explicitly announce the immediate source of the
packet it is forwarding, and (ii) M must be a neighbor
of both A and the previous hop from A, say X. The
first condition is guaranteed universally by the routing
protocol and therefore the second condition is the
deciding criterion. In such a case, we call M a guard
node of A over the link from X to A. In Figure 1, nodes
M, N, and X are the guards of A over the link from X
to A. For a link (i, j), the sender i is a guard node for
node j. Information for each packet sent from X to A is
saved in a watch buffer at each guard for a time τ. The
information maintained depends on the particular
attack under consideration.

A malicious counter (MalC(i,j)) is maintained at each
guard node, i, for every node, j, which i is monitoring.
MalC(i,j) is incremented for any suspect malicious
activity of j that is detected by i. In Figure 1, if a
guard, say M, does not hear A forwarding a packet
sent by X within τ, it accuses A of dropping or
delaying the packet. If M hears A transmitting the
packet within τ but detects a change in the packet’s
content or header, it accuses A of modifying the
packet. If M hears A transmitting a packet, claiming
that it was sent by X, but M does not have the
corresponding incoming packet in its watch buffer, M
accuses A of fabricating the packet. To account for
intermittent natural failures that can occur at
legitimate nodes, a node is determined to be
misbehaving, only if the MalC goes above a threshold.

3.4. Local Response and Isolation

Detection and diagnosis is only the first step towards
protecting the network. The local response and
isolation module is used to propagate the detection
knowledge to the neighbors of the malicious node and
to take appropriate response to isolate it from the
network. The following local response algorithm is
triggered by a guard node, say α, when a suspect
malicious node, say A, is diagnosed.
1. When the MalC(α,A) crosses a threshold, Ct , α

revokes A from its neighbor list, and sends to
each neighbor of A, say D, an authenticated alert
message indicating A is a suspected malicious
node. This communication is authenticated using
the shared key between α and D to prevent false
accusations. Alternately, if the clocks of all the
nodes in the network are loosely synchronized, α
can do authenticated local two-hop multicast as in
[16] to inform the neighbors of A

2. When D receives the alert, it verifies its
authenticity, that α is a guard to A, and that A is
D’s neighbor. It then stores IDα in an alert buffer
associated with A.

3. When D receives enough alerts, γ, about A, it
isolates A by marking A’s status as revoked in the
neighbor list. We call γ the detection confidence
index.

4. After isolation, D does not accept any packet
from or forward any packet to a revoked node.

In addition to removing the malicious nodes from the
network, this module makes the response process fast
since the detection knowledge does not need to
propagate to all the nodes in the network. Also this
module is lightweight in the number of messages (one

5

to each neighbor of A only on malicious node
detection) and the number of hops each message
traverses (maximum two hops).

4. LSR: Lightweight Secure Routing
LSR is an on-demand routing protocol, sharing many
similarities with the AODV [28] protocol. However,
LSR has significant differences to enhance security.
The design features of LSR described below make it
resilient to a large class of control attacks such as
wormhole, Sybil, and rushing attacks, as well as
authentication and ID spoofing attacks. Combined
with DICAS, LSR can deterministically detect and
isolate nodes involved in launching these attacks.
Section 6.1 provides detailed analysis of the detection
and isolation coverage of control attacks in LSR with
DICAS.

4.1. Route Discovery and Maintenance
Route Request: When a node, say S, needs to discover
a route to a destination, say D, it generates a route
discovery packet (REQ) that contains: a flag to
indicate that it is a route request packet (FREQ), the
sender identity (IDS), the destination identity (IDD),
and a unique sequence number (SN). The SN is
incremented with every new REQ and is used to
prevent the replay of the REQ packet. Node S then
calculates a message authentication code (MAC) of the
packet using the shared key between S and D (KSD).
Finally, S generates and attaches the next value of the
commitment key Kcommit(S) to the REQ packet and
broadcasts it.
1. [At S] REQ = FREQ || IDS || IDD || SN

2. S Broadcast→ REQ || MACKSD
(REQ) ||

Kcommit(S)||IDS
A neighbor Z of S accepts the REQ packet if the
associated Kcommit(S) is valid. Then Z removes Kcommit(S)
from the REQ, attaches IDZ, and forwards the REQ.
An intermediate node B that is not a direct neighbor to
S stores the first REQ packet it receives. Node B also
keeps the identity of every different neighbor that
forwards a subsequent copy of the same REQ during a
rush time, Tr, selected randomly from [Tmin, Tmax], as in
[22]. When Tr runs out or when a certain number of
requests, Nr, is collected, whichever occurs first, B
broadcasts a randomly selected copy of the REQ
copies that it has. Assume without loss of generality
that B selects the one forwarded by W. For each
source-destination pair, node B keeps the identity of
the node from which it receives the forwarded REQ
(IDW). Node B then appends IDB and IDW to the REQ
and broadcasts it. The process continues until the REQ
reaches D.

