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ABSTRACT 

 
 
 

Krasniewski, Mark, D.  M.S.E.C.E..  Purdue University, August 2005.  Reliable 
Middleware for Sensor Networks.  Major Professor:  Saurabh Bagchi. 

 
 
 
As sensor networks operate over long periods of time deployed in inaccessible 

places, each sensor’s requirements, location, and reliability may change as they each are 

subjected to unpredictable influences, both external and internal to the network. As 

access to these sensors will usually be limited, it is important that when sensor 

requirements change that there is a reliable, efficient, and fast means of propagating code 

updates over the network. This work provides a protocol for quickly disseminating data 

over a sensor network with high reliability and intelligent power management. It achieves 

energy savings through forwarding of local information on the network scale, providing 

nodes an estimation of distance from code updates. This energy saving mechanism is 

further enhanced through directional antenna hardware, which accurately estimates node 

locations given a few nodes already aware of their locations. This hardware scheme 

shows much greater accuracy than triangulation with omni-directional antennas. 

Coupled with reprogramming the network and locating sensor nodes is the 

challenge of locating and isolating nodes within the network that function improperly 

despite software-level updates. To solve this problem this work implements a trust-based 

protocol that aggregates individual sensor decisions and performance over time to mask 

out nodes of questionable reliability. Nodes that show continued poor performance are 

either ignored or removed from the system; the locations of these faulty nodes are easily 
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obtained through directional hardware localization. This scheme proves robust even in 

cases where half of the network is functioning unreliably.  
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1. INTRODUCTION 

 

Sensor networks are increasingly becoming a core area of research with potential 

implementation benefits in the future that have just begun to be realized. In particular, the 

Berkeley Mote architecture provides a physical real-world implementation of viable 

sensor networks using commercial off the shelf (COTS) components. These motes 

already provide interfaces that easily allow new task-specific sensors to be attached while 

still using the common mote radio module. It is important that once these motes are 

deployed in a system that they be able to function reliably over time and meet the varying 

challenges associated with their environment. This work explores various challenges 

associated with deploying these motes in different environments and proposes several 

solutions to these challenges, which are verified through both simulation and hardware 

implementation. In particular, this work explores in situ reprogramming of a sensor 

network, mote localization through directional antennas, and protocols to mask sensors 

that are faulty or malicious through a time-based trust index.  

 

1.1 Organization of the Thesis 

 

Chapters 2 and 3 discuss the background and related work on network 

reprogramming and localization in sensor networks. Chapter 4 provides a detailed 

description of Freshet, a protocol to efficiently and reliably disseminate code throughout 

a sensor network. Chapter 4 also includes implementation results from Freshet. Chapter 5 

discusses localization in greater detail, and presents a solution to localization using 

directional antennas. Chapter 6 presents TIBFIT, a protocol for trust-based fault tolerance. 

Chapter 6 discusses the motivation for TIBFIT, its applications, and simulation results. 
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Chapter 7 discusses the results of all of these applications and describes possible future 

research.
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2. INTRODUCTION TO NETWORK REPROGRAMMING 

 

In this chapter, we provide more detail on the motivation for sensor network 

reprogramming. In particular, we are interested in the challenges presented in 

reprogramming a network and wish to classify these challenges to present a viable means 

of tackling this problem. We also provide a background in the current state of the art in 

sensor network reprogramming.  

 

2.1 The Basics of Sensor Network Reprogramming 

 

Large scale sensor networks may be deployed for long periods of time during 

which the requirements from the network or the environment in which the nodes are 

deployed may change. The change may necessitate uploading a new version of existing 

code or retasking the existing code with different sets of parameters. We will use the term 

code upload for referring to both these forms. A primary requirement is that the 

reprogramming be done while the nodes are in situ, embedded in their sensing 

environment. This has spurred interest in remote multihop reprogramming protocols over 

the wireless link. For such reprogramming, it is essential that the code update be 100% 

reliable and reach all the nodes that it is destined for. The code upload should be fast 

since the network’s functionality is likely degraded, if not reduced to zero, during the 

period when the nodes are being reprogrammed. It is also important to minimize the 

resource cost of the reprogramming and querying for availability of new code. It is 

conceivable that the process of code upload will be infrequent for many deployments and 

therefore its resource consumption need not be optimized. However, as has been pointed 

out in [2], while the cost of transmitting code is high, the cost of periodically transmitting 

meta-data about the code can also be high. Applications such as Tiny Diffusion [3], Maté 
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[4], and TinyDB [5], use concise, high-level virtual code representations to give 

programs which are 20-400 bytes long, a handful of packets. The sensor network 

environment has inherent unreliability in the network links due to interference, fading, 

and mobility and unreliability in the nodes which may have transient failures. The code 

dissemination therefore must be a continuous rather than a one shot process and therefore 

resource consumption, mainly bandwidth and communication energy, becomes an 

important issue. This resource cost which is incurred during the quiescent state or steady 

state of the network must be optimized since that is the dominant phase in the network 

lifetime. This may be done at the cost of less responsiveness to newly joining nodes. 

The underlying model for the class of network reprogramming protocols is that 

the binary image is to be transmitted to a set of nodes, called the interested nodes, in the 

network. The images have monotonically increasing version numbers. The image is 

segmented into pages (typical size 1104 Bytes) and each page is sent using multiple 

packets (typical size 36 Bytes). To start off, there are only a few sources of the binary 

image, e.g., base stations located at ends of the sensor field. The code progressively 

ripples through the network with the exchange happening between neighbors through a 

three way handshake of advertisement, request, and actual code transfer. The 

advertisement and the request will collectively be referred to as meta-data. The meta-data 

is typically much smaller in size than the data (the code) and is used to suppress 

redundant data transmission.  

 

2.2 Related Work in Sensor Network Reprogramming 

 

The field of network reprogramming in the large scale wired distributed systems 

has focused on the problem of reliability and efficient utilization of bandwidth. For 

example, [9] provides methods for efficiently computing increments to the update. They 

have not dealt with resource constraints on the nodes themselves. Due to the wired 

environment, the solutions do not have the ability to leverage overhearing neighbor 

communication.  



5 

 

In a large scale wireless network, data dissemination through unregulated 

flooding using broadcast by each node is known to cause a broadcast storm [10], thereby 

limiting the scalability of such a solution. Hence, researchers have proposed randomized 

tree based multicast protocols with the source at the root of the tree, receivers at the 

leaves, and intermediate nodes responsible for local recovery at the intervening levels of 

the tree. Scalable Reliable Multicast (SRM) [11] is an important protocol in this class. In 

SRM, when a member detects a message loss, it initiates a recovery procedure by 

multicasting a retransmission request in the local region. Any member having the desired 

message in its cache responds by multicasting the message with a back off mechanism 

being used to prevent redundant requests and replies. Further scalability in unreliable 

environments, such as ad-hoc networks, can be achieved by epidemic multicast protocols 

based on each node gossiping the message it received to a subset of neighbors [12]. This 

class of protocols gives probabilistic guarantee for the update to reach all the group 

members. The probability is monotonically increasing with the fanout of each node (the 

number of neighbors to gossip to) and the quiescence threshold (the time after which a 

node will stop gossiping to its neighbors). By increasing the quiescence threshold, the 

reliability can be made to approach 1, which is the basic premise behind all the epidemic 

based code update protocols in sensor networks.  

The push-pull method for data dissemination through the three way handshake of 

advertisement-request-code has been used previously in sensor networks with sensed data 

taking the place of code. Protocols such as SPIN [13] and SPMS [14] rely on the 

advertisement and the request packets being much smaller than the data packets and the 

redundancy in the network deployments which make several nodes disinterested in any 

given advertisement. However, in the data dissemination protocols, there is only 

suppression of the requests and the data sizes are much smaller than the entire binary 

code images. Freshet borrows ideas from hop-by-hop NACK based error recovery 

protocols proposed for wireless sensor networks (WSNs), such as PSFQ [15], Garuda 

[16], and RMST [17]. This class of protocols performs local recovery typically within 

one hop using selective NACKs.  
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There are four major sensor network reprogramming approaches that have 

appeared in the literature. TinyOS [18] includes limited support for network 

programming via XNP [19]. However, XNP only operates over a single hop and does not 

provide incremental updates of the code image. The Multihop Over the Air Programming 

(MOAP) protocol extends this to operate over multiple hops [6]. MOAP introduced 

several concepts which are used by later protocols, namely, local recovery using unicast 

NACKs and broadcast of the code, and sliding window based protocol for receiving parts 

of the code image. However, MOAP does not leverage the pipelining effect with 

segments of the code image. The two protocols that are substantially more sophisticated 

than the rest are Deluge and MNP. Both use the three way handshake for locally 

propagating the code. Deluge is a protocol with a similar design approach to ours [1]. It 

segments the binary code image into pages and pipelines the different pages across the 

network. It builds on top of Trickle [2], a protocol for a node to determine when to 

propagate code in a one hop case. Deluge leverages overheard advertisements or requests 

to decide when to create a new advertisement or send a new code update.  MNP is a more 

recent protocol [7] whose design goal is to choose a local source of the code which can 

satisfy the maximum number of nodes. The authors provide a detailed algorithm for 

sender selection using the number of requests seen by a sender as the key parameter for 

the selection. They provide energy savings by turning off the radio of all the nodes that 

are not selected as the sender.  
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3. BACKGROUND ON LOCALIZATION 
 

In this chapter we discuss background information and detail on sensor network 

localization. For localization we focus on different techniques and means of localizing 

sensor nodes depending on both the number of nodes with already determined locations 

and the types of antennas that the nodes use. 

 

3.1 Introduction to Localization 

 

Sensor networks provide a promising infrastructure for gathering information 

about parameters of the physical world. Tiny wireless nodes equipped with different 

kinds of sensors can be distributed over a field and can collect and transmit the data to a 

data aggregation point, such as a cluster head or a base station. In order to interpret the 

sensed data, it is often necessary to know the location of the node which is the source of 

the data. In addition, position information is valuable for optimizing the routing process, 

as shown in many position aware routing protocols [23][24]. In general, these strategies 

seek to avoid wasting valuable bandwidth by minimizing the control traffic for route 

determination. Most position-based routing schemes also remove the need to maintain 

routing tables at the nodes. Also, the node’s location may change. Mobile sensor 

networks are becoming an important class in which the nodes may move in a controlled 

manner or through passive mobility.  

It is possible for a node to have up-to-date information of its location if it contains 

location determination hardware, such as a GPS receiver, mounted on it. However, from 

an economic standpoint, this would violate the requirement for the deployments to be 

cost-effective. The economic considerations have been driving the cost of the individual 

sensor nodes down to the point where sub-$1 nodes are beginning to look achievable 
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[26]. GPS hardware would increase the price of sensor networks substantially. 

Commercially available GPS receivers come in a wide price range of $10-$10,000. The 

receivers at the lowest end give poor accuracy, with inaccuracies of tens of meters 

possible [27]. Receivers that give sub-meter accuracy, which may be needed for many 

sensor applications, are more than $5,000 in price. The hardware also adds to the weight 

of the unit with typical receivers ranging upwards of 5 oz. Finally, the battery lives’ of 

the receivers are much shorter than that of the sensor nodes themselves, e.g., tens of 

hours for the typical GPS receivers compared to multiple months for a representative 

sensor node, the Berkeley mote. Thus, the combined unit of the sensor node and the GPS 

receiver will have to be replaced far too frequently for it to be practicable for a large class 

of deployments. More generally, the received signal strength for a GPS can be as low as -

130 dBm, orders of magnitudes less than the strength of traditionally received signals in 

terrestrial applications and lower than the sensitivity of receivers on typical sensor nodes 

(-100 dBm for Berkeley motes). Therefore, expensive receivers would be needed. Also, 

since relatively unobstructed views are required for GPS localization, in many sensor 

network deployments, the GPS measurements would need to be supplemented with 

ranging data from the local network.  

Though it may not be feasible for all the nodes to be equipped with special 

purpose location determination hardware, it may be possible to equip a small fraction of 

the nodes in the network with such hardware. Such nodes, called “anchor nodes”, can act 

as reference points for location information and other sensor nodes, called “target nodes”, 

can use information from anchor nodes to estimate their location. In the most commonly 

used technique called lateration the distance measurements are required from (k+1) 

neighbors in a k dimensional plane. The example of lateration in a 2-dimensional plane is 

called triangulation in which the sensor node needs to know the distances from three 

neighboring nodes. Several approaches exist for estimating distance from a neighbor, 

e.g., signal attenuation and time of flight. In signal attenuation, the power of received 

signal is measured by the sensor node and knowing the signal strength emitted by the 

source node and the attenuation relationship with distance (such as, 1/r2 where r is the 

separation distance), the relative distance can be calculated. Typically for indoor 
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environments or large distances, the attenuation relationship becomes complex and 

difficult to represent concisely due to multi-path effects and reflection of the radio waves. 

Other techniques for measuring relative distances, such as time of flight ([34],[28]), are 

less useful in our environment since the radio signal travels at the speed of light and the 

distances traveled for signals by the sensor nodes are relatively short. 

Directional antennas provide important benefits in sensor networks. Directionality 

can be used as a form of diversity built into the sensor node, which helps in coping with 

the variability in the communication channel and reduce the link error rate. The 

directionality provides increased transmission ranges compared to omni-directional 

antennas by focusing the transmission energy in the desired direction. They can also 

increase the security of communication by restricting the set of neighbors that can 

overhear a communication [37]. Directionality in expensive communication systems is 

commonly achieved through the creation of a phased array. However, this is extremely 

expensive and is used predominantly only in high cost military applications. In addition, 

it is required that the elements of the phased array be an appreciable fraction of a 

wavelength apart. This would not be possible in electrically small form factor sensor 

nodes. This precludes the use of a traditional array to provide the desired beam scanning. 

However limited directionality can be cheaply integrated into a small form factor sensor 

node. In this investigation, reduced size patch antennas have been developed using 

standard patch arrangements with high dielectric constant antennas. Multiple directional 

antennas are utilized and a simple switching network enables us to switch between 

polarization states ([29],[30]) and the direction of radiation.  

The solution to location determination with omni directional antennas is not 

applicable to directional antennas since the radiation patterns are different and the 

received power is dependant on angle as well as distance. In this paper, we use a model 

for sensor nodes equipped with four directional antennas. Directionality provides relative 

angle measurements between anchor nodes and target nodes with unknown positions and 

has been argued to improve localization estimates [52].   

