
1

TIBFIT: Trust Index Based Fault Tolerance for Arbitrary Data Faults in Sensor

Networks

Mark Krasniewski, Padma Varadharajan, Bryan

Rabeler, Saurabh Bagchi

Dependable Computing Systems Lab

School of Electrical and Computer Engineering,

Purdue University

Email:{mkrasnie,pvaradha,brabeler,sbagchi}

@purdue.edu

Y.Charlie Hu

Distributed Systems & Networking Lab

School of Electrical and Computer Engineering,

Purdue University

Email: ychu@purdue.edu

Abstract

Since sensor data gathering is the primary functionality of

sensor networks, it is important to provide a fault tolerant

method for reasoning about sensed events in the face of
arbitrary failures of nodes sending in the event reports. In

this paper, we propose a protocol called TIBFIT to diagnose
and mask arbitrary node failures in an event-driven wireless

sensor network. In our system model, sensor nodes are

organized into clusters with rotating cluster heads. The
nodes, including the cluster head, can fail in an arbitrary

manner generating missed event reports, false reports, or

wrong location reports. Correct nodes are also allowed to
make occasional natural errors. Each node is assigned a

trust index to indicate its track record in reporting past

events correctly. The cluster head analyzes the event reports
using the trust index and makes event decisions. TIBFIT is

analyzed and simulated using the network simulator ns-2

and its coverage evaluated with a varying number and
varying intelligence of the malicious nodes. We show that

once TIBFIT gathers enough system state, accurate event

detection is possible even if more than 50% of the network
nodes are compromised.

Keywords: Sensor networks, secure and intrusion tolerant

systems, trust index, arbitrary data faults, event aggregation.

1 Introduction

Recent innovations made in the fields of electronics and

wireless communication have enabled the advent of sensor

networks. These networks comprising of thousands of

inexpensive sensor nodes can be set up with relative ease by

placing the nodes in predefined locations manually or

through the use of robots, as well as by random deployment

of self-organizing nodes. A wide gamut of applications

ranging from health, home, environmental to military and

defense make use of sensor nodes for collection of

appropriate data. The sensor nodes comprising of data

collecting, processing, and transmitting units are very small

in size and can be densely deployed owing to their low cost.

Sensor nodes have serious limitations in available

resources, such as power, memory, and processing ability[2].

The sensor nodes and wireless links are prone to failure,

while the network is also open to various malicious attacks.

While significant research has been done in the areas of

communication architecture, routing, and energy

conservation in sensor networks, development of fault

tolerance in this highly volatile scenario remains an

interesting open research issue. Conventional fault tolerance

and intrusion tolerance protocols do not translate well to the

sensor network domain due to its large scale and the

resource constraints on the sensor nodes.

In this paper we consider fault tolerance in an event

driven model for sensing. An event driven model of

behavior for sensing finds many applications in civilian,

military as well as industrial scenarios. Examples could be

seismic monitoring to detect and locate tremors in a given

area, or military applications to sense any movement within

a cordoned-off area. The inherent unreliability of sensor

nodes makes fault tolerance in such an environment an

important concern. The problem is essentially one of

aggregating data from multiple sensor nodes to decide if an

event has occurred and determining the location of the event,

in the face of natural and malicious failures in both the

sensing nodes as well as the aggregating nodes. In particular,

our approach looks at arbitrary faults in the sensor networks,

whether natural or malicious. Natural arbitrary faults may

arise suddenly and intermittently in sensor networks, thereby

causing a node to miss reporting an event (missed alarms) or

falsely reporting an event that has not occurred (false

alarms). Malicious faults occur when some nodes in the

network have been compromised by an adversary. This

adversary can make the nodes send out corrupt information

intended to adversely affect the data gathering role of the

network. These malicious nodes, depending on their level of

intelligence, may have some knowledge of how the network

functions and can to behave in a manner to escape detection.

The goal of the proposed TIBFIT protocol involves event

detection and location determination in the presence of

faulty sensor nodes, coupled with diagnosis and isolation of

faulty or malicious nodes. The accuracy of the system is

defined in terms of fraction of instances when an event

occurrence is correctly detected, and its location determined

within the given error bound.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

2

The approach followed by the protocol is to maintain

state of the sensing nodes in terms of the fidelity of their

previous sensing actions, and use this information in making

decisions involving those sensing nodes. Sensor nodes report

the occurrence and location of events to a data sink, and

remain silent otherwise. The data sink then decides on

whether the event occurred and where based on the

aggregated data. To determine the location of the event the

data sink must aggregate all reports from nodes within the

detection radius. The aggregation could be a simple voting

scheme. However voting is a stateless approach and does not

reflect on the past performances of the sensing nodes. TIBFIT

introduces a new parameter called trust index for this

purpose. The Trust Index (referred to as TI) of a node is a

quantitative measure of the fidelity of previous event reports

of that node as seen by the data sink. In a system comprised

of sensing nodes, the data sink assigns and maintains a TI

for each node in its domain, and does voting in a stateful

manner. As the system runs over a longer time, more state is

built up concerning the performance of the associated

sensing nodes, and hence tolerance for faults also goes up

accordingly. So while the simple voting approach falls apart

when more than 50% of the nodes within detection range of

the event are corrupted, TIBFIT can tolerate faults in a

network with more than 50% of its nodes compromised after

it has built up adequate state of the nodes.