1. [At B] Save “REQ||MACKSD
(REQ)”, and set Tr.

2. [At B] Save the identity of every neighbor that
sends a REQ copy within Tr.

3. [At B] Select random copy of the REQ.
4. [At B] Store IDS, IDD, SN, and IDW.

5. B Broadcast→ REQ||MACKSD
(REQ)||IDW|| IDB

Route Reply: When D receives the REQ packet, it
verifies the authenticity of the source using the shared
key KSD. Then D generates a route reply packet REP
that contains: a flag to indicate that it is a route reply
packet (FREP), the sender identity (IDS), the destination
identity (IDD), and a SN. Node D then calculates a
MAC value over the packet using the pair-wise shared
key (KSD). Node D generates and attaches the next
value of the commitment key Kcommit(D) to the REP
packet. Finally, D unicasts the REP packet back to the
previous hop as determined by the REQ packet. Let A
be the immediate previous hop from D and C be the
immediate previous hop from A.
1. [At D] REP = FREP||IDS||IDD|| SN
2. D A: REP || MACKSD

(REP) ||
Kcommit(D)||IDD||IDA

When A receives the REP packet, it verifies and
removes Kcommit(D), updates its routing table as follows
- <Destination, Next hop>: {D, D}, {S, C}. Node A
then appends IDD||IDA||IDC and sends the REP packet
to C.
1. [At A] Verify and remove Kcommit(D). Set

<Destination, Next hop>: {D, D}, {S, C}
2. A C: REP||MACKSD

(REP)|| IDD || IDA || IDC

The REP continues to propagate using the reverse path
of the corresponding REQ towards S. Node S verifies
the authenticity of the reply using KSD and updates its
routing table to the destination.
The route maintenance in LSR is triggered when a
broken link is detected and a new route is discovered
by using the above protocol for route discovery. In
this respect, it is similar to AODV.
Note that in LSR, the source chooses the route
corresponding to the fastest route reply and not the
shortest hop route, to guard against attacks that
modify the hop count. A longer but less congested
route is preferred to a shorter but congested route, as
in [23].

4.2. Node-Disjoint Multipath Discovery
A desirable feature of LSR is its ability to increase the
number of node-disjoint routes between a source and a
destination. LSR supports secure discovery of these
routes as a by-product of the local monitoring module

6

of the underling DICAS protocol without incurring any
additional overhead. In many on demand ad-hoc and
sensor network routing protocols, an intermediate
node forwards the first announcement of a request and
suppresses any following announcements, such as in
AODV [28]. As a result, multiple routing paths may
have common nodes in them. In LSR, each node, say
B, backs off for a random time (Tr) before forwarding
the REQ. During Tr, B buffers all the announcements
of the same request. At the same time, B listens to any
neighbor, say E, whose rush timer, Tr times out and
which forwards one of its REQ copies. If B has the
same REQ copy, from the same previous hop, as that
forwarded by E, B deletes that copy from its buffer
and thus will not be a candidate for REQ forwarding
by B.

B

E
X

Y

Z
B

E
X

Y

Z
B

E
X

Y

Z
B

E
X

Y

Z
B

E
X

Y

Z
B

E
X

Y

Z

(a) (b) (c)
Figure 2: Example of node-disjoint routes.

An example is shown in Figure 2. Let B receive REQs
from nodes X, Y, and Z, and let E be a neighbor of B
which also receives from X, and let the REQ from X
be the first to arrive at both B and E, Figure 2(a). If
nodes B and E forward the first REQ they receive and
drop the others as in AODV, then multiple paths will
be formed with X in them (Figure 2(b)). However,
using our technique, assuming that the timer of E runs
out before that of B and that E broadcasts the message
it received from X, then B will drop X’s packet from
its buffer. Thus B will not forward the REQ forwarded
by X, The resulting paths are disjoint (Figure 2(c)).
The destination replies to every REQ copy it receives
through a different neighbor. An intermediate node
creates a routing table entry when it forwards the reply
for the first time. Subsequently it does not forward any
further replies to prevent itself from being inserted in
multiple routes. In order to detect malicious behavior
by its neighbors, each node monitors replies going out
of the neighbors. If a neighbor forwards a specific
reply more than once, it is considered malicious and
dropped from all the routes the node has. For
example, let node B forward the REQ that has been
forwarded by A. Let the two non-neighbor nodes, X
and Y, receive and forward the REQ they get from B.
The REP packet takes the reverse path, i.e. B gets the
REP packets from X and Y. Without loss of generality,
let the REP packets come from X then from Y. A
correct node forwards only the first REP. However, if
B is malicious, it may send the two replies to two
different neighbors, say A and α respectively.
Therefore, B succeeds in including itself in two

“different routes”. However, in LSR, this misbehavior
can be detected by X and Y since they overhear B’s
forwarded REPs. Then they evict all the routes
through B.