 



10 

 

3.2 Related Work on Localization 

 

Triangulation is a common method for locating objects using other objects which 

do know their position. This is an applicable model for our environment where the 

positions of some sensor nodes, possibly equipped with GPS receivers, are known. A nice 

overview of triangulation based location determination techniques is to be found in [32] 

and [33]. The triangulation techniques can be sub-divided into two categories – lateration, 

which uses distance measurements, and angulation, which uses angle measurements 

along with distance.  

If individual distance measurements are completely accurate, lateration requires 

(n+1) neighbors with knowledge of location to pinpoint the target node in an n 

dimensional plane. An example of lateration in two dimensional space is shown in Fig. 

3.1(a) and is called triangulation. Example use is in the Active Bat Location System [34].  

Different approaches exist for estimating the distance from a neighbor, for 

example time of flight, attenuation of signal strength, and directionality ([33],[35]). 

Measuring signal strength relies on the property that radio waves attenuate in their signal 

strength with increasing distance between the transmitter and the receiver. The receiver 

can calculate the distance if it knows the transmission power and the attenuation model 

[36].   

d2d1

d3

θ1 θ2

d1

(a) (b)

Anchor node Target node

d2d1

d3

θ1 θ2

d1

(a) (b)

Anchor node Target node  
Fig. 3.1 Location determination with neighboring anchor nodes. Lateration is in (a) and 

angulation in (b) 
 

The attenuation is often modeled as 1/r2, where r is a relatively short distance 

outdoors. Indoors, reflection, and multi-path fading make the model and hence, the 
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location estimate, inaccurate. The third way of estimating location is to compute the 

angle of each reference point with respect to the sensing node in some reference frame. 

The position of the mobile node can then be computed using angulation.  

In practice, the individual distance measurements are inaccurate because the exact 

relation between the measurement of physical properties, such as signal strength, and the 

inter-node distance is not known. Hence, information from greater than (n+1) nodes is 

needed for pinpointing a target node in an n dimensional plane. The work in [38] presents 

an approach for minimizing the aggregate error by considering measurements from a 

redundant number of anchor nodes. A redundant set of equations is linearized and solved 

to minimize the least square error.  

In [39], Savarese et al. propose an iterative protocol that diffuses the location 

information gathered from nearby anchor nodes through the network. Using this 

technique, Bagchi et al. [40] show the relationship between the number of anchor nodes 

and the errors in the location determination, given a certain error in one-hop neighbor 

distance estimation.  

Angulation is an alternate method to lateration for computing location based on 

neighbor information, where angles are used in addition to distance. A schematic of the 

use of angulation is shown in Fig. 3.1(b). Directional antennas are needed for the angle 

measurements. Previous work has used phased antenna arrays to use the angulation 

technique [32]. Sukhatme et al. show that using range and approximate sector 

information can improve localization accuracy at reasonable node densities [52]. 

Niculescu discusses using the angle of arrival (AOA) of the signal and node orientation 

adjustment to find node locations [49]. 

There is a class of location determination techniques that do not rely on any 

property of the received signal. Instead, they rely on the connectivity measure, i.e., if a 

node a is able to hear from another node β, then a is connected to β and its location is 

constrained to be within the transmission range of β ([35],[41],[42]). This class of 

techniques based on connectivity measure provides location estimates which are quite 

coarse-grained. The granularity becomes coarser with larger transmission ranges of the 

reference nodes. An overhead of beacon or hello messages is also incurred and the 
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convergence times of the algorithms are often sensitive to the frequency of these 

messages [42]. Also, some of the protocols ([41],[42]) require centralized processing 

which limits their scalability. 

Römer proposes a technique geared to dust-sized sensor nodes which only have 

passive optical communication capability and do not have active RF communication 

capability. It relies on a powerful base station that sends a photo beam and rotates. Each 

sensor node has a photo beam detector and a clock and marks how long it sees the beam 

and the period of rotation and determines its location based on this. The method is only 

applicable if single hop communication is possible between all nodes and the base 

station. Also, as has been demonstrated in [38] and appears well accepted, distance 

measurements over large distances are very inaccurate.   
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4. FRESHET – ENERGY-EFFICIENT NETWORK 
REPROGRAMMING 

 

In this chapter we present a protocol called Freshet1, which fits in the genre of 

network reprogramming protocols introduced in Chapter 2. Each node in Freshet operates 

in three phases. The first phase is the blitzkrieg phase, which occurs only within the first 

few moments once new code is injected into the network. The second phase is the code 

distribution phase where the code segments are pipelined and disseminated through a 

three way handshake over individual hops. The final phase is the quiescence phase when 

no new code is being injected into the network. To motivate this work, this protocol 

makes several important realizations within the sensor network to ensure efficient 

delivery of code updates throughout the network. 

 The first realization of this protocol is that a brute force flooding method for 

network reprogramming is not feasible due to the enormous bandwidth overheads. Also, 

a node may need to be reintegrated into the network after the code upload process is 

complete and therefore a pure push based mechanism will not work. It is crucial to 

suppress meta-data and data wherever possible. The suppression utilizes the shared nature 

of the wireless medium and the capacity of a node to overhear its neighbors’ 

communication. For example, from the point of view of a node A in the network, if it has 

version v and a neighbor node B requests for a page of version v′ (< v) from a node C, 

then A can proactively send the more recent code to B. This will cause a suppression of 

the transmission from C to B if C and A are neighbors. Next, we use pipelining of the 

different pages in a binary image to speed up the process of code upload. Each interested 

node may initiate the process of forwarding the code in units of a page as it receives the 

                                                      

1 OED: Freshet – (i) A small stream of fresh water (Obs. exc. poet.); (ii) A stream or rush of fresh water 
flowing into the sea; (iii) A flood or overflowing of a river caused by heavy rains or melted snow. Used by 
Bowen in Virgil as “A cave … sweet fountain freshets within it.” 
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pages and aggregates them to create its own complete binary image. This is in contrast to 

the approach in Mote Over the Air Programming (MOAP) [6] where the forwarding 

happens only when the entire code has been assembled at a node. Since a binary image 

may consist of many pages and the wireless links are failure prone, the MOAP approach 

may lead to excessive retransmissions and therefore bandwidth overheads. The 

segmentation of the image into pages is also useful when multiple sources are present. 

Freshet uses interleaving of the pages in the image from different sources to speed up the 

code upload to the interested nodes. The key insight to enable this is to allow nodes to 

receive pages out of sequence. This leads to somewhat more state maintenance at the 

node but substantially speeds up the process.  

A fundamental insight used in Freshet is that nodes can be put to sleep by making 

the advertisement-request-data handshake happen only at certain points in time. When 

new code is introduced into the network, Freshet has an initial phase, the blitzkrieg phase, 

when information about the code propagates through the network rapidly along with 

some topology information. The topology information is used by each node to estimate 

when the code will arrive in its vicinity and the three way handshake will be initiated – 

the distribution phase. Each node can go to sleep in between the blitzkrieg phase and the 

distribution phase thereby saving energy. The potential for energy savings grows with the 

size of the network. Freshet also optimizes the energy consumption by exponentially 

reducing the meta-data rate during conditions of stability in the network when no new 

code is being introduced, called the quiescent phase. The possibility of a node missing 

the code advertisement is made vanishingly small by redundant transmissions of the 

advertisement during the blitzkrieg and the distribution phases.  

In order to demonstrate the behavior of Freshet, we build simulation models in 

TOSSIM, which is a discrete event network simulator that compiles directly from 

unmodified TinyOS application code. TOSSIM captures the behavior of the entire 

TinyOS network stack in a detailed manner and is used to get around the problem of 

scaling of our actual sensor network test bed.  
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It must be noted that in some of the high level goals and design approach, Freshet 

has similarities with Deluge [1] and MNP [7]. However, there are substantial differences 

in the protocol design which lead Freshet to make the following novel contributions. 

1. Freshet shows that combining local and network topology information 

provides energy benefits while preserving scalability, the advantage of using 

local information. 

2. Freshet addresses the problem of code upload from multiple original sources. It 

shows the benefit of using interleaved transmission of pages to speed up the 

code upload process in the multiple source situation. 

3. Freshet shows a method for energy optimization in the quiescent phase while 

preserving the reliability guarantee of other protocols.  

Freshet optimizes the energy consumption more aggressively through turning off 

the nodes between the blitzkrieg phase and the distribution phase using limited topology 

information. It also trades off the responsiveness of the protocol to newly joining nodes 

for saving further energy during the steady state. It also uses out of order paging to speed 

up the code update with multiple sources of the code. 

 

4.1 Design of Freshet 

 

4.1.1 Blitzkrieg phase 

 

In the blitzkrieg phase, Freshet propagates information about the nature of the 

new code to all nodes in the network. This is accomplished through a fourth type of 

message, a warning message, different from the advertisement, request, and broadcast 

data messages. This message contains information about the new code in the form of the 

version number, the number of pages, and how far the sending node is from the data 

source through a hop count metric. The blitzkrieg phase enables energy optimization by 

each node that can use the hop count information to determine when it will enter the 

distribution phase.  
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The hop count is incremented by each intermediate node routing the warning 

message. Every time a node hears a unique warning message with code information more 

recent than its own, it starts a short, randomized timer. Once this timer fires, and the node 

has not heard more than w warning messages with the same code version as its own, then 

the node sends out the warning message. The node sends the exact same message as the 

one it first received, except that it increments the hop count from the original message. 

This information therefore gives the receiver an estimate of how many nodes have seen 

and propagated the warning message. Based on empirical results of time to propagate 

code over one hop, Freshet estimates when the hop count is sufficiently large that energy 

savings are possible by stopping advertising. The node then starts a timer for how long to 

cease advertisements. Given that the sleeping will happen for source to node distance 

beyond h hops, a node ha hops away sleeps for time toff*(ha-(h-1)), where ha > h. This 

choice is dictated by the result from Deluge that the time to propagate a page is linear in 

the number of hops for a fixed object size. Empirically a threshold hop count of 4 is 

found to be reasonable. However, if further accurate information about the topology were 

available, it may be possible for each node to estimate the timeout more accurately. But 

we feel this would violate the design paradigm of using local information that has proved 

so valuable in sensor network design. 

The warning messages are two bytes smaller than the original advertisement 

messages. They use essentially the same information as the advertisement messages 

except that they do not need to know how many pages are complete, since it is assumed 

that the new code is sent from a source with the entire image. The blitzkrieg phase adds a 

fixed number of warning messages from each node when it starts receiving the first page 

of a code image and is transparent to the normal operation of the original Deluge. A 

redundant number of warning messages is used to guard against losses. The distribution 

phase of Deluge achieves efficient and robust dissemination of code pages. Thus, Freshet 

leaves this phase unchanged and chooses to optimize aspects of Deluge not associated 

with the active distribution of code, while still maintaining the same performance.  
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4.1.2 Distribution phase 

 

The distribution phase of Freshet is identical to that of Deluge and is mentioned 

here for completeness. It functions through a three-way handshake protocol of 

advertisement, request, and broadcast code. Each node keeps a time window in which it 

listens for advertisements. Within this window it randomly selects a time at which to send 

an advertisement with meta-data containing the number of complete pages in its code 

image and the total number of pages in the image. When the time to transmit the 

advertisement comes, the node sees whether it has heard sa advertisements with identical 

meta-data, and if so, it suppresses the advertisement. When a node hears code that is 

newer than its own, it sends a request for that code and the lowest number page it needs, 

to the node that advertised the new code. The node on hearing this sends the appropriate 

page to the requesting node. This process continues until the requesting node has updated 

its code. A node only fills its pages in monotonically increasing order thereby eliminating 

the need for maintaining large state for missing holes in the code.  

In order to ensure fast code dissemination, Deluge uses several mechanisms for 

message suppression. The first is sender selection. When a node needs new code, it 

designates which node it wants to have as a sender for the new code. This sender is 

selected by the most recently heard advertisement. The second mechanism is through 

request messages. When a node overhears a request for the same code it needs, then it 

does not send its request out, unless it does not receive the new code within some time 

interval. The third mechanism is advertisement suppression as described earlier in this 

section. 

 

4.1.3 Quiescence phase 

 

The next phase of Freshet is the quiescence phase. This phase occurs once code 

has been disseminated completely within the transmission range of the node. Thus, a 

node no longer hears requests from any node needing code and the node itself has the 
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complete image. Since there will be no further code transfers for the immediate future, 

the node does not need to advertise at all. In Trickle, a scheme is proposed for sending an 

advertisement every so often to ensure that if new code is added to the network the nodes 

are aware of the update, but at the same time limiting energy use. However, since the 

quiescent phase is typically the most long-lasting phase, Freshet optimizes the energy 

consumption further by switching to a complete pull-based mechanism to service new 

nodes. If any new node enters the network, it will advertise its old data and thus will alert 

the already present nodes that they need to start transmitting again.  

Once a node has received all of its code, it sends out r advertisements to ensure 

(with high probability) all interested nodes have heard it and then it stops advertising 

altogether. If it hears any new code or advertisements with old code, then it will 

immediately start advertising again and either obtain the new code and then transmit it or 

transmit its current code. Typically, Deluge is a hybrid of push and pull, but in this 

scenario Freshet picks one or the other depending on whether there is new code (push) or 

code is requested (pull).  

Freshet can function in either a dynamic or a static network. The dynamic nature 

may be a result of failures, which will cause new routes to be discovered that Freshet will 

use in the propagation of code. In the case of a mobile network, Freshet needs extra 

control messages – a node needs to notify its old neighbors before moving and the new 

neighbors after moving, using the warning message in order to update the topology 

information.  

 

4.1.4 Turning the radio off 

 

As [22] shows, the major energy expenditure for the radio is the idle receive time 

and not the transmission energy level or number of messages sent. Therefore, while 

sending fewer messages saves some energy it is more valuable to turn the radio off 

whenever possible. Freshet seeks to turn off the radio between the blitzkrieg and the 

distribution phases and in opportune moments of the quiescence phase.  MNP in [7] turns 

off the radio of nodes which are not selected as senders of code, but does not address 
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radio usage in the long time periods before and after code updates. After the blitzkrieg 

phase, each node estimates the number of hops distance from the source of data and turns 

off the radio while waiting for the data to arrive in its vicinity. In this way, a large 

network that needs to disseminate a large data object can save substantial amounts of 

energy by turning off the radios for nodes far from the originator of the code image. 