To demonstrate the effectiveness of TIBFIT, we use an

event-driven simulation with ns-2. All nodes are considered

liable to fail, whether in a natural or a malicious manner. We

group the nodes into four categories: a) non-faulty nodes that

naturally fault some percentage of the time; b) faulty nodes

that err randomly; c) malicious nodes working independently

that err occasionally and attempt to subvert the system but

also try to remain undetected; d) malicious nodes that

collaborate and err occasionally and attempt to subvert the

system but also try to remain undetected. We show through

simulation that TIBFIT is capable of accurately detecting and

determining locations of events even when more than 50%

of the network is compromised. Finally we also simulate a

system that has a gradually increasing number of malicious

nodes and analyze the accuracy of the system.

The main contributions of this paper are the following:

1. TIBFIT tolerates nodes that fail both naturally and

maliciously, and makes decisions on event occurrence

as well as location. Under several scenarios, accurate

event determination and localization can be done even

with more than 50% of the network compromised. We

also demonstrate diagnosis and limited recovery in the

system.

2. No nodes are considered immune to failure, whether

they are sensing nodes or the data sink.

3. We have come up with an adversary model with

increasing levels of sophistication and demonstrate the

effectiveness of the protocol in each case.

4. The protocol is generic and can be applied to any data

sensing and aggregation application in sensor networks.

The rest of the paper is organized as follows. First, we

discuss the parameters of our system model in Section 2, we

discuss TIBFIT design in Section 3, the simulation

implementation and results in Section 4, the analysis of

TIBFIT in Section 5, related work in Section 6, and

conclusions in Section 7.

2 System Model

All nodes in the network are identical and are arranged

into disjoint clusters, each with a set of cluster heads (CHs),

only one of which is active at any point in time. The CH

serves as the data sink for its particular cluster. The nodes in

a cluster are within one hop communication of the CH. The

clusters themselves are formed randomly around the elected

CHs. The CHs are rotated over time and CH election is

based on energy-related parameters of the constituent nodes.

In each cluster, the node that is chosen to be the CH knows

the topology of the cluster. Nodes that are within the

detection range of an event are called event neighbors for

that event. This topology is illustrated in figure 1.

Figure 1: Event detection

When an event occurs, all the event neighbors are expected

to report the occurrence of the event to the CH. The CH

makes a decision on whether the event has occurred based

on the reports received from the event neighbors and their

trust indices. A detailed description of the TI model follows

in Section 3.

The sensor network is deployed by placing the nodes

randomly in the network. It is assumed that the nodes have

the ability to determine their own locations. This can be

accomplished through GPS mechanisms, deploying nodes

with deterministic mobility in known locations and using

triangulation methods to compute their positions as functions

of time, etc. Further discussion is beyond the scope of this

paper. The locations of the nodes at a given time are known

to the CHs, but not necessarily to the non-CH nodes. The

network could be stationary or mobile, as long as it is

possible for the CH to estimate the positions of its cluster

nodes during decision making. The sensor nodes function in

an event-driven model, that is, they sense the environment

for occurrence of a particular detection-level event and

transmit data only if they sense such an event. We will

assume that the event is typically detectable by multiple

nodes, which makes our protocol practical. This assumption

is not unreasonable for many practical sensor deployments.

Transmission range of N2

Node N2

Event to be detected

Cluster Head

Event Neighbors

Other nodes in the cluster

Event detection range

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

3

We adopt the low energy, adaptive hierarchical

clustering protocol (LEACH), for cluster formation as well

as CH election [3],[4]. This protocol architecture aids in the

formation of self-organizing clusters, with dynamically

chosen CHs. Each node is assigned a probability of

becoming a CH at the beginning of each round, which

depends on the number of times it has been made CH

previously and the energy available in the node. These

properties help spread energy usage equally throughout the

network. We have also incorporated the TI of the node as an

additional parameter to be considered for CH election. The

TI of the node has to be higher than a threshold value to

ensure that only sufficiently trusted nodes can become CHs.

This is not a property of the original LEACH protocol.

Each node independently decides if it wishes to be a

CH. Once a node decides to become a CH, it broadcasts this

information. Any node that receives advertisements from n

different contending CHs, affiliates itself with a single CH

based on the strength of the signal received. If a node’s TI is

below a certain threshold, the central base station will cancel

this node’s effort to become a CH and re-initiate CH

election. A CH that reaches the end of its leadership period

sends the aggregate TI information that it has gathered for

all nodes in its cluster to the base station before ending its

leadership. A newly CH elected for an existing cluster

requests the base station for TI information for nodes in its

cluster.

We group event detection into two categories – binary

event detection and event detection with location

determination. Binary event detection leads to the system

recognizing the occurrence of the event with a binary

decision about whether it happened or not and not being

concerned with the location of the event. An example could

be detection of a forest fire based on the temperature

reaching a critical threshold. Location determination is when

the coordinates of the event are also reported by the sensing

node. In the forest fire example, the sensor can detect

environmental changes such as wind and variation in light

intensity in a direction and estimate the location of the

oncoming fire.

2.1 Failure Model

The nodes in the network may fail due to accidental

failures or may be compromised by an adversary and

therefore exhibit failure due to malicious causes. Three types

of failure scenarios are possible. A node may have a missed

alarm where it does not report an event within its sensing

radius to the data sink within a specified time. A node may

provide a false alarm where it either reports an event outside

of its sensing radius or reports an event within its sensing

radius that did not occur. A node may exhibit a location

faults where it reports an event but at the wrong location.

Flooding based denial of service (DoS) attacks are not

considered in this paper.