5. Attacks and Countermeasures

In this section, we present a set of 5 attacks that can be
launched against a routing protocol and show how
they can be detected in LSR with DICAS.

5.1. Route Traffic Manipulation
An attacker may attack the routing infrastructure by
injecting false control packets, modifying the
forwarded control packets, or replaying old
authenticated control packets. This may result in
creating routing loops, attracting network traffic,
extending or shortening routes, generating false error
messages, partitioning the network, or increasing the
end-to-end delay.
Conjecture#1: DICAS detects any injection, alteration,
or replaying of the routing traffic in LSR.
Proof sketch: The end-to-end authentication prevents
a malicious node from injection or alteration of the
REQ and the REP packets. The increasing sequence
number associated with each REQ and REP prevents
the replay attack.

5.2. ID Spoofing and Sybil Attacks

In this attack, an attacker presents one (ID
spoofing) or more (Sybil attack) spoofed identities to
the network [13]. Those identities could either be new
fabricated identities or stolen identities from
legitimate nodes. The Sybil attack can have many
adverse impacts, such as on multipath routing [14] and
collaborative protocols that use aggregation and
voting [40].
Conjecture#2: In LSR with DICAS, malicious node ID
spoofing or Sybil attack attempts can be easily
detected.
Proof sketch: (i) The single hop neighbor list data
structure prevents a node from spoofing the identity of
a non-neighbor node. A node will not accept (forward)
traffic from (to) a non-neighbor node. (ii) The one-hop
authenticated source broadcasting prevents a node
from generating traffic using spoofed identity of a
neighbor node since each node must authenticate its
generated traffic to the neighbors. (iii) Local
monitoring prevents a forwarding node from spoofing
a neighbor’s identity. As shown in Figure 1, if A
receives a packet from X, then A can not forward the
packet claiming that it is being forwarded by one of its

7

neighbors, say M. None of the guards of M over the
link from X to M overhear such a packet; also the
guards of A over the link from X to A accuse A of not
forwarding the packet.

5.3. Wormhole Attack
In the wormhole attack [20],[21] a malicious node
captures packets from one location in the network, and
“tunnels” them to another malicious node at a distant
point, which replays them locally. The tunnel can be
established in many different ways, such as through an
out-of-band hidden channel (e.g., a wired link), packet
encapsulation, or high powered transmission. The
tunnel creates the illusion that the two end points are
very close to each other, by making tunneled packets
arrive either sooner or with lesser number of hops
compared to the packets sent over normal routes. This
allows an attacker to subvert the correct operation of
the routing protocol, by controlling numerous routes
in the network. Later, he can use this to perform traffic
analysis or selectively drop data traffic.
The wormhole attack can affect network routing, data
aggregation and clustering protocols, and location-
based wireless security systems. Finally, it is worth
noting that the wormhole attack can be launched even
without having access to any cryptographic keys or
compromising any legitimate node in the network.

S

D
C

M1 M2

A E F

Good node Malicious node

P

Q

R

B
Z

The legitimate path without wormhole
An out-of-band channel between M1 and M2

A path between M1 and M2 for encapsulation

X

L

N
W

Figure 3: A wormhole attack scenario

Conjecture#3: DICAS detects and isolates malicious
nodes that are involved in a wormhole attack.
Proof sketch: Local monitoring detects the nodes
involved in tunneling the route control packets and
local response disables the tunnel from being
established in the future by isolating the malicious
nodes. Each guard saves the SN, the type, the source,
the destination, the immediate sender, and the
immediate receiver of every input packet to the
monitored node. Consider the scenario in Figure 3.
Two colluding nodes, M1 and M2, use an out-of-band
channel or packet encapsulation to tunnel routing
information between them. When M1 receives the
REQ initiated by S, it tunnels the REQ to M2. Node M2
has two choices for the previous hop — either to

append the identity of M1, or append the identity of
one of M2’s neighbors, say X. In the first choice all the
neighbors of M2 reject the REQ because they all know,
from the stored data structure of the two-hop
neighbors, that M1 is not a neighbor to M2. In the
second case, all the guards of the link from X to M2 (X,
N, and L) detect M2 as fabricating the route request
since they do not have the information for the
corresponding packet from X in their watch buffer. In
both cases M2 is detected, and the guards increment
the MalC of M2. Similarly, when M1 receives the REP
tunneled from M2 it has the same choices as M2 and a
similar scheme is used by the guards of the incoming
link to M1.

5.4. Sinkhole
In the sinkhole attack [18], a malicious node manages
to attract routes from many nodes to go through it thus
acting as a “sinkhole”. This attack typically works by
making the malicious node look especially attractive
for the surrounding nodes, for example, by claiming a
short or a fast route to the destination. If the attacker
succeeds, he can launch data traffic attacks and can
prevent the discovery of other legitimate routes.
Conjecture#4: DICAS detects any malicious attempts
to establish a Sinkhole in LSR.
Proof sketch: In DICAS end-to-end authentication and
local monitoring prevent the sinkhole attack. An
intermediate node does not accept any routing traffic
from a non-neighbor nor does it forward any routing
traffic to a non-neighbor. Also a destination node does
not accept any routing traffic from a source node
unless that traffic is authenticated using the shared
key.