In the quiescent phase, it is more difficult to decide deterministically when a node 

may safely shut off its radio. Since new nodes may enter the network at any location and 

new code may be injected at any time, only a portion of the network can sleep and the 

nodes that sleep must probabilistically ensure that the network will still respond to any 

new events. The means of accomplishing this task is through recording how many 

neighbors, bn, are within each node’s vicinity. Consider a time slot of length τ. Each node 

listens for a period τ/2 and then decides with probability 1-1/bn that it should sleep for the 

next τ/2 period. This design is a tradeoff between energy saving and responsiveness of 

the network to new code or new nodes.  

 

4.1.5 Interleaved pages 

 

A significant component of the design of Freshet deals with situations where a 

network may have multiple identical code sources in different locations. For example, 

each of the multiple data sinks may act as a code source. In many cases with a deployed 

sensor network it is hard to access nodes inside the mesh of the network, but easy to 

access the outside edges of the network.  A user may deploy additional sources with the 

goal of reducing the time to propagate code through the network. Since internal nodes 

also become sources of code through dissemination, we use the term code originator (or 

originator for short) to indicate the original sources that initiated the code propagation.  

The use of multiple data originators would be in partitioning the network into 

smaller portions. Two data originators at opposite ends of a network will effectively 

halve the size of the network. We propose a scheme to distribute pages out of order to 

improve dissemination in the network as a whole. Through out of order dissemination of 

pages it is possible that when pages distributed from different originators meet, they may 



20 

 

fill in the “gaps” in each node’s code image. This allows us to create fresh originators 

from which code can be disseminated. With an appropriate negotiation scheme, nodes 

with different pages can help each other complete their code images well before the 

remaining pages would reach them from the original sender. 

Thus, we propose the concept of node parity, where the parity of a node is 

determined by which set of pages it chooses to disseminate first when it already knows 

that there are other originators in the network sending pages with different parity. In 

particular, Freshet has numSrc originators sending code of size p pages into the network. 

For a given originator sj, it will first send out pages numbered i such that i mod numSrc = 

j. Originator sj will be said to have parity j. After distributing these p/numSrc pages, it 

will then distribute pages numbered i such that i mod numSrc =j-1, j-2, and so on until all 

pages have been disseminated, cycling through all j such that 0≤ j ≤ numsrc. It is assumed 

that the deployment of the originators is done with some thought – they are relatively 

evenly spread and are assigned non overlapping parities.  

The next problem is how to resolve conflicts between nodes with pages of 

different parity. For a node that has the complete image, its sending is dictated by parity 

as described above. The next rule governs a node with an incomplete image. For such a 

node there is the concept of cycles, one for each parity in the network, with the node 

likely switching through the different cycles. Consider Fig. 4.1 which depicts the 

behavior of a node in a network with two parities. It goes through an even cycle and an 

odd cycle. Each cycle has one slot for listening and one for advertising and requesting. 

The cycle is dedicated to the particular parity when activity pertaining to both parities is 

happening around the node. However, if the node hears a consecutive advertisements of 

one parity, where a is a user-defined parameter, then it will use all available cycles for 

that parity. This is to ensure that cycles are not idled for pages of a given parity that are 

still far off from a node.   

 
Fig. 4.1 Advertisement scheme for parity j=2 
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As in Deluge, pages may only be downloaded sequentially within that parity. For 

example, with two parities, the motes must download page 5 before page 7. 

An optimization in Freshet for interleaved pages is that if a node’s radio is idle in 

a given cycle and data is available, the node will utilize the idle period to get the data. 

What is sacrosanct is that a node does not advertise or request for data outside the turn. 

This is important to prevent the protocol from thrashing in which only meta-data 

exchanges happen and the network’s throughput tends to zero.  

 

4.2 Analysis of Freshet 

 

4.2.1 Analysis 1: number of redundant advertisements.  

 

First we analyze the number of redundant advertisements that are needed to 

achieve a given reliability of reaching a node in the network which is relatively isolated. 

This is defined as the reliability of the code update protocol. Let the number of nodes in 

the network be n, the size of the sensor field be A, and the radius of transmission be r0. 

We assume for the analysis that the nodes are uniformly distributed in the sensor field. 

The density of the sensor field is ρ = n
A

 and the average number of nodes in the 

transmission range of a given node is λ = πr2ρ. The probability that a node has n0 

neighbors is given by a Poisson distribution. The approximation used is n>>n0 and can be 

approximated by ∞. P(b = n0) = 
0

0 !

n

e
n

λλ − , n0=1,…,n, where d is the random variable 

representing the number of neighbors that a node has. The mean and the variance of the 

random variable follow from the property of the Poisson distribution. Expected value 

E(d) = λ and Standard deviation S(d) = √λ. Let us consider an arbitrarily isolated node, 

say α, which is a fraction τ of the SD away from the mean. Thus, the number of 

neighbors of the isolated node is bα = E(d)- τS(d) = √λ(√λ-τ), τ<1. If τ=1, the node is 

disconnected from the network and can never get the code update. 
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Now, consider the probability of successful transmission of an advertisement 

from one of the neighbors of α to node α. Note that we only need to consider a successful 

transmission of the advertisement and not the subsequent request and code packets since 

if the node α is made aware of the presence of a new code, it will continue to request 

arbitrarily long till successful transmission of the code is achieved. Of course, 

realistically collisions will cease on the channel to node α and the transmission will be 

successful within a few attempts. In order to estimate the probability of successful 

transmission of the advertisement, we use the analysis of the 802.11 CSMA/CA protocol 

given in [20]. For the protocol, binary exponential backoff is being used with minimum 

size of the contention window CWmin = 2mW and the maximum size CWmax = 2m′W. We 

assume that any contention for the wireless channel comes from the neighbors of node α. 

The number of retries by a given node for transmitting the advertisement is then M = m′-

m+1. The probability of successful transmission in one time slot is Ps = PtrPs|1, where Ptr 

is the probability that there is transmission and Ps|1 is the probability of successful 

transmission in a slot, given there is a transmission. We obtain using equations (10) and 

(11) in [20], Ptr = 1-(1-Pt)bα and Ps|1 = 
1

t t
1

t

P (1 P )
1 (1 P )

b

b

b α

α

α
−

−

−

− −
, where Pt is the probability that a 

station chooses to transmit at a randomly chosen slot time and is given by equation (7).  

Therefore, the probability of successful transmission PS = 1-(1-Ps)M, assuming 

that the probability in each time slot is i.i.d. Therefore the probability of success of at 

least one advertisement from among the r sent by a node i which is a neighbor of node α 

is PS,i = 1-(1-PS)r. Therefore the probability of success of at least one advertisement 

reaching the node α, i.e., by definition the reliability of the protocol, is R = 1-(1-PS,i)bα. 

This can be made arbitrarily close to 1 by increasing the value of r and asymptotically 

goes to 1 as r→∞. 
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Fig. 4.2 Variation of number of retries to reach 99% reliability for an isolated node 

 
Fig. 4.3 Variation of reliability with number of retries for an isolated node (τ=0.9) 

 
The analytical results are plotted in Fig. 4.2 and Fig. 4.3 for n = 15µ15, A = 

200µ200, CWmin = 16, CWmax = 1024 from the 802.11 standard for FHSS Physical layer 

[20], Tx power = -20dBm, and minimum Rx power = -85dBm giving r0= 39.0937 m (for 

the Mica motes). Fig. 4.2 shows the non intuitive result that the number of retries is not 

monotonically increasing with increasing τ. For higher values of Pt, the increased 

contention due to the number of neighbors of the isolated node causes the number of 

retries to decrease with τ to a minimum before increasing. Fig. 4.3 shows that as expected 

the reliability asymptotically approaches 1 which puts the reliability claim of Freshet on 

the same ground as that of other epidemic based protocols. 

 

4.2.2 Analysis 2: time between blitzkrieg and distribution phases. 

 

 Next, we analyze the separation in time between the blitzkrieg and the 

distribution phases and show how this depends on the density of the network. Consider 

that the code spreads as a wave from the source with an illustration in Fig. 4.4 with the 
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source at the top left of the field. A line connecting a set of nodes implies that a page 

reaches all the nodes the set in the same round of the three way handshake. For a given 

node i, this is called the Wave Companion Set (WCSi). 

 
SS

 
Fig. 4.4 Pattern for propagation of code 

 
First, let us analyze the time for a single round of a three way handshake. The 

time has three components – the delay due to the CSMA/CA contention, the transmission 

time, and the processing time at the node. The MAC delay is difficult to compute 

analytically for 802.11 and no closed form solutions exist.  

 
Fig. 4.5 Variation of delay of code dissemination with network density 

 
The curve shown in [21] indicates that for the region of interest (low contention) 

the delay is approximately proportional to n2, where n is the number of contending nodes. 

Let the nodes be placed on a square grid of area A and grid separation δ. The separation 

from a diagonal node is δ′ = 2 δ. The density of the network is 
2

1
δ

. Let the radius of 

transmission r0 = Mδ′. Therefore, M = 0
0

1
' 2

r
r ρ

δ
= . Observe that the contention for 
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each phase of the handshake is caused by the members of the WCS which are within 

transmission distance away, which are 2M+1 in number. Let the sizes of the 

advertisement, request, and code page be A, R, and C, respectively, the time to transmit 

one bit (the bandwidth) be Ttx and the processing time be Tproc. Therefore, the total delay 

introduced by a single round of the handshake is  

Tround = TAdv+TReq+TCode = (G.(2M+1)2 + A.Tx + Tproc)+(G.(2M+1)2 + R.Tx + 

Tproc)+(G.(2M+1)2 + C.Tx + Tproc) 

= 3G.(2M+1)2 + (A+R+C)Ttx + 3Tproc 

Hence, assuming perfect pipelining of the single page of the code, the time to go 

through h hops is Tdelay,h = h.Tround. The relation of this with the density of the network 

(replacing M by its expression containing ρ) we get the plot shown in Fig. 4.5. 

 

4.2.3 Analysis 3: time for dissemination with multiple originators.  

 

The third analysis is for striping across one or two code originators. Let us assume 

a rectangular sensor field as shown in Fig. 4.4, with the number of hops across the 

diagonal being D0. The number of pages in the code image is P0. For a given originator, 

the maximum number of hops along the diagonal it has to transfer code to is D and the 

number of pages it has to transfer is P (since the behavior is identical for all originators, 

we drop the subscript i.) The transfer along the diagonal is of interest to us even though 

the transger may happen over larger number of hops along a side of the field due to the 

results reported by Deluge [1]. Let us call the set of nodes to the left-upper half of the 

field as LU and the set to the right-lower half as RL. The nodes in LU (RL) which are 

closest to the diagonal (border nodes) are called BNLU and BNRL. We will consider four 

cases – case 1 has a single originator with D=D0, P=P0 called Single Originator (SO), 

case 2 has two originators with D=D0/2, P=P0 called Dual Originator with Non-

Interleaved Pages (DON), case 3 has two originators with D=D0, P=P0/2 and no 

handshake happens when the code waves from the two originators meet, called Dual 

Originator with Interleaved Pages and Unregulated Collision (DOI-UC), and case 4 also 

has two originators with D=D0, P=P0/2 but handshake happens as described in Section 
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4.1.5, called Dual Originator with Interleaved Pages and Regulated Collision (DOI-RC). 

The metric for comparing the different schemes is the time to disseminate the code to all 

the nodes in the field, Tc. As given in analysis 2, the time for the three-way handshake 

over one hop is Tround, shortened here as TR, which is a function of the number of nodes 

contending for the channel due to the MAC layer delay component. This number is going 

to vary for different cases and also different time points within each case. Let us simplify 

that each node’s transmission radius is such that it can interfere with all its one hop 

neighbors on the grid, i.e., M in the second analysis is 1.    
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Fig. 4.6 Timeline for pipelined code dissemination 
 

Case 1 (SO): The pipeline in Fig. 4.6 is drawn with each horizontal line showing 

the reception of the different pages by a given node with time. Here a node ni,i contends 

with nodes ni+1,i+1 and ni-1,i-1. Other nodes do not contend due to the suppression 

mechanisms in the protocol. Therefore the number of contending nodes n = 3. 

Tc = (D0-1)TR+P0TR = TR(D0-1+P0) 

Case 2 (DON): D=D0/2, P=P0. All nodes in LU will get all the code pages from 

originator S1 and all the nodes in RL from S2. The maximum time is to reach the border 

nodes. Time to reach BNLU = time to reach BNRL = TR(D0/2-1+P0). Here also n = 3. 

Tc = TR(D0/2-1+P0) 

Case 3 (DOI-UC): D=D0, P=P0/2. The nodes in BNLU get all the odd numbered 

pages after time T1 = TR(D0/2-1+P0/2), with n = 3. In this time, the nodes in BNRL get all 

the even numbered pages. Now the contention increases as the nodes in BNLU try to 

disseminate the odd numbered pages in RL and vice-versa. Notice now that for each 

round the number of contending nodes is 6 (the node itself along with its two diagonal 

neighbors in the same set LU or RL plus the three nodes “facing it” in the other set). The 
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time to get P pages across the LU-RL boundary is T2 = TR′P0, with n = 6. Next, the even 

numbered pages are disseminated through LU and vice-versa, as before with n = 3. Thus, 

T3 = T1.  

Tc = T1 + T2 + T3 = TR(D0/2-1+P0/2) + P0TR′ + TR(D0/2-1+P0/2) 

Case 4 (DOI-RC): D=D0, P=P0/2. T1 and T3 remain the same as in case 3. The 

contention is handled through the handshake mechanism and therefore T2 = TRP0/2 + 

TRP0/2 = TRP0 < TR′P0. 

Plotting Tc for the various cases, we see that dual originators give a clear 

advantage over single originator; DOI-RC is favored over the others when the number of 

pages in the image is large, while the three dual originator cases are comparable for large 

sized networks with small code images to disseminate. 