Four categories of sensing nodes are identified. Correct

nodes are not assumed to be 100% accurate, but are expected

to make errors within a specified bound referred to as

natural error rate. Faulty nodes form the superset for nodes

with natural or malicious failures. A faulty node can exhibit

naïve behavior in terms of randomly sending out corrupt

information following no specific pattern. The node lies

arbitrarily, either in dropping an event report, falsely

reporting an event, or reporting a faulty location (level 0). A

smart faulty node is aware partially of the system model and

tries to retain its TI at a reasonably high level where it

estimates it will not be detected and isolated. If a malicious

node’s TI is reaching a level at which it will either be

dropped from the network or its vote has too little influence

on the event decision, then the node will stop lying until its

TI is raised sufficiently. The smart faulty nodes may lie

independently (level 1) or in collusion (level 2). The

colluding nodes are assumed to be connected in a way that is

undetectable by the reliable nodes in the network.

3 Basic Design

The goal of the TIBFIT protocol is to determine whether

an event has occurred from analyzing reports from the event

neighbors. To combat failures in the reporting nodes, each

node is assigned a TI, maintained at the CH, to indicate its

track record in reporting past events correctly. The TI is a

real number between zero and one and is initially set to one.

For each report a node makes that is deemed incorrect by the

CH, the node’s TI is decreased. Similarly, for each report a

node makes that is deemed correct by the CH, the node’s TI

is increased, but not beyond one. Thus correctly functioning

nodes will have a TI approaching one while faulty and

malicious nodes will have a lower TI.

We assume that correct nodes are allowed to make

occasional errors due to natural causes. The rate of these

errors is denoted the natural error rate (NER). The TI is

decremented exponentially. Nodes that make mistakes are

penalized more for earlier mistakes, and find it more

difficult to regain their previous trust levels. This is

considered better than a linear model where a node that lies

50% of the time would still occasionally have the trust index

value of one. If a node errs more frequently than its NER its

index decreases, while if it errs less frequently then its index

increases.

The TI is calculated as follows. Let the natural error rate

be fr (<1). A variable v is maintained for each node at the

CH. Each time a node makes a report deemed faulty by the

CH its v is incremented by the expression 1-fr. Each time a

node makes a report deemed to be correct by the CH its v is

decreased by fr if v is larger than zero. The TI is calculated

as

TI = e- v

where is a proportionality constant that is application

dependent. An uncompromised node’s TI is expected to

remain at the same value. It can be expected to suffer a fault

at the rate of one per every 1/fr events and the expected

change in v is:

0*1
1

)1(][=





−−−=∆ r

r

r f
f

fvE

The design of the protocol is explained next by successively

relaxing some simplifying assumptions.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

4

3.1 Binary Events

Let us initially assume that event reports are binary in

nature simply specifying whether the event has occurred or

not. All the nodes in the cluster, say k, are event neighbors

for any event detected by the cluster. A sensing node can

detect the occurrence of an event perfectly for events that

happen within a radius rs surrounding the node. All the

nodes within radius rs of an event E are called event

neighbors for E.

After the CH receives the first event report, it calculates

the k event neighbors for the event. The CH then waits for a

predefined interval of time Tout for event reports to be

received from these nodes. After Tout has elapsed, the CH

partitions the event neighbors into two sets R and NR based

on whether they have reported the occurrence of the event or

not, respectively. The trust indices of each group are

summed and the group with the higher cumulative TI (CTI)

wins out. The trust index values of nodes in the winning

group are increased while the index values of nodes in the

losing group are decreased according to the formula given

above. It should be noted that a smaller group of reliable

nodes can win the vote against a larger group of unreliable

nodes based on higher TI for the individual reliable nodes

earned over past events. This process provides detection,

diagnosis, and masking of the fault.

It is evident that we do not need a TI model for a system

with faulty nodes in the minority. A simple voting would

suffice to mask the decision of the faulty nodes. However,

consider a system where the density of faulty nodes

increases over time. Examples could be batteries of the

nodes dying out with time, or existing nodes being

compromised by adversaries. The faulty nodes that have

been in operation for a while would have had their TIs

reduced to low values. Hence even when the total number of

faulty nodes is in a majority, their CTI may still be lower

than that of the correct nodes. Hence, TIBFIT can lead to

correct aggregation as well as diagnosis even with more than

50% of the nodes compromised. It is obvious that if the

initial condition consists of faulty nodes being in the

majority, then the protocol will be unsuccessful in tolerating

faults. After time, the system can identify a faulty node

when its TI falls below a certain threshold. It can then be

removed from the network.

3.2 Location Determination

In this section we build on the previous model by adding

location details to the event reports. The event report

consists of location in terms of (r,) with respect to that

node. The nodes do not sense the location of the event

perfectly and the CH must determine the actual location of

the event. One sensor network problem that can be

solved through this extension is where a network is

attempting to track a mobile sensor node that is transmitting

a signal as it moves throughout the network.

Simplifying Assumptions: Let us assume there is a time

difference of at least Tout between any two events to avoid

overlapping event neighbors. A correct event report sent in

by a sensing node reports the location of an event to within a

radius rerror surrounding the event.

Once time Tout has elapsed after the first event report, let

there be k other reports that have come in from the nodes in

the cluster during this time. The CH performs a clustering

algorithm based on K-Means which groups these k event

reports into a number of event clusters based on the

locations indicated by the reports [14]. Each event cluster

represents a possible location where the event could have

occurred, as indicated by the reports. The clustering

algorithm is a heuristic based on K-Means, so as to minimize

the sum of squares error.

Goal of the algorithm presented below is to organize the

event reports into disjoint event clusters of radius rerror. Let C

be the set of all event clusters consisting of elements {C1,

C2…Cr}. Let {c1, c2…cr} be the centers around which the

event clusters {C1, C2…Cr} are formed. Let d(x, y) denote

the distance between two points x and y. d(ci, cj) > rerror ∀
Ci, Cj ∈ C. Ck.cg (Center of gravity) denotes the average

location indicated by all event reports in cluster Ck.