5.5. Rushing Attack
In the rushing attack [22], an adversary who receives a
REQ rushes to broadcast it in an attempt to make the
REQ forwarded by him to be the first to reach all the
neighbors of the destination. If the attacker succeeds,
then any route discovered by this rushed REQ includes
a hop through the attacker.
Conjecture#5: LSR mitigates the rushing attack.
Proof: The design of the route discovery module of
LSR implements a variant of the rushing attack
prevention protocol (RAP) as proposed in [22]. An
intermediate node does not forward the first route
request it receives (may be from a rushing malicious
node), but rather, waits and collects copies of the REQ
from different neighbors and randomly selects one of
them to rebroadcast. The waiting stops the rushing of
the attacker and the random selection reduces the
likelihood of selecting a route through the attacker
node. Also the multiple node-disjoint route creation

8

protocol prevents a single malicious node from
affecting multiple routes between a source-destination
pair.

6. DICAS analysis
6.1. Coverage analysis
In this section, we quantify the probability of missed
detection and false detection of a generic control
attack as the network density increases and the
detection confidence index varies. The results provide
some interesting insights. For example, we are able to
find the required network density d to detect p% of an
attack under consideration for a given detection
confidence index γ. Consider a homogeneous network
where the nodes are uniformly distributed in the field.
Consider any two randomly selected neighbor nodes,
S and D (Figure 4(a)). Nodes S and D are separated by
a distance x, and the communication range is r. The
value of x follows a random variable with probability
density function of f(x) = 2x/r2 with range (0,r). This
follows from the assumption of uniform distribution
of the nodes.
The guard nodes for the link between S and D are
those nodes that lie within the communication range
of S and D, the shaded area in Figure 4(a). This area is

given by ()
2

2 1 2() 2 cos 2
2 4
x xArea x r x r
r

− = − −

. The

minimum value of Area(x), Areamin, is when x = r.
Therefore, the minimum number of guards is

2
min min 0.36g Area d r d= = . The expected value of Area(x)

[] ()
2

2 1 2
2

0

2 2

2() 2 cos 2
2 4

2 1 1.6
3 2

r x x xE Area x r x r dx
r r

r rπ

−
 = − −

 = − ≈

∫

Therefore, the expected number of guards is

2[()] 1.6g E Area x d r d = = . The number of neighbors

of a node is given by 2
BN r dπ= .

2 1 0.51
3 2 B Bg N N

π
 = − ≈

 (I).

G

S D(a) (b)

S X

r

DS X

r

DD

Figure 4: (a) The area where a node can guard the link
between S and D; (b) Illustration for detection accuracy

Now, as in [33] where IEEE 802.11 was analyzed, we
assume that each packet collides on the channel with a
constant and independent probability, PC. As shown in
Figure 4(b), a guard G will not detect a packet sent by
D, claiming it was received from S, if G experienced a
collision at the time that D transmits. Thus, the
probability of missed detection is PC. Assume that µ
packet attacks (fabrication, modify, drop, etc.) occur
within a certain time window, T. Also assume that a
guard must detect at least β attacks to cause the MalC
for a node to cross the threshold, and thus generate an
alert. Then, the alert probability at a guard is given
by () ()| 1 i i

C C
i

P P P
i

µ
µ

β µ
β

µ −

=

= −

∑ . Thus, assuming

independence of collision events among the different
guards, the probability that at least γ of the guards
generate an alert is given by

() ()
|

|
| |

1

0

(, , 1)
1

(, 1)

! (1)
(1)!()!

g i g i

i

P
g

B P gg
p P P

i B g

g u u du
g

β µ

β µ
γ β µ β µ

γ

γ γ

γ γ
γ γ

γ γ

−

≥
=

− −

− +
= − = − +

= −
− −

∑

∫

where, (, 1)B gγ γ− + is the Beta function and

|(; , 1)B P gβ µ γ γ− + is the incomplete Beta function.

Figure 5 shows the probability of detecting an attack
(e.g. the wormhole) with µ = 7, β = 5, γ = 3, the
number of compromised nodes M = 2, and PC = 0.05
at NB = 3. Thereafter, PC is assumed to increase
linearly with the number of neighbors. The number of
guards is determined from NB using Equation (I).
Since the number of guards increases as the number of
neighbors increases, the probability of detection
increases since it becomes easier to receive the alarm
from γ guards. However, the collision probability also
increases with increasing node density, and thus the
probability of detection starts to fall rapidly beyond a
point.