 

4.3 Freshet Experiments and Results 

 

We build a simulation model for Freshet using the three way handshake 

mechanism of Deluge in TOSSIM, the simulator for TinyOS. We also simulate Deluge 

from TinyOS release 1.1.11. While TOSSIM does not imitate hardware precisely, it is a 

bit level simulator and therefore provides accurate modeling of the physical layer 

characteristics not seen as accurately in other simulators, such as ns-2. The TOSSIM code 

runs directly on hardware and closely mimics the trend in the behavior though the 

measures may have to be scaled to give accurate absolute numbers for the Mica-2 

hardware. It is important to stress that the code running on TOSSIM was downloaded to 

the actual motes and executed there. However, the gains of Freshet are evident for 

network sizes of the order of tens to hundreds of nodes and therefore TOSSIM rather than 

the actual motes were used for the results showing the comparative gains of Freshet. This 

approach is valid because of the accuracy of the simulation infrastructure and has been 

used by other researchers [1],[7]. We use the notion of code image being fragmented into 

pages and each page consisting of multiple packets. The default page consisting of 48 

packets of 36 bytes each is used. The nodes are arranged in a rectangular grid with 

constant 15’ spacing between adjacent grid points. A square placement of nodes on the 
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grid is used, giving rise to NµN nodes, where N is varied for the experiments. 

Henceforth, the term “N nodes square” will imply a total of N2 nodes in the network. The 

amount of sleep time for a node h hops away from the warning message is 8(h-1) for h ≥ 

4. This equation was found empirically and generally yielded adequate responsiveness in 

the network while still guaranteeing some period of sleeping for nodes far from the 

source of the code. 

TOSSIM does not have built in simulation for energy computation, nor does it 

have a radio model with power management features. To work around this problem, we 

used PowerTOSSIM [22] to track energy usage, particularly in the radio, and disabled 

motes’ radios when they were to be put in the sleep mode according to the protocol. For 

energy consumption we used the Mica-2 hardware model with the parameters as in Table 

4.1. As shown in [1], the completion time in Deluge scales linearly with object size. 

Through our experiments with Freshet we discovered that energy use followed a linear 

increase with object size as well, and hence we do not discuss the problem further. 

Table 4.1 
 Energy model used for results 

Radio idle or receive  7.03 
mA 

EEPROM Write current 18.4 mA 

Radio transmission (max 
transmit only) 

21.5 
mA 

EEPROM Write time 12.9 ms 

CPU Active, Idle 8.0 mA, 
3.2 mA 

EEPROM Read current 6.2 mA 

Radio sleep 1 mA EEPROM Read time 565 µs 
 
 

4.3.1 Single originator results 

 

We run our first set of experiments with code image consisting of 5 pages in 

networks of sizes of 6, 8, 10, 12, 14, 16, and 20 motes square. For the purpose of further 

energy evaluation, we also analyzed networks ranging from 8 to 20 motes square and 

networks with dimensions of Y by (Y+1) with Y ranging from 8 to 19. The simulations are 

started with all the nodes being active and 10 s into the simulation, the originator starts 

transmitting the code pages. The simulations are run until all the nodes receive all the 
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pages. We then analyze the time to finish receiving all data and recognize that this time 

can be highly variable from one run to another, though preserving the relative order of 

performance of Freshet and Deluge. This occurs because in both Freshet and Deluge 

measures are taken to decrease advertisement frequency, which makes it possible for a 

node with few pages downloaded to “disappear” if its link quality is poor or inconsistent. 

Essentially, some nodes may not be able to request the new code they need because of 

network contention and their packets may be dropped. In some cases a handful of nodes 

may take much longer periods of time to complete code download than others due to this 

phenomenon. Therefore, we evaluate the performance of Deluge and Freshet till the point 

of acquiring 92% of all pages needed in the network, i.e., 92% of the number of nodes 

times the number of pages have been downloaded in total. We chose 92% because it was 

the highest network completion percentage that showed very consistent code distribution 

times.  

 In all cases we are evaluating the radio energy usage of Deluge and Freshet. We 

also track the CPU energy usage and energy from EEPROM writes and reads, but we 

found that the differences in this energy use due to these heads between Deluge and 

Freshet were negligible. 
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Fig. 4.7 Radio energy usage of the entire network for a given number of nodes 
 

Fig. 4.7 shows that as the number of nodes increases in the network, Freshet saves 

more energy compared to Deluge. The energy gains of Freshet over Deluge increase with 

network size since the energy spent per node is lower in Freshet. These plots scale based 

on the energy used per node. Clearly, a larger network uses more energy due to more 

nodes, but since there is also more time for code to propagate, each node will need to 

spend more time waiting for code. Fig. 4.10 shows the average energy use per node based 

on network size. This figure shows two main characteristics. First, the smaller networks 

use much less energy than the middle-sized networks. This is primarily due to the 

increase in the average hop distance between the originator and the nodes; in the 8x8 

network the diameter of the network is 2-3 hops. In the 11x11 network the diameter is 4-

5 hops. Each hop increases download time and therefore increases energy use. However, 

as the network size continues to increase, the energy use begins to level off. This effect is 

due to Freshet’s and Deluge’s complexities in transferring code. [1] found that for 

networks with diameters of less than 8 nodes code transfers are proportional to the 

product of the code size and the network diameter. Our simulations tended to see this 

behavior present in networks with diameters up to 10 nodes, as shown in Fig. 4.10. For 
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larger networks, this trend is linear in the size of the code and the network diameter, as 

discussed in [1]. The combination of these characteristics causes the plot to be linear as 

the network size increases. For the purpose of prediction, we made a 2nd order regression 

line for both Deluge and Freshet based on Fig. 4.7, and show those results in Fig. 4.8. 

These lines have R2 values of 0.9926 and 0.9978 for Freshet and Deluge, respectively. 

What we see quite clearly from this figure is that while both Deluge and Freshet proceed 

with nearly linear increases in energy savings, Deluge’s energy use increases faster than 

that of Freshet. 
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Fig. 4.8 Trend line for larger networks 
 

As would be indicated by the design, the energy savings happen for two reasons. 

The nodes far from the originator node use the blitzkrieg phase to turn off their radios for 

the appropriate period of time before they must start transferring pages. The second 

reason is that nodes near the source that complete their code transfers first will have 

lower duty cycles for their radios as they enter the quiescent phase.   
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Fig. 4.9 Average energy saved per node grouped by distance from code source 

 
Fig. 4.9 shows the average energy saved per node grouped by distance from the code 

source. This simulation is for a 20x20 network. The maximum distance of any node from 

the code source is 392 feet, the minimum is 0 feet, the code source itself. What this figure 

demonstrates is that nodes closer to the code source are able to save energy through the 

quiescent phase by turning off their radios once they have acquired all of the code. 

Similarly, nodes far from the code source can save energy through the blitzkrieg phase 

but must still spend more time with their radios on to acquire the code updates. This 

energy saving calculation is made based how long the network takes to download code. 

We know that the idle radio draws 7.03 mA, and therefore can calculate how much 

energy Deluge would normally use through its radio by multiplying the time to download 

by the idle radio current by the voltage of the motes. We find the energy saved by then 

subtracting the radio energy used in the Freshet simulation from the calculated energy for 

a Deluge simulation of the same duration.   

In Fig. 4.11 we show relative completion times of Deluge and Freshet. In all cases 

Deluge finishes transferring 92% of its pages before Freshet. So while we found that 

Freshet in the single source case is typically 10-15% slower than Deluge, it also uses 
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much less energy.  The increase in time for dissemination occurs mostly because Freshet 

loses some coverage in the network by turning off the radios during the quiescent phase. 

Fig. 4.12 shows that Deluge still outperforms Freshet after only 50% of the pages are 

downloaded, but by less than 5% on an average. This indicates a tradeoff – if marginal 

loss in time for dissemination can be tolerated in order to save energy, the design point 

would favor Freshet. 
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Fig. 4.10 Energy usage per node of Deluge and Freshet 
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Fig. 4.11 Time to complete 92% of pages 
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Fig. 4.12 Time to complete 50% of pages 

 
The next part of our analysis centers on the network’s behavior over time. Fig. 

4.13 shows the positions of sleeping nodes in the network as time progresses. The 

originator node is in the bottom left corner of the area. The small dots represent the nodes 

that have at least one page, the bigger dots (small solid triangles) represent nodes that are 

asleep, and the lack of any dot at a grid point represents a node that is awake but does not 

have a page yet.  
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Fig. 4.13(a), (b), and (c) show that initially most of the network is asleep. In (d) 

most of the nodes have now turned their radios back on, and by (e) nearly all nodes in the 

network have at least one page. (f) shows the transfer of the code image to be complete, 

and in (g) we find that the nodes near the originator have now begun to sleep in the 

quiescent phase. By (h) a larger fraction of the network is sleeping in its quiescent phase. 

These figures show that Freshet can reliably predict when to turn its motes’ radios 

on and off, thereby saving substantial amounts of energy. While in some cases we see 

that motes that are near those that have already obtained a complete page and should be 

ready for beginning the distribution phase, are actually asleep (some nodes to the right in 

(d)). However, this is the exception rather than the norm, implying that network coverage 

is generally unaffected. 

 

         
                        (a) t=15                         (b) t=30                              Legend 

        
(c) t=75                          (d) t=150                     (e) t=300 

         
(f) t=450                       (g) t=650                            (h) t=900 

Fig. 4.13 Nodes sleeping in the network over time. Triangles are sleeping nodes, dots 
have at least 1 page 

 
Fig. 4.14 and Fig. 4.15 demonstrate the substantial energy savings that can be 

obtained through the short term use of the quiescent phase (in this experiment the 
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completion time is 1500 s, so 150 s for the quiescent phase is approximately 10% of the 

total completion time). Fig. 4.14 shows the distribution of node energy savings when 

75% of the network has got the complete code. The energy savings at this point are due to 

the estimate of the time between the blitzkrieg and the diffusion phases and sleeping for 

part of it. Fig. 4.15 shows the same network 150 s after 92% of the network is completed. 

It is clear that a much larger percentage of the network has increased its energy savings in 

this time since the quiescent phase has set in. 

 
Fig. 4.14 Shows the energy saved at 75% network completion (mJ) 

 
Fig. 4.15 Shows the energy saved 150s after 92% of the pages were completed(mJ) 

 

4.3.2 Multiple originator results 

 

Our second set of experiments was run with two originators at the top left and 

bottom right corners and code size of 4 pages in networks consisting of 8 through 12 

nodes square. We compare the performance of Deluge, with one and two originators and 

Freshet, also with one and two originators. The two originators used in the native Deluge 
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implementation are identical in all aspects except location; in the case of Freshet, one 

originator is set to prioritize distribution of even numbered pages and the other odd 

numbered pages.  

Fig. 4.16 summarizes our results with the two Freshet bars to the left of the two 

Deluge bars. Our results show that multiple originators always improve performance in 

networks with 100 nodes or more. Specifically, when the originators are farther apart due 

to the larger network, the interleaving of pages outperforms both the native Deluge 

implementation and Deluge using two sources. This result occurs because the hidden 

terminal problem limits the functionality of Freshet in networks with less than 100 nodes; 

this problem’s effects are lesser in networks with 100 nodes or more. 
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Fig. 4.16 Time to completion of various distribution techniques 

 
Generally, interleaving looks to distribute two different pieces of code (odd and 

even pages) on opposite ends of the network. In a small network these messages will tend 

to collide, and therefore increase contention and result in a performance loss. For a 

sufficiently large network, however, interleaving of pages with the proper contention 

resolution procedures as in Freshet enables nodes near the middle of the network to 

complete downloading their code images earlier. This consequence enables nodes not in 

the middle of the network and also not near the originators the ability to download 

complete code images earlier than they would through Deluge. 
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4.4 Small Hardware Implementation 

 

To show that Freshet functions in the physical world, a small sensor testbed was 

constructed to demonstrate that in small networks Freshet performed with comparable 

time to Deluge. 

The network was constructed through four mica2 motes placed in a line (Fig. 

4.17). The radio was set to the lowest power setting so that approximately 10 feet 

produced one hop communication. The motes were placed 10 feet apart, effectively 

creating a 3 hop network. While this network is still too small to demonstrate the energy 

savings potential of Freshet, it can demonstrate that Freshet performs similarly to Deluge, 

thereby making it a viable protocol. 

The next step was to make five runs each for both the native Deluge protocol and 

Freshet. Each run was set up with a new code image injected into the network. The code 

sample used in this experiment was 20 pages in size, each page having 48 packets of 36 

bytes each. This code would then propagate through the network as per the network 

reprogramming protocols. Time to completion of each page was observed through motes 

within range of each Freshet mote. In particular, two motes were used for measuring the 

time to completion, one set between A and B, another between C and D. These motes 

observed the messages sent out by each of motes A, B, C, and D. When a mote sent an 

advertisement message that indicated it had all 20 pages downloaded, then its upload was 

marked complete. 

 

A B C D

10 feet
 

Fig. 4.17 Experimental set up. Node A is the code image source 
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  Since the network is approximately three hops, this set up examines the multihop 

capabilities of both Freshet and Deluge and makes a valid comparison of their 

comparative speeds.  

The results for these experiments are shown in Table 4.2. Bear in mind that each 

data point represents the average of 5 runs. These results show that over a very small 

network Freshet performs just as well as Deluge in disseminating data objects.  

Table 4.2 
 Average time to disseminate 21 pages to each node 

Protocol To Node B To Node C To Node D 

Deluge 250 s 373 s 475 s 

Freshet 247 s 381 s 471 s 

 

4.5 Summary 

 

This chapter presented Freshet, a means of reliably and efficiently distributing 

code throughout a sensor network. Freshet has two distinct schemes: single source code 

distribution and multiple source code distribution. TOSSIM simulations show that single-

source Freshet is between 20-45% more efficient in energy compared to the Deluge 

protocol, while requiring about 10% more time for propagating the code. In the case of 

smaller networks the multiple-source Freshet is shown to be 5% faster than Deluge with 

multiple sources. Finally, this chapter presented a small-scale physical implementation of 

Freshet, and it was shown that in small networks Freshet performs the same as Deluge.
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5. SENSOR NODE LOCALIZATION WITH DIRECTIONAL 
ANTENNAS 

 

In this chapter we discuss a technique for localization of an unknown sensor node 

using one or more nodes with a known location. All nodes are also equipped with 

directional antennas, which are then used to acquire location estimates. 

 

5.1 Directional Antenna Model 

 

One of the simplest semi-directional antennas is the patch antenna. This antenna 

is used as a representative example of an antenna that may be used for localization and 

which will still fit on a mobile form factor. The ideal patch radiation model is a 

hemispherical radiator which allows for semi-directional radiation.  The typical gain of a 

patch antenna is on the order of 3.5 to 6 dBi, depending on the dielectric substrate used in 

the design.  A representative angular variation of the gain for a typical microstrip antenna 

will be in the range of ( )2cos sin( ) cos sin( )
2 2

l l
G

β β
θ θ θ< <⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, where β is the free-space 

constant and l is the longest length of patch, assuming the lowest order mode of operation 

[44]. The gain is defined as the ratio of the intensity, in a given direction, to the radiation 

intensity that would be obtained if the power accepted by the antenna were radiated 

isotropically.  