Event clusters are created using the following procedure.

(1) The clustering algorithm is started once Tout has elapsed

after the first event report. The set of all event reports in

this time Tout is referred to as E. The distances between

each pair of event reports are computed and sorted in a

2D array.

(2) Let E1 and E2 be event reports from the set E with the

greatest distance between them. Event clusters C1 and

C2 are created with E1 and E2 as centers, and C1, C2 are

added to C.

(3) Condition for any event report Ek to form a separate

event cluster is that d(Ek, ci) > rerror ∀Ci ∈C. The set E is

iterated through and the set of all cluster centers are

identified, so that the remaining event reports are at a

distance of less than rerror from at least one element in C,

i.e., the remaining event reports cannot form separate

event clusters.

(4) Once the initial set of clusters in C are formed,

remaining event reports in E are added to one of the

clusters in C based on which cluster center it is nearest

to. Ck.cg for the clusters are updated appropriately.

(5) If the centers of two or more clusters lie within rerror of

each other the clustering algorithm is repeated by

forming a new cluster center at the weighted average of

these centers. The rounds are executed until no change

in cluster constituency takes place in a new round.

The final elements in C represent the set of all event

clusters indicating possible locations where the given event

could have occurred. Ck.cg represents one possible location

for the event as indicated by the event cluster k. The event

neighbors can be determined for the location determined and

a determination of whether an event has occurred is made

based on the trust indices of the associated nodes as in

Section 3.1. This design successfully throws out event

reports from nodes that make a localization error of more

than rerror.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

5

3.3 Concurrent Events

Additions: In this section we build on the previous model by

assuming that multiple events can occur within Tout of each

other (referred to as concurrent events from here on). We

however assume that concurrent events cannot occur closer

than a distance of rerror.

(1) When the CH receives the first event report E1, a

symbolic circle of radius rerror is drawn around it. A new

timer E1.Tout is started for the associated event reports

from other event neighbors to come in. All subsequent

events that lie within rerror of E1 reported within time

Tout are added to the same circle.

(2) If any subsequent event report Ek received lies outside

this circle, a new circle of radius rerror is formed with

this event report Ek as its center. Associated Ek.Tout is

started.

(3) Once time Ek.Tout has passed from the reception of event

report Ek that is the center of a circle, all the event

reports inside this circle are put into a group and the

clustering algorithm described in the previous section is

performed on them to determine the location of the

event.

(4) However if one or more other circles overlap with this

circle, then the CH must wait until time Tout has elapsed

for all such overlapping circles. The clustering

algorithm is performed on the union of all event reports

in all the overlapping circles to determine the event

clusters and thus how many events have actually

occurred.

3.4 Unreliable Cluster Heads

Though the CHs are chosen based on high TI values, it is

still possible for a selected CH to fail. To combat this

problem we assign two additional shadow cluster heads

(SCH) to each cluster such that the SCHs can monitor all

input and output traffic associated with the selected CH. The

SCHs themselves may be considered to be reliable as they

are chosen based on the fact that they have the highest trust

indices among nodes within one hop of the CH. The SCHs

listen in to the communication going in and out of the CH

and perform all the functions as the CH except transmitting

the aggregated event reports to the base station. On

perceiving a wrong conclusion being drawn at the CH based

on the input data, the SCHs also send the result of their own

computations to the base station. The base station, on

receiving data from all CHs in the cluster, does a simple

voting to arrive at the right conclusion. It also prompts CH

election in that cluster to pick a new CH and reduces the TI

of the previous faulty CH. Thus, only a single CH failure can

be tolerated.

TIBFIT can also be extended to scenarios where the

sensing nodes are more than one hop away from the data

sink. The data sink still needs to know the location of the

constituent node and reliable data dissemination primitive

needs to be introduced to ensure that the data sent out by the

sensing nodes reliably reach the data sink without alteration

[15],[16].

4 Simulation

The TIBFIT protocol is simulated using the network
simulator – ns-2 [6]. A sensing radius of 20 units is

considered. Events are generated at regular time intervals by

the event generator, using a uniform random variable to

generate X and Y coordinates uniformly distributed in the

network. The event generator informs the event neighbors of

the event and its location.

We run three different experiments. In experiment 1 we

show the accuracy of the binary event model versus

percentage of the network compromised by level 0 faulty

nodes. In experiment 2 we show the accuracy of the location

event model versus percentage of the network compromised

by level 0, 1, and 2 faulty nodes. In experiment 3 we show

the accuracy of the location event model versus time, where

the percentage of the network compromised increases

linearly over time.

For each simulation we use either the TIBFIT system that

uses the trust index, or we use the baseline system, which

uses majority voting to make event decisions. Experiments

are run with faulty nodes belonging to only one level for a

given experiment. Nodes are stationary in all experiments.

4.1 Experiment 1 – Binary Events

A cluster of ten nodes is formed, and all nodes are

considered event neighbors for every randomized event.

Level 0 faulty nodes are used for the fault model, generating

both missed alarms and false alarms. The CH makes a

decision regarding occurrence of the event based on the data

forwarded to it from the sensing nodes.

Type of Event Binary Event Model

Independent Variable Percentage Faulty Nodes:

varied from 40%-90%

Correct Nodes NER 0, 1, and 5%

Faulty Nodes NER Level 0:Missed Alarm 50%

False alarm 0,10, and 75%

Size of network 10 sensing nodes, 1 CH

Number of Event neighbors 10

Events per simulation 100

 λ 0.1

Fault rate (fr) Same as NER

Table 1: Parameters for Experiment 1
For this experiment we started simulations with 40% of the

network compromised. As Section 5 shows, even for the

baseline system, the probability of failure with less than 40%

of the network compromised is very small, and therefore not

simulated.