0.00
0.20
0.40
0.60
0.80
1.00

3 7 11 15 19 23 27 31 35
 Number of neighbors

Pr
ob

. o
f w

or
m

ho
le

de

te
ct

io
n

Figure 5: Probability of attack detection

Figure 9 shows, for the same µ, β, and PC as in Figure
5, the probability of attack detection as a function of γ
when NB = 15 and M = 2. As γ increases, the
probability decreases. As shown in Figure 4(b), a false
alarm occurs when D receives a packet sent from S,

9

while G does not receive that packet, and later, G
receives the corresponding packet forwarded by D.
Thus, the probability of false alarm is 2(1)FA C CP P P= − .
Assume that S sends µ packets to D for forwarding,
within a certain time window, T. The probability that
D is falsely accused is the probability that β or more
packets are falsely suspected as wrong packets. This is
given by

() ()(|) 1i i
FA FA FA

i

P P P
i

µ
µ

β µ
β

µ −

=

= −

∑ , and the probability

that at least γ guards generate false alarms is given by

() ()
(|)

(|) (|)

(|) 1

0

1

(, , 1) ! (1)
(, 1) (1)!()!

FA

g i g i

FA FA FA
i

P
FA g

g
p P P

i

P g g u u du
g g

β µ

γ β µ β µ
γ

β µ γ γβ γ γ
β γ γ γ γ

−

≥
=

− −

= −

− +
= = −

− + − −

∑

∫

0.00

0.07

0.14

0.21

0.28

3 7 11 15 19 23 27 31 35
 Number of`nodes

Pr
ob

. o
f f

al
se

 a
la

rm
X1

0E
-6

Figure 6: Probability of false alarm

 Figure 6 shows the probability of false alarm as a
function of the number of nodes for the same
parameters as in Figure 5. The non monotonic nature
of the plot can be explained as follows. As the number
of neighbors increases, so does the number of guards.
Initially, this increases the probability that at least γ
guards miss the packet from S to the guard but not
from D to the guard, leading to false detection at these
γ guards. Beyond a point, however, the increase in the
number of neighbors increases the collision
probability. This increases the probability that both of
these packets are missed at the guard and thus does
not lead to false detection. The worst case false alarm
probability is still negligible (less than 0.3×10-6).

6.2. Cost Analysis
In this section, we show the memory, the computation,
and the bandwidth overheads of DICAS to evaluate its
suitability to resource-constrained environments.
 Memory overhead: Each node needs to store a
neighbor list, a commitment key of each first hop
neighbor, its own commitment string, a watch buffer,
and an alert buffer. Assuming that the identity of a
node is 2 bytes and reusing the notation from the
previous subsection, the size of the neighbor list is
NBL = πr2d entries. Each entry in NBL uses 3 bytes; 2

for identity of the neighbor and 1 for the MalC
associated with that neighbor. Each first hop entry in
NBL requires 20 more bytes (e.g. SHA-
1[38],[25],[39]) for the storage of the commitment
key. So the total NBL storage, NBLS = 25(πr2d)2. Also,
a commitment string of length l requires 20l bytes. For
example, NBLS and the commitment string use less
than a kilobyte when NB = 10 and l = 20. The alert
buffer has γ number of 2 byte entries. If we monitor
the REP packets of LSR, then the watch buffer size
depends on the average number of hops between a
source-destination pair (h), the frequency of route
establishment aggregated over the network (f) and the
node density (d). We calculate the average number of
nodes involved in monitoring a REP, NREP =
2r2(h+1)d, by creating a rectangular bounding box of
dimensions ((h+1) r × 2r) containing the nodes that
may overhear the REP sent from A to B. This is an
overestimate since we use a square that circumscribes
the circular transmission range. Thus, given N as the
total number of nodes in the network, each node is
involved in monitoring at most (NREP/N)f route replies
per unit time. For example, if N = 100 nodes, h = 4
hops, and f = 1 route every 4 time units, then NREP =
17, and each node monitors 4 route replies every 100
time units. Because the time τ for which the packet is
kept in the watch buffer is relatively small being
determined by the MAC layer delay for acquiring the
channel, a watch buffer size of 4 entries is sufficient
(for τ≤10). If we also monitor the REQ, then each
node is involved in monitoring f+(NREP/N)f packets.
This requires each node to monitor 4 packets every 16
time units. Again a 4-entry watch buffer is sufficient.
Each entry in the watch buffer is 14 bytes − 2 bytes
each for the immediate source, the immediate
destination, and the original source, and 8 bytes for
the sequence number of the REP (REQ).

Computation and bandwidth overhead: Each
monitored REP (REQ) requires one lookup for the
current source and destination in the neighbor list,
adding an entry to the watch buffer (incoming) or
deleting an entry from the watch buffer (outgoing).
Since the size of the watch buffer and the neighbor list
structure are relatively small, the computation time
required for these operations is negligible. For
example, a lookup in a 100 entry buffer takes the
MICA mote with an Atmega128 4 MHZ processor,
about 2µ seconds. The bandwidth overhead is incurred
after deployment of a node for neighbor discovery and
in the case of wormhole detection for informing the
neighbors of the detected node. This is therefore a
negligible fraction of the total bandwidth over the
lifetime of the network.