In the E-plane cut, the antenna’s radiated e-field from a standard patch radiator is 

ideally cos sin( )
2

l
E

β
θ= ⎛ ⎞

⎜ ⎟
⎝ ⎠

.  This pattern dependence is in relation to a coordinate system 

with the z-axis perpendicular to the microstrip patch radiator.  This is the ideal solution 

for a patch antenna with an infinite ground plane and is only slightly altered using a finite 

size ground plane.  The ground plane is used to shield the radiating field from the rest of 
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the circuitry and the other radiators. Unshielded radiators, such as those that are standard 

with the motes, are susceptible to parasitic radiating currents which result in asymmetric 

patterns.  

The received power at an antenna is given by
2

2

( ) ( )
4

t t t r r
r

P G GP
r

λ
π

Θ Θ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

, where Θt 

and Θr are the transmitting and the receiving angles, respectively, and r is the distance 

between the transmitter and the receiver.  λ is the RF wavelength of the carrier frequency.  

Since (λ/4π)2 is a constant, we will exclude it from future expressions.  It was however 

included in calculating the results. 

A realistic antenna radiation pattern obtained from the design of patch antennas in 

the HFSS simulation package is used to model the gain for the experiments.  The 

simulations were validated through actual experiments in an anechoic chamber. For the 

sensor network simulations in this paper we use an antenna model given by 

( )⎟
⎠
⎞

⎜
⎝
⎛ Θ=Θ=Θ sin

2
cos)()( LGG rt

β . This is the upper bound of the possible antenna gain 

given in Section 5.3 and is chosen in our analysis and simulation so that an anchor has a 

larger number of target nodes within its transmission range. However, the proposed 

techniques are equally valid for any other antenna model. 

 

5.2 Aligned antennas 

 

In a number of practical applications it is reasonable to expect that the sensors will be 

manually deployed. Sensors set up to monitor a bridge’s health have to be placed by 

construction workers on the bridge for example. In such scenarios even though it may not 

be possible to know the precise location of the sensor, it is possible to place these sensors 

in a pre-determined orientation. 
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Fig. 5.1 Location determination with aligned nodes 

 
If the antennas of a target sensor node are aligned, then we can use the power 

received at multiple receiving antennas of the target from a single transmitting antenna on 

an anchor for position estimation. Without loss of generality consider that an anchor node 

is placed to the south-east of the target node as shown in Fig. 5.1. The size of the sensor 

would usually be much smaller than the transmission distance. So d/r=Θc. Then received 

power at the two receiving antennas of the target node is given by equations (5.1) and 

(5.2) in two variables Θ1 and r. Since, these are nonlinear equations it is difficult to get a 

closed form solution for Θ1 and r in terms of the input variables Pr,1 and Pr,2. However, 

these equations can be numerically solved by standard methods to obtain Θ1 and r. 
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Where Θ1= Θr,1 and Θ2 = Θr,2. 

Alternatively, if the orientations of these sensors are not perfect, Θ1 in (5.1) and 

(5.2) can be replaced by Θ'1 = Θ1 – Фunaligned, where Фunaligned can be obtained from a 

digital compass [51] or some other simple algorithms [50]. A possible approach is 

mounting an omni-directional antenna with the four directional antennas on the same 
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node and estimating Фunaligned from the difference of the received power strength between 

the directional antennas and the omni-directional antenna. 

A baseline experiment for this is with the anchor node having omni-directional 

dipole antennas. In this case the gain of the transmitter, Gt(Θ), is constant over all Θ and 

denoted Gomni. Fig. 5.2 shows this configuration.  Now, since we know the distance as 

well as the relative direction of the target with respect to the anchor, we can estimate its 

position. This estimate is based on measurements from just one neighboring anchor node 

whereas triangulation requires measurements from at least three anchors.  
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Fig. 5.2 Location determination with an omni-directional transmitter and directional 

receiver 

 
The estimates from multiple anchors can be averaged to obtain a better estimate 

of the position. Alternatively, the information about Θ1 could be discarded and the range 

measurements (r) can be used to triangulate the position of the sensor in a least squares 

manner. Both these strategies have been evaluated in our simulations and the averaging 

strategy has yielded better results. 

 

5.3 Generalization to Unaligned Antennas 

 

In cases where it is not possible to ensure a global orientation of all nodes of a 

network, additional measurements can be used to estimate position. Received power at 

two different antennas of the target node from two transmitting antennas of the anchor 

node is measured. Such an arrangement is shown in Fig. 5.3. 
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Geometric relations between the various transmission and receiving angles can be 

derived from the figure. 

r
d

+=Θ+Θ=Θ+Θ=Θ+Θ=Θ+Θ
271538462
π

 
π=Θ+Θ+Θ+Θ 4321  

                                        2
2432

'11,
)(*)(

r
GGPP rtt

r
ΘΘ−Θ−Θ−∗

=
π                       (5.3) 

                                          
2

23

'21,

)
2

(*)
2

(

r
r
dG

r
dGP

P
rtt

r

Θ−+Θ−+∗
=

ππ

                      (5.4) 

Let Pr,ij denote the power received by antenna i on the target node when antenna j is 

transmitting on the anchor node. We can use these equations to simplify the received 

power equations as follows. 
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Equations (5.3) through (5.6) in the four variables Θ2, Θ3, Θ4, and r can again be 

numerically solved to estimate the location of the target node. 
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Fig. 5.3 Location determination for unaligned antennas 

 
This scheme requires that two target antennas be able to simultaneously receive 

transmissions from two anchor antennas. This would require a transmitter beam width of 

180˚. This is non-optimal for four antennas covering a 360˚ plane but is a tradeoff for 
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increased degrees of freedom in the orientation of the nodes. Besides, the increased 

beam-width will lend greater fault tolerance to the system by providing greater 

redundancy in the areas reached by multiple transmitting antennas. It will also make the 

antenna design easier since high directionality, i.e. narrow beam width is not needed.  

 

5.4 Aligned Antennas with Two Anchors 

 

The two location determination methods described earlier rely on the difference in 

power received at two antennas of a sensor from the antennas on the same anchor 

node. The error in the power received can become correlated due to the proximity of 

the two antennas, even if they are pointed in separate directions.  In a real life scenario 

the correlation can significantly reduce the accuracy of the location estimate, especially 

for a very small sensor node.   To investigate the performance of the location 

determination with increasingly uncorrelated channels, two transmitted signals were sent 

from two motes substantially removed from each other.  This scheme is also useful in 

situations in which more than one directional antenna would not fit on a single mote. The 

arrangement is shown in Fig. 5.4.  
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Fig. 5.4 Location determination using measurements from two anchors 

 
Since the location of the two anchors is known, the parameters r3 and Θ3 can be 

determined. Using geometric properties of the system we get the following relations 

between the various angles 
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The equations for the received power are given by 
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Using the law of sines along with relations between the angles derived earlier we 

get two more equations 
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This gives us four equations in four unknowns r1, r2, Θ1, and Θ2, which can be 

numerically solved. Thus, the distance and the angle with respect to each of the two 

anchors are determined. The sensor node’s location can be estimated using either 

distance, angle pair and the final location estimated using averaging of each estimate.  

In this section, we have provided the mathematical solution to the problem of 

location estimation with directional antennas in three different scenarios. The node 

specifications and the deployment conditions will determine which scenario is applicable.  

 

5.5 Localization Experiments and Results 

 

Most of this work was completed with Nipoon Malhotra and Chin-Lung Yang, so 

the experimental results are included and explained in appendix A. The next section 

describes work that was accomplished primarily by the author, the simulation results of 

directional antenna networks. 
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5.5.1 Simulation results 

 

We are interested in evaluating the accuracy of the location determination 

protocols with varying number of anchor nodes. The accuracy is measured for between 2 

and 30 anchors of different kinds: omni-directional, directional, unaligned, and the two 

anchor case. This range of experiment would be beyond the hardware resources of our 

test bed and hence a simulation methodology is used. These simulations are only intended 

to highlight the behavior of the schemes with increasing node densities. The distortion in 

received power is simulated using a Rician fading channel. Each data point is based on 

the average of 50 different samples. For each sample, the anchor nodes are placed 

randomly within a 10x10 meter grid. The transmitted power is -10 dB, equivalent to that 

used in hardware, and the size of the sensor node is set at 10 cm.   

Fig. 5.5 is shown with respect to the increasing number of neighbors. From top, 

the different curves correspond to: single anchor unaligned, three omni-directional 

anchors and omni-directional target node, single anchor aligned antenna with least square 

error aggregation, single anchor aligned antenna with averaging for aggregation, two 

anchors with aligned antenna. Except for the omni-directional case, all the others have 

patch antennas on the target node. The first three form one group and the last two form 

another. The errors in the first group are noticeably higher than those in the second group. 

The estimates in both groups show a horizontal trend beyond 14 anchor neighbors 

indicating that higher density is not required for location estimation purposes. The 

generalized orientation, however, requires up to 20 neighboring anchor before stabilizing. 

The highest error is observed for the generalized orientation, indicating the importance of 

approximate alignment at the least. The next highest error is for the omni-directional 

anchor antenna, followed by the single anchor with least square error aggregation. This 

indicates the value of directional antennas and averaging as the method for aggregation. 

The two anchor case with aligned antenna and using averaging as the aggregation 

technique outperforms the single anchor case at lower densities but is statistically 

equivalent at higher node densities. The error bars corresponding to 95% confidence 

interval are shown. 
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We observe that averaging as the method for aggregating gives much better 

results than least square estimation. One of the primary reasons for this phenomenon is 

that averaging cancels the errors in estimates in individual measurements while the effect 

of error in least squares estimation is additive. 
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Fig. 5.5 Evaluation of estimation error for varying number of neighboring anchors  

 
The results shown in Fig. 5.5 have slightly lower error rates than those found in 

hardware. This is most likely due to a limited ability to account for all multipath 

propagation, fading, and other environmental affects. Moreover, the aligned cases were 

perfectly aligned in the simulation, while the experiments had relatively aligned antennas, 

but within a margin of error that is very difficult to determine. 

 

5.6 Summary 

 

This chapter has presented various techniques for location determination in ad-hoc 

networks using directional antennas. The combination of the schemes is designed to meet 

the variety of requirements and degrees of freedom for real life applications. The solution 

approach can form the foundation for location determination protocols for the 

increasingly popular directional antennas. Experimental results are shown in appendix A 

and simulation results are shown in this chapter. These results bring out the fact that 

location estimation with omni-directional antennas requires at least three anchors and is 

less accurate than with directional antennas. Also, using uncorrelated communication 

channels through two geographically separated anchor nodes produces better results than 
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multiple antennas on the same anchor node. The error is reduced from 27.5% in an omni-

directional system to 11.6% with two directional anchor nodes.  



50 

 

6. TRUST-BASED FAULT TOLERANCE 
 

In this chapter we discuss a protocol for masking faulty or malicious nodes within 

the network. It is possible that reprogramming motes may require a means to avoid or 

remove nodes with faulty behavior patterns. This chapter presents a protocol that may be 

applied to such a case, as well as more general event-detection schemes. 

Recent innovations made in the fields of electronics and wireless communication 

have enabled the advent of sensor networks. These networks comprising of thousands of 

inexpensive sensor nodes can be set up with relative ease by placing the nodes in 

predefined locations manually or through the use of robots, as well as by random 

deployment of self-organizing nodes. A wide gamut of applications ranging from health, 

home, environmental to military and defense make use of sensor nodes for collection of 

appropriate data. The sensor nodes comprising of data collecting, processing, and 

transmitting units are very small in size and can be densely deployed owing to their low 

cost.  

Sensor nodes have serious limitations in available resources, such as power, 

memory, and processing ability [54]. The sensor nodes and wireless links are prone to 

failure, while the network is also open to various malicious attacks. While significant 

research has been done in the areas of communication architecture, routing, and energy 

conservation in sensor networks, development of fault tolerance in this highly volatile 

scenario remains an interesting open research issue. Conventional fault tolerance and 

intrusion tolerance protocols do not translate well to the sensor network domain due to its 

large scale and the resource constraints on the sensor nodes. 

As stated, this chapter considers fault tolerance in an event driven model for 

sensing. An event driven model of behavior for sensing finds many applications in 

civilian, military as well as industrial scenarios. Examples could be seismic monitoring to 

detect and locate tremors in a given area, or military applications to sense any movement 
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within a cordoned-off area. The inherent unreliability of sensor nodes makes fault 

tolerance in such an environment an important concern. The problem is essentially one of 

aggregating data from multiple sensor nodes to decide if an event has occurred and 

determining the location of the event, in the face of natural and malicious failures in both 

the sensing nodes as well as the aggregating nodes. In particular, our approach looks at 

arbitrary faults in the sensor networks, whether natural or malicious. Natural arbitrary 

faults may arise suddenly and intermittently in sensor networks, thereby causing a node 

to miss reporting an event (missed alarms) or falsely reporting an event that has not 

occurred (false alarms). Malicious faults occur when some nodes in the network have 

been compromised by an adversary. This adversary can make the nodes send out corrupt 

information intended to adversely affect the data gathering role of the network. These 

malicious nodes, depending on their level of intelligence, may have some knowledge of 

how the network functions and can to behave in a manner to escape detection.  

The goal of the proposed TIBFIT protocol involves event detection and location 

determination in the presence of faulty sensor nodes, coupled with diagnosis and isolation 

of faulty or malicious nodes. The accuracy of the system is defined in terms of fraction of 

instances when an event occurrence is correctly detected, and its location determined 

within the given error bound.  

The approach followed by the protocol is to maintain state of the sensing nodes in 

terms of the fidelity of their previous sensing actions, and use this information in making 

decisions involving those sensing nodes. Sensor nodes report the occurrence and location 

of events to a data sink, and remain silent otherwise. The data sink then decides on 

whether the event occurred and where based on the aggregated data. To determine the 

location of the event the data sink must aggregate all reports from nodes within the 

detection radius. The aggregation could be a simple voting scheme. However voting is a 

stateless approach and does not reflect on the past performances of the sensing nodes. 