The results in figure 2 include only missed alarms. The

most noteworthy result from this experiment is that the

network can have 70% of its nodes compromised and still

maintain over 85% accuracy. This result is superior to the

analytical results shown in figure 10 in Section 5.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

6

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

��������
��������

Accuracy of Detection

40

60

80

100

40 50 60 70 80 90

Percentage Network Compromised

A
c
c
u

ra
c
y

NER = 0% NER = 1%

������
������ NER = 5%

Figure 2: Experiment 1 – 50% accurate faulty
Nodes, missed alarms only

Accuracy of Detection, NER=1%

40

60

80

100

40 50 60 70 80 90

Percentage Network Compromised

A
c
c
u
ra

c
y

0% False Alarms 10% False Alarms

75% False Alarms

Figure 3: Experiment 1 – 50% accurate faulty
nodes, missed alarms and false alarms

Figure 3 shows the simulation with both false alarms and

missed alarms from faulty nodes. All correct nodes have 1%

NER. Again, the network performance starts to degrade with

70% faulty nodes. The interesting results is that 75% false

alarms shows the best accuracy when less than 80% of the

network is compromised, indicating that the excessive false

alarms lower faulty nodes’ TIs and therefore increase system

reliability. At 80% faulty nodes with 75% false alarms,

accuracy falls dramatically, as the system is no longer able

to tolerate the excessive false alarms. 10% false alarms

maintains the highest accuracy at this point, indicating that

occasional false alarms lower faulty nodes’ trust indices

enough to outperform 0% false alarms.

4.2 Experiment 2 – Location Determination
Model

In the second type of simulation, 100 nodes are placed

uniformly on a 100X100 grid. The CHs and event generator

are two other entities present in the network. The CH

decides on both the occurrence of the event as well as its

location. The network is a single cluster, and the CH knows

the positions of all 100 nodes. All nodes can reach the CH in

a single hop. For location estimation rerror is 5 units. Table 2

shows various experimental parameters for this experiment.

Due to the ns-2 wireless model, correct nodes’ packets are

naturally dropped less than 1% of the time.

A lower threshold (lowerTI) of 0.5 is used for level 1 and

level 2 nodes to ensure their trust indices do not fall too low.

If they reach the lower threshold they behave like a correct

node until they reach an upper threshold (upperTI) of 0.8,

after which they begin erring again. Each node reports an

event with error in both the X and Y directions as dictated

by a Gaussian random variable with standard deviation .

Type of Event Location Determination

Concurrent or single events

Independent variable Percentage faulty nodes,

varied from 10%-58%

Error rate for correct nodes Location report has std.

deviation of 1.6 or 2.0

Error rate for faulty nodes

(levels 0, 1, and 2)

Location report has std.

dev. of 4.25 or 6.0, drop

packets 25% of the time

Size of network 100 sensing nodes, 5 CH

Number of event neighbors Variable on location

λ 0.25

Fault rate (fr) 0.1 (different from NER to

compensate for wireless

channel model losses)

Table 2: Parameters for Experiment 2
The error percentage indicated in Table 2 is calculated as

the joint probability distribution of the two Gaussian rv’s,

which are Rayleigh distributed, and it indicates the

probability a node reports an event more than 5 units away

from the actual event location. The standard deviation for a

correct node is much less than that for a faulty node. Level 1

nodes work independently, while level 2 nodes collude with

each other and all either send the event report for the same

location or do not send the event report.

This experiment initialized a network with a percentage of

the network compromised by Level 0, 1, or 2 malicious

nodes. 58% was the upper limit for the compromised

network as past this point the system did not work with

much accuracy. The output accuracy metric was the number

of events detected by the CH within rerror of the actual event.

Simulations are run with both concurrent and single events.

The legend format for all the result figures from this point on

is “Lvl M W-Z [TIBFIT or Baseline]”, where M is the type of

malicious node used, W is the standard deviation of the

correct nodes, Z is the standard deviation of the malicious

nodes, and the final parameter is whether the TIBFIT or the

baseline model was used.

The results in figure 4 show that at low percentages of the

network compromised, the TIBFIT system and the baseline

system perform similarly. However, after 40% of the

network is compromised, the TIBFIT model performs better

than the baseline model by at least 7% percent, and by as

much as 20% percent. More importantly, TIBFIT has

accuracy near 80% even with faulty nodes having errors

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

7

70% of the time. A consequence of the execution of the

network with TIBFIT is that the trust index values of the

faulty nodes continue to decrease and once they reach the

threshold, the nodes can be removed from the network, thus

eliminating them from causing future damage.

Level 0 TIBFIT versus Baseline

40

50

60

70

80

90

100

10 20 30 40 50 55 58

Percentage Network Compromised

A
c
c
u

ra
c
y

Lvl 0 2-6 Baseline Lvl 0 2-6 TibFit

Lvl 0 1.6-6 Baseline Lvl 0 1.6-6 TibFit

Figure 4: Experiment 2 – Level 0 faulty nodes

Level 1 TIBFIT versus Baseline

40

50

60

70

80

90

100

10 20 30 40 50 55 58

Percentage Network Compromised

A
c
c
u

ra
c
y

Lvl 1 2-6 without TI Lvl 1 2-6 with TI

Lvl 1 1.6-6 without TI Lvl 1 1.6-6 with TI

Figure 5: Experiment 2 – Level 1 faulty nodes

The second graph for location estimation, shown in figure

5, is for level 1 nodes. The result shows that even with 58%

of the network compromised, TIBFIT’s accuracy remains

over 90%. In contrast, the baseline model falls well below

that level once the network reaches 40% malicious nodes.