10

7. Simulation Results
We use the ns-2 simulator [34] to simulate a data
exchange protocol over LSR, individually without
DICAS (the baseline) and with DICAS. We distribute
the nodes randomly over a square area with a fixed
average node density. Thus, the length of the square
varies (80m to 204 m) with the number of nodes (20-
150). We first simulate the wormhole attack using
out-of-band direct channels between the colluding
nodes. After a wormhole is established, the malicious
nodes at each end of the wormhole drop all the
packets forwarded to them.
Each node acts as a source and generates data using an
exponential random distribution with inter-arrival rate
of µ. The destination is chosen at random and is
changed using an exponential random distribution
with rate ξ. A route is evicted if unused for TOutRoute
time. The experiment parameters are presented in
Table 2. The results are obtained by averaging over 30
runs. For each run, the malicious nodes are chosen at
random so that they are more than 2 hops away from
each other.

Table 2: Input parameter values
Parameter Value Par Value
Tx Range (r) 30 m γ 2-8
NB 8 µ 100 ms
TOutRoute 50 sec M 0-4
τ, Nr 0.05 s, 5 β 5
Channel BW 40 kbps ξ 5m s

100-node scenario

0

1000

2000

3000

0 50 100 200 300 400 500 600

Simulation time

B
as

el
in

e

0

40

80

120

160

D
IC

A
S

4-Baseline
2-Baseline
4-DICAS
2-DICAS

Figure 7: Cumulative number of dropped packets

Figure 7 shows the number of packets dropped as a
function of simulation time for the 100-node setup
with 2 and 4 colluding nodes. The attack is started 50
sec after the start of the simulation. Since the numbers
are vastly different in the baseline and with Dicas,
they are shown on separate Y-axes. In the baseline
case, since wormholes are not detected and isolated,
the cumulative number of packets dropped continues
to increase steadily with time. But in Dicas, as
wormholes are identified and isolated permanently,
the cumulative number stabilizes. Note that the

cumulative number of packets dropped grows for
some time even after the wormhole is locally isolated
at 75 sec, due to the cached routes that contain the
wormhole and continue to be used till route timeout
occurs.
Figure 8 shows a snapshot, at simulation time of 2000
sec, of the fraction of the total number of packets
dropped to the total number of packets sent, and the
fraction of the total number of routes that involve
wormholes to the total number of routes established.
This is shown for 0-4 compromised nodes for the
baseline and with DICAS. With 0 or 1 compromised
node, there is no adverse effect on normal traffic since
no wormhole is created. The relationship between the
number of dropped packets and the number of
malicious routes is not linear. This is because the route
established through the wormhole is more heavily
used by data sources due to the aggressive nature of
the malicious nodes at the ends of the wormhole. If we
track these output parameters over time, with DICAS,
they would tend to zero as no more malicious routes
are established or packets dropped, while with
baseline case they would reach a steady state as a
fixed percentage of traffic continues to be affected by
the undetected wormholes.

100-node scenario

0.00

0.20

0.40

0.60

0.80

0 1 2 3 4
#of compromised nodes

ba
se

lin
e

0.0000
0.0020
0.0040
0.0060
0.0080
0.0100
0.0120

D
IC

A
S

fr. dropp-base
fr. mal routes-base
fr. dropp-DICAS
fr. mal route-DICAS

Figure 8: Fraction of dropped packets & malicious

routes
Figure 9 bears out the analytical result for the
detection probability as γ is varied with NB = 15 and
M = 2. As γ increases, the detection probability goes
down due to the need for alarm reporting by a larger
number of guards, in the presence of collisions. Also
the isolation latency goes up, though it is very small
(less than 30 s) even at the right side of the plot.

50-node scenario

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

Detection confidence index

P(
D

et
ec

tio
n)

0

6

12

18

24

30

Is
ol

at
io

n
la

te
nc

y

Sim P(detection)
Ana P(detection)
sim isolation latency

Figure 9: Detection probability and isolation latency

11

Next, we simulate the combined rushing and Sybil
attacks over a network of 250 nodes deployed in a 300
m× 300 m field. We compare the average number of
node-disjoint paths discovered per route request of an
ideal search algorithm, AODVM [32], and LSR with
DICAS. In the ideal search, the topology of the entire
network is known to the source which uses shortest
path first search algorithm. AODVM creates node-
disjoint routes by having every node overhear
neighboring nodes’ REP packets and deciding to
forward its own REP such that a neighbor is not
included in two routes for a given source-destination
pair. However, it does not consider any control
attacks.
Figure 10 shows the average number of node-disjoint
paths as a function of the number of hops in the
shortest path between two nodes. The figure shows
that, in a failure free environment, LSR and AODVM
performs almost identically. In a malicious scenario,
each of 10 malicious nodes launches rushing and Sybil
attacks. When a malicious node receives a REQ
packet, it rushes to broadcast Nr copies of the REQ,
each with a different fake identity. Figure 10 shows
that LSR with DICAS is robust to the attack (LSR and
LSR_mal plots overlap), while the average number of
node-disjoint paths in AODVM is reduced by 22%
(for distant source-destination pairs) to 32% (for
closer pairs). Note that as the length of the path
increases, the effect of the attacks in AODVM
decreases. This is because even though the multiple
routes appear to be disjoint at the attacker they may
converge at some other intermediate node. These are
then discarded by the source thereby ultimately foiling
the attacker’s goal.