TIBFIT introduces a new parameter called trust index for this purpose. The Trust Index 

(referred to as TI) of a node is a quantitative measure of the fidelity of previous event 

reports of that node as seen by the data sink. In a system comprised of sensing nodes, the 

data sink assigns and maintains a TI for each node in its domain, and does voting in a 
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stateful manner. As the system runs over a longer time, more state is built up concerning 

the performance of the associated sensing nodes, and hence tolerance for faults also goes 

up accordingly. So while the simple voting approach falls apart when more than 50% of 

the nodes within detection range of the event are corrupted, TIBFIT can tolerate faults in a 

network with more than 50% of its nodes compromised after it has built up adequate state 

of the nodes. 

To demonstrate the effectiveness of TIBFIT, we use an event-driven simulation 

with ns-2. All nodes are considered liable to fail, whether in a natural or a malicious 

manner. We group the nodes into four categories: a) non-faulty nodes that naturally fault 

some percentage of the time; b) faulty nodes that err randomly; c) malicious nodes 

working independently that err occasionally and attempt to subvert the system but also 

try to remain undetected; d) malicious nodes that collaborate and err occasionally and 

attempt to subvert the system but also try to remain undetected. We show through 

simulation that TIBFIT is capable of accurately detecting and determining locations of 

events even when more than 50% of the network is compromised. Finally we also 

simulate a system that has a gradually increasing number of malicious nodes and analyze 

the accuracy of the system. 

The main contributions of this protocol and its evaluation are the following: 

1. TIBFIT tolerates nodes that fail both naturally and maliciously, and makes 

decisions on event occurrence as well as location. Under several scenarios, accurate 

event determination and localization can be done even with more than 50% of the 

network compromised. We also demonstrate diagnosis and limited recovery in the 

system. 

2. No nodes are considered immune to failure, whether they are sensing 

nodes or the data sink. 

3. We have come up with an adversary model with increasing levels of 

sophistication and demonstrate the effectiveness of the protocol in each case. 

4. The protocol is generic and can be applied to any data sensing and 

aggregation application in sensor networks. 
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6.1 Related Work 

 

As in any sensor networks problems, we require a great deal of related material to 

ensure that our model accounts for the many challenges of creating a functioning wireless 

sensor network.  For instance, [69] gives an algorithm that guarantees reliable and fairly 

accurate output from different types of sensors when at most k out of n sensors are faulty. 

[68] gives a fault tolerant way of averaging sensor data, and the author also gives a 

control process to deal with individual sensor failures. [70] deals with multi-sensor data 

fusion and assumes that the biggest loss in sensor network efficiency is from sensor 

readings. They propose a method of handling sensor failures through substitution of 

another on-board sensor. [32], [33], and [35] provide techniques of localization for 

finding node position, such as triangulation and lateration. Nodes within sensing range of 

this mobile node must be able to determine the location of this node. Location 

determination efforts with directional antennas can aid in finding the location of such a 

mobile node. In [65] it is shown that given signal strength and attenuation model one can 

estimate sensor location. Given enough fixed anchor nodes Bagchi et al. present a 

technique for finding an unknown node within some range of error [40].  

There appears to be a dearth of existing work related to our specific topic of data 

fault tolerance in sensor networks. Schaeffer et al. discuss decision making concerned 

with propagating an alert through a network [59]. They set a threshold for event 

propagation, where if a node hears more than n nodes announce an alert then that node 

sounds the alert. They analyze the characteristics of this network with false alarms and 

missed alarms, where the evaluation is on whether the event notification reaches some 

data sink. They address natural faults exclusively and do not consider cases with faulty 

nodes colluding. 

Wagner discusses aggregation of data in a sensor network with malicious 

intruders in [62]. The author presents a mathematical framework for analyzing the 

vulnerabilities of common aggregation functions and then presents the mathematical 

basis for secure aggregation functions, such as average with trimming. The work 

presented here can complement this by providing trimming of some failing nodes so that 
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the aggregation can work on the remaining data set. However, the paper does not address 

the problem of in network aggregation, which is covered here through the analysis of 

failure prone CHs. It admits the aggregation functions break down with more than half 

the network compromised. Also, the paper presents the case for aggregation with 

redundant deployments of cheap, crude sensor nodes.  

Koo shows an upper bound on the tolerance of a broadcast decision process as 

approximately 1/π of the network being compromised [53]. This model is proven 

theoretically with arbitrarily powerful malicious nodes. 

 

6.2 System Model 

 

All nodes in the network are identical and are arranged into disjoint clusters, each 

with a set of cluster heads (CHs), only one of which is active at any point in time. The 

CH serves as the data sink for its particular cluster. The nodes in a cluster are within one 

hop communication of the CH. The clusters themselves are formed randomly around the 

elected CHs. The CHs are rotated over time and CH election is based on energy-related 

parameters of the constituent nodes. In each cluster, the node that is chosen to be the CH 

knows the topology of the cluster. Nodes that are within the detection range of an event 

are called event neighbors for that event. This topology is illustrated in Fig. 6.1.  

 

Fig. 6.1 Event detection 
 

When an event occurs, all the event neighbors are expected to report the 

occurrence of the event to the CH. The CH makes a decision on whether the event has 
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occurred based on the reports received from the event neighbors and their trust indices. A 

detailed description of the TI model follows in Section 6.3. 

The sensor network is deployed by placing the nodes randomly in the network. It 

is assumed that the nodes have the ability to determine their own locations. This can be 

accomplished through GPS mechanisms, deploying nodes with deterministic mobility in 

known locations and using triangulation methods to compute their positions as functions 

of time, etc. Further discussion is beyond the scope of this paper. The locations of the 

nodes at a given time are known to the CHs, but not necessarily to the non-CH nodes. 

The network could be stationary or mobile, as long as it is possible for the CH to estimate 

the positions of its cluster nodes during decision making. The sensor nodes function in an 

event-driven model, that is, they sense the environment for occurrence of a particular 

detection-level event and transmit data only if they sense such an event. We will assume 

that the event is typically detectable by multiple nodes, which makes our protocol 

practical. This assumption is not unreasonable for many practical sensor deployments.  

We adopt the low energy, adaptive hierarchical clustering protocol (LEACH), for 

cluster formation as well as CH election [55],[56]. This protocol architecture aids in the 

formation of self-organizing clusters, with dynamically chosen CHs. Each node is 

assigned a probability of becoming a CH at the beginning of each round, which depends 

on the number of times it has been made CH previously and the energy available in the 

node. These properties help spread energy usage equally throughout the network. We 

have also incorporated the TI of the node as an additional parameter to be considered for 

CH election. The TI of the node has to be higher than a threshold value to ensure that 

only sufficiently trusted nodes can become CHs. This is not a property of the original 

LEACH protocol.  

Each node independently decides if it wishes to be a CH. Once a node decides to 

become a CH, it broadcasts this information. Any node that receives advertisements from 

n different contending CHs, affiliates itself with a single CH based on the strength of the 

signal received. If a node’s TI is below a certain threshold, the central base station will 

cancel this node’s effort to become a CH and re-initiate CH election. A CH that reaches 

the end of its leadership period sends the aggregate TI information that it has gathered for 
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all nodes in its cluster to the base station before ending its leadership. A newly CH 

elected for an existing cluster requests the base station for TI information for nodes in its 

cluster. 

We group event detection into two categories – binary event detection and event 

detection with location determination. Binary event detection leads to the system 

recognizing the occurrence of the event with a binary decision about whether it happened 

or not and not being concerned with the location of the event. An example could be 

detection of a forest fire based on the temperature reaching a critical threshold. Location 

determination is when the coordinates of the event are also reported by the sensing node. 

In the forest fire example, the sensor can detect environmental changes such as wind and 

variation in light intensity in a direction and estimate the location of the oncoming fire.  

 

6.2.1 Failure Model 

 

The nodes in the network may fail due to accidental failures or may be 

compromised by an adversary and therefore exhibit failure due to malicious causes. 

Three types of failure scenarios are possible. A node may have a missed alarm where it 

does not report an event within its sensing radius to the data sink within a specified time. 

A node may provide a false alarm where it either reports an event outside of its sensing 

radius or reports an event within its sensing radius that did not occur. A node may exhibit 

a location faults where it reports an event but at the wrong location. Flooding based 

denial of service (DoS) attacks are not considered in this paper.  

Four categories of sensing nodes are identified. Correct nodes are not assumed to 

be 100% accurate, but are expected to make errors within a specified bound referred to as 

natural error rate. Faulty nodes form the superset for nodes with natural or malicious 

failures. A faulty node can exhibit naïve behavior in terms of randomly sending out 

corrupt information following no specific pattern. The node lies arbitrarily, either in 

dropping an event report, falsely reporting an event, or reporting a faulty location (level 

0). A smart faulty node is aware partially of the system model and tries to retain its TI at 

a reasonably high level where it estimates it will not be detected and isolated. If a 
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malicious node’s TI is reaching a level at which it will either be dropped from the 

network or its vote has too little influence on the event decision, then the node will stop 

lying until its TI is raised sufficiently. The smart faulty nodes may lie independently 

(level 1) or in collusion (level 2). The colluding nodes are assumed to be connected in a 

way that is undetectable by the reliable nodes in the network. 

 

6.3 TibFit Design 

 

The goal of the TIBFIT protocol is to determine whether an event has occurred 

from analyzing reports from the event neighbors. To combat failures in the reporting 

nodes, each node is assigned a TI, maintained at the CH, to indicate its track record in 

reporting past events correctly. The TI is a real number between zero and one and is 

initially set to one. For each report a node makes that is deemed incorrect by the CH, the 

node’s TI is decreased. Similarly, for each report a node makes that is deemed correct by 

the CH, the node’s TI is increased, but not beyond one. Thus correctly functioning nodes 

will have a TI approaching one while faulty and malicious nodes will have a lower TI.  

We assume that correct nodes are allowed to make occasional errors due to 

natural causes. The rate of these errors is denoted the natural error rate (NER). The TI is 

decremented exponentially. Nodes that make mistakes are penalized more for earlier 

mistakes, and find it more difficult to regain their previous trust levels. This is considered 

better than a linear model where a node that lies 50% of the time would still occasionally 

have the trust index value of one. If a node errs more frequently than its NER its index 

decreases, while if it errs less frequently then its index increases.  

The TI is calculated as follows. Let the natural error rate be fr (<1). A variable v is 

maintained for each node at the CH. Each time a node makes a report deemed faulty by 

the CH its v is incremented by the expression 1-fr. Each time a node makes a report 

deemed to be correct by the CH its v is decreased by fr if v is larger than zero. The TI is 

calculated as 

TI = e-λv 
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where λ is a proportionality constant that is application dependent. An uncompromised 

node’s TI is expected to remain at the same value. It can be expected to suffer a fault at 

the rate of one per every 1/fr events and the expected change in v is: 
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The design of the protocol is explained next by successively relaxing some 

simplifying assumptions. 

 

6.3.1 Binary events 

 

Let us initially assume that event reports are binary in nature simply specifying 

whether the event has occurred or not. All the nodes in the cluster, say k, are event 

neighbors for any event detected by the cluster. A sensing node can detect the occurrence 

of an event perfectly for events that happen within a radius rs surrounding the node. All 

the nodes within radius rs of an event E are called event neighbors for E.  

After the CH receives the first event report, it calculates the k event neighbors for 

the event. The CH then waits for a predefined interval of time Tout for event reports to be 

received from these nodes. After Tout has elapsed, the CH partitions the event neighbors 

into two sets R and NR based on whether they have reported the occurrence of the event 

or not, respectively. The trust indices of each group are summed and the group with the 

higher cumulative TI (CTI) wins out. The trust index values of nodes in the winning 

group are increased while the index values of nodes in the losing group are decreased 

according to the formula given above. It should be noted that a smaller group of reliable 

nodes can win the vote against a larger group of unreliable nodes based on higher TI for 

the individual reliable nodes earned over past events. This process provides detection, 

diagnosis, and masking of the fault.  

It is evident that we do not need a TI model for a system with faulty nodes in the 

minority. A simple voting would suffice to mask the decision of the faulty nodes. 

However, consider a system where the density of faulty nodes increases over time. 

Examples could be batteries of the nodes dying out with time, or existing nodes being 
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compromised by adversaries. The faulty nodes which have been in operation for a while 

would have had their TIs reduced to low values. Hence even when the total number of 

faulty nodes is in a majority, their CTI may still be lower than that of the correct nodes. 

Hence, TIBFIT can lead to correct aggregation as well as diagnosis even with more than 

50% of the nodes compromised. It is obvious that if the initial condition consists of faulty 

nodes being in the majority, then the protocol will be unsuccessful in tolerating faults. 

After time, the system can identify a faulty node when its TI falls below a certain 

threshold. It can then be removed from the network.  

 

6.3.2 Location determination 

 

In this section we build on the previous model by adding location details to the 

event reports. The event report consists of location in terms of (r, Θ) with respect to that 

node. The nodes do not sense the location of the event perfectly and the CH must 

determine the actual location of the event. One sensor network problem that can be 

solved through this extension is where a network is attempting to track a mobile sensor 

node that is transmitting a signal as it moves throughout the network.  

Simplifying Assumptions: Let us assume there is a time difference of at least Tout 

between any two events to avoid overlapping event neighbors. A correct event report sent 

in by a sensing node reports the location of an event to within a radius rerror surrounding 

the event.  

Once time Tout has elapsed after the first event report, let there be k other reports 

that have come in from the nodes in the cluster during this time. The CH performs a 

clustering algorithm based on K-Means which groups these k event reports into a number 

of event clusters based on the locations indicated by the reports [66]. Each event cluster 

represents a possible location where the event could have occurred, as indicated by the 

reports. The clustering algorithm is a heuristic based on K-Means, so as to minimize the 

sum of squares error.  

Goal of the algorithm presented below is to organize the event reports into 

disjoint event clusters of radius rerror. Let C be the set of all event clusters consisting of 
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elements {C1, C2…Cr}. Let {c1, c2…cr} be the centers around which the event clusters 

{C1, C2…Cr} are formed. Let d(x, y) denote the distance between two points x and y. 

d(ci, cj) > rerror ∀ Ci, Cj  ∈ C. Ck.cg (Center of gravity) denotes the average location 

indicated by all event reports in cluster Ck. 

 Event clusters are created using the following procedure.  