The reason for this trend is that the level 1 nodes lie with

intention to keep them from being detected. In effect, the

trust index forces the malicious nodes to lie less frequently

and therefore helps to improve the accuracy of the event

determination.

Figure 6 shows results for level 2 malicious nodes. It

shows that these nodes dramatically reduce the accuracy of

the network, although the TIBFIT still outperforms the

baseline model. It is clear from this figure that even the trust

index has trouble tolerating level 2 type faults due to the

collaborative nature of the nodes.

Figure 7 shows level 0 nodes with concurrent events

compared to single events, both simulations using TIBFIT.

The concurrent events occur with uniform distribution

simultaneously, although never within rerror of each other.

The graph indicates that tolerating concurrent events does

not significantly alter the success of the nodes in accurate

detection of events.

Level 2 TIBFIT versus Baseline

30

40

50

60

70

80

90

100

10 20 30 40 50 55 58

Percentage Network Compromised

A
c
c
u

ra
c
y

Lvl 2 2-6 Baseline Lvl 2 2-6 TibFit
Lvl 2 1.6-6 Baseline Lvl 2 1.6-6 TibFit

Figure 6: Experiment 2 – Level 2 faulty nodes

Level 0 Concurrent vs. Single Events

70

75

80

85

90

95

100

10 20 30 40 50

Percentage Network Compromised

A
c
c
u

ra
c
y

Lvl 0 1.6-4.25 Single Lvl 0 1.6-4.25 Concurrent
Lvl 0 2-4.25 Single Lvl 0 2-4.25 Concurrent

Figure 7. Experiment 2 – Single and Concurrent
Events

4.3 Experiment 3 – Decay of Network

The next simulation increases the percentage of the

network compromised by malicious nodes linearly over

time. The network is initialized with 5% of the network

compromised by level 0 faulty nodes. After every 50 events

5% more of the network is compromised until 75% of the

network is compromised.

Figure 8 and figure 9 show that over time TIBFIT

outperforms the baseline model in all cases. This occurs

because the trust indices of the faulty nodes decrease over

time and the system can then handle the transition of some

correct nodes to faulty nodes. It is important to compare only

the lines with the same standard deviation parameters,

because for some time the baseline model with 1.6-4.25

outperforms the TIBFIT 2-4.25 case, although after a longer

period of time the TIBFIT line does better, even though it has

a higher fault rate in its correct nodes. What is also notable

is that the TIBFIT network maintains nearly 80% accuracy

even with 60% of the network compromised.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

8

���������������������������������
���
���
����
����
�����
�����

��
��
���
���
����
����
�����
�����
������
������

���
���
���
���
����
����
�����
�����

��
��
���
���
����
����
�����
�����
������
������

���
���
���
���
����
����
�����
�����

��
��
���
���
����
���

����
�����
�����

��
��
���
��

������
��
��

�����
������
������

���
���

����
�����
��������������

Accuracy with Linear Increase in Faulty Nodes

0.2

0.4

0.6

0.8

1

50 150 250 350 450 550 650 750

Number of Events that have Occurred

A
c

c
u

ra
c

y

Lvl 0 1.6-6 Baseline Lvl 0 2-6 Baseline
�����������

Lvl 0 2-6 TibFit Lvl 0 1.6-6 TibFit

Figure 8: Experiment 3 – Linear increase in number
of faulty nodes

���
���
����
����
�����
��

������
��
��

�����
������
��

������
���
�����������������������������������

�����
������
������

���
������������������������������

�����
������
���������

Accuracy with Linear Increase in Faulty Nodes

0.5

0.6

0.7

0.8

0.9

1

50 150 250 350 450 550 650 750

Numbers of Events that have Occurred

A
c
c
u

ra
c
y

Lvl 0 2-4.25 Baseline

����������
Lvl 0 1.6-4.25 Baseline

Lvl 0 1.6-4.25 TibFit Lvl 0 2-4.25 TibFit

Figure 9: Experiment 3 – Linear increase in number
of faulty nodes

5 Mathematical analysis

In this section we analyze the probability associated with

the CH successfully identifying a binary event in the

presence of faulty nodes.

Consider a baseline model with no trust indices assigned

to the nodes. Let us assume that there are N event neighbors,

of which m are faulty. The probability of a successful report

from a correct node is p, and the probability of a successful

report from a faulty node is q. Let X be the random variable

that is the number of correct reports from correct nodes, and

Y be the random variable indicating the same for the faulty

nodes. They are defined:

()

()

{ } 1

{ } 1

N m kk

m kk

N m
P k p p

k

m
P k q q

k

X

Y

− −

−

−
= = −

= = −

 
 
 
 
 
 

The probability that the N-m correct nodes make k or

more correct reports is therefore the sum of the probabilities

from k to N-m, and from k to m for faulty nodes. Define the

random variable Z=X+Y. We wish to know the probability

that Z has a majority of the N votes, which is the probability

that the event is successfully identified. The expressions are

shown in equations 1, 2, and 3. These expressions map to

Figure 10 with N=10, q=0.5, and p=0.99, 0.95, 0.90, 0.85.

The accuracy begins to fall off steeply once fifty percent

of the network is compromised. TIBFIT can tolerate both an

increase in faulty nodes over time and more initial nodes

being faulty, and will therefore outperform this baseline

case. Next we will show how TIBFIT performs over time.