1

2

3

4

5

2 3 4 5 6 7 8 9 10
hops in shortest path

A
vg

. #
 n

od
e-

di
sj

oi
n

pa
th

s

Ideal
AODVM
LSR
AODVM_mal
LSR_mal

Figure 10: Average number of node-disjoint paths in

ideal case, AODVM, and LSR

8. Conclusion
We have presented a distributed protocol, called
DICAS, for detection, diagnosis, and isolation of nodes
launching control attacks, such as, wormhole, Sybil,
rushing, sinkhole, and replay attacks. DICAS uses local
monitoring to detect control traffic misbehavior, and
local response to diagnose and isolate the suspect
nodes. We analyze the security guarantees of DICAS

and show its ability to handle control attacks through a
representative set of these attacks. We present a
coverage analysis and find the probability of false
alarm and missed detection. The overhead analysis
shows that DICAS is a good choice for securing
resource constrained sensor networks. On top of
DICAS, we build a secure lightweight routing protocol,
called LSR, which also supports node-disjoint path
discovery.
We note that although designed for static networks,
DICAS can potentially be extended to mobile
networks. In mobile networks the neighborhood
changes and therefore the neighbor discovery is
required to be executed during the lifetime of the
network. Therefore, the neighbor discovery protocol
presented here cannot be secure for mobile networks.
Note that incremental deployment of nodes is
equivalent to a node moving to the new position and
the situation can be handled similarly. Two existing
protocols can be used to enable secure neighbor
discovery in mobile wireless networks: (i) directional-
antenna-based neighbor detection [21], which uses
the knowledge of the direction of a received packet
and the direction of the corresponding transmission
and (ii) propagation delay based neighbor detection
[22], which uses packet delay of certain control
packets to measure the distance to a neighbor. These
protocols, however, are not well-suited to sensor
networks because of the non-negligible
communication overhead and the expensive hardware.
As future work we are investigating secure neighbor
discovery protocols appropriate for mobile networks.

9. References
[1] L. Zhou and Z. Haas, “Securing ad hoc networks,”

IEEE Network Magazine, vol. 13, no. 6,
November/December 1999.

[2] M. G. Zapata, “Secure ad-hoc on-demand distance
vector (SAODV) routing,” IETF MANET Mailing
List, October 8, 2001.

[3] Y.-C. Hu, D. B. Johnson, and A. Perrig, “SEAD:
Secure efficient distance vector routing for mobile
wireless ad hoc networks,” WMCSA 2002, pp. 3-13.

[4] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Ariadne: A
Secure On-Demand Routing Protocol for Ad Hoc
Networks,” MobiCom 02, pp. 12-23.

[5] P. Papadimitratos and Z. Haas, “Secure routing for
mobile ad hoc networks,” SCS Communication
Networks and Distributed Systems Modeling and
Simulation Conference (CNDS 2002), January 2002.

[6] C. Intanagonwiwat, R. Govindan, and D. Estrin,
“Directed diffusion: A scalable and robust
communication paradigm for sensor networks,”
MobiCom 2000.

12

[7] Y. Xu, J. Heidemann, and D. Estrin, “Geography-
informed energy conservation for ad hoc routing,”
Mobicom, 2001.

[8] B. Karp and H. T. Kung, “GPSR: greedy perimeter
stateless routing for wireless networks,” MobiCom
2000, pp. 243-254.

[9] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin,
“Highly-resilient, energy-efficient multipath routing
in wireless sensor networks,” Mobile Computing and
Communications Review, vol. 4, no. 5, October 2001.

[10] F. Ye, A. Chen, S. Lu, and L. Zhang, “A scalable
solution to minimum cost forwarding in large sensor
networks,” ICCCN 2001, pp. 304-309.

[11] W. R. Heinzelman, A. Chandrakasan, and H.
Balakrishnan, “Energy efficient communication
protocol for wireless micro sensor networks,”
HICSS 2000, pp. 3005-3014.

[12] D. Braginsky and D. Estrin, “Rumor routing
algorithm for sensor networks,” WSNA 2002.

[13] J. Newsome, E. Shi, D. Song, and A. Perrig, “The
Sybil attack in Sensor Networks: Analysis &
Defenses,” IPSN 2004, pp. 259-268.