(1) The clustering algorithm is started once Tout has elapsed after the first 

event report. The set of all event reports in this time Tout is referred to as E. The 

distances between each pair of event reports are computed and sorted in a 2D array. 

(2) Let E1 and E2 be event reports from the set E with the greatest distance 

between them. Event clusters C1 and C2 are created with E1 and E2 as centers, and C1, 

C2 are added to C.  

(3) Condition for any event report Ek to form a separate event cluster is that 

d(Ek, ci) > rerror ∀Ci ∈C. The set E is iterated through and the set of all cluster centers 

are identified, so that the remaining event reports are at a distance of less than rerror 

from at least one element in C, i.e., the remaining event reports cannot form separate 

event clusters. 

(4) Once the initial set of clusters in C are formed, remaining event reports in 

E are added to one of the clusters in C based on which cluster center it is nearest to. 

Ck.cg for the clusters are updated appropriately. 

(5)  If the centers of two or more clusters lie within rerror of each other the 

clustering algorithm is repeated by forming a new cluster center at the weighted 

average of these centers. The rounds are executed until no change in cluster 

constituency takes place in a new round.  

The final elements in C represent the set of all events. Ck.cg represents the 

location of the event k. The event neighbors can be determined for the location 

determined and a determination of whether an event has occurred is made based on the 

trust indices of the associated nodes as in Section 6.3.1. This design successfully throws 

out event reports from nodes which make a localization error of more than rerror.  
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6.3.3 Concurrent events 

 

Additions: In this section we build on the previous model by assuming that 

multiple events can occur within Tout of each other (referred to as concurrent events from 

here on). We however assume that concurrent events cannot occur closer than a distance 

of rerror. 

(1) When the CH receives the first event report E1, a symbolic circle of radius 

rerror is drawn around it. A new timer E1.Tout is started for the associated event reports 

from other event neighbors to come in. All subsequent events that lie within rerror of 

E1 reported within time Tout are added to the same circle.  

(2) If any subsequent event report Ek received lies outside this circle, a new 

circle of radius rerror is formed with this event report Ek as its center. Associated 

Ek.Tout is started. 

(3) Once time Ek.Tout has passed from the reception of event report Ek that is 

the center of a circle, all the event reports inside this circle are put into a group and 

the clustering algorithm described in the previous section is performed on them to 

determine the location of the event.  

(4) However if one or more other circles overlap with this circle, then the CH 

must wait until time Tout has elapsed for all such overlapping circles. The clustering 

algorithm is performed on the union of all event reports in all the overlapping circles 

to determine the event clusters and thus how many events have actually occurred. 

 

6.3.4 Unreliable Cluster Heads 

 

Though the CHs are chosen based on high TI values, it is still possible for a 

selected CH to fail. To combat this problem we assign two additional shadow cluster 

heads (SCH) to each cluster such that the SCHs can monitor all input and output traffic 

associated with the selected CH. The SCHs themselves may be considered to be reliable 

as they are chosen based on the fact that they have the highest trust indices among nodes 
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within one hop of the CH. The SCHs listen in to the communication going in and out of 

the CH and perform all the functions as the CH except transmitting the aggregated event 

reports to the base station. On perceiving a wrong conclusion being drawn at the CH 

based on the input data, the SCHs also send the result of their own computations to the 

base station. The base station, on receiving data from all CHs in the cluster, does a simple 

voting to arrive at the right conclusion. It also prompts CH election in that cluster to pick 

a new CH and reduces the TI of the previous faulty CH. Thus, only a single CH failure 

can be tolerated.  

TIBFIT can also be extended to scenarios where the sensing nodes are more than 

one hop away from the data sink. The data sink still needs to know the location of the 

constituent node and reliable data dissemination primitive needs to be introduced to 

ensure that the data sent out by the sensing nodes reliably reach the data sink without 

alteration[14],[67].  

 

6.4 TibFit Analysis 

 

In this section we analyze the probability associated with the CH successfully 

identifying a binary event in the presence of faulty nodes.  

Consider a baseline model with no trust indices assigned to the nodes. Let us 

assume that there are N event neighbors, of which m are faulty. The probability of a 

successful report from a correct node is p, and the probability of a successful report from 

a faulty node is q. Let X be the random variable that is the number of correct reports from 

correct nodes, and Y be the random variable indicating the same for the faulty nodes. 

They are defined: 
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The probability that the N-m correct nodes make k or more correct reports is 

therefore the sum of the probabilities from k to N-m, and from k to m for faulty nodes. 



63 

 

Define the random variable Z=X+Y. We wish to know the probability that Z has a 

majority of the N votes which is the probability that the event is successfully identified. 

The expressions are shown in equations (6.1), (6.2), and (6.3). These expressions map to 

Fig. 6.2 with N=10, q=0.5, and p=0.99, 0.95, 0.90, 0.85. 

The accuracy begins to fall off steeply once fifty percent of the network is 

compromised. TIBFIT can tolerate both an increase in faulty nodes over time and more 

initial nodes being faulty, and will therefore outperform this baseline case. Next we will 

show how TIBFIT performs over time. 

Consider the TIBFIT model. Assume the network initializes with N nodes with 1 

faulty node and N-1 correct nodes. We will corrupt the nodes in the network at a constant 

rate of one after every k events and show how the system still functions with 100% 

accuracy till N-3 nodes are corrupted, thereby outperforming the baseline case which 

drops in accuracy once 50% of the nodes in the system are compromised. Without loss of 

generality, let us assume that N is odd. We also make the simplifying assumption that 

correct nodes are always correct and the faulty nodes always fail. Let CTIcorrect be the CTI 

of the set of correct nodes and CTIfaulty be the CTI of the set of faulty nodes. 

After every k events a good node is compromised. After (N-2).k rounds, total 

number of correct nodes is 3, and faulty nodes is N-3. CTIcorrect is 3 as correct nodes are 

always correct and each have a TI of one. After the first faulty report, the TI of a node 

becomes e(-λ). Therefore after k rounds, the TI of the faulty node would be e(-kλ). So, 

CTIfaulty for (N–3) faulty nodes when the newest addition to the faulty set has made k 

errors would be ( )22 N kk ke e e λλ λ − −− −+ + +… .  
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Fig. 6.2 Expected accuracy of the network as the percentage of faulty nodes increases 

 
For the system to be 100% accurate, CTI of correct nodes (CTIcorrect) should always be 

greater than CTI of faulty nodes (CTIfaulty). For a correct node to be corrupted, CTIfaulty 

should be infinitesimally close to 1, so that CTIcorrect -1 > CTIfaulty+1 (a node is transferred 

from the good side to the bad side). We have the following expression: 

 ( )223 1 1 N kk ke e e λλ λ − −− −− > + + + +… , or 
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−
, which can 

be solved with Matlab.  

 
Fig. 6.3 Variation of k with different λ values 

 
Fig. 6.3 shows this expression for several different λ values. Wherever a given line 

crosses the x-axis that is the value of k and the number of rounds after which a good node 

can be made into a faulty node. Expectedly as λ increases, the frequency of nodes failing 

that can be tolerated increases since the TI degrades more rapidly with failures. It is for 
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this reason we chose λ=0.25 for our simulations, so that we could create a fair number of 

data points but without needing a very large number of events to show the beneficial 

effects of TIBFIT. 

 The upper limit on k is the k necessary to make three good nodes tolerate an 

additional failure. We stop the analysis at two because once the system has two good 

nodes left then the sum of the faulty nodes’ trust indices must be less than zero to allow 

the addition of a bad node, which is impossible. When there are 3 good nodes left in the 

system, then 3 > CTIfaulty , where CTIfaulty = 3-ε, ε>0. After kmax rounds from this state, let 

us assume that one more correct node can be transferred to the faulty side. Therefore after 

kmax rounds the value of CTIfaulty should be = 1- ε before the transfer. Solving 3*e-kmaxλ =1-

ε gives us max

1
ln 3 as 0k ε

λ
= → . Hence, the maximum number of rounds needed to tolerate 

another faulty node is 1
ln 3

λ
.  

 

6.5 TibFit Simulation and Results 

 

The TIBFIT protocol is simulated using the network simulator – ns-2 [58]. A 

sensing radius of 20 units is considered. Events are generated at regular time intervals by 

the event generator, using a uniform random variable to generate X and Y coordinates 

uniformly distributed in the network. The event generator informs the event neighbors of 

the event and its location. 

We run three different experiments. In experiment 1 we show the accuracy of the 

binary event model versus percentage of the network compromised by level 0 faulty 

nodes. In experiment 2 we show the accuracy of the location event model versus 

percentage of the network compromised by level 0, 1, and 2 faulty nodes. In experiment 3 

we show the accuracy of the location event model versus time, where the percentage of 

the network compromised increases linearly over time. 

For each simulation we use either the TIBFIT system that uses the trust index, or 

we use the baseline system, which uses majority voting to make event decisions. 
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Experiments are run with faulty nodes belonging to only one level for a given 

experiment. Nodes are stationary in all experiments. 

 
6.5.1 Experiment 1 – binary events 

 
A cluster of ten nodes is formed, and all nodes are considered event neighbors for 

every randomized event. Level 0 faulty nodes are used for the fault model, generating 

both missed alarms and false alarms. The CH makes a decision regarding occurrence of 

the event based on the data forwarded to it from the sensing nodes.  

Table 6.1 
 Parameters for Experiment 1 

Type of Event Binary Event Model 
Independent Variable Percentage Faulty Nodes: varied from 40%-90% 
Correct Nodes NER 0, 1, and 5% 
Faulty Nodes NER Level 0:Missed Alarm 50%  

False alarm 0,10, and 75% 
Size of network 10 sensing nodes, 1 CH 
Number of Event Neighbors 10 
Events per simulation 100 
 λ 0.1 
Fault rate (fr) Same as NER 

 

For this experiment we started simulations with 40% of the network 

compromised. As Section 6.4 shows, even for the baseline system, the probability of 

failure with less than 40% of the network compromised is very small, and therefore not 

simulated. 

The results in Fig. 6.4 include only missed alarms. The most noteworthy result 

from this experiment is that the network can have 70% of its nodes compromised and still 

maintain over 85% accuracy. This result is superior to the analytical results shown in Fig. 

6.2 in Section 6.4.  
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Fig. 6.4 Experiment 1 – 50% accurate faulty Nodes, missed alarms only 
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Fig. 6.5 Experiment 1 – 50% accurate faulty nodes, missed alarms and false alarms 

 
Fig. 6.5 shows the simulation with both false alarms and missed alarms from 

faulty nodes. All correct nodes have 1% NER. Again, the network performance starts to 

degrade with 70% faulty nodes. The interesting results is that 75% false alarms shows the 

best accuracy when less than 80% of the network is compromised, indicating that the 

excessive false alarms lower faulty nodes’ TIs and therefore increase system reliability. 

At 80% faulty nodes with 75% false alarms, accuracy falls dramatically, as the system is 

no longer able to tolerate the excessive false alarms. 10% false alarms maintains the 

highest accuracy at this point, indicating that occasional false alarms lower faulty nodes’ 

trust indices enough to outperform 0% false alarms.  
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6.5.2 Experiment 2 – location determination model 

 
In the second type of simulation, 100 nodes are placed uniformly on a 100X100 

grid. The CHs and event generator are two other entities present in the network. The CH 

decides on both the occurrence of the event as well as its location. The network is a single 

cluster, and the CH knows the positions of all 100 nodes. All nodes can reach the CH in a 

single hop. For location estimation rerror is 5 units. Table 6.2 shows various experimental 

parameters for this experiment. Due to the ns-2 wireless model, correct nodes’ packets 

are naturally dropped less than 1% of the time.  

A lower threshold (lowerTI) of 0.5 is used for level 1 and level 2 nodes to ensure 

their trust indices do not fall too low. If they reach the lower threshold they behave like a 

correct node until they reach an upper threshold (upperTI) of 0.8, after which they begin 

erring again. Each node reports an event with error in both the X and Y directions as 

dictated by a Gaussian random variable with standard deviation σ. 

The error percentage indicated in Table 6.2 is calculated as the joint probability 

distribution of the two Gaussian rv’s, which are Rayleigh distributed, and it indicates the 

probability a node reports an event more than 5 units away from the actual event location. 

The standard deviation for a correct node is much less than that for a faulty node. Level 1 

nodes work independently, while level 2 nodes collude with each other and all either send 

the event report for the same location or do not send the event report.  

Table 6.2 
 Parameters for Experiment 2 

Type of Event Location Determination 
Concurrent or single events 

Independent variable Percentage faulty nodes, varied from 10%-58% 
Error rate for correct 
nodes 

Location report has std. deviation of 1.6 or 2.0 

Error rate for faulty 
nodes (levels 0, 1, and 
2) 

Location report has std. dev. of 4.25 or 6.0, drop packets 25% 
of the time 

Size of network 100 sensing nodes, 5 CH 
Number of event 
neighbors 

Variable on location 

λ 0.25  
Fault rate (fr) 0.1 (different from NER for wireless channel model losses) 
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This experiment initialized a network with a percentage of the network 

compromised by Level 0, 1, or 2 malicious nodes. 58% was the upper limit for the 

compromised network as past this point the system did not work with much accuracy. 

The output accuracy metric was the number of events detected by the CH within rerror of 

the actual event. Simulations are run with both concurrent and single events. The legend 

format for all the result figures from this point on is “Lvl M W-Z [TIBFIT or Baseline]”, 

where M is the type of malicious node used, W is the standard deviation of the correct 

nodes, Z is the standard deviation of the malicious nodes, and the final parameter is 

whether the TIBFIT or the baseline model was used.  

The results in Fig. 6.6 show that at low percentages of the network compromised, 

the TIBFIT system and the baseline system perform similarly. However, after 40% of the 

network is compromised, the TIBFIT model performs better than the baseline model by at 

least 7% percent, and by as much as 20% percent. More importantly, TIBFIT has accuracy 

near 80% even with faulty nodes having errors 70% of the time. A consequence of the 

execution of the network with TIBFIT is that the trust index values of the faulty nodes 

continue to decrease and once they reach the threshold, the nodes can be removed from 

the network, thus eliminating them from causing future damage.
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Fig. 6.6 Experiment 2 – Level 0 faulty nodes 
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Level 1 TIBFIT versus Baseline
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Fig. 6.7 Experiment 2 - Level 1 faulty nodes 
 

The second graph for location estimation, shown in Fig. 6.7, is for level 1 nodes. 