Consider the TIBFIT model. Assume the network

initializes with N nodes with 1 faulty node and N-1 correct

nodes. We will corrupt the nodes in the network at a

constant rate of one after every k events and show how the

system still functions with 100% accuracy till N-3 nodes are

corrupted, thereby outperforming the baseline case which

drops in accuracy once 50% of the nodes in the system are

compromised. Without loss of generality, let us assume that

N is odd. We also make the simplifying assumption that

correct nodes are always correct and the faulty nodes always

fail. Let CTIcorrect be the CTI of the set of correct nodes and

CTIfaulty be the CTI of the set of faulty nodes.

After every k events a good node is compromised. After

(N-2)*k rounds, total number of correct nodes is 3, and

faulty nodes is N-3. CTIcorrect is 3 as correct nodes are always

correct and each has a TI of one. After the first faulty report,

the TI of a node becomes e(-). Therefore after k rounds, the

TI of the faulty node would be e(-k). So, CTIfaulty for (N–3)

faulty nodes when the newest addition to the faulty set has

made k errors would be
()22 N kk k

e e e
λλ λ − −− −+ + + .

()

/ 2

1

mi

2

() 1 , now let (1)
2 2 2

() * 1 * * (1)

N

j

N m kk i m i

N
k j m

N N N
P success P Z P Z j i j k

N m m
P success p p q q

k i

=

− − −

= + −

  

 
  

= ≥ + = = + = + −

−
= − −

        
                

     
     
     

∑

()

n ,
/ 2 2

1

min ,
/ 2 2

1
()

2

 (2)

() * 1 * * (1) (3)

N
j N m

N

j

N
j m

N
m kk i N m i

Nj
k j N m

m N m

m N m
P success q q p p m N m

k i

+ −

=

+

− − −

= = + − −

  
        

  
        

 
  

≤ −

−
= − − > −

 
 
   
                    

∑ ∑

∑ ∑

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

9

Figure 10. Expected accuracy of the network as the
percentage of faulty nodes increases

Figure 11. Variation of k with different values

For the system to be 100% accurate, CTI of correct

nodes (CTIcorrect) should always be greater than CTI of faulty

nodes (CTIfaulty). For a correct node to be corrupted, CTIfaulty

should be infinitesimally close to 1, so that CTIcorrect -1 >

CTIfaulty+1 (a node is transferred from the good side to the

bad side). We have the following expression:
()22

3 1 1
N kk k

e e e
λλ λ − −− −− > + + + + , or

(1)

(1)1
2 0 2 1

1

N k

k N k

k

e
e e

e

λ
λ λ

λ

− −
− − −

−

−
= → = − +

−
, which can be

solved with Matlab.

Figure 11 shows this expression for several different

values. Wherever a given line crosses the x-axis that is the

value of k and the number of rounds after which a good node

can be made into a faulty node. Expectedly as increases,

the frequency of nodes failing that can be tolerated increases

since the TI degrades more rapidly with failures. It is for this

reason we chose =0.25 for our simulations, so that we

could create a fair number of data points but without needing

a very large number of events to show the beneficial effects

of TIBFIT.

 The upper limit on k is the k necessary to make three

good nodes tolerate an additional failure. We stop the

analysis at two because once the system has two good nodes

left then the sum of the faulty nodes’ trust indices must be

less than zero to allow the addition of a bad node, which is

impossible. When there are 3 good nodes left in the system,

then 3 > CTIfaulty, where CTIfaulty = 3- , >0. After kmax

rounds from this state, let us assume that one more correct

node can be transferred to the faulty side. Therefore after
kmax rounds the value of CTIfaulty should be = 1- before the

transfer. Solving 3*e-kmax
=1- gives us

max

1
ln 3 as 0k ε

λ
= → . Hence, the maximum number of

rounds needed to tolerate another faulty node is
1

ln 3
λ

.

6 Related Work

As in any sensor networks problems, we require a great

deal of related material to ensure that our model accounts for

the many challenges of creating a functioning wireless

sensor network. For instance, [18] gives an algorithm that

guarantees reliable and fairly accurate output from different

types of sensors when at most k out of n sensors are faulty.

[17] gives a fault tolerant way of averaging sensor data, and

the author also gives a control process to deal with

individual sensor failures. [19] deals with multi-sensor data

fusion and assumes that the biggest loss in sensor network

efficiency is from sensor readings. They propose a method

of handling sensor failures through substitution of another

on-board sensor. [20], [21], and [22] provide techniques of

localization for finding node position, such as triangulation

and lateration. Nodes within sensing range of this mobile

node must be able to determine the location of this node.

Location determination efforts with directional antennas can

aid in finding the location of such a mobile node. In [13] it is

shown that given signal strength and attenuation model one

can estimate sensor location. Given enough fixed anchor

nodes Bagchi et al. present a technique for finding an

unknown node within some range of error [12].

There appears to be a dearth of existing work related to our

specific topic of data fault tolerance in sensor networks.

Schaeffer et al. discuss decision making concerned with

propagating an alert through a network [7]. They set a

threshold for event propagation, where if a node hears more

than n nodes announce an alert then that node sounds the

alert. They analyze the characteristics of this network with

false alarms and missed alarms, where the evaluation is on

whether the event notification reaches some data sink. They

address natural faults exclusively and do not consider cases

with faulty nodes colluding.

Wagner discusses aggregation of data in a sensor network

with malicious intruders in [10]. The author presents a

mathematical framework for analyzing the vulnerabilities of

common aggregation functions and then presents the

mathematical basis for secure aggregation functions, such as

average with trimming. The work presented here can

complement this by providing trimming of some failing

nodes so that the aggregation can work on the remaining

data set. However, the paper does not address the problem of

in network aggregation, which is covered here through the

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

10

analysis of failure prone CHs. It admits that the aggregation

functions break down with more than half the network

compromised. Also, the paper presents the case for

aggregation with redundant deployments of cheap, crude

sensor nodes.