[14] K. Ishida, Y. Kakuda, and T. Kikuno, “A routing
protocol for finding two node-disjoint paths in
computer networks,” ICNP 1992, pp. 340 347.

[15] Y. Xu, J. Heidemann, and D. Estrin, “Geography-
informed energy conservation for ad hoc routing,”
MobiCom, 2001.

[16] A. Perrig, R. Canetti, D. Song, and J. D. Tygar,
“Efficient and secure source authentication for
multicast,” NDSS 2001.

[17] D. Johnson, D. Maltz, and J. Broch, “The Dynamic
Source Routing Protocol for Multihop Wireless Ad
Hoc Networks,” Ad Hoc Networking, C. Perkins, Ed.
Addison-Wesley, 2001.

[18] C. Karlof and D. Wagner, “Secure Routing in Sensor
Networks: Attacks and Countermeasures,” SNPA
2003.

[19] S. Marti, T. J. Giuli, K. Lai, and M. Baker,
“Mitigating routing misbehavior in mobile ad hoc
networks,” MobiCom 2000.

[20] Y. C. Hu, A. Perrig, and D.B. Johnson, “Packet
leashes: a defense against wormhole attacks in
wireless networks,” IEEE InfoCom 2003.

[21] L. Hu and D. Evans, “Using Directional Antennas to
Prevent Wormhole attacks,” NDSS 2004.

[22] Y. C. Hu, A. Perrig, and D. Johnson, “Rushing
Attacks and Defense in Wireless Ad Hoc Network
Routing Protocols,” WiSe 2003.

[23] K. Sanzgiri, B. Dahill, B. N. Levine, C. Shields, and
E. Belding-Royer, “A Secure Routing Protocol for
Ad hoc Networks,” ICNP 02.

[24] S. Lindsey and C. Raghavendra, “PEGASIS: power-
efficient gathering in sensor information systems,”
IEEE Aerospace Conference, 2002.

[25] A. Perrig, R. Szewczyk, J.D. Tygar, V. Wen, and
D.E. Culler, “SPINS: Security Protocols for Sensor
Networks,” Wireless Networks, vol. 8, pp. 521-534,
2002.

[26] D. Liu and P Ning, “Establishing Pair-wise Keys in
Distributed Sensor Networks,” CCS 2003.

[27] F. Zhao and L. Guibas (Eds.), “A Performance
Evaluation of Intrusion-Tolerant Routing in Wireless
Sensor Networks,” IPSN 2003, pp. 349-364, 2003.

[28] C. E. Perkins and E. M. Royer, “Ad-Hoc On-
Demand Distance Vector Routing,” in Proceedings
of the 2nd IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA’99), pp. 90-100,
February 1990.

[29] P. Papadimitratos and Z.J. Haas, “Secure Message
Transmission in Mobile Ad Hoc Networks,” WiSe
2003.

[30] S.J. Lee and M. Gerla, “Split Multipath Routing with
Maximally Disjoint Paths in Ad Hoc Networks,”
ICC 2001, pp. 3201-3205.

[31] A. Nasipuri, R. Castaneda, and S.R. Das,
“Performance of Multipath Routing for On-demand
protocols in Mobile Ad Hoc Networks,” ACM
Mobile Networks and Applications (MONET), 2001,
6(4):339-349.

[32] Z. Ye, S. V. Krishnamurthy, S. K. Tripathi, “A
Framework for Reliable Routing in Mobile Ad Hoc
Networks,” IEEE InfoCom 2003.

[33] G. Bianchi, “Performance analysis of the IEEE
802.11 Distributed Coordination Function,” IEEE
Journal on Selected Areas in Communications,
March 2000, 18(3):535-547.

[34] “The Network Simulator ns-2,” At:
www.isi.edu/nsnam/ns/

[35] A. A. Pirzada and C. McDonald, “Establishing Trust
In Pure Ad-hoc Networks,” Proceedings of 27th
Australasian Computer Science Conference
(ACSC'04), pp. 47-54.

[36] S. Buchegger, J.-Y. Le Boudec, “Performance
Analysis of the CONFIDANT Protocol: Cooperation
Of Nodes - Fairness In Distributed Ad-hoc
NeTworks,” in MobiHoc 2002.

[37] Y. Huang and W. Lee, “A Cooperative Intrusion
Detection System for Ad Hoc Networks,” SASN
2003.

[38] B. Schneier, “Applied Cryptography,” 2nd edition,
Prentice Hall, 1996.

[39] F. Ye, H. Luo, S. Lu, and L. Zhang, “Statistical En-
route Detection and Filtering of Injected False Data
in Sensor Networks,” InfoCom 2004.

[40] M. Krasniewski, P. Varadharajan, B. Rabeler, S.
Bagchi, Y. C. Hu, “Tibfit: Trust Index Based Fault
Tolerance for Arbitrary Data Faults in Sensor
Networks,” To appear in the International
Conference on Dependable Systems and Networks
(DSN) 2005.