The result shows that even with 58% of the network compromised, TIBFIT’s accuracy 

remains over 90%. In contrast, the baseline model falls well below that level once the 

network reaches 40% malicious nodes. The reason for this trend is that the level 1 nodes 

lie with intention to keep them from being detected. In effect, the trust index forces the 

malicious nodes to lie less frequently and therefore helps to improve the accuracy of the 

event determination. 
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Fig. 6.8 Experiment 2 – Level 2 faulty nodes 
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Fig. 6.8 shows results for level 2 malicious nodes. It shows that these nodes 

dramatically reduce the accuracy of the network, although the TIBFIT still outperforms 

the baseline model. It is clear from this figure that even the trust index has trouble 

tolerating level 2 type faults due to the collaborative nature of the nodes. 

Fig. 6.9 shows level 0 nodes with concurrent events compared to single events, 

both simulations using TIBFIT. The concurrent events occur with uniform distribution 

simultaneously, although never within rerror of each other. The graph indicates that 

tolerating concurrent events does not significantly alter the success of the nodes in 

accurate detection of events. 
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Fig. 6.9 Experiment 2 – Single and concurrent events 
 

6.5.3 Experiment 3 – decay of network 

 

The next simulation increases the percentage of the network compromised by 

malicious nodes linearly over time. The network is initialized with 5% of the network 

compromised by level 0 faulty nodes. After every 50 events 5% more of the network is 

compromised until 75% of the network is compromised. 
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Fig. 6.10 Experiment 3 – Linear increase in number of faulty nodes 

 
Fig. 6.11 Experiment 3 – Linear increase in number of faulty nodes 

 
Fig. 6.10 and Fig. 6.11 show that over time TIBFIT outperforms the baseline 

model in all cases. This occurs because the trust indices of the faulty nodes decrease over 

time and the system can then handle the transition of some correct nodes to faulty nodes. 

It is important to compare only the lines with the same standard deviation parameters, 

because for some time the baseline model with 1.6-4.25 outperforms the TIBFIT 2-4.25 

case, although after a longer period of time the TIBFIT line does better, even though it has 
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a higher fault rate in its correct nodes.  What is also notable is that the TIBFIT network 

maintains nearly 80% accuracy even with 60% of the network compromised. 

 

6.6 Summary 

 

This chapter presented a protocol called TIBFIT that maintains state for event decisions 

in a sensor network. This protocol can handle both binary event detection and event 

location estimation with high accuracy in the face of natural and malicious node failures 

within the network. The protocol outperforms the standard voting scheme for event 

detection. We also define two types of intelligent malicious fault models that can disrupt 

a network, and find that using TIBFIT malicious nodes acting independently are 

successfully tolerated. However, the accuracy of TIBFIT in a system of colluding nodes is 

not as high though it outperforms the baseline voting scheme. 
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7. CONCLUSIONS 
 

This work aims to create more dependable sensor systems. There are multiple 

aspects to this problem, but this work has chosen to focus on three specific problems: 

sensor network retasking, sensor node localization, and sensor node fault tolerance.  

Through TOSSIM simulations and some hardware results it is shown that network 

reprogramming can be both reliable and energy efficient. This work presents a protocol 

called Freshet that builds on the standard network reprogramming protocol Deluge. 

Freshet shows nearly 40% more efficiency in energy usage than Deluge, primarily due to 

effective radio management. Freshet also proposes a means of expediting disseminating 

code with multiple senders through interleaving of pages. All these results tend towards a 

system that will operate longer and more reliably than one using the original Deluge 

protocol. 

The next aspect of dependable middleware considered is that of sensor node 

localization. Location information inevitably improves sensor network performance by 

informing the network of things that it is otherwise unaware. In some cases, especially 

removing faulty nodes, localization is necessary for any effective functionality. However, 

due to localization equipment’s high cost, it is necessary to find means of disseminating 

localization information without expensive equipment attached to each node. This work 

shows how inexpensive directional antennas can be applied to this problem. A hardware 

implementation of these antennas shows over two times less error in localizing nodes 

than do the traditional omni-directional nodes. 

Finally, we deal with fault tolerance in sensor networks. Inevitably some 

reliability or security concerns will arise with deployed nodes, and thus it is necessary to 

provide a means to combat these problems. This thesis presents TIBFIT, a trust-based 

fault tolerance protocol for masking and detecting faulty nodes within a network. 

Simulations in NS-2 show that TIBFIT can tolerate faulty and malicious nodes with great 
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reliability. In certain fault models TIBFIT can tolerate a network that is over 50% 

compromised, a non-intuitive and important result. If nodes fail frequently enough within 

a TIBFIT network then those nodes may be removed; this removal process is improved 

through directionality, which could be provided by the localization scheme proposed 

earlier.  

In summary, this thesis provides three steps towards more reliable sensor network 

middleware. Additional work remains to be done as far as hardware implementations are 

concerned. It would be very valuable to test Freshet in an extensive hardware 

implementation and hopefully then employ TIBFIT and localization schemes to tolerate 

potential faults that may arise within this network. A system equipped with all of these 

tools would provide a very flexible and robust network of nodes that could potentially 

prove very valuable in practical use. 
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A. LOCALIZATION EXPERIMENTAL RESULTS 
 

A.1 Experimental Setup 

 

Crossbow MICA2 motes MPR400CB operating at 900 MHz and running TinyOS 

as the programming environment are employed as the sensor nodes for our testbed. Two 

kinds of omni-directional antennas are used - quarter wave whip antennas (MMA400CA) 

(on the transmitting anchor node, comes off-the-shelf with the motes) and quarter 

wavelength monopole antennas with an expanded ground plane (on the receiving target 

nodes, fabricated for easy interfacing and co-existence with the patch antennas). 

Directional antennas are fabricated and used on both the target sensor node, whose 

location is to be determined, and the anchor sensor nodes, whose location is assumed to 

be known. Patch antennas fabricated on duriod substrates, Rogers RO3010 whose 

dielectric constant is 10.2, are chosen as the semi-directional antennas in this testbed due 

to their simple fabrication, small size, and low-cost. The other candidate designs such as 

Yagi antennas, horn antennas, and antenna arrays, would have more directionality but are 

larger and more expensive and therefore not applicable. Sensor motes with four 

directional antennas controlled by a switching network according to the received signal 

strength indicator (RSSI) at the antennas are employed to be the target motes (functioning 

as receivers). The switching network is implemented by a GaAs MMIC SP4T switch. 

Software executing on the target motes monitors the received signal power on the four 

antennas and selects the requisite ones (the best, or the two best) for its location 

computation. The motes are tested in an outdoor environment to observe the performance 

of the location determination system with different kinds of wireless fading.  The goal of 

the experiments is to determine the estimation error of the location determination system. 
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Three experiments are set up with transmitting anchor motes that initially have 

omni-directional (dipole) antennas (see Fig. A.2(a)). If necessary, aligned patch antennas 

are mounted on the anchor motes (see Fig. A.2(b) and (c)) to have a complete directional 

transmitting and receiving system. The target motes, functioning as receivers, are 

equipped with the switched directional antennas and collect the data which is forwarded 

to a laptop through a Universal Asynchronous Receiver/Transmitter (UART) Interface. 

Matlab programs are written to solve the equations given in Sections 5.2, 5.3, and 5.4 

numerically. The software utilizes a gain pattern derived from the patch antenna from 

Ansoft’s High Frequency Simulation Software (HFSS) package. HFSS, a full wave 

electromagnetic simulation commercial software, is the default industry standard RF 

design simulation tool [46][47]. The radiation pattern is simulated and compared with the 

measurement of the fabricated patch (Fig. A.1). It is observed that the two are in close 

agreement and hence the HFSS model is used for further analysis. The experiments in 

Section 0 have 150 samples for each position, taken in three separated time intervals. 

These are averaged for the reported number. The largest 95% confidence interval for 

these experiments was 12% relative error. Matlab simulation is used to iteratively solve 

the equations to minimize the error in the radial distance and the angle of reception. 

If the iterative Matlab simulation is considered too expensive to execute on the 

motes, a static lookup table of signal strength versus radial distance and angle of 

reception can be created and uploaded into the motes. This cuts down on the latency of 

the location estimation as well as the computational expense on the simple processors of 

the sensor nodes, at the expense of the accuracy of the solution. This approach will be 

further investigated in the future. 
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Fig. A.1 Radiation pattern of the patch antenna from HFSS and the measurement in 

anechoic chamber room 
 

The location error is defined by the error distance from the estimated target 

position t̂argetrK  to the actual target position ,0targetrK  divided by the known actual distance 

between the anchor mote and the target mote ( ,0 ,0anchor targetR r r= −K K ) where rK  is a two-

dimensional position vector. Location error errorR  
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A.1.1 Experiment 1: aligned case with single omni-directional antenna anchor, 

dual patch antenna target 

 

In Experiment 1, an anchor node is used with an omni-directional or dipole 

transmit antenna. The target node has a dipole antenna and two directional patch 

antennas. Test 1 is the case with a dipole antenna on the target node. Test 2 has the 

directional antennas on the target node.  The target node is placed in the center of a circle 

of radius d = 8 feet and d = 24 feet. Received power measurements are made with the 

anchor node at different points on the periphery of the circle. Calculations were computed 

using equations (5.1) and (5.2) with Gr independent of Θ. 

The relative distance error is shown in Fig. A.3 for both tests. The x-axis is the 

angle of the anchor node with respect to the north-south axis drawn from the target node, 
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with the anchor node being moved on the circumference of a circle with the target node at 

the center. When using the directional antennas, the target node selects the two strongest 

signals on its receiving antennas to execute the location estimation algorithm. 

When using the omni-directional antenna, the position cannot be determined since 

at least three anchor nodes would be needed and hence, the distance estimate is used as 

the basis for comparison. In this case the Friis’ formula is used with an experimentally 

determined parameter for the exponent in the power loss, RN, N=1.89 in the measurement 

environment. This parameter was determined using the omni-directional antenna and then 

generalized for the experiment setting and applied in all calculations. It is reasonable that 

the value of N would be constant over a section of the sensor field and does not have to 

be calibrated for each source-destination pair.  
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Fig. A.2 Antenna configurations for (a) Experiment 1 (b) Experiment 2 (c) 
Experiment 3 

 
This is classified as a line-of-sight and relatively multipath free environment and 

is applied to estimate ,0 ,0
ˆ

T̂X RXR r r= −
K K K . The distance error in the entirely omni-directional 
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antenna system is in the range of 0-105% with a mean of 34%, while this error is reduced 

to 0-90% with a mean of 23% in the case of the directional antennas.   

This result can be explained by the fact that in omni-directional antennas, there 

are more multi-path effects leading to more interference and more fluctuation in received 

signal strength. Thus, even if triangulation is used, directionality of the antennas is useful 

since it leads to more accurate estimates of individual distances.   
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Fig. A.3 Relative error in distance estimation for Experiment 1 
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Fig. A.4 Location estimation error for Experiment 1, Test 2 for (a) 8 feet, (b) 24 
feet 

 
However, by using the angular information that is gained from multiple receiving 

antennas, the location of the target node can be determined with a single mote without the 

use of triangulation (see Section 5.2). The location error of test 2 in Experiment 1 is 

shown in Fig. A.4. The error is larger than the radius error because the angle estimation 

error also contributes to the location error. On average, the location errors are (a) 43.15% 

and (b) 55.75%. This motivates the need to use dissemination of location information 
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through multi-hop communication for large distances. This error can be further mitigated 

by using other estimation anchors, as Experiment 3 shows.    

 

A.1.2 Experiment 2: single patch antenna anchor with dual patch antenna target 

 

In this experiment directional patch antennas are employed in the transmission 

motes (see Fig. A.2(b)). The receiving antennas are all directional. The analytical model 

is as shown in Section 5.2. The errors in measured distance and angle are shown in Fig. 

A.5 and the maximum errors in the two metrics are seen to occur at different positions. 

The location estimation error calculated from actual measurements is shown in Fig. A.6. 

These calculations were made using equations (5.1) and (5.2). The location error grows 

larger as Θ1 increases because the transmission antenna is not oriented towards the target 

node. 
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Fig. A.5 Distance and angle estimation error for Experiment 2. [The solid line is the 

estimation and the dashed line is actual measurement.] 
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Fig. A.6. Location estimation error for Experiment 2 
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Compared to the experiment with omni-directional transmitting antenna, the 

location error is reduced when the angle is smaller than 45 degrees because the radiation 

pattern of directional transmission antenna overlaps with the receiving antennas. After 

this cross-over point, the patch #W on the anchor node which is oriented to the west can 

be used as the transmission antenna. Hence, the location error can be controlled to be less 

than 40% in a single anchor.  The average error is 29.18%.  

 

A.1.3 Experiment 3: two single patch antenna anchors and single patch antenna 
target 

 

Two anchors can be used to provide additional data for location estimation, as 

shown in the analysis of Section 5.4.  The configuration of Experiment 3 is shown in Fig. 

A.2(c). In this experiment only the two patches receiving the strongest signals are used 

while the others are turned off. Calculations for this experiment were made using 

equations (5.8), (5.9), and (5.10). The outdoor measurement result is shown in Fig. A.7. 

For this experiment, measurements are taken individually from each directional anchor 

node and not at the same time. This does not affect the validity of the results since the 

stochastic model for the channel is time invariant. When an additional anchor provides 

another power measurement, the estimation error reduces from 29.18% in Experiment 2 

to an average of 17.78% in Experiment 3. The first cause of this improvement is the 

increase in the separation of the two transmission patch antennas in Experiment 3 

compared to the relatively small distance of the two patches in Experiment 2. This means 

that the error in the radial distance R and the reception angle Θ are now uncorrelated. 

Second, the fading channels are more uncorrelated in Experiment 3 because the distance 

between the two anchors is much greater than the wavelength of the RF wave. Thus, we 

conclude that significant location estimation improvement can be obtained by using 

multiple anchors with directional antennas.  
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Fig. A.7 Location estimation error for two anchor nodes with directional patch 

antennas 

perform statistical analysis on the raw measurements to quantify the errors using 

information from three anchor nodes. For test 1 of experiment 1 (pure omni-directional), 

the error is 27.5%, for experiment 2 20%, and for experiment 3 11.6%. The improvement 

is more striking with more neighbor anchors, as the simulation results show. 

 