Koo shows an upper bound on the tolerance of a broadcast

decision process as approximately 1/ of the network being

compromised [1]. This model is proven theoretically with

arbitrarily powerful malicious nodes.

7 Conclusions

We present a protocol called TIBFIT that maintains state

for event decisions in a sensor network. This protocol can

handle both binary event detection and event location

estimation with high accuracy in the face of natural and

malicious node failures within the network. The protocol

outperforms the standard voting scheme for event detection.

We also define two types of intelligent malicious fault

models that can disrupt a network, and find that using TIBFIT

malicious nodes acting independently are successfully

tolerated. However, the accuracy of TIBFIT in a system of

colluding nodes is not as high though it outperforms the

baseline voting scheme.

 There still remains much work to be done with this

protocol. We would like to further explore the impact of

different system parameters on performance. We would also

like to make TIBFIT more robust against level 2 malicious

nodes. Another step would be to explore more types of

intelligent models involving different levels of collusion and

decision sharing amongst malicious nodes. We would also

like to develop a more extensive theoretical model to

demonstrate correctness and predict system reliability under

given constraints. Ultimately, we would like to implement

the protocol in our hardware testbed of Berkeley motes to

measure the resource consumption.

8 References

[1] C-Y Koo. “Broadcast in Radio Networks Tolerating Byzantine

Adversarial Behavior.” In PODC 2004.

[2] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci.

“A Survey on Sensor Networks.” IEEE Communications

Magazine, pp. 102-114, Aug. 2002.

[3] W. Heinzelman, J. Kulik, and H. Balakrishnan. “Adaptive

Protocols for Information Dissemination in Wireless Sensor

Networks.” ACM Mobicom 99.

[4] W. Heinzelman, A.P. Chandrakasan, and H. Balakrishnan.

“An Application-Specific Protocol Architecture for Wireless

Microsensor Networks.” IEEE Transactions on Wireless

Communications, Oct 2002.

[5] J. Lu, T. Suda. “Coverage-aware Self-scheduling in Sensor

Networks.” IEEE Computer Communications Workshop, Oct

2003.

[6] http://www.isi.edu/nsnam/ns.

[7] S. E. Schaeffer, J. C. Clemens, P. Hamilton. “Decision Make

in a Distributed Sensor Network.” In Proceedings of the Santa

Fe Institute Complex Systems Summer School, Santa Fe, NM,

USA, 2004. Santa Fe Institute. To appear.

[8] G. J. Pottie and W. J. Kaiser. “Wireless Integrated Network

Sensors.” Communications of the ACM, vol. 43 no. 5, May

2000, pp. 51-58.

[9] E. Shih, S.-H. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, A.

Chandrakasan. “Physical layer driven protocol and algorithm

design for energy-efficient wireless sensor networks.”

MobiCOM, 2001. pp. 272-287.

[10] D. Wagner. “Sensor networks: Resilient aggregation in sensor

networks.” ACM Workshop on Security of ad hoc and sensor

networks, 2004. pp. 78-87.

[11] Hoblos G., Staroswiecki M., Aitouche A. “Optimal Design of

Fault Tolerant Sensor Networks” IIII Int’l Conf. Cont. Apps.

Anchorage, AK, Sept 2000, pp. 467-72.

[12] S. Cabuk, N. Malhotra, L. Lin, S. Bagchi, and N. Shroff,

“Analysis and evaluation of topological and application

characteristics of unreliable mobile wireless ad-hoc network,”

In Proceedings of the 10th Pacific Rim Dependable

Computing Conference, March, 2004 (PRDC 04), March

2004.

[13] J. Hightower, R. Tower, and G. Borriello, “SpotON: An

indoor 3d location sensing technology based on RF signal

strength,” Technical Report of the University of Washington,

Computer Science Department, February 2000.

[14] Sanjiv K. Bhatia, “Adaptive K-Means Clustering” In

Proceedings of Florida Artificial Intelligence Research

Symposium, 2004

[15] Gunjan Khanna, Saurabh Bagchi, and Yu-Sung Wu, "Fault

Tolerant Energy Aware Data Dissemination Protocol in

Sensor Network," In Proceedings of the IEEE Dependable

Systems and Networks Conference (DSN 2004), pp. 739-748,

June 28-July 1, 2004, Florence, Italy.

[16] "Design and Analysis of Hierarchical Key Management for

Scalable and Energy Efficient Secure Communicationon

Sensors," Issa Khalil, Ness Shroff, and Saurabh Bagchi.

Submitted to AD HOC NETWORKS JOURNAL

(ELSEVIER). Also available as CERIAS Tech Report TR-

2003-33.

[17] Loren Schwiebert, Sandeep K.S. Gupta, “Research challenges

in wireless networks of biomedical sensors” ACM Sigmobil

7/01 Rome Italy.

[18] K. Marzullo, “Tolerating failures of continuous valued

sensors,” ACM Transactions on Computer Systems, vol. 8, no.

4, pp. 284-304, November 1990.

[19] F. Koushanfar, M. Potkonjak, A. Sangiovanni-Vincentell,

“Fault tolerance techniques for ad-hoc sensor networks,”

Proceedings of IEEE Sensors, vol. 2, pp. 1491-1496, June

2002.

[20] Jeffrey Hightower and Gaetano Borriello, “Location sensing

techniques,” Technical Report of the University of

Washington Computer Science Department, UW-CSE-01-07-

01, July 2001.

[21] J. Hightower and G. Borriello, “Location systems for

ubiquitous computing,” IEEE Computer, pages 57-66, August

2001.

[22] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less low cost

outdoor localization for very small devices,” IEEE Personal

Communications Magazine, pages 28-34, October 2000.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

